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The electron gas hosted in a two-dimensional solid-state matrix, such as a quantum well or a two-
dimensional van der Waals heterostructure, supports the propagation of plasma waves. Nonlinear
interactions between plasma waves, due to charge conservation and current convection, generate
a constant density gradient which can be detected as a dc potential signal at the boundaries of
the system. This phenomenon is at the heart of a plasma-wave photodetection scheme which was
first introduced by Dyakonov and Shur for electronic systems with a parabolic dispersion and then
extended to the massless Dirac fermions in graphene. In this work, we develop the theory of plasma-
wave photodetection in bilayer graphene, which has the peculiarity that the dispersion relation
depends locally and dynamically on the intensity of the plasma wave. In our analysis, we show
how quantum capacitance effects, arising from the local fluctuations of the electronic dispersion,
modify the intensity of the photodetection signal. An external electrical bias, e.g. induced by top
and bottom gates, can be used to control the strength of the quantum capacitance corrections, and
thus the photoresponse.

I. INTRODUCTION

An electron system in a solid-state matrix displays col-
lective density oscillations supported by the Coulomb re-
pulsion between electrons. If the period T of such oscil-
lations is much longer than the time τeq that is needed
for establishing a local thermal equilibrium in the elec-
tron system, then the oscillations are described by a wave
equation and are called plasma waves. [1]

As observed in a seminal paper [2] by Dyakonov and
Shur (DS), a setup which allows to meet the condition
τeq � T is that of a field-effect transistor (FET), i.e. a
conductive channel where electrons roam, with a source
and a drain contact, and capacitively coupled to a gate
conductor. The charges on the gate screen the density
oscillations in the channel and reduce the intensity of
the Coulomb interaction, lowering the frequency of the
oscillations below the threshold 2π/τeq. In this regime,
the electron system is well-described by hydrodynamic
equations, which are nonlinear in the coupling between
the electron density and velocity. These hydrodynamic
nonlinearities originate intriguing interference effects be-
tween the propagating plasma waves, as further pointed
out by DS. [3–5]

Among these effects, one of notable practical impor-
tance is produced by subjecting the FET to a specific
driving: feeding an ac potential between the source con-
tact and the gate, with the drain contact floating. This
ac potential can be fed into the FET by an appropri-
ately connected antenna. The result is that a dc po-
tential, i.e. a photovoltage, is established between source
and drain, as a consequence of a standing wave being

supported in the FET channel, which acts as a cavity.
This concept is called DS plasma-wave photodetection
scheme, and has received steady theoretical and experi-
mental interest for a few decades, especially in relation to
the generation and detection of terahertz radiation. [6, 7]

The theory predicts that resonant (i.e. frequency-
resolved) photodetection can be achieved, if it is possible
to tune the plasma-wave speed, for example by electri-
cal doping, and if the channel is sufficiently clean (i.e. if
the electronic momentum scattering rate is not much
shorter than T ). Graphene, a two-dimensional crystal
made of Carbon atoms, [8] possesses both these quali-
ties: an electrically tunable carrier density, [9] and a large
room-temperature mobility, especially if encapsulated in
hexagonal boron nitride (hBN). [10] In particular, it
has been shown that hBN-encapsulated graphene allows
the electron system to sustain long-lived plasma excita-
tions [11, 12] and to enter the hydrodynamic regime [13–
18] even in the absence of a gate. Indeed, graphene-based
FETs have been identified early-on as ideal candidates to
investigate the DS photodetection scheme [19, 20]. Later,
larger responsivity has been achieved [21] using bilayer-
graphene (BLG) [8] channels and, finally, resonant DS
photodetection has been demonstrated [22] using hBN-
encapsulated BLG.

Motivated by this recent experimental breakthrough,
in this paper we formulate the theory of DS plasma-wave
photodetection in dual-gated bilayer-graphene FETs. We
emphasize that, in Ref. [22], from a theory point of view,
BLG was modeled as a Fabry-Pérot resonator with ef-
fective parameters. Such treatment does not yield a full
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FIG. 1. Schematics of the setup. The two graphene layers
forming the bilayer system, at z = −d/2 and z = d/2, are
displayed as thick black lines. The top layer is contacted
to source and drain, represented by the light shaded shapes.
The surfaces of the bottom and top gates, represented by
dark shaded rectangles, lie at z = −db and z = dt. The
dielectric constants in the three regions of space delimited by
the gates and the layers are denoted εb, εr, and εt from bottom
to top. In the corresponding regions of space the electric field
is denoted Eb, E, and Eb. The electric potential at the gates
and along the layers is denoted Vb, Vt, ϕb(x), and ϕt(x).
Translational invariance is assumed in the y direction.

picture of the dependence of the photovoltage on the ex-
perimental tuning knobs, such as the electron density
and the gate voltages. Here, we develop a theory that
starts out from a microscopic description of electrons in
BLG in terms of a two-bands Hamiltonian, and derive
an expression for the DS photovoltage by means of elec-
tron hydrodynamic equations which are specific to BLG.
Indeed, in the electron hydrodynamic regime, [23–31],
the hydrodynamic equations in graphene feature pecu-
liar terms [32–34] arising from its linear electronic disper-
sion. In BLG, the linear electronic bands of two adjacent
graphene sheets hybridize and give origin to a new elec-
tronic dispersion characterized by a position-dependent
gap. [35–37] In this work, we show that the electron hy-
drodynamic equations in BLG are augmented by terms
which derive from the finite gap in the electronic disper-
sion. The electron density and gap fluctuations are cou-
pled, which modifies the plasma-wave propagation and
affects the dc photovoltage of a FET based on a bilayer-
graphene channel. We thus obtain, on a microscopic foot-
ing, the parametric dependence of the DC photovoltage
on the dual-gated BLG FET.

We stress that BLG is different from a double- or multi-
layer graphene system, where vertically-stacked graphene
sheets are electronically decoupled, and the electronic
dispersion in each sheet is unperturbed. Double-layer
setups support intra- and inter-layer plasmon modes [38–
40] and feature interesting interplay between plasma-

wave propagation [41] and inter-layer electron tunneling
or scattering. [42–46] Electron tunneling in multi-layer
graphene [47, 48] or in gate-defined lateral tunnel junc-
tions in BLG [49] can also be exploited to achieve pho-
todetection mechanisms different from the DS scheme.

The paper is organized as follows. In Sec. II A we intro-
duce the model and define the set of variables describing
the electron system. For the sake of clarity, we introduce
all degrees of freedom (quantum, thermodynamic, elec-
trostatic) in full detail, and the relations between them in
focused sub-sections, aiming at a self-contained and ped-
agogical exposition. In Sec. III we introduce the dynam-
ical model coupling quantum, thermodynamic, and elec-
trostatic variables, which takes the form of a set of hydro-
dynamic equations. In Sec. IV we discuss the linearized
solutions of the hydrodynamic equations, which describe
plasma waves, both freely propagating and in the pres-
ence of boundary conditions. In Sec. V we calculate the
photovoltage when the electron system in a FET chan-
nel is subjected to the Dyakonov-Shur boundary condi-
tions. The differences of the photoresponse function with
respect to the single-layer graphene case are elucidated.
The broadband limit of the photoresponse function is dis-
cussed in the Appendix. Finally, in Sec. VI we summarize
our procedure and findings.

II. ELECTRON DENSITY IN DUAL-GATED
BILAYER GRAPHENE

A. The setup

We model BLG as two graphene sheets lying in the
planes z = −d/2 (bottom layer) and z = d/2 (top layer),
extended along the x direction from x = 0 to x = L. (See
Fig. 1.) As anticipated in Sec. I, and discussed in detail
in Sec. II B, the electronic states in the two sheets are
hybridized. We assume that the system is translation-
ally invariant in the y direction. Two perfect conductors
lie in the planes z = −db (bottom gate) and z = dt

(top gate). The uniform electric potential of the bottom
(top) gate is Vb (Vt). The electric potential in the bot-
tom (top) layer is ϕb(x) [ϕt(x)]. The dielectric constant
is: εb for −db < z < −d/2, εr for −d/2 < z < d/2,
εt for d/2 < z < dt. The electric field is: Eb(x, z) for
−db < z < −d/2, E(x, z) for −d/2 < z < d/2, Et(x, z)
for d/2 < z < dt. At x = 0 (x = L) the top graphene
layers touches the source (drain) contact. We assume
that the electric potential on the top graphene layer is
locally equal to that on the contacts, while the poten-
tial on the bottom graphene layer is free to float and is
determined as detailed in the following section. Vectors
in the two-dimensional (2D) x − y space are denoted as
v = (vx, vy).
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B. Bilayer graphene Hamiltonian

Electrons roaming in the BLG are described by the fol-
lowing Hamiltonian in the two-bands approximation [35–
37]

Ĥ(x) =

(
0 − (p̂x−ip̂y)2

2m

− (p̂x+ip̂y)2

2m 0

)
− ∆(x)

2

(
1 0
0 −1

)
.

(1)
Here, p̂x and p̂y are the components of the electron mo-
mentum operator. The matrices act in the layer space,
where the first (second) component corresponds to the
bottom (top) layer. The index in the layer space is ` = b
(bottom layer) and ` = t (top layer). The kinetic part of
the Hamiltonian uses the effective mass m ≡ γ1/(2v

2
F),

where vF is the Fermi velocity of electrons in single-layer
graphene and γ1 is a hopping parameter of the tight-
binding model [35–37]. The value of the effective mass is
m ' 0.035 me, where me is the bare electron mass. Fi-
nally, the potential part of the Hamiltonian, which is di-
agonal in the layer space, represents the potential energy
difference between the two graphene layers, also called
asymmetry,

∆(x) ≡ −e[ϕt(x)− ϕb(x)] . (2)

A different potential energy on the two layers, resulting
in ∆ 6= 0, can be induced by the electric field of a gate,
for example. The Hamiltonian (1) depends parametri-
cally on the coordinate x through ∆(x). This approach
is justified if the wave vector k of the typical variation
of ∆(x) is much smaller than the Fermi wave vector kF,
i.e. we require

k � kF . (3)

The eigenstates of the Hamiltonian (1) are labelled by the
wave vector k and the band index λ, which assumes the
values λ = +1 (conduction band) and λ = −1 (valence
band). The eigenvalues are

ελ,k(x) = λεk(x), εk(x) =

√[
h̄2|k|2

2m

]2

+
∆(x)2

4
,

(4)
and the corresponding eigenvectors are

ψλ,k(x) =

√
ελ,k(x)−∆(x)/2

2ελ,k(x)

(
1

− e
2iϕk (h̄k)2/(2m)
ελ,k(x)−∆(x)/2

)
,

(5)

where ϕk is the angle between the vector k and the ver-
sor x̂, i.e. kx + iky = |k|eiϕk . (Notice that the argument
in the square root is always positive.) From the disper-
sion (4) we see that the band gap corresponds to the
parameter |∆(x)|.

C. Local quasi-equilibrium probability distribution

The electronic hydrodynamic regime [23–31] is for-
mally captured by the assumption that the system is
in a state of local quasi-equilibrium, i.e. the probability
that the single-particle state with wave vector k, in the
band λ, is occupied is given by a “displaced” Fermi-Dirac
distribution fλ,k. [32–34] For simplicity, we assume that
the system is everywhere homopolar, i.e. there is a single
chemical potential for both conduction and valence band.
In this case, the probability distribution is

fλ,k(x) = 1/
{
eβ[ελ,k−h̄v(x)·k−µ(x)] + 1

}
. (6)

The inverse temperature β = 1/(kBT ) is assumed to be
constant and homogeneous in the system. We suppose
that the chemical potential is everywhere much larger
than the temperature, µ(x) � kBT , which allows us to
neglect the effects of local heating and horizontal trans-
port due to temperature gradients. The vector v(x) is the
local electron drift velocity and µ(x) is the local chemical
potential. Consistently with the assumption of transla-
tional invariance along y, in the following we assume the
drift velocity to be directed along x only. We point out
that the distribution (6) is defined for electron states in
the bilayer and does not discriminate between the bot-
tom and the top layer, since the electron wave functions
in the two layers are hybridized.

D. Relation between the electron density and the
Hamiltonian variables

The 2D electron density in the `th layer is given by

n`(x) = Nf

∫
d2k

(2π)2

∑
λ=±1

|[ψλ,k(x)]`|2fλ,k(x) , (7)

where the factor Nf = 4 corresponds to the spin and
valley degeneracy in each layer and [. . .]` denotes the `th
component of the eigenvector in Eq. (5). The electron
density polarization between the two layers is defined as

nb(x)− nt(x) = Nf
∆(x)

2

∫
d2k

(2π)2

1

εk(x)

∑
λ=±1

fλ(k, x) .

(8)
For ∆(x) = 0 the top- and bottom-layer densities coin-
cide, nt(x) = nb(x). The total electron density on the
BLG is defined as the sum of the electron densities on
the two layers

n(x) ≡ nb(x) + nt(x) . (9)

The integrals in Eqs. (7) and (8) can be calculated
analytically in the limit of low temperature and small
drift velocity, defined by the inequalities

v(x)� vF, kBT � εF , (10)
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where εF is the Fermi energy and vF is the Fermi velocity.
In this limit, the probability distribution (6) simplifies to

fλ,k(x) = Θ [εF(x)− ελ,k(x)] , (11)

where Θ(x) is the unit step function and we have dropped
the dependence on the drift velocity v(x) in the argu-
ment. The contribution to the integral (8) due to the
velocity is of second order in |v(x)|/vF and can be ne-
glected in the derivation of the hydrodynamic equations
(see Sec. III). To evaluate the contribution of the va-
lence band, it is necessary to introduce a momentum cut-
off. [37] The electron density polarization and the total
density read, respectively:

nb(x)− nt(x) = − n⊥
2γ1

∆(x)×

ln

 |n(x)|
2n⊥

+
1

2

√[
n(x)

n⊥

]2

+

[
∆(x)

2γ1

]2
 , (12)

n(x) =
2m

h̄2π

√
εF(x)2 − ∆(x)2

4
, (13)

where n⊥ ≡ 4v2
Fm

2/(h̄2π).

E. Relation between the electron density and the
electric potential

To calculate the relation between the electron density
and the electric potential, we consider first a homoge-
neous system, translationally invariant in the x direction.
Therefore, for the sake of simplicity, in this section we
drop the x dependence from the variables. Due to the
translational invariance, the electric fields are uniform
and directed along the ẑ direction:

Eb(z) = ẑEb, E(z) = ẑE, Et(z) = ẑEt . (14)

From the straightforward application of Gauss’s law to
regions enclosed by planes orthogonal to the z axis, we
find the relations between the electric fields (in SI units)
and the electron density:

−ε0εrE + ε0εtEt = −ent,

−ε0εbEb + ε0εrE = −enb . (15)

It is convenient to find the relations between the uni-
form electric fields and the electric potentials on the gates
and the graphene layers. The magnitude E of the electric
field between the two layers is

E = −(ϕt − ϕb)/d = ∆/(ed) , (16)

where the second equality follows from Eq. (2). The mag-
nitude Et (Eb) of the top (bottom) electric field can be

determined using the electric potential Vt (Vb) on the top
(bottom) gate. We find that

Et = −(Vt−ϕt)/(dt−d/2), Eb = −(ϕb−Vb)/(db−d/2) .
(17)

It is now convenient to define the gate to channel swing
Ut, Ub for the top and bottom layer, respectively, and
the sum of the two:

Ut ≡ Vt − ϕt, Ub ≡ Vb − ϕb, U ≡ Ut + Ub . (18)

From the above definitions we find:

Et = −Ut/(dt − d/2), Eb = Ub/(db − d/2) , (19)

∆ = −e[Vt − Vb − Ut + Ub] . (20)

We note that, in principle, one could use the latter equa-
tion to eliminate ∆ using Ut and Ub. However, as we
see below, it is convenient to use this equation to solve
for Ub and find ∆ from the implicit relation (31). We
also note that the results depend only on the difference
between the gate potentials, as expected.

To rewrite the above equations in a more transparent
form, it is convenient to define the capacitance per unit
area of the three capacitors formed by the two layers, and
the top (bottom) layer with the top (bottom) gate:

Cr = ε0εr/d,

Ct = ε0εt/(dt − d/2),

Cb = ε0εb/(db − d/2) . (21)

Then, from Eqs. (15) and (19) we finally find the electron
density as a function of the gate-to-channel swings and
the Hamiltonian parameter ∆

nt =
Ct

e
Ut +

Cr

e

∆

e
, nb =

Cb

e
Ub −

Cr

e

∆

e
. (22)

Taking the difference and the sum of the latter expression
we also find the electron density polarization and the
total electron density, respectively:

nb − nt = −Ct

e
Ut +

Cb

e
Ub − 2

Cr

e

∆

e
, (23)

n =
Ct

e
Ut +

Cb

e
Ub . (24)

F. Local capacitance approximation

We consider now the case of a non-uniform system
where the electric potentials and the electron density
varies on a length scale l which is much larger than the
vertical dimension of the system, i.e. l� dt + db. In this
case, we assume that the relations (23) and (24) between
the densities and the gate-to-channel swings hold locally
in space for any x. This approximation is usually re-
ferred to as the “local capacitance” or “gradual channel”
approximation [2] and reads:

nb(x)−nt(x) =
Cb

e
Ub(x)− Ct

e
Ut(x)−2

Cr

e

∆(x)

e
, (25)
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n(x) =
Ct

e
Ut(x) +

Cb

e
Ub(x) , (26)

We also consider the same approximation for ∆(x), ob-
taining

∆(x) = −e[Vt − Vb − Ut(x) + Ub(x)] . (27)

G. Determination of the variables as a function of
the total density

The equations E = {(12), (13), (25), (26), and (27)}
are a system of five independent equations for the six
variables: V = {n(x), nb(x)− nt(x), ∆(x), εF(x), Ut(x),
and Ub(x)}. This means that any variable in a subset of
five variables of V can be expressed as a function of the
remaining sixth variable in V. In other words, a single
variable is sufficient to uniquely determine the state of
the system at each point x in space. We choose such
variable to be the total density n(x). We present now a
convenient sequence of substitutions to determine all the
other variables in terms of n(x). We can directly solve
(13) for εF(x) and (27) for Ub(x):

εF(x) =

√[
h̄2πn(x)

2m

]2

+
∆(x)2

4
, (28)

Ub(x) = Ut(x)− ∆(x)

e
− (Vt − Vb) . (29)

We point out that the choice to eliminate Ub(x) instead
of Ut(x) arises from the fact that the boundary condi-
tions (BCs) for the hydrodynamic equations of motion
(see Sec. III) will be imposed on the top layer, i.e. the
one which touches the contacts. Then, from (26) we ob-
tain Ut(x) in terms of n(x) and ∆(x)

Ct + Cb

e
Ut(x) = n(x) +

Cb

e

∆(x)

e
+
Cb

e
(Vt − Vb) . (30)

Finally, we eliminate nb(x)−nt(x) by equating the right-
hand side of Eqs. (12) and (25). In the equation that we
find in this way, we substitute the expressions for εF(x),
Ub(x), and Ut(x). The result is an algebraic equation
with contains ∆(x) and n(x) only

0 = n(x)
Ct − Cb

Ct + Cb
+
Vt − Vb

e

2CbCt

Ct + Cb
−

2
∆(x)

e2

CbCr + CbCt + CrCt

Ct + Cb
+

n⊥
2γ1

∆(x) ln

 |n(x)|
2n⊥

+
1

2

√[
n(x)

n⊥

]2

+

[
∆(x)

2γ1

]2
 .

(31)

Eq. (31) is the main result of the lengthy derivation pre-
sented in this section. It is the effective constitutive equa-
tion of our model, which connects the microscopic Hamil-
tonian parameter ∆(x) to the macroscopic variable n(x).

To understand the physical content of Eq. (31),
let us consider the limit ∆(x) � h̄2πn(x)/m. Us-

ing log(
√
ξ2 + 1 + ξ) ∼ ξ for ξ � 1, with ξ =

h̄2πn(x)/[m∆(x)], we see that the last term in the equa-
tion is ∼ n(x). Then, neglecting n(x) in the first term
of the equation with respect to ∆(x), we find a constant
value for ∆ given by

Cr∆(x) = −e(Vt − Vb)Cseries,

Cseries =
1

C−1
r + C−1

t + C−1
b

, (32)

where Cseries is the series capacitance of the three capaci-
tors formed by the gates and the two layers. In this case,
Eq. (31) reduces to the requirement that the total charge
on the gates must neutralize the total charge on the BLG.
In the general case, Eq. (31) describes how the two gates,
by screening the carrier density n(x), induce an energy
potential difference ∆(x) between the two graphene lay-
ers. This mechanism has first been discussed by McCann
et al. in Ref. [35].

We note that the system E , although nonlinear, fea-
tures the following scaling relation: if the electric poten-
tial difference Vt − Vb is multipled by a dimensionless
factor, then the system is solved by multiplying all vari-
ables by the same factor as well. This means that the
electric potential difference between the top and the bot-
tom gate merely sets the scale of the fields in the bilayer
system, and can be fixed to a reasonable reference value
in the analysis. In the following we use Vt − Vb = 100 V
for definiteness.

Solving the system E , one obtains the functional de-
pendence of all the other variables in terms of n. The
density-dependence of Ut(n) and ∆(n) is exemplified in
Figs. 2 and 3 in a range of parameters. Since the den-
sity n(x) depends on the position x, the solution also
yields the spatial dependence of the variables, which we
denote e.g. Ut(x) = Ut(n(x)). Similarly, the notation
n(x) = n(Ut(x)) means that one has to solve the system
E given the value of Ut(x) and calculate the remaining
variables. More generally, any variable χ in V can be used
as independent variable and the remaining five variables
in V can be expressed as functions of χ. We will use this
notation in the following when convenient.

H. Linearization around a homogeneous state

The system E can be solved at each point in space x
and at each instant in time t, to obtain the instantaneous
values of the variables V in the whole system. However,
if the system is almost homogeneous, i.e. n(x) ' n̄, the
spatial profile of all variables can be obtained by calcu-
lating the spatial fluctuations of one variable χ around
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(a)

(b)

FIG. 2. (a) The gate to channel swing for the top layer and
(b) the asymmetry, as a function of the density n. Different
lines correspond to values of dt equally spaced from dt =
30 nm (solid) to dt = 300 nm (dashed). The other parameters
are: db = 100 nm, τ = 1 ps, L = 5 µm, VT − VB = 10 V.

its equilibrium value χ̄ and the derivative of the other
variables with respect to χ at equilibrium. For example,
using the density as the independent variable:

Ut(x) = Ut(n(x)) ' Ut(n̄) +

(
dUt

dn

)
n=n̄

[n(x)− n̄] + . . . .

(33)
Space- and time-derivative of the variables can also be
expanded similarly, for example:

∂xUt(x) = ∂xUt(n(x)) =

(
dUt

dn

)
n=n(x)

× ∂n(x)

∂x

'
{(

dUt

dn

)
n=n̄

+

(
d2Ut

dn2

)
n=n̄

[n(x)− n̄] + . . .

}
× ∂n(x)

∂x
.

(34)

(a)

(b)

FIG. 3. Same as in Fig. 2, but here different lines correspond
to values of Vt − Vb equally spaced from Vt − Vb = 10 V
(solid) to Vt − Vb = 100 V (dashed). The other parameters
are: dt = 300 nm, db = 100 nm, τ = 1 ps, L = 5 µm.

It is important to realize that, due to the nonlinearity
of the system E , the harmonic oscillation of any “drive”
variable χd at frequency ω produces anharmonic oscilla-
tions of the other variables, i.e. a different variable χ in V
has components oscillating at frequencies which are mul-
tiples of ω, including the dc component with ω = 0. A
component of χ oscillating with a frequency

∑n
i=1 λiω,

where λi ∈ {−1, 1}, is obtained by expanding χ up to
order n in the drive χd. Let us denote the expansion of
χ as follows:

χ(x, t) = χ̄+ χ(1)(x, t) + δχ(x) + χ(2)(x, t) + . . . . (35)

Here, χ̄ represents the steady uniform value. The compo-
nents χ(1)(x, t) and χ(2)(x, t) oscillate at frequency ω and
2ω and are first- and second-order in the drive, respec-
tively. Finally, δχ(x) is the second-order dc component.

For future purposes, let us specify the relations be-
tween some components of the density n(x, t) and of the
gate to channel swing for the top gate Ut(x, t), up to sec-
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ond order. From now on, we use the prime symbol to
denote derivative with respect to the density n and the
bar symbol to denote quantities evaluated at n = n̄:

χ̄ ≡ χ(n̄), χ̄′ ≡
(
dχ

dn

)
n=n̄

. (36)

Expanding the left- and right-hand side of Eq. (30), and
equating terms of the same order, we find

Ūt =
e

Ct + Cb

[
n̄+

Cb

e

∆̄

e
+
Cb

e
(Vt − Vb)

]
, (37)

for the homogeneous components,

U
(1)
t (x, t) = Ū ′tn

(1)(x, t),

Ū ′t =
e

Ct + Cb

(
1 +

Cb

e

∆̄′

e

)
, (38)

for the first-order components, and

δUt(x) = Ū ′tδn(x) +
1

2
Ū ′′t 〈n(1)(x, t)2〉t,

Ū ′′t =
Cb

Ct + Cb

∆̄′′

e
, (39)

for the dc second-order components, where we have in-
troduced the time-average over one period of the drive:

〈f(t)〉t =
ω

2π

∫ 2π/ω

0

dtf(t) . (40)

The derivatives of Ut with respect to n have been reduced
to the derivatives of ∆ with respect to n, because these
quantities can be calculated directly from Eq. (31).

Eq. (37) is the analogous of Eq. (30) for a homogeneous
state and, as discussed in Sec. II G, can be used together
with the other equations in E , trivially expanded at zero
order, to find the equilibrium homogeneous value of the
variables in V.

Eq. (39) shows that a finite oscillating fluctuation
n(1)(x, t) can feed into dc fluctuations δn(x), δUt(x).
This effect, called “rectification,” is generic of systems
with a nonlinear “characteristic curve,” as for example
for a FET. In our case, the characteristic curves corre-
spond to the relations between Ut(n) or ∆(n) and n,
shown in Figs. 2 and 3. While in the rest of this pa-
per we will focus on the rectification generated by the
hydrodynamic nonlinearities due to density fluctuations
at finite wavelength, (not merely due to the nonlinearity
of the characteristic curves,) it is important to keep in
mind that the rectification process described by Eq. (39)
is present in a homogeneous state as well.

Finally, it is useful to calculate the derivatives of the
total gate to channel swing U defined in Eq. (18). Deriv-
ing Eq. (29) with respect to n, we immediately find

Ū ′ = 2Ū ′t −
∆̄′

e
=

e

(Ct + Ct)

(
2 +

Cb − Ct

e

∆̄′

e

)
≡ e

C
,

(41)

Ū ′′ = 2Ū ′′t −
∆̄′

e
=
Cb − Ct

Ct + Cb

∆̄′′

e
. (42)

The quantity C introduced in Eq. (41) is an effective ca-
pacitance per unit area, which relates U and n as if they
were the gate to channel swing and the carrier density
in a standard single-gate, single-layer setup. The asym-
metry between the role played by the top and bottom
capacitances in Eq. (41) is simply due to the definition
of ∆. Indeed, if one exchanges the top and bottom in-
dices in Eq. (2) and in Eq. (41), the definition of C is un-
changed. We also note that C may diverge for particular
choices of the capacitances. In this case, the lineariza-
tion procedure discussed in this section cannot be used
(because a small fluctuation of the swing produces a di-
vergent fluctuation of the density) and one has to resort
to the nonlinear solution of the system E as discussed in
Sec. II G. In the limit ∆ = 0, the effective capacitance
reduces to the average C = (Ct + Cb)/2 of the top and
bottom capacitances.

III. HYDRODYNAMIC EQUATIONS

A. Continuity and Euler equations

We describe the time-evolution of the electron system
using electron hydrodynamic equations. [23–31] Here, we
neglect shear and bulk viscosities, [50] consistently with
the hypothesis (11) of low temperature. The hydrody-
namic variables are the local drift velocity v(x, t) and
the total density n(x, t) on the bilayer. We remind the
reader that v(x, t) is the parameter entering the quasi-
equilibrium distribution (6) and n(x, t) is defined as in
(9). The particle current is given by

j(x, t) = n(x, t)v(x, t) . (43)

The first hydrodynamic equation is the continuity
equation, which originates from conservation of particle
number. The continuity equation reads

∂tn(x, t) + ∂x[n(x, t)v(x, t)] = 0 . (44)

The second hydrodynamic equation is the Euler equa-
tion, which originates from conservation of momentum.
The Euler equation is derived from the Boltzmann equa-
tion, where the collisional integral vanishes due to the
choice (6) for the probability distribution. In the case
of single-layer graphene, a detailed derivation has been
reported in Ref. [34], where it is emphasized the crucial
role of the nonlinear relation between the average carrier
momentum and the average carrier velocity. Due to this
nonlinear relation, the Euler equation is amenable of an
analytical treatment in the limit v(x, t) � vF of small
drift velocities only. In the case of the BLG, we proceed
along the lines of the derivation detailed in Ref. [34] and,
in the limit v(x, t) � vF, we obtain the following Euler
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equation

γ(x, t)[∂tv(x, t) + v(x, t)∂xv(x, t)]

+
e

m

ne(x, t)− nh(x, t)

n(x, t)
∂xU(x, t)

+
1

mn(x, t)
∂xP (x, t) + v(x, t)∂tγ(x, t)

+v(x, t)2∂xγ(x, t) +
1

τ
γ(x, t)v(x, t) = 0 ,

(45)

where U(x, t) is defined as in Eq. (18) and the variable
P (x, t) is the pressure of the electron liquid. The last
term represents friction and τ is a phenomenological re-
laxation time. In the limit kBT � εF, the dimensionless
coefficient γ(x, t) reads:

γ(x, t) =

√
1 +

(
m∆(x, t)

h̄2πn(x, t)

)2

. (46)

This term represent the local relative change in pressure
of the electronic fluid due to the existence of a non-zero
inter-layer potential energy difference ∆(x, t). If we take
the limit ∆(x, t) = 0, then γ(x, t) = 1 and we recover the
standard Euler equation for two parabolic carriers with
opposite charge. [In this limit, however, the two-bands
model (1) is not justified.]

It is a good approximation to neglect the gradient
of the pressure ∂xP (x, t) with respect to the Coulomb
force [34]. Finally, for definiteness, we assume that
the Fermi energy lies in the conduction band, so that
ne(x, t) ' n(x, t) > 0. In this case, the Euler equation
simplifies to:

γ(x, t) [∂tv(x, t) + v(x, t)∂xv(x, t)] = − e

m
∂xU(x, t)

−v(x, t)∂tγ(x, t)− v(x, t)2∂xγ(x, t)− 1

τ
γ(x, t)v(x, t) .

(47)

This is the form of the Euler equation that we use in
the following sections to study the photoresponse of a
graphene bilayer in the Dyakonov-Shur scheme. The
quantities ∆(x, t), γ(x, t), and U(x, t) are functions of
n(x, t), which can be computed following the procedure
explained in Secs. II G and II H. Hence, the continuity
and Euler equations (44) and (47) define a system of two
coupled differential equations for the two variables n(x, t)
and v(x, t).

B. Boundary conditions

As anticipated in Sec. I, our aim is to calculate the dc
voltage difference between the drain and the source con-
tacts, which arises when an oscillating voltage difference
is applied between the top gate and the top graphene
layer at the source contact. We impose that the drain

contact is floating and no current flows. This setup is
represented by the following BCs [4]:

Ut(x = 0, t) = U0 + Ua cos(ωt) , (48)

j(x = L, t) = 0 . (49)

To solve Eqs. (44) and (47) with the BCs (48) and (49),
it is convenient to resort to the second-order expansion
introduced in Eq. (35), which includes both oscillating
and dc components. Explicitly, the expansion reads:

n(x, t) = n̄+ n(1)(x, t) + δn(x) + n(2)(x, t) , (50)

v(x, t) = v̄ + v(1)(x, t) + δv(x) + v(2)(x, t) . (51)

Here, n̄ and v̄ is the steady uniform solution, compati-
ble with the BCs. The linear response of the system to
the driving is represented by n(1)(x, t) and v(1)(x, t) and
takes the form of a linear combinations of plasma waves,
which will be calculated in Sec. IV, with amplitude pro-
portional to Ua. The remaining terms represent density
and velocity fluctuations with amplitude proportional to
U2

a , which arise due to the nonlinear terms in Eqs. (44)
and (47).

The components of the expansion of the current j(x, t)
can be obtained from the components of n(x, t) and
v(x, t) in Eqs. (50) and (51). Expanding the left- and
right-hand side of the definition (43), and equating com-
ponents of different order and frequency, we find the re-
lations

j̄ = n̄v̄ , (52)

j(1)(x, t) = n̄v(1)(x, t) + v̄n(1)(x, t) , (53)

δj(x) = n̄δv(x) +
〈
n(1)(x, t)v(1)(x, t)

〉
t
, (54)

where the time-average is defined in Eq. (40).
From Eq. (48) we obtain the BCs for the components

of the density at x = 0, by setting Ūt = 0, U
(1)
t (0, t) =

Ua cos (ωt), and δUt(0) = 0 in Eqs. (37)–(39). The value
of U0, together with the parameter Vt − Vb, determines
the equilibrium density n̄ = n(U0), as seen from Eqs. (30)
and (31). Moreover, we find that

n(1)(0, t) =
Ua

Ū ′t
cos (ωt) . (55)

Eq. (49) implies that each component in the current
expansion has to be set to zero at x = L. Setting the
right-hand sides of Eqs. (52)–(54) equal to zero we obtain
the BCs for the components of the velocity at x = L:
v̄ = 0,

v(1)(L, t) = 0 , (56)

and n̄δv(L) = −
〈
n(1)(L, t)v(1)(L, t)

〉
t
. The six BCs for

the components of the density and of the velocity will be
used in the following algebraic manipulations.
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IV. PLASMA WAVES

A. Freely-propagating plasma waves

It is well known that the gated electron system in the
hydrodynamic regime supports the propagation of lon-
gitudinal modes known as plasma waves, [2–5] with lin-
ear dispersion ω = sk, where ω, s, and k are the an-
gular frequency, the speed, and the wave vector of the
plasma wave, respectively. Before we proceed to the
calculation of the DS photoresponse, we calculate the
plasma-wave speed s. In systems with a parabolic elec-
tron dispersion, the average value v̄ of the electron fluid
speed affects the plasma-wave speed s consistently with
the Galilean invariance underlying the electronic spec-
trum, i.e. ω = (v̄ ± s)k [2]. Notably, it has been shown
that this is not the case in graphene [34] where a measure-
ment of the plasma-wave dispersion would reveal the ab-
sence of a Galilean-invariant spectrum. [51] When partic-
ular boundary conditions (BCs) are imposed in a finite-
size sample, the Galilean invariance is of course broken
and the plasma-wave have a BCs-dependent spectrum
which may even feature unstable modes giving rise to
self-sustained oscillations. [2]

In our case, as discussed in Sec. III B, a bias cur-
rent through the sample is absent, thus we calculate the
plasma-wave speed assuming v̄ = 0. Expanding the con-
tinuity and Euler equation at first order we find:

∂tn
(1)(x, t) + n̄∂xv

(1)(x, t) = 0 , (57)

n̄∂tv
(1)(x, t) =

e2n̄

mCγ̄
∂xn

(1)(x, t)− 1

τ
n̄v(1)(x, t) , (58)

where we use the notation introduced in Eq. (36), the
effective capacitance C defined in Eq. (41), and the first-
order expansion of density and of the velocity introduced
in Eqs. (50) and (51). To solve Eqs. (57) and (58), we
use an ansatz representing traveling waves:

n(1)(x, t) = nKe
iKx−iΩt + n∗Ke

−iK∗x+iΩt,

v(1)(x, t) = vKe
iKx−iΩt + v∗Ke

−iK∗x+iΩt , (59)

where we assume that the wave vector K is in general
complex and the frequency Ω is real. We require that
Re[K]× Im[K] > 0, i.e. the traveling wave is damped in
the direction of propagation.

We note that, usually, the calculation of the spectrum
assumes that the wave vector is real and the frequency
is in general complex. Which choice is most convenient,
depends on the BCs. The usual choice is appropriate
when the BCs are local in time but respect the spatial
symmetry of the system, i.e. they represent the initial
value of the amplitude of a well-defined spatial mode.
The spatial quantum number is conserved in the time-
evolution but the mode amplitude decays in time. Our

choice, instead, is more appropriate for BCs such as (48)
and (49), which are local in space and break the transla-
tional invariance of the continuity and Euler equations,
but oscillate in time with a given frequency. The mode
amplitude is then forced to oscillate periodically, but it
decays in space away from the point where the driving is
applied.

Inserting the ansatz (59) into Eqs. (57) and (58), we
obtain the following linear system for the coefficients vK ,
nK : (

Ω + i/τ −Ke2/(mCγ̄)
−n̄K Ω

)(
vK
nK

)
= 0 . (60)

Solving the associated secular equation we find that there
are two modes at frequency Ω, with wave vectors K =
k(Ω) and K = −k(Ω), where we introduce the dispersion
relation

k(ω) ≡ ω

s

√
1 +

i

ωτ
, s ≡

√
e2n̄

mCγ̄
, (61)

and the plasma-wave speed s. If ω > 0, the complex
square root is chosen with a positive imaginary part, to
fulfill the condition Re[K]× Im[K] > 0.

In the limit ωτ � 1 of negligible friction, we recover
the linear plasma-wave dispersion relation. The expres-
sion of the plasma-wave speed valid in the parabolic
case [2] is recovered in the limit ∆(x, t) = 0, when γ̄ = 1
and C = (Ct + Cb)/2. The second line of the linear sys-
tem (60) gives the relation between the coefficients of the
velocity and the density in the ansatz

vK =
Ω

K

nK
n̄

, (62)

which is just a reformulation of the continuity equation.

B. Plasma-waves in the finite-size system

A generic solution of the hydrodynamic equations, ful-
filling the BCs defined in Sec. III B, is necessarily a lin-
ear superposition of the two modes with Ω = ω and
K = ±k(ω):

n(1)(x, t) = nk(ω)e
ik(ω)x−iωt + n−k(ω)e

−ik(ω)x−iωt + c.c.,

v(1)(x, t) = vk(ω)e
ik(ω)x−iωt + v−k(ω)e

−ik(ω)x−iωt + c.c. .

(63)

In other words, traveling waves are reflected at the
boundaries of the system, such that the solution is a su-
perposition of traveling waves with opposite wave vec-
tors. Each traveling wave is damped in space in the di-
rection of propagation.

Inserting these modes superposition into Eq. (55) we
find nk(ω) + n−k(ω) = na/2, and into Eq. (56) we find

vk(ω)e
ik(ω)L + v−k(ω)e

−ik(ω)L = 0. Using Eq. (62), we



10

obtain the coefficients

n±k(ω) =
Ua

2Ū ′t

1

1 + e±2ik(ω)L
,

v±k(ω) = ± Ua

2Ū ′tn̄

ω

k(ω)

1

1 + e±2ik(ω)L
.

(64)

V. PHOTOVOLTAGE

A. Expression for the photovoltage from the
hydrodynamic equations

The photovoltage is the difference of the dc gate to
channel swing for the top layer

∆Ut ≡ δUt(L)− δUt(0) (65)

between the drain and the source contacts. Because of
the BC (48), the expression of the photovoltage simplifies
to ∆Ut = δUt(L). In terms of hydrodynamic variables,
with Eq. (39) we find

∆Ut = Ū ′tδn(L) +
1

2
Ū ′′t 〈n(1)(L, t)2〉t . (66)

The time-average on the right-hand side can be directly
calculated using the expressions (63) of the linear modes.
Now we proceed to express the quantity δn(L) in terms
of averages of linear modes as well. We first expand
Eqs. (44) and (47) to second order, obtaining:

∂tn
(2)(x, t) + n̄∂x[δv(x) + v(2)(x, t)]+

∂x[n(1)(x, t)v(1)(x, t)] = 0 , (67)

and

n̄
[
∂tv

(2)(x, t) + v(1)(x, t)∂xv
(1)(x, t)

]
=

−s2∂x[δn(x) + n(2)(x, t)]− 1

τ
n̄
[
δv(x) + v(2)(x, t)

]
−s2 Ū

′′

Ū ′
n(1)(x, t)∂xn

(1)(x, t)

− γ̄
′n̄

γ̄

(
∂t −

1

τ

)[
n(1)(x, t)v(1)(x, t)

]
. (68)

The derivative of the function γ with respect to the
density can be written as

γ̄′ =
γ̄2 − 1

γ̄n̄

(
∆̄′n̄

∆̄
− 1

)
∼
(

m

h̄2πn̄

)2

∆̄
(
∆̄′n̄− ∆̄

)
.

(69)
The asymptotic form is valid for ∆̄� h̄2πn̄/m and shows
that in this limit γ̄′ vanishes. Then we take the time-
average of the second-order equations over one period of
the applied voltage, obtaining:

n̄∂xδv(x) + ∂x〈n(1)(x, t)v(1)(x, t)〉t = 0 , (70)

and

n̄〈v(1)(x, t)∂xv
(1)(x, t)〉t = −s2∂xδn(x)− 1

τ
n̄δv(x)−

s2 Ū
′′

Ū ′
〈n(1)(x, t)∂xn

(1)(x, t)〉t −
1

τ

γ̄′n̄

γ̄
〈n(1)(x, t)v(1)(x, t)〉t .

(71)

We now integrate Eq. (70) in space from a generic x to
x = L and substitute the result for δv(x) into Eq. (71).
We then integrate the resulting equation in space from
x = 0 to x = L and we find the desired expression for
δn(L):

δn(L) = δn(0) +

(
1− γ̄′n̄

γ̄

)
1

s2τ
×∫ L

0

dx
〈
n(1)(x, t)v(1)(x, t)

〉
t
−

1

2

Ū ′′

Ū ′

[〈
n(1)(L, t)2

〉
t
−
〈
n(1)(0, t)2

〉
t

]
+

s
1

2

n̄

s2
〈v(1)(0, t)2〉t . (72)

Inserting this expression into (66) we obtain the pho-
tovoltage in terms of average of linear modes

∆Ut =

(
1− γ̄′n̄

γ̄

)
Ū ′t
s2τ

∫ L

0

dx
〈
n(1)(x, t)v(1)(x, t)

〉
t

+

1

2

Ū ′tn̄

s2
〈v(1)(0, t)2〉t +

1

2

(
Ū ′′t − Ū ′t

Ū ′′

Ū ′

)[〈
n(1)(L, t)2

〉
t
−
〈
n(1)(0, t)2

〉
t

]
.

(73)

In this expression, the terms proportional the first deriva-
tive of the function γ or to the second derivatives of
the swings are peculiar to the bilayer system considered
here, and do not appear in the analogous expression for
a 2DEG channel. The term γ̄′ represents the change of
pressure with density and Ū ′′, Ū ′′t represent quantum ca-
pacitance effects, i.e. the nonlinear scaling of the electric
potentials with the electric charge on the conducting sur-
faces. Both these effects are due to the existence of the
asymmetry ∆(x, t) between the states in the two layers,
generated by asymmetric gating of the top and bottom
layer. These derivatives are expressed in terms of deriva-
tives of ∆(n) with respect to n at the equilibrium density
n = n̄ in Eqs. (38), (39), (41), (42), and (69).

B. Photoresponse function

The values of the space- and time-averages in Eq. (73)
can be evaluated directly using the expression (63) of the
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(a)

(b)

FIG. 4. Photoresponse function F(ω) as a function of the
ratio between the angular frequency ω of the applied voltage
and the fundamental plasma angular frequency ωP defined in
Eq. (77), for (a) dt = 30 nm and (b) dt = 300 nm. The other
parameters are: db = 100 nm, τ = 1 ps, L = 5 µm, Vt−Vb =
100 V, n = 0.1 (solid), 1.0 (dotted), and 5.0 × 1012 cm−2

(dashed).

linear modes. We find

∆Ut =
1

4

U2
a

Ū ′tn̄
F(ω) , (74)

which is explicitly a second-order expression in the
strength Ua of the driving field. The frequency depen-
dence is given by the dimensionless nonlinear response
function

F(ω) =

(
1− γ̄′n̄

γ̄
− Ū ′′t n̄

Ū ′t
+
Ū ′′n̄

Ū ′

)
×[

1− 1

cos (k(ω)L) cos (k(ω)∗L)

]
+(

1− 1

2

γ̄′n̄

γ̄

)
β(ω) tan (k(ω)L) tan (k(ω)∗L) ,

(a)

(b)

FIG. 5. (a) The function γ(n) and (b) its derivative γ′,
rescaled to be dimensionless, as a function of the density n.
Different lines correspond to values of Vt − Vb equally spaced
from Vt−Vb = 10 V (solid) to Vt−Vb = 100 V (dashed). The
other parameters are: dt = 300 nm, db = 100 nm, τ = 1 ps,
L = 5 µm.

(75)

where the function k(ω) is given in Eq. (61) and

β(ω) ≡ 2ωτ√
1 + (ωτ)2

. (76)

Eq. (75) is the main result of this work. The response
function is shown in Fig. 4 for a few sets of parameters.
The typical frequency dependence of the photoresponse
function consists of resonant maxima at the odd multiples
of the fundamental plasma angular frequency

ωP =
1

4
× 2π

s

L
. (77)

The ratio s/(2L) corresponds to the frequency arising
when a wave travels along the system of length L with
speed s and is reflected by the boundaries. The extra
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(a)

(b)

FIG. 6. (a) Second derivative of the gate to channel swing
for the top gate Ut(n) and (b) of the sum of the swings U(n),
as a function of the density n. Parameters are chosen as in
Fig. 5.

factor 1/2 is due to the asymmetric BCs imposed on the
system. The frequency dependence and the scaling with
the momentum relaxation time τ has already been stud-
ied in detail in the literature. [2–5]

We point out that k(ω) depends on n̄ through s, see
Eq. (61), such that all terms in Eq. (75) depend on the
equilibrium density. However, when ωτ � 1, β → 2 and
the periodic functions in Eq. (75) depend only on the ra-
tio ω/ωP. In other words, changing the density merely
rescales the response function in frequency space. In this
regime, the amplitude of the photoresponse is governed
by the coefficients γ, Ut, and their derivatives with re-
spect to the density, which are shown in Figs. 5 and 6
for a set of parameters. We notice, in particular that
the density-dependence of the relative pressure change γ
spans several orders of magnitudes, while the quantum
capacitance terms are non-monotonic. The final com-
bination of these terms in the prefactor of Eq. (75) de-

pends on the choice of the parameters. Thus, compared
to the DS photoresponse of a single-layer graphene FET,
Eq. (75) displays a more varied dependence on the sys-
tem’s parameters, which translates into an easier tuning
of the FET’s operation point to a sweet spot by electrical
doping.

VI. SUMMARY AND PERSPECTIVES

In this paper, we have presented a detailed theory of
the photoresponse in a dual-gated, bilayer-graphene field-
effect transitor, based on the effect of nonlinear interfer-
ence of plasma-waves introduced by Dyakonov and Shur.

The nonlinear relations between the electron density
and the other quantum, thermodynamic, and electro-
static variables are particularly intricated in this geom-
etry and lead to the effective constitutive equation (31),
which describes the coupling between the macroscopic
electron density n and the microscopic asymmetry po-
tential ∆. The hydrodynamic equations describing the
electron system include a new term (46) which represents
the effect of the asymmetry potential on the electron
pressure. As a consequence, the physics of the plasma
waves is considerably more involved than in single-layer
graphene, because a local oscillation of the electron den-
sity induces nonlinear oscillations of the asymmetry po-
tential. This leads, in turn, to non-trivial quantum ca-
pacitance effects which appear as leading order correc-
tions to the expression for the photoresponse (75). The
final photoresponse at fixed frequency varies on a broad
range, depending on the system’s parameters, making it
easier to tune a photodetector to an operational sweet
spot by changing the equilibrium density.

Recent experimental results [22], demonstrating reso-
nant photodetection using bilayer graphene encapsulated
in hexagonal boron nitride, show the possibility to ver-
ify our predictions in real-world devices, with the aim
of maximizing the photoresponse by carefully tuning the
system’s parameters.

More generally, we anticipate that the investigation
of other two-dimensional van der Waals heterostructures
might lead to an enhanced platform for Dyakonov-Shur
photodetection. Indeed, in recent years, a large number
of two-dimensional materials has been explored; [52, 53]
the propagation of coupled light-matter excitations in
these materials has been the subject of continuing in-
vestigations; [54–56] and imaging techniques for two-
dimensional samples in the terahertz range have been
refined. [57, 58] Electronic states in these materials are
described in terms of microscopic Hamiltonians which,
when appropriately taken into account in the derivation
of the photoresponse, might lead to enhanced quantum
capacitance effects, or even more exotic couplings be-
tween quantum and thermodynamic degrees of freedom,
improving the photoresponse.
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Appendix A: Broadband photoresponse

It is of practical interest to evaluate the photovoltage
∆Ut, see Eq. (74), in the limit (i) ωτ � 1 or broadband
limit, corresponding to overdamped plasma oscillations,
and (ii) L � ωs, corresponding to a long detection de-
vice. These limits cover the majority of currently avail-
able devices where coherent propagation and interference
of plasma waves over length scales of several microns is
hampered by losses. In these limits, the functional de-
pendence of the photovoltage on the frequency in Eq. (75)
vanishes and we find

∆Ut =
1

4

U2
a

Ū ′tn̄

(
1− γ̄′n̄

γ̄
− Ū ′′t n̄

Ū ′t
+
Ū ′′n̄

Ū ′

)
. (A1)

An alternative route to the calculation of the photore-
sponse in the broadband limit is discussed in the rest of
this section.

First, in the Euler equation (47) we neglect both terms
γ(x, t)∂tn(x, t) and n(x, t)∂tγ(x, t) with respect to the
product γ(x, t)n(x, t)/τ . This approximation is justi-
fied by substituting ∂t with ω and using the limit (i)
above. For consistency, in the same limit we also ne-
glect the terms which are quadratic in the velocity. In-
deed, by dimensional considerations, we expect the am-
plitude of the velocity squared to be proportional to
|ω/k(ω)|2 ∝ ωτ � 1. In Eq. (75), the contribution from
the terms quadratic in the velocity is multiplied by β(ω),
which indeed vanishes in the limit (i). With these ap-
proximations, the Euler equation yields

v(x, t) = − τe

mγ(x, t)
∂xU(x, t) . (A2)

As discussed at the end of Sec. II H, we can rewrite this
equation as

v(x, t) = − τe

mγ(x, t)

(
dU

dn

)
n=n(x,t)

×(
dUt

dn

)−1

n=n(x,t)

× ∂xUt(x, t) . (A3)

Multiplying both sides of the equation by −en(x, t),
introducing the charge current density J(x, t) =
−en(x, t)v(x, t), and recognizing that E(x, t) =

∂xUt(x, t) is the electric field due to the external pertur-
bation, we find the Ohm’s law J(x, t) = σt(x, t)E(x, t)
with the effective conductivity

σt(x, t) =
τe2n(x, t)

mγ(x, t)

(
dU

dn

)
n=n(x,t)

×
(
dUt

dn

)−1

n=n(x,t)

.

(A4)
We point out that σt(x, t) is a function of electrostatic
variables and thus, as discussed in Sec. II H, its space-

and time-dependence can be rewritten as σt(x, t) =
σt(Ut(x, t)).

The second step of the derivation is to insert the ex-
pression for v(x, t) into the continuity equation, where
we also rewrite

∂tn(x, t) = −e
(
dn

dUt

)
Ut=Ut(x,t)

× ∂tUt(x, t)

≡ C̃t(Ut(x, t))∂tUt(x, t) , (A5)

where C̃t is an effective capacitance per unit area. The
continuity equation then reads

−C̃t(Ut(x, t))× ∂tUt(x, t) + σt(Ut(x, t))× ∂2
xUt(x, t)

+

(
dσt

dUt

)
Ut=Ut(x,t)

× (∂xUt(x, t))
2

= 0 . (A6)

This is a diffusion equation for Ut(x, t), which has to
be solved together with the BCs (48) and (49). This
equation is identical to Eq. (3) in Ref. [59] and its solution
is discussed there. The expression for the photovoltage,
in the long-device-limit (ii), reads [59]

∆Ut =
1

4
U2

a

1

σt(Ūt)

(
dσt

dUt

)
Ut=Ūt

. (A7)

Deriving the expression (A4) we find

1

σt(Ūt)

(
dσt

dUt

)
Ut=Ūt

=
1

Ū ′tn̄

(
1− γ̄′n̄

γ̄
− Ū ′′t n̄

Ū ′t
+
Ū ′′n̄

Ū ′

)
(A8)

and thus we exactly recover the result (A1).
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