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As strength of disorder enhances beyond a threshold value in many-body systems, a fundamen-
tal transformation happens through which the entire spectrum localizes, a phenomenon known as
many-body localization. This has profound implications as it breaks down fundamental principles
of statistical mechanics, such as thermalization and ergodicity. Due to the complexity of the prob-
lem, the investigation of the many-body localization transition has remained a big challenge. The
experimental exploration of the transition point is even more challenging as most of the proposed
quantities for studying such effect are practically infeasible. Here, we experimentally implement a
scalable protocol for detecting the many-body localization transition point, using the dynamics of
a N = 12 superconducting qubit array. We show that the sensitivity of the dynamics to random
samples becomes maximum at the transition point which leaves its fingerprints in all spatial scales.
By exploiting three quantities, each with different spatial resolution, we identify the transition point
with excellent match between simulation and experiment. In addition, one can detect the evidence
of mobility edge through slight variation of the transition point as the initial state varies. The
protocol is easily scalable and can be performed across various physical platforms.

INTRODUCTION

Ergodicity and thermalization principles are the
foundations of statistical mechanics which imply that
a many-body system forgets its local information as
it evolves [1, 2]. Strikingly, these principles can be
violated when the thermalizing dynamics leads to the
conservation of local information [3, 4]. Many-Body
Localization (MBL) is the most recognized phenomenon
for this remarkable feature [5–8]. The MBL is the
reminiscent of Anderson localization [9] when the
particles of a disordered many-body system interact.
The most mysterious feature of the MBL physics is
the transition point at which an ergodic phase trans-
forms into a localized one as the disorder strength
increases. Despite several theoretical breakthroughs
for characterizing the transition point [10–17], its ex-
perimental observation is extremely challenging limited
to low filling factors [18] or weak interaction [19] regimes.

The MBL transition takes place as the strength of dis-
order exceeds a threshold value in comparison with the
interaction coupling. Unlike quantum phase transition,
which only affects the ground state, the MBL transition is
more drastic and leaves its impact on the whole spectrum.
This makes it difficult to investigate as, for instance, the-
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oretically it can only be explored via exact diagonaliza-
tion which restricts us to short chains [20]. Interestingly,
each energy eigenstate localizes at a different disorder
strength, with the mid-spectrum eigenvectors requiring
the maximum disorder. This phenomena, schematically
shown in Fig. 1a, is known as mobility edge which has
been investigated theoretically [16] and some of its fea-
tures have been observed experimentally [21, 22]. While
ergodic and MBL phases are well explored through ther-
malization studies [2] and investigating local conservation
laws [4], several interesting features emerge around the
MBL phase transition point which are less understood.
This includes scaling properties [10, 11, 16], anomalous
transport [23], critical slowing down [24] and a change
in entanglement behavior [17] and energy level statis-
tics [25]. Hence, detection, characterization and under-
standing the MBL transition point is highly desirable for
both fundamental and practical purposes. Most of the
quantities, e.g. von Neumann entropy [17], level spacing
statistics [25], Schmidt gap [10] and entanglement neg-
ativity [11], which have been introduced for identifying
the transition point are not experimentally friendly, de-
manding either costly state tomography protocols [26] or
the full knowledge of the energy spectrum [16]. There-
fore, most of the experiments [1, 18, 19, 26–28, 30–32] are
performed either in the ergodic phase or deep in the MBL
regime, leaving the MBL transition point unexplored.

Here, we propose an experimentally implement a pro-
tocol for detecting the MBL transition point using a su-
perconducting transmon qubit array with size N = 12
qubits. We initialize the system in various product
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FIG. 1. Schematics of the experiment. a, The illustration of the phase diagram of the system across the whole energy
spectrum versus disorder strength. Each energy eigenstates localizes at a different disorder strength resulting in many-body
mobility edge. b, The twelve transmon qubits, illustrated as red crosses, are arranged in a 1D chain. The direct coupling between
them is realized via capacitors. Each qubit has individual Z (yellow) and XY (green) control lines for state manipulation. The
twelve readout resonators (blue) are dispersively coupled to their corresponding qubits, and then divided into two groups to
couple to the transmission lines (orange). c, The three steps of the experimental procedure are depicted, namely initialization,
evolution and readout. For state preparation, the corresponding qubits are excited to |1〉 by applying X gates. After that,
for the state evolution, all the qubits are tunned to their working frequencies ω + h` with h` being a random number in the
interval [−h, h]. After time t, for readout, the qubits are detuned to stop the evolution and then simultaneously measured
in σz direction. d, Our protocol can be understood in a simple way. Each circle represents a qubit and the filling color
shows the corresponding average population. Namely, empty, full and fractional filling colors stand for 〈n̂`〉 = 0, 〈n̂`〉 = 1 and
0 < 〈n̂`〉 < 1, respectively. The dynamics start with a given initial state. Each column shows the average population of each site
at long time dynamics for a specific random instance of qubit frequencies. In the ergodic regime, the system thermalizes with
〈n̂`〉 ∼ 1/2 and thus the variation with respect to different random realizations is small. Deep in the MBL regime the dynamics
is almost frozen and 〈n̂`〉 remains close to its initial value leading also to weak dependence to the different random realizations.
Remarkably, around the MBL transition, the long time dynamics shows a strong dependence on the random potential. We
exploit this feature to identify the MBL transition point.

states and let it evolve under the action of its dis-
ordered Hamiltonian until it reaches local equilibrium.
Then, we measure three different quantities, namely
time auto-correlation, number entropy and Hamming dis-
tance, which capture different spatial resolutions varying
from single site to a block of finite size and the entire
system, respectively. To see the effect of mobility edge,
various initial states with different overlap pattern with
the eigenstates of the system are considered. Each quan-
tity is measured for several random ensembles. While the
averaged quantities vary smoothly across the phase dia-
gram, their standard deviation with respect to different
random ensembles peaks at the critical point, revealing
the MBL transition.

SUPERCONDUCTING QUBIT ARRAY

We demonstrate our experiment on an array of N=12
superconducting transmon qubits, described by Bose-
Hubbard model (~=1)

Ĥ =

N−1∑

`=1

J
(`)
1 (â†` â`+1 + â`â

†
`+1)

+

N−2∑

`=1

J
(`)
2 (â†` â`+2 + â`â

†
`+2)

+

N∑

`=1

[
(ω + h

`
)n̂` +

U

2
n̂`(n̂` − 1)

]
(1)
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FIG. 2. Dynamics of the quantities and equilibrium values. The non-equilibrium dynamics of the system, initialized
in a Neel state |0, 1, · · · , 1〉, averaged over five random instances, for the three quantities: a, the auto-correlation C(t); b, the

number entropy of half-chain S(N/2)(t) ; and c,the Hamming distance D(t). The solid lines are numerical simulations and
markers are the experimental data. The disorder strength h is chosen to be h/J1 = 1 (ergodic), h/J1 = 3 (near the MBL
transition) and h/J1 = 7 (MBL). All the three quantities equilibrate after a transient time. To see the long time behavior,
we consider the equilibrium values averaged over all given initial states and 60 random realizations as a function of disorder

strength h/J1 for: d, the auto-correlation function 〈Ceq〉; e, the number entropy of half chain
〈
S

(N/2)
eq

〉
; and f, the Hamming

distance 〈Deq〉. Again, the solid lines are numerical simulations and markers are the experimental data. All the three quantities
smoothly changes from the ergodic to the MBL phase without revealing the MBL transition point. The standard deviation,
depicted as shadow for numerical simulation and error bars for experimental data, quantifies the uncertainty in our estimations.
We note a good agreement between simulation and experiment.

where â†` (â`) are the bosonic creation (annihilation) op-

erators at site ` and n̂` = â†` â` is the corresponding num-
ber operator. The capacitive dipole-dipole interaction

leads to the nearest-neighbor hopping J
(`)
1 , with the av-

erage value of J1=1/N
∑
` J

(`)
1 '2π×11.5 MHz, and the

next nearest neighbor coupling J
(`)
2 , with the average

value of J2=1/N
∑
` J

(`)
2 '2π×1.2 MHz. In order to gen-

erate disorder in the potential of the system, the qubit
frequencies are tuned by DC and pulse signals to be the
sum of a constant central frequency ω and a random value
h
`

which is drawn from a uniform distribution [−h, h]
with h being the disorder strength. The nonlinear on-site
interaction U ≈ −22J1 represents the excess of energy
needed for having more than one boson at each site. The
schematic of the quantum simulator is shown in Fig. 1b
and more details about the device and its parameters are

given in the supplementary material [33].

EXPERIMENTAL PROTOCOL

We initialize the system in 10 different product states
|Ψs(0)〉 = |s〉 = |s1, s2, · · · , sN 〉 , (where s` = 0, 1
represents the number of bosons at site `) such that

the filling factor is f =
∑N
`=1 〈n̂`〉 /N = 1/2. The

system evolves under the action of the Hamiltonian

as |Ψs(t)〉 = e−ıĤt |Ψs(0)〉 and then the population
configuration is measured for all sites. The protocol
is schematically shown in Fig. 1c. We note that,
the Hamiltonian commutes with the total number of
particles, i.e.

∑N
`=1 n̂`, resulting in the conservation

of the number of boson during the evolution. Each
measurement has been repeated for at least 3,000 times.
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FIG. 3. Probability distributions of the equilibrium quantities. By repeating the experiment for R = 60 random

realizations, a set of equilibrium outcomes are obtained, for which we fit a probability distribution P (Q
(s)
eq ). Averaging over

all given initial states leads to an initial state independent probability distribution P (Qeq). By considering different disorder
strengths h/J1 = 1 (ergodic), h/J1 = 2 and h/J1 = 3 (near the MBL transition) and h/J1 = 7 (MBL) we estimate the

probability distribution of: a, the auto-correlation function P (Ceq); b, the number entropy of half chain P (S
(N/2)
eq ); and c, the

Hamming distance P (Deq). In all the figures, the small rugs are the experimental data, the bars are the histograms and the
solid lines are the fitting distributions. In the ergodic regime, the distribution is narrow as the system thermalizes and the final
outcomes are determined solely by the thermal state. By increasing the disorder strength h/J1, the outcomes can take a larger
range of values as the final results heavily depend on the random potential pattern. Consequently, the probability distribution
gets wider. As we go into the MBL regime, the dynamics tends to get frozen, so the final outcomes are mainly determined by
the initial state and weakly depend on the random potential pattern. Therefore, the distribution gets narrower again.

The measurement outcomes which do not have the
right filling factors are excluded (see [33] for detailed
discussions). To ensure we observe the general behavior
of the disordered Hamiltonian, we also consider R = 60
distinct random realizations for each initial state.
This is accompanied by numerical simulations in which
the bosonic modes of each site are truncated to nmax

` = 3.

We first consider the auto-correlation function which
we adopt from Ref. [34] and is defined as

C(t) =
1

N

N∑

`=1

([2 〈n̂`〉 (t)− 1] [2 〈n̂`〉 (0)− 1]) (2)

In the ergodic phase, the local population thermalizes at
long times reaching 〈n̂`〉∼1/2 which results in C∼0. Deep
in the MBL phase the evolution of the system is almost
frozen, namely entanglement grows only logarithmically
in time [35]. This means that 〈n̂`〉 (t)∼〈n̂`〉 (0), which
then leads to C∼1.

To go beyond the single site resolution, it is highly de-
sirable to investigate entanglement dynamics in the sys-
tem. In practice evaluating a true measure of entangle-
ment, such as the von Neumann entropy, is challenging
as it demands full quantum state tomography. Here, we
instead measure the number entropy [36, 37] for a block
of size m (for 1 ≤ m ≤ N/2), which is defined as

S(m)(t) = −
∑

n

pn log(pn), (3)

where pn is the probability of finding n bosons in the
block of size m. Since the system conserves the total
number of bosons, the number entropy S(m)(t) is a lower
bound for the von Neumann entropy [37] and recently has
attracted a lot of attention [36]. While in the main text
we focus on m = N/2, we provide more detailed analysis
for other choices of m in the Supplementary Materials
[33].

Finally, we consider a global quantity, namely Ham-
ming distance [38], which quantifies how different config-
urations emerge in the global wave-function of the system
making it distinct from the initial one. For a system ini-
tialized in |Ψs(0)〉 = |s〉, the Hamming distance is define
as

D(t) =
∑

s′

d(s′, s)P (s′, t) (4)

where s′ is the configuration that one finds at the output
with probability P (s′, t) and 0 ≤ d(s′, s) ≤ 1 is the clas-
sical Hamming distance between the two configurations
s and s′ (i.e. the number of flips that converts s to s′

divided by N for normalization). In the ergodic phase
D(t) is expected to grow in time, ideally reaching 1, due
to superposition of multiple configurations in the wave-
function of the system. In contrast, in the MBL phase
the Hamming distance remains small as the dynamics is
almost frozen and cannot generate many new configura-
tions. The Hamming distance has already been employed
to distinguish the ergodic and MBL phases experimen-
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FIG. 4. Standard deviations of the quantities as a function of disorder strength. The standard deviation ∆Q
(s)
eq with

respect to random samples for two representative initial states |sk〉 (see the Supplementary Materials for other initial states) as

a function of disorder strength h/J1 for: a, the auto-correlation function ∆C(s)eq ; b, the number entropy of half chain ∆S
(N/2),(s)
eq ;

and c, the Hamming distance ∆D(s)
eq . Remarkably, the ∆Q

(s)
eq shows an evident peak around h/J1 ≈ 3, revealing the elusive

MBL transition point. Moreover, the location of the peak slightly changes for each initial state which is a clear witness of
the mobility edge. To present the average behavior with respect to the initial states we plot the average standard deviation

∆Qeq as a function of h1/J for: d, the auto-correlation function ∆Ceq; e, the number entropy of half chain ∆S
(N/2)
eq ; and f, the

Hamming distance ∆Deq. The shadow around the theory simulations represents the behavior for various initial states.

tally [28].

Following the footsteps of previous experiments [1,
18, 19, 26, 28, 30–32], we first plot the three quanti-
ties, namely C(t), S(N/2)(t) and D(t), as a function of
time for one instance of random realization with dif-
ferent disorder strengths varying from ergodic to MBL
phases in Figs. 2a-c. All the three quantities tend to
equilibrate after a short transition time and we find good
match between the experiments and our numerical sim-
ulations, showing that the unitary evolution under the
action of the Hamiltonian in Eq. (1) reasonably sim-
ulates the behavior of the real quantum device. The
scrambling nature of the dynamics in the ergodic phase
(i.e. h/J1=1 ) makes it very distinct from and an al-
most frozen evolution in the MBL phase (i.e. h/J1=7).
In order to better characterize the difference between
the ergodic and MBL phases, we focus on the equilib-
rium values. Let Q(s,r)(t) represent any of the three
quantities which depends on time t, a single random in-
stance r and the initial state s. We define the equilib-

rium value as Q
(s,r)
eq = 1

M

M∑
i=1

Q(s,r)(ti), where ti’s are the

measured times in the equilibrium regime and we specif-
ically choose M = 5 points in range 7.9 ≤ Jt ≤ 10.8.
To have a statistical analysis of the behavior at the
equilibrium with respect to random realizations for a
given disorder strength h, we define the ensemble average〈
Q

(s)
eq

〉
= 1

R

R∑
r=1

Q
(s,r)
eq and its corresponding standard

deviation ∆Q
(s)
eq = 1

R1/2

√
R∑
r=1

[
(Q

(s,r)
eq −

〈
Q

(s)
eq

〉]2
, where

R = 60 is the total number of random realizations. In or-
der to see the behavior of the system independent of the
choice of s, one can average over different initial states to

get 〈Qeq〉 = 1
I

∑
s

〈
Q

(s)
eq

〉
and ∆Qeq = 1

I

∑
s

∆Q
(s)
eq , where

I = 10 is the total number of initial states (see [33] for
the exact choices of the initial states). In Figs. 2d-f, we

plot the average quantities 〈Ceq〉,
〈
S
(N/2)
eq

〉
and 〈Deq〉 as a
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function of the disorder strength h/J1. All the quantities
clearly show a transition from ergodic to MBL as h/J1
increase. Although, none of these quantities can directly
reveal the transition point from the ergodic to the MBL
phase as all of them vary smoothly throughout the phase
diagram. However, as we will see later, it is indeed the
averaged standard deviation ∆Qeq which is the crucial
quantity to characterize the MBL transition point.

It is often more insightful to investigate a probability
distribution directly rather than its average value. In
our experiment, thanks to fairly large number of random
samples (i.e. R = 60), one can estimate the probability

distribution of P (Q
(s)
eq ) at each disorder strength h. To be

initial state independent, one can also average over initial

states to obtain P (Qeq) = 1
I

∑
s
P (Q

(s)
eq ). In Figs. 3a-

c, the probability distributions P (Ceq), P (S
(N/2)
eq ) and

P (Deq) are depicted for three different disorder strengths.
We notice that, in the ergodic regime the shape of the dis-
tribution is almost Gaussian with a small variance. This
is due to the scrambling dynamics in the ergodic regime
which thermalizes the system locally making it indistin-
guishable for different random instances (i.e. absence of
memory). As the disorder strength increases the prob-
ability distribution deviates from Gaussianity and gets
wider due to strong dependence on the random ensem-
bles. In fact, near the MBL transition point (h/J1 ∼ 3)
an interplay between thermalization of the ergodic phase
and localization of the MBL regime makes the system
very sensitive to the random instances resulting in a wide
distribution. By further increasing the disorder the sys-
tem enters the MBL regime where the dynamics is al-
most frozen (i.e. emergence of memory) and local sub-
systems remain close to their initial value for all random
instances. This makes the role of each random instance
irrelevant and thus the distribution gets narrower again.
In Fig. 1d, this phenomenon is explained schematically.

Inspired by the probability distribution in Figs. 3a-c,
one can exploit the width of the distribution for each
initial state |s〉, quantified through the standard devia-

tion ∆Q
(s)
eq , to infer the elusive MBL transition point. In

Figs. 4a-c, we plot ∆C(s)eq ,∆S(N/2),(s)
eq and ∆D(s)

eq , each for
two different initial states |s〉, as a function of the disor-

der strength h/J1. Strikingly, ∆Q
(s)
eq shows a very clear

peak for all the three quantities, identifying the MBL
transition point. Furthermore, each initial state peaks
at a slightly different disorder strength h/J1. This is a
clear evidence of the mobility edge as each initial state
has a different overlap pattern with the eigenstates of
the Hamiltonian and thus localizes at a different h/J1.
One can get 10 different transition points correspond-
ing to I = 10 initial states for each of the three quan-
tities (see [33] for the exact values). It is well-known
that for any given length, due to the finite size effect
and the different convergence rates, distinct quantities
may result in slightly different values of the MBL transi-
tion point [10]. To extract this point reliably, we adopt

a data analysis procedure, based on Bayesian inference
(see [33] for details). The transition point is, thus, iden-
tified to be hc/J1 = 2.7 from the experimental data and
hc/J1 = 3.3 from the numerical simulations, with stan-
dard deviations determined as 1.1 and 1.2, respectively.
The uncertainty comes from the limited number of ran-
dom samples. The two values of transition points are not
only in excellent agreement but also fully consistent with
a pure theoretical investigation, based on the von Neu-
mann entropy [39, 40], with hc/J1∼2−3 for |U |/J1∼20.
The average behavior, which are independent of the ini-
tial state, are shown in Figs. 4d-f as a function of h/J1.
All the three quantities peak at the transition point,
matching with the theory prediction.

CONCLUSION

We have proposed and experimentally realized a pro-
tocol for detecting the elusive MBL transition point in a
superconducting quantum simulator. The proposed pro-
tocol relies on the time evolution of a many-body sys-
tem under the action of a disordered Hamiltonian. We
have focused on the long time evolution where the system
is expected to reach an equilibrium. Three quantities,
namely auto-correlation, number entropy and Hamming
distance, each with different spatial resolution, have been
measured to estimate the MBL transition point. The pro-
tocol relies on the standard deviation of these quantities
with respect to the random samples of the disordered po-
tential. As our results show, across the phase diagram,
the sensitivity to random samples is maximum at the
MBL transition point resulting in a peak in the standard
deviation. The MBL transition point, computed from the
three different quantities, are fully consistent with each
other and mach well with numerical simulations. In ad-
dition, evidence of mobility edge, represented by slightly
different transition point for each initial state, can be
observed.

A remarkable point about our results is that, neither
of the three quantities demands the costly quantum state
tomography, needed for measuring the von Neumann en-
tropy [17] or the Schmidt gap [10], thus can be easily ex-
tended to larger systems and those platforms which can-
not perform tomography measurements. In addition, our
protocol is platform independent which provides a clear
application for the Noisy Intermediate Scale Quantum
(NISQ) simulators to shed light on a difficult problem in
many-body physics. In future experiments, by changing
the filling factors and developing adjustable couplers [41],
we can investigate larger area of the phase diagram and
complete the observation of mobility edge for all energy
scales.
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Supplementary Materials

I. SUPERCONDUCTING QUANTUM PROCESSOR

The experiment is performed on a 12-qubit superconduting quantum processor [S1], arranged in a 1D array,
as illustrated in Fig. 1b of the main text. The qubits are Xmon variant [S2] of transmon qubits [S3]. Each
nearest-neighboring qubit pairs are coupled via the capacitance between them, yielding an average nearest-neighbor
coupling strength of J1/2π ' 11.5 MHz and an average next nearest neighbor coupling of J2/2π ' 1.2 MHz. For each
qubit, there are an inductively coupled flux (Z) and a capacitively coupled microwave (XY ) control lines to realize
state manipulation. Twelve individual resonators are dispersively coupled to the qubits to realize state readout. The
resonators are divided into two groups and each group couples to a transmission line. We use frequency multiplexing
technology to simultaneously readout all qubits’ states. At the outside of each transmission line, an impedance-
matched parametric amplifier (IMPA) is used to enhance the readout signal strength. The parameters of the device is
listed in Table. S1. The averaged energy relaxation time T1 and dephasing time T ∗2 are 51.9 µs and 8.1 µs, respectively.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

f01/2π (GHz) 3.981 4.523 4.063 4.621 4.211 4.654 4.02 4.467 3.99 4.432 3.96 4.575
fah/2π (MHz) -248 -256 -264 -216 -256 -248 -240 -256 -256 -248 -248 -240
T1 (µs) 47.6 44.8 68.8 51.8 40.7 33.3 62.5 63.3 70.5 56.5 43.4 39.8
T ∗2 (µs) 2.6 9.9 2.3 5.4 3.4 16.2 4.3 26.9 2.3 5.3 2.5 15.6
fr/2π (GHz) 6.450 6.477 6.506 6.537 6.570 6.601 6.633 6.654 6.684 6.716 6.742 6.769
f00 (%) 94.4 96.6 96.1 94.7 97.6 93.7 97.2 95.3 92.0 98.0 95.6 98.0
f11 (%) 88.6 89.2 89.1 89.8 90.8 88.5 89.6 90.4 82.7 93.4 87.5 92.2
IMPA gain (dB) 16.1 13.3 12.9 13.5 13.0 14.2 14.2 14.4 14.5 14.8 14.1 15.1

TABLE S1. Performance of the qubits. f01 and fah are the idle frequencies and anharmonicities, respectively. T1 and T ∗2
are the energy relaxation time and dephasing time, respectively. fr is the frequency of the corresponding readout resonator.
f00 and f11 are the probabilities of correctly reading out the qubits’ state for |0〉 and |1〉, respectively. IMPA gain is measured
as the ratio of the readout signal strengths when IMPAs are turned on and off.

II. EXPERIMENTAL REALIZATION

As shown in Fig. 1c of the main text, the realization of this experiment consists of three steps: (i) state preparation;
(ii) system evolution; and (iii) measurement. In state preparation, we apply X gates to corresponding qubits to prepare
the initial product state. After that, we detune all qubits to their working points, whose frequencies are randomized
distributed in [−h, h] in comparing with the central frequency 4.35 GHz. After the system evolves for a period t,
we detune all qubits back to their idle frequencies and perform the simultaneous readout. In our experiment, we
only perform the σz projection measurements. We repeat each cycle for at least 3,000 times to obtain the statistical
measurement results. The measurement outcomes which do not have the right filling factors are excluded. In the
Supplementary Materials we discuss this in more details. Between the cycles, all qubits are biased at their idle points
for 300 µs to initialize all the qubits to their |0〉 states.

In our experiments, we initially prepare the system in 10 different product states |s〉 = |sk〉 (k = 1, ..., 10), which
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FIG. S1. Comparison of the experimental and simulated results in calibration of frequency alignment. For
positive case, the working frequencies of the twelve qubits ranges from 4.3225 GHz to 4.3775 GHz. For negative case, they
are opposite. In both positive and negative cases, the Q7 is excited to |1〉 and then start the evolution. The time evolutions
for other qubits excited are not shown. The differences of the time evolution between the positive and negative cases come
from the frequency differences on each sites. After optimizing the frequency differences, the maximum frequency difference is
determined as 15.4 MHz on Q11.
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are chosen to be:

|s1〉 = |0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0〉
|s2〉 = |0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0〉
|s3〉 = |0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0〉
|s4〉 = |0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0〉
|s5〉 = |0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0〉
|s6〉 = |1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1〉
|s7〉 = |1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0〉
|s8〉 = |1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1〉
|s9〉 = |1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0〉
|s10〉 = |1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1〉

For each initial state, we consider R = 60 distinct random realizations of disorders uniformly distributed in [−h, h].
We consider 13 disorder strengths ranging from h = J1 to h = 7J1. In order to obtain the equilibrium value, we
take M = 5 different evolution times ranging from 110 ns to 150 ns. At each time, we measure the population
configuration of the 12-qubit states and compute different quantities correspondingly.

III. CALIBRATION OF FREQUENCY ALIGNMENT

The error of frequency alignment mostly comes from the residual nonlinear Z cross talk [S4]. In our experiment,
the central frequency is set at 4.35 GHz. Based on that, the working frequencies are randomized in range [−h, h] in
comparing with the central frequency. The calibration of the frequency alignment is thus important. The single round
of the calibration consists of two steps. In the first step, we prepare the working frequencies in two different cases. For
the positive case, the frequency difference between neighboring qubits is +5 MHz, and the working frequencies for Q1

to Q12 range from 4.3225 GHz to 4.3775 GHz. For the negative case, the frequency difference is −5 MHz. For these
two cases, we firstly excite one qubit and then detune all qubits to their working frequencies for system evolution.
After that, we detune them back to their idle frequencies for measurement. The population propagation is then mea-
sured as a function of time. For each case, we excite the twelve qubits sequentially, and then obtain the corresponding
time-dependent population distributions. In the second step, we run a Nelder-Mead optimization to find out the best
estimation of the frequency differences. We assume that due to the residual Z cross-talk, the frequency differences of
each qubit site for the positive and negative cases are the same. Based on that, by numerically simulating the time
evolution of the 12-qubit system, we obtain the population distributions as a function of time. We use the square
sum of the differences between simulations and experiments as a cost function for optimization. An example of the
comparison between the experimental and simulation results is shown in Fig. S1, in which the different behavior for
positive and negative cases, caused by the frequency differences, is presented. In the end of this round of calibra-
tion, we correct the frequency alignment by adding the differences to the central frequencies. After several rounds
of calibration, the maximum frequency difference is reduced from 15.4 MHz to below 4.9 MHz, smaller than 0.43J1/2π.

IV. INITIAL STATES

In this section, we show that the behavior of the quantities that we consider in the main text is general for various
initial states. However, each initial state has a different overlap pattern with the eigenstates of the Hamiltonian. Each
eigenstate localizes at a different disorder strength depending on its energy eigenvalue. Therefore, each initial state
may show a different localization point. This is indeed an evidence for the presence of the mobility edge.

Here, we investigate the role of each initial state on
〈
Q

(s)
eq

〉
and ∆Q

(s)
eq for the three quantities, namely the auto-

correlation, the number entropy and Hamming distance. In order to ease the visualization, in the following, we only
present the data from numerical simulation, since the experimental data follow the same behavior. In Figs. S2a-c

(upper panel), we plot the equilibrium auto-correlation
〈
C(s)eq

〉
, the number entropy for a subsystem of half-chain

〈
S(N/2),(s)eq

〉
and the Hamming distance

〈
D(s)
eq

〉
as a function of disorder strength for all the given initial states. As
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FIG. S2. Initial States Dependence . The equilibrium values of the three quantities averaged over random realizations as
a function of disorder strength h/J1 for various initial states |s〉 = |sk〉 (upper panel). The panels respectively represent the

mean value of: a, the auto-correlation
〈
C(s)eq

〉
; b, the number entropy

〈
S
(N/2),(s)
eq

〉
; and c, the Hamming distance

〈
D(s)

eq

〉
. We

note that, the three quantities smoothly change from their expected value in the ergodic phase to the MBL regime with similar
qualitative behavior for all the initial states. The standard deviation of equilibrium values of the three quantities with respect
to the R = 60 random realizations as a function of disorder strength h/J1 for various initial states |s〉 = |sk〉 is plotted in the

lower panels. The lower panel respectively represents the standard deviation of: a,the auto-correlation ∆C(s)eq ; b, the number

entropy ∆S
(N/2),(s)
eq ; and c, the Hamming distance ∆D(s)

eq . We note that, for all the three quantities the peak of the standard
deviation slightly varies for different initial states, witnessing the existence of the mobility edge.

Experiment Simulation

Ceq S
(N/2)
eq Deq Ceq S

(N/2)
eq Deq

|s1〉 3.00 1.50 3.00 3.50 2.00 4.00
|s2〉 3.00 2.00 6.00 3.50 2.00 2.00
|s3〉 3.00 1.50 2.50 2.50 2.50 3.00
|s4〉 3.00 2.00 4.50 4.00 4.50 5.00
|s5〉 3.00 2.00 3.50 4.50 2.50 5.00
|s6〉 2.50 1.50 3.00 2.00 2.00 2.00
|s7〉 2.50 1.50 3.50 3.50 3.00 3.00
|s8〉 3.00 1.50 3.50 3.00 2.00 6.5
|s9〉 3.00 1.50 5.00 4.00 2.50 4.00
|s10〉 3.00 1.50 2.00 4.00 5.00 2.5

Mean 2.9 1.65 3.65 3.45 2.68 3.7
Standard deviation 0.20 0.23 1.14 0.72 0.25 1.40

TABLE S2. The MBL Transition Point for Given Initial States. The MBL transition point, extracted from the peak

of the ∆Q
(s)
eq , for the given initial states from both experimental data and numerical simulations.

expected, all quantities smoothly change from the ergodic to the MBL phase. While, all the initial states qualitatively
follow the same behavior there is small difference between them. To further evidence this, we plot the standard

deviation ∆Q
(s)
eq as a function of disorder strength for all the given initial states |s〉 = |sk〉 in Figs. S2a-c (lower

panel). As it is clear from the figure, the peak of ∆Q
(s)
eq takes place at different disorder values for each initial state.

This is a strong evidence for the observation of the mobility edge in our system.
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To have a better understanding, one may consider the time evolution of a given initial state |s〉, which in general
can be written as

|Ψ(t)〉 =
∑

α

e−iεαt|εα〉〈εα|s〉 (S1)

where εα and |εα〉 are the eigenenergies and the eigenstates of the Hamiltonian H for a particular random instance.
The overlap of the quantum state of the system with each of the eigenstates |εα〉 is time independent and is given
by |〈εα|Ψ(t)〉|2 = |〈εα|s〉|2. Due to the mobility edge, for any given random instance r each of the eigenstates |εα〉
localizes at a different disorder strength h

(α,r)
c . Therefore, the transition point for the initial state |s〉 and a random

disorder instance r is given by

h(s,r)c =
∑

α

|〈εα|s〉|2h(α,r)c . (S2)

One can average over all random realizations as h
(s)
c = 1/R

∑
r h

(s,r)
c to obtain the transition point h

(s)
c for the initial

state |s〉. In TABLE S2, we present the MBL transition point h
(s)
c , determine as the location of the peak of ∆Q

(s)
eq ,

for each initial state extracted from experimental and numerical simulation.

V. DATA PROCESSING AND POST SELECTION OF MEASUREMENT RESULTS

The Bose-Hubbar Hamiltonian H, conserves the total number of excitations in the system. All the initial states
that we have considered have the filling factor f = 1/2. Nonetheless, due to experimental imperfections some of the
measurement outcomes show a different filling factor which can be attributed to either the decay in transmonic qubits
or imperfect readout. In addition, due to dephasing the dynamics may not be fully unitary, which can also induce
errors in the results. In order to include these effects and possibly compensate them in our numerical simulations,
we take two different approaches; (i) post selecting the experimental data, which means excluding the experimental
measurement outcomes with wrong filling factors, and use unitary evolution for the numerical simulation; and (ii)
keep the raw experimental data and instead use an open quantum system formulation for the numerical simulations.
As mentioned before, the data shown in the main text is based on the first approach. Here, we provide a comparison
between the two methods. For open quantum system evolution we use a Lindbladian master equation,

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+

N∑

`=1

(
Γ(`)

2
D [â`] ρ̂+

γ(`)

2
D [n̂`] ρ̂

)
. (S3)

where ρ̂ is the density matrix of the system, Γ(`) and γ(`) are the decay and dephasing rates of the qubit `, respectively.
Moreover, the Lindblad term is denoted by

D
[
Ô
]

= 2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂.

The values for decay and dephasing rates are taken from the TABLE I in the Methods section, such that Γ(`) = 1/T
(`)
1

and γ(`) = 1/T
∗(`)
2 . Since the open quantum system simulations of N = 12 qubits, is computationally very costly

we consider the average over I = 5 initial states, in contrast to I = 10 for experiments and unitary evolution. In

Figs. S3a-c (upper panel), we plot the equilibrium auto-correlation 〈Ceq〉, the half-chain number entropy
〈
S(N/2)eq

〉

and the Hamming distance 〈Deq〉 as a function of disorder strength h/J1 for the closed and open system simulations
as well as the raw and post selected experimental data. Interestingly, the post selected data matches very well
with the unitary simulations of the system. On the other hand, the raw experimental data matches with the open
quantum system simulation, showing that indeed the decay and dephasing of the device during the time evolution are
responsible for the deviation from the unitary dynamics. Similarly, in Figs. S3a-c (lower panel), we plot the standard

deviation for the equilibrium auto-correlation ∆Ceq, the half-chain number entropy ∆S(N/2eq and the Hamming distance

∆Deq as a function of disorder strength h/J1 for the closed and open system simulations as well as the raw and post
selected experimental data. Once again, we see that the post selected experimental data is qualitatively follow the
results from the unitary evolution, while the raw data pursue the open quantum system evolution. Note that, the
scale on the y-axis is small and thus the deviations between the curves are mainly visual.
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FIG. S3. Data Processing and Post Selection of Measurement Results. In Figs. S3a-c (upper panel), we plot the

equilibrium auto-correlation 〈Ceq〉, the half-chain number entropy
〈
S
(N/2)
eq

〉
and the Hamming distance 〈Deq〉 as a function of

disorder strength h/J1 for the closed (Sim Closed) and open system simulations (Sim Open) as well as the raw (Exp) and
post selected experimental (Exp PS) data. The error bars in the experimental data and shadows around the solid lines in
the numerical simulations, represent the standard deviation with respect to random realizations. In Figs. S3a-c (lower panel),

we plot the standard deviation for the equilibrium auto-correlation ∆Ceq, the half-chain number entropy ∆S
(N/2)
eq and the

Hamming distance ∆Deq as a function of disorder strength h/J1 for the closed and open system simulations as well as the raw
and post selected experimental data. We note that, for both the averaged values and the standard deviation, the post selected
experimental data follows the simulations from the unitary evolution, while the raw data pursue the open quantum system
evolution.

It is worth emphasizing that neither the post selection of experimental data nor the open quantum simulation can
fully compensate the imperfections of the experiments. There are several reasons which contribute to this issue. First,
the post selection of experimental data only takes into account the loss in the qubits and the first order readout errors
(i.e. when only one qubit is flipped) while it cannot compromise the dephasing effects. Second, the Markovian model
used for the open quantum system simulation in Eq. (S3) is very simplistic and ignores crosstalks and correlations
between different qubits. Third, the experimental measurements of the device parameters, e.g. couplings, dephasing
and decay rates etc., are inevitably prone to errors producing uncertainly in the parameter values used in the numerical
simulations.

Numerical simulations. All the numerical simulations were performed using the QUTIP Python toolbox [S5].
In particular, for the time evolution we used the QUTIP mesolve master equation solver and the Hamiltonian
parameters were taken from Table S1. The local bosonic Hilbert space is truncated at nmax = 3. To see the accuracy

of this truncation the commutators 〈Ψs(t)|[â`, â†`]|Ψs(t)〉 = 1 ± ε were computed for all evolved states which showed
ε ≤ 10−5. In fact, the good agreement between the theory and experiments in our data shows that the assumption
of unitary evolution is valid.
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VI. NUMBER ENTROPY FOR DIFFERENT BLOCK SIZES
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FIG. S4. Number Entropy of Different Subsystems. a, The equilibrium number entropy
〈
S
(m),(s)
eq

〉
as a function of

disorder strength h/J1, for different subsystem size m and the initial state |s〉 = |s1〉. As m gets larger the maximum obtainable
number entropy increases, which can be seems in the ergodic phase, where larger subsystems archive higher entropies. b, The

standard deviation of the number entropy with respect to R = 60 disorder samples ∆S
(m),(s)
eq as a function of disorder strength

h/J1 for different subsystem size m and the initial state |s〉 = |s1〉. As the subsystem size m increases the location of the peak
mostly remains around h/J1 ∼ 2− 3, indicating that the number entropy can characterize the MBL transition better when the
subsystem is larger, namely m ∼ N/2.

The Bose-Hubbard model conserves the total number of excitations, that leads to a link between the particle
numbers of the two complimentary subsystems. In the main text, we focused on the half-chain number entropy as
a tool to characterize the MBL transition. To see the generality of the behavior of this quantity, in this section, we
present the number entropy with different subsystem sizes. In Fig. S4a, we plot the equilibrium number entropy〈
S(m),(s)
eq

〉
as a function of disorder strength h/J1, for different subsystem size m and the initial state |s〉 = |s1〉.

As the block size m gets larger the number of possible outcomes for the excitation in the block increases and thus
the achievable entropy becomes larger. This can be observed in Fig. S4a, when the system is in the ergodic regime,
namely small h/J1. In the MBL regime, since the dynamics is almost frozen the number entropy is always small for

all subsystems sizes. In Fig. S4b, we display the standard deviation of the equilibrium number entropy ∆S(m),(s)
eq as

a function of disorder strength h/J1 for different subsystem size m and the initial state |s〉 = |s1〉. By increasing the
system size m, the location of the peak of the standard deviation mostly takes place at around h/J1 ∼ 2− 3 showing
that for detecting the MBL transition using larger subsystem sizes is more reliable.

VII. CONVERGENCE WITH RESPECT TO THE NUMBER OF RANDOM ENSEMBLE

As mentioned before, in our experiment, we employ 10 different initial states and R = 60 random samples. The
role of different initial states has already been discussed and in this section we focus on the choice of the number of
random realizations R. We compare the behavior of our quantities for the initial state |s1〉 when the number of random
ensembles is taken to be R = 60 (as performed in our experiment), R = 500 and R = 1000 for which all quantities are
expected to converge, . We find that, all the quantities are indeed converged even for R = 60 random realizations.

In Fig. S5a-c upper panel (lower panel) we plot, a, the auto-correlation
〈
C(s1)eq

〉
(∆C(s1)eq ); b, the half-chain number
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FIG. S5. Convergence with Respect to the Number of Random Realizations. The three quantities are investigated for
three different number of random realizations, namely R = 60, R = 500, and R = 1000, computed for the initial state |s1〉. The

upper panel represents the mean values of: a, the auto-correlation
〈
C(s1)eq

〉
; b, the half-chain number entropy

〈
S
(N/2),(s1)
eq

〉
; and

c, the Hamming distance
〈
D(s1)

eq

〉
as a function of h/J1. In the lower panel the standard deviations are plotted as a function of

h/J1 for: a, the auto-correlation ∆C(s1)eq ; b, the half-chain number entropy ∆S
(N/2),(s1)
eq ; and c, the Hamming distance ∆D(s1)

eq .
The good agreement between the curves, specially the location at which the standard deviation peaks, shows that the choice
of R = 60 random realizations can faithfully captures the statistical behavior with respect to disorder in the system.

entropy
〈
S(N/2),(s1)eq

〉
(∆S(N/2),(s1)eq ); and c, the Hamming distance

〈
D(s1)
eq

〉
(∆D(s1)

eq ) versus disorder strength h/J1.

Both the mean value and the standard deviation shows convergence with R = 60 random realizations.

VIII. DATA ANALYSIS BASED ON BAYESIAN INFERENCE.

For each quantity measured in our experiment , we start with 10 different initial states. The 10 data points obtained
from the peaks are within one groups. The three quantities are independent, and the groups for the three quantities
are hierarchical. Therefore, to estimate the total mean, which corresponds to the transition point, we use a multilevel
modeling approach [S6], which allows us to consider the group level variance and individual level variance.

The data points Yi,j , where i = C,S,D, and j = 1, ..., 10, are assumed to be independently normally distributed
within each group i, Yi,j |θi ∼ N(θi, δ

2), where θi is the group mean and δ2 is the individual level variance. The group
means θi are assumed to follow a normal distribution with mean µ and group level variance τ2, θi ∼ N(µ, τ2).

Based on this model, we use Bayesian modeling with MCMC algorithms [S6] to estimate group mean µ. Gibbs
sampling is used as the MCMC sampler [S6]. For the model used in this study, the form of posterior distribution is
already known, and based on that, the conditional posterior distributions for the three parameters are then generated.
The start values are sampled from non-informative priors distributions. After assigning starting points, Gibbs sampler
randomly draw samples from conditional posterior distributions. At a time, only one component of the parameters is
updated. In this study, we have totally three individual chains. The converge is determined by all three chains when
between-chain differences are small enough. For each chain, the total iterations is 1×106, and we discard first 8×105

points. Among the last 2× 105 iterations, we retain the samples every 10 iterations to reduce auto-correlation. The
final posterior probability distributions for each parameter is then determined with the retained samples. From the
mode of the distributions, we obtain the µ and τ , which corresponds to the estimation value of transition point and
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its 95% confidence interval, respectively.
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