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Global exploration of phase behavior in frustrated Ising models using unsupervised learning techniques

Danilo Rodrigures de Assis Elias, Enzo Granato, Maurice de Koning

• We employ a machine learning approach based on unsu-
pervised learning techniques to obtain a global picture of
phase diagram from single data set.

• Resulting critical lines are in very good agreement with
available exact results.

• Results indicate relation between structure of
dimensionality-reduced latent space and fundamental
physical system properties.
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Abstract

We apply a set of machine-learning (ML) techniques for the global exploration of the phase diagrams of two frustrated 2D Ising
models with competing interactions. Based on raw Monte Carlo spin configurations generated for random system parameters, we
apply principal-component analysis (PCA) and auto-encoders to achieve dimensionality reduction, followed by clustering using
the DBSCAN method and a support-vector machine classifier to construct the transition lines between the distinct phases in both
models. The results are in very good agreement with available exact solutions, with the auto-encoders leading to quantitatively
superior estimates, even for a data set containing only 1400 spin configurations. In addition, the results suggest the existence of
a relationship between the structure of the optimized auto-encoder latent space and physical characteristics of both systems. This
indicates that the employed approach can be useful in perceiving fundamental properties of physical systems in situations where a
priori theoretical insight is unavailable.
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1. Introduction

Over the past few years machine learning (ML) has revolu-
tionized the way in which the behavior of complex systems is
investigated, providing a data-driven approach that exploits the
pattern-recognition powers of such techniques [1]. In partic-
ular, it has had a tremendous impact on the physical sciences,
where ML methods have been applied to a wide variety of prob-
lems originating from areas as diverse as condensed-matter and
statistical physics, particle physics, cosmology, quantum com-
puting, chemistry and materials science [2].

Within the field of condensed-matter physics, a major pur-
pose of the application of ML techniques has been to discover
the phase behavior of different physical systems [3–22]. In this
context, a variety of classical spin systems [3, 4, 6, 7, 12, 17,
18, 23–26] have played a particularly prominent role, display-
ing the promise of ML techniques in the discovery of complex
phases of matter from raw sampling data.

In practice, many of these applications have focused on ex-
amining phase behavior as a function of a single parameter, of-
ten temperature, seeking to characterize transitions for given
fixed values of possible other model parameters. Such an ap-
proach has shown to be successful, for instance, to quantify
particular critical-temperature values in a number of such spin
systems [3–5, 26].

A different kind of application of ML techniques is to em-
ploy their pattern-recognition capabilities to gain insight into a
system’s global phase behavior. In this case, instead of focus-
ing on a single critical value for a restricted set of parameter
values, the purpose now is to analyze a data set consisting of

configurations generated for the full system parameter space,
with the goal of estimating entire critical lines and constructing
a picture of the phase diagram as a whole. Such a capability
is useful, for instance, when no a priori insight into the loca-
tion of critical regions is available. Casert and co-workers [5]
employed such a scheme for the active Ising model, construct-
ing gas-liquid coexistence lines in the density-temperature pa-
rameter space. Their approach is based on a two-step proce-
dure in which unsupervised learning techniques are first used
to determine phase boundaries for a fixed value of the den-
sity, followed by a supervised learning step in which phase
boundaries can be predicted for different densities. Acevedo
et al. [6] reconstructed the critical line between the antifer-
romagnetic and paramagnetic phases of the two-dimensional
frustrated antiferromagnetic Ising model on the honeycomb lat-
tice using anomaly detection [27] based on convolutional au-
toencoders. For this purpose, they trained an autoencoder on
temperature-dependent data for a particular fixed value of the
frustration coupling constant and then used it to analyze data
generated for other values to detect the transition between or-
dered and paramagnetic phases using anomaly detection.

In the present paper we consider a different global learn-
ing approach in which a single unsupervised learning proce-
dure based on dimensionality reduction is applied to a data set
containing samples generated for the entire parameter space.
Moreover, these configurations correspond to random parame-
ter values so as to obtain an unbiased data set, presuming no
prior knowledge of the system. As an illustration, we con-
struct the phase diagrams of two classical lattice spin systems
involving several parameters, namely, the piled-up dominoes
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(PUD) and zig-zag dominoes (ZZD) models [28]. These mod-
els were introduced in the 1970’s as generalizations of the to-
tally frustrated 2D Ising model [29] and incorporate effects of
geometrical frustration by the existence of two different spin-
spin coupling-parameter values distributed according to regular
patterns on the 2D square lattice. The phase behavior of these
models is nontrivial, depending on both temperature as well as
the relative values of the two coupling constants. In particu-
lar, the PUD model displays three types of second-order phase
transition: two of them occurring at finite temperature between
a paramagnetic phase and either a ferromagnetic or striped an-
tiferromagnetic phase, and a third featuring a transition with
vanishing critical temperature.

We analyze the raw Monte Carlo (MC) spin-configuration
data generated for randomly selected points in the models’
parameter spaces by means of a three-stage data approach
that consists of, (i) dimensionality reduction using principal-
component analysis (PCA) and auto-encoders, (ii) clustering
using the density-based spatial clustering of applications with
noise (DBSCAN) algorithm, and (iii) classification using a
support-vector machine (SVM). The obtained results enable us
to construct the critical lines of the PUD and ZZD models and,
given the availability of exact results for both systems [28], the
quality of these estimates can be assessed.

The remainder of the manuscript has been organized as fol-
lows. In Sec. 2 we define the PUD and ZZD spin-model
Hamiltonians and describe the geometric distribution of the two
coupling-parameter values across the 2D square lattice. Subse-
quently, we discuss the details of the employed methodology in
Sec. 3, describing the MC procedure employed to generate the
set of spin configurations used in the analysis, as well as the
ingredients of the ML approach used to process the data. The
results are presented and discussed in Sec. 4 and we end with
concluding remarks in Sec. 5.

2. Models

As for the standard 2D square Ising system, the PUD and
ZZD models are defined by classical spins si = ±1 arranged
on a square lattice with nearest-neighbor interactions. How-
ever, unlike the standard Ising model, the PUD and ZZD mod-
els are characterized by varying interaction-strength parame-
ters. Specifically, the total energy of both models can be written
as

H = −
∑
〈i j〉

Ji jsis j, (1)

where i and j label the spin sites, the notation 〈i j〉 implies a
summation over nearest-neighbor spin pairs and Ji j is a spin-
pair-dependent interaction-strength parameter with the dimen-
sions of energy. For the PUD and ZZD models Ji j can assume
only two values, J and J′, which can be either positive or neg-
ative. In addition, their distribution across the 2D square lattice
is specified in a geometrically ordered pattern, as illustrated in
Fig. 1. All horizontal spin pairs interact through the coupling
parameter J. In contrast, the interaction parameter J′ couples
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Figure 1: Definition of spin-interaction patterns in, a), the piled-up dominoes
(PUD) model and, c), zig-zag dominoes (ZZD) model as described in Ref. 28.
Black circles represent spin sites. Blue and red links represent interactions with
strengths J and J′, respectively. Corresponding exact phase diagrams charac-
terized by critical lines given by Eqs. (2) and (3) are depicted in b) and d),
respectively.

only spin pairs that are vertical neighbors, but only a limited set
of them, with the remainder being coupled by J. Specifically,
for the PUD model, J′ acts on all pairs of alternating vertical
rows, as shown in Fig. 1 a), meaning that all spin pairs in even
(odd) vertical rows interact through J′, whereas all pairs in the
odd (even) vertical rows are coupled through J. In the ZZD
model, on the other hand, the interaction between spin pairs
from the vertical rows alternates between J and J′ and such
that neighboring vertical rows are “out of phase”, creating the
zig-zag pattern depicted in Fig. 1 c). Given the structure of
the Hamiltonian in Eq. (1) the phase behavior of both models
can be characterized entirely in terms of the two adimensional
parameters J̃ ≡ J′/J and T̃ ≡ kBT/J [28], with T the abso-
lute temperature and kB Boltzmann’s constant. Of course, both
models reduce to the standard 2D square Ising model for J̃ = 1.
Furthermore, for J̃ = −1, the models correspond to the fully
frustrated Ising model [29]. Their phase behavior is known
exactly [28], as displayed in Figs. 1 b) and d). Specifically,
the PUD model features three distinct phases, paramagnetic,
anti-ferromagnetic and ferromagnetic, separated by continuous
phase transitions described by two critical lines that are solu-
tions of the equations [28]

sinh
(

2
T̃

)
sinh

(
1 + J̃

T̃

)
= ±1, (2)

respectively, with the minus sign corresponding to the left
branch. The ZZD model, on the other hand, is characterized by
paramagnetic and ferromagnetic phases, separated by the criti-
cal manifold given by the solution of the equation [28]

2 tanh
(

2
T̃

)
tanh

(
1 + J̃

T̃

)
= 1. (3)
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Interestingly, the disordered paramagnetic phase persists up to
zero temperature for values of J̃ below -1.

3. Methodology

3.1. Data Generation

The parameter space of the models is sampled randomly, em-
ploying uniform distributions for the parameters J̃ and T̃ within
the intervals J̃ ∈ (−3, 1) and T̃ ∈ (0, 3) for the PUD model and
J̃ ∈ (−3, 3) and T̃ ∈ (0, 4) for the ZZD system. To this end we
fix J = 1 and sample J′ and T according to the established in-
tervals. Subsequently, for each randomly chosen pair (J̃, T̃ ), we
record a single representative spin configuration, generated as
follows. After initializing the system in a random spin config-
uration it is subjected to a process in which it is cooled starting
from a predefined high temperature, T0 = 5, down to the sam-
pled target temperature T̃ . This particular value of T0 has been
chosen to assure that, for any parameter sample (J̃, T̃ ), the gen-
eration process initializes in the same disordered paramagnetic
state common to all Ising-like spin system, minimizing bias in
the data set.

The cooling protocol is implemented using standard single-
spin-flip Metropolis Monte Carlo (MC) simulations [30] in
which the temperature T is reduced at a rate of 2 × 10−4 per
MC sweep, which is defined as a set of N random spin-flip tri-
als such that, on average, each of the N spins in the system is
given the opportunity to alter its state. After the cooling stage
is completed, the system evolves isothermally at the target tem-
perature T̃ for an additional 3 × 103 MC sweeps, after which
the final configuration is recorded in the data set. Since only
a single configuration is registered for each randomly sampled
parameter pair (J̃, T̃ ), all collected spin configurations are sta-
tistically independent.

3.2. Data-analysis

Our data-analysis strategy to estimate the critical manifolds
is based on three elements. First, we subject the raw MC con-
figurations to unsupervised-learning techniques with the aim
of achieving dimensionality reduction of the data. In addition
to having shown to be effective in capturing essential features
of physical systems [7, 12], from a data-analysis standpoint
it is useful for tackling difficulties associated with the high-
dimensional nature of the raw data set [31]. Next, we pro-
cess the reduced-space results using clustering algorithms [32]
to identify distinct groups within the data. In some situa-
tions dimensionality reduction alone suffices to identify differ-
ent groups within the data set, but in more complex scenarios,
such as in this study, this is not the case. Either way, clustering
techniques should be applied to the reduced space so that the
identification of coherent groups is unbiased. After this clus-
terization we map the elements of the identified clusters to the
phase diagram using the values of the parameters J̃ and T̃ as-
sociated with each data point and verify whether the distinct
agglomerates are located in different regions, to be interpreted
as distinct phases. Finally, we use the labels generated by the

clustering procedure to train a classifier and interpret the ob-
tained decision thresholds in terms of the critical manifolds.
Below we describe the details of each of the three elements,
all of which have been implemented using the Scikit-learn

platform [33].

3.2.1. Dimensionality reduction
We apply two different approaches for the dimensional-

ity reduction step, using both principal-component analysis
(PCA) [34, 35] as well as develop an auto-encoder [36]. PCA
achieves dimensionality reduction by determining the eigenvec-
tors, also known as principal components, of the covariance
matrix of the raw MC data (with dimensions N × N, with N
the number of spins in the system). The principal components
(PCs) are then ranked in order of decreasing eigenvalues. The
first eigenvector (i.e., that with the largest eigenvalue) corre-
sponds to the high-dimensional direction in the spin space that
has the largest variance in the data set. Subsequently, the sec-
ond eigenvector corresponds to the direction with the second-
largest variance, and so on. The assumption then is that only a
few PCs are sufficient to capture the essential information con-
tained in the data set and, possibly, also allowing to group them.
A restriction of the PCA approach, however, is that it is a fun-
damentally linear operation, excluding the possibility to detect
non-linear relationships among the variables in the data set.

Auto-encoders, on the other hand, allow detection of such
non-linearities. They are neural networks which take the ele-
ments of the data set as input and are trained to reproduce that
input in the output layer. The structure is that of an hourglass,
as shown schematically in Fig. 2. Starting from the input layer,
with a number of neurons equal to the dimension of the data set,
each subsequent hidden layer decreases its number of neurons
until reaching the latent neuron block, which is the layer with
the fewest neurons. This part of the structure is referred to as
the encoder. The other part of the hourglass is known as the
decoder, in which the number of neurons in the hidden layers
increases again, in a manner symmetric to the encoder part, un-
til reaching the original number of neurons in the output layer.
The dimensionality reduction of the data is achieved by the en-
coder part, with the bottleneck layer spanning the so-called la-
tent space, which represents a nonlinear distilled representation
of each input sample.

Compared to PCA, which amounts to applying a straightfor-
ward linear transformation to the data, the creation of an auto-
encoder is much more involved. In addition to specifying the
number of layers in the hourglass structure and the number of
neurons in each of them, including the minimum number of
neurons of the latent space, it requires the definition of the neu-
ral network. This entails defining the connectivity between the
layers, the weights of the connections between the neurons and
the functional forms of the activation functions.

3.2.2. Clustering
Among the many available clustering techniques [32] we use

the density-based spatial clustering of applications with noise
(DBSCAN) algorithm [37]. This choice is motivated by a num-
ber of arguments. First, it does not require to pre-define the
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Figure 2: Hourglass structure of auto-encoder neural network. Each block rep-
resents a set of neurons. Number of neurons in input and output layers equals
the dimension of the data set. Starting from the input layer, the subsequent
hidden layers systematically reduce the number of neurons until reaching the
bottleneck latent neuron block in which the number of neurons reaches a mini-
mum. Subsequently, the Intermediate, hidden layers, systematically reduce the
number of neuron until reaching the latent neuron block in which the number
of neurons reaches a minimum. Part between the input and the latent block is
referred to as the encoder. Part between the latent block and output is referred
to as the decoder.

number of clusters as input. Moreover, it is well-suited to han-
dle noisy datasets and, as opposed to the vast majority of clus-
tering methods, it can identify groups with arbitrary shape. The
main principle of the DBSCAN approach is to group together
data points that lie within a neighborhood of a specified radius
ε. In particular, it searches for those data points that, within
this neighborhood, have a specified minimum number of neigh-
bors. Each point that satisfies this criterion is classified as a core
point. If a data point does not satisfy this property but it is part
of the neighborhood of a core point it is considered a border
sample. Finally, if none of these conditions are met, the data
point is considered noise.

3.2.3. Classification
Finally, after the clusterization step, we apply a classification

approach to determine the boundaries between different clus-
ters. To this end we use a support-vector machine (SVM) [39],
which provides a robust method for determining nonlinear and
fuzzy intersections between clusters.

4. Results and Discussion

The main results for the PUD model are based on a data set
containing 1400 independent spin configurations on a 30×30
2D square lattice subject to periodic boundary conditions, each
obtained for a single, uniformly sampled parameter pair (J̃, T̃ ),
as discussed in Sec. 3.1. Figure 3 a) displays the results ob-
tained after a dimensionality reduction using PCA, with each
data point representing one of the 1400 spin configurations as
projected on the two-dimensional space spanned by the first two
PCs. Next, to apply the DBSCAN clustering approach, we first
need to select an appropriate value for the neighborhood ra-
dius parameter ε. To this end, we analyze the distribution of
nearest-neighbor distances in PCA-reduced space depicted in
Fig. 3 a). Figure 3b) plots the value of this nearest-neighbor
distance for each data point, ranked from lowest to highest. It
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Figure 3: PCA dimensionality reduction of the MC data for the PUD model
followed by clustering using DBSCAN. a) Projection of the data on the space
spanned by the first 2 PCs. b) Nearest-neighbor distance for each data point
in this space, ranked from the smallest to largest. Arrow indicates the loca-
tion of maximum curvature, which has been shown to provide an appropriate
value for the nearest-neighbor radius parameter ε for the DBSCAN clustering
algorithm [38]. c) Results after clustering. Black circles represent data points
classified as noise. Different colors correspond to data points attributed to dis-
tinct clusters.

has been shown [38] that the optimal value of ε corresponds to
the distance at which the curvature of the distance versus rank
curve is maximum, which in this case is ε ' 1, as indicated
by the arrow. Figure 3 c) then shows the results after cluster-
ing with DBSCAN, using a neighborhood radius ε = 1 and
setting the minimum number of neighbors within this radius to
be 10. Aside from the black circles, which are configurations
that have been classified as noise, the data points painted with
different colors belong to distinct clusters.

As a second approach toward dimensionality reduction we
develop an auto-encoder with the schematic structure shown
in Fig. 2. The resulting optimized neural-network structure is
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Figure 4: (Color online) Artificial neural network structure of auto-encoder. In
addition to the input layer consisting of 900 neurons, the encoder portion con-
sists of 8 hidden layers with, respectively, 750, 600, 450, 300, 150, 75, 30 and
10 neurons, before reaching the latent layer containing 2 neurons. The decoder
portion is symmetric with respect to the latent layer. The neural network is
linked such that subsequent layers are fully connected.

depicted in Fig. 4. In addition to the 900 neurons on the in-
put layer, the encoder section features a succession of 8 hidden
layers with, respectively, 750, 600, 450, 300, 150, 75, 30 and
10 neurons, before reaching the latent layer that consists of 2
neurons. The decoder part is symmetric with respect to the
latent layer. The neural network between successive layers is
fully connected and we employ hyperbolic tangents as activa-
tion functions [31]. The optimization of the auto-encoder neu-
ral network was implemented using the PyTorch package [40],
employing its MSELoss function [41] as the loss measure and
the Adam algorithm as the adaptive optimizer [41]. The op-
timization process is organized in three steps. First, the auto-
encoder is pre-trained using 400 of the 1400 system configura-
tions at a learning rate [41] of 5 × 10−4 for 1500 iterations (i.e.,
epochs[41]). Subsequently, the training procedure covers the
entire data set for 4000 more iterations using the same learning
rate. Finally, an additional 2000 iterations is carried out for the
entire data set at a learning rate of 5 × 10−5. The corresponding
dimensionality-reduced representation of the data set is shown
in Fig. 5 a), which depicts the outputs of the neurons L1 and
L2 of the latent layer for the 1400 spin configurations. Subse-
quently, to determine the value of the radius parameter ε for
DBSCAN, we determine the nearest-neighbor statistics of the
data set in the same way as done in Fig. 3 b).

The results are shown in Fig. 5 b), which shows the nearest-
neighbor distance for all data points in Fig. 5 a), ranked from
lowest to largest. The fundamental difference between this pro-
file and the one obtained for PCA is that, in this case, there are
two local maxima in the curvature of the the rank-distance plot,
as shown by the arrows. This indicates that groups belonging to
the latent space as represented in Fig. 5 a) have different char-
acteristic densities. The existence of two density profiles can in
fact be traced to the physical characteristics of the PUD model,
as we will discuss later on, but under these conditions the DB-
SCAN clustering algorithm is known to be less effective. If
one chooses ε according to the smaller of the two, i.e., focusing
predominantly on clustering data points characteristic of high
density regions, lower-density samples will not be recognized
as belonging to any group at all. In contrast, if we select the
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Figure 5: Auto-encoder dimensionality reduction and subsequent DBSCAN
clusterization for the PUD data set. a) Data represented in the latent space as
characterized by the output L1 and L2 of the corresponding 2 neurons. b) Clus-
ter density analysis based on ranked nearest-neighbor distances for data points
shown in a). c) Transformation of the latent space in terms of the transformed
variables L1 cos L2 and L1 sin L2, respectively. Different colors represent data
points in distinct clusters as obtained using DBSCAN. Black circles indicate
configurations classified as noise. d) Cluster density analysis based on ranked
nearest-neighbor distances for latent-space points shown in c).

larger of the two, i.e., choose cluster according to lower density
regions, regions of higher density will incorporate data points
that should not be included, giving rise to cluster overlap.

In this case, it has been shown that a transformation of coor-
dinates in the latent space may be helpful to improve the iden-
tification of distinct clusters. Specifically, polar-coordinate-like
interpretations have shown to particularly useful on a number
of occasions, including in the recognition of handwritten dig-
its [42–44]. Following this approach, we transform the neuron
outputs L1 and L2 of Fig. 5a) by interpreting L1 as a general-
ized “radius” (allowing both positive and negative values) and
L2 as an “angle”, giving new Cartesian components defined as
L1 cos L2 and L1 sin L2, respectively. Inverting the roles of L1
and L2 in this transformation does not alter the results. Fig-
ure 5 c) and d) display the corresponding structure of the trans-
formed latent space and rank-distance curve, respectively, with
the latter now having a single point of maximum curvature, al-
lowing an effective application of the DBSCAN clustering al-
gorithm. As in Fig. 3 c), the different colored data points in
Fig. 5c) correspond to distinct clusters identified by DBSCAN,
whereas the black circles correspond to configurations that are
classified as noise.

Having clustered the data for both dimensionality-reduced
representations, we now map the corresponding spin config-
urations onto the T̃ × J̃ parameter space of the PUD model,
maintaining the color coding adopted in Figs. 3 c) and 5 c).
The corresponding results are depicted in Figs 6 a) and b),
which display the mappings produced by PCA and the auto-
encoder, respectively. An immediate observation is that, in
both cases, each non-noise color occupies only a restricted part
of the parameter space, dividing it into three distinct regions.
Figure 6c) shows representative spin arrangements from these
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Figure 6: (Color online) Mapping of reduced-space clusters into the PUD pa-
rameter space. a) PCA clustered data. b) Auto-encoder clustered data. c) Rep-
resentative spin configurations for the three phases with black/white squares
representing spin up/down, respectively.

areas, clearly showing the distinct nature of the spin conforma-
tions in each of them. In this sense, each region represents a dis-
tinct spin phase, displaying a disordered paramagnetic phase, a
ferromagnetic phase and a stripe-like anti-ferromagnetic phase.
A further notable feature of the data mapping in Fig. 6a) and b)
is that, while the paramagnetic region corresponds to a single
cluster, the ferro and anti-ferromagnetic parts of the parame-
ter space are occupied by two distinct clusters each. We will
further discuss this point below.

Now that the various clusters in the dimensionality-reduced
spaces of PCA and the auto-encoder in Fig. 6 have been as-
sociated with different types of spin configurations, we now
analyze the data so as to determine the manifolds in the pa-
rameter space that separate the different phases. To this end,
we define three different classes, corresponding to the three
regions in the parameter space identified in Fig. 6 a) and b).
In particular, the classes consist of, (i), the spin configurations
from red cluster for the paramagnetic phase, (ii) the data from

-3.0 -2.0 -1.0 0.0 1.0
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3.0

1.0
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Figure 7: (Color online) Colored circles represent the spin configurations after
DBSCAN clustering of the PCA and auto-encoder dimensionality reduction.
Dark and light blue data points in Fig. 6a) and b) have been assigned to the
yellow circles, the green and magenta to purple, and the red and black to blue.
Different background colors represent regions defined by the SVM as belong-
ing to a specific class. The boundaries between them represent the decision
thresholds. White dashed lines represent analytical critical lines corresponding
to the solutions of Eq. (2). a) PCA-based phase diagram. b) Polar-coordinate
latent-space phase diagram from auto-encoder. c) SVM decision threshold (red
line) including uncertainty estimates (vertical black bars) as estimated using the
train-test split method [33] compared to analytical critical lines (blue line).

the light and dark blue clusters for the ferromagnetic phase
and, (iii), the green and magenta clusters for the stripe-like
anti-ferromagnetic phase. Based on these classes we employ
a supervised-learning SVM multi-classification approach to es-
tablish the boundaries between these regions. The correspond-
ing results for PCA and the auto-encoder are shown in Fig. 7 a)
and b), respectively. The different background colors corre-
spond to the different classes, with the boundaries between
them representing the so-called decision thresholds that form
the critical manifolds in the parameter space that separate the
different phases. We can compare these results directly to the
critical lines defined by Eq. (2), shown as the dashed white
lines.

Overall, both PCA and the auto-encoder closely capture the
qualitative features of the critical lines in the parameter space,
including the existence of a critical point at zero temperature for
J̃ = −1. It is clear, however, that the phase-behavior description
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provided by the auto-encoder is superior in terms of quantita-
tive agreement, with the SVM decision thresholds closely over-
lapping the analytical results. This is further demonstrated in
Fig. 7 c), which compares the SVM decision thresholds includ-
ing confidence intervals as obtained using the train-test split
method [33], to the exact results [28]. The agreement is en-
couraging, in particular because the data points were selected
randomly and uniformly within a very broad range of the pa-
rameter space, without any bias toward known transition lines.

The main reason for the quantitative difference between PCA
and the auto-encoder is the fact that the first 2 PCs cover only
34% of the variance in the data, with the remaining 66% being
diluted over the other 897 eigenvectors. The auto-encoder, on
the other hand, provides a more comprehensive data reduction
scheme. Although it does not involve the concept of explained
variance, as for PCA, the fidelity obtained in training the auto-
encoder can be used as a measure for the accuracy in the recov-
ery of the input image by the encoder. In this particular case,
the auto-encoder can be pushed to reproduce input images with
a fidelity superior to 90%. As discussed previously for a va-
riety of other classical spin systems [4, 6], the superiority of
the auto-encoder approach is not surprising given that PCA is
intrinsically limited to linear transformations of the data.

Even so, the PCA dimensionality reduction, followed by DB-
SCAN clustering still provides insightful information regarding
the physical characteristics of the system. In particular, it has
been shown to be useful in the identification of order param-
eters characterizing phase transitions [4, 45]. This can be ap-
preciated in the cluster structure depicted in Fig. 3 c), in which
vertically and horizontally opposite clusters belong to the same
striped anti-ferromagnetic and ferromagnetic phases, respec-
tively, whereas the centralized red agglomerate corresponds to
the paramagnetic phase. In this sense, the first PC clearly distin-
guishes between the two symmetric ferromagnetic states (i.e.,
spin up and spin down) and the paramagnetic phase, whereas
the second PC does so to differentiate the (spin-up and spin-
down) striped anti-ferromagnetic phases from the paramagnetic
phase.

Fig. 8 shows the results obtained for the other frustrated spin
system, defined by the ZZD model, which is characterized by a
different geometric patterns of the coupling parameters J and
J′. The dimensionality reduction is obtained using an auto-
encoder with the same two-neuron bottleneck architecture ap-
plied for the PUD model. Fig. 8 a) displays the resulting latent-
space structure after applying the same polar-coordinate-like
transformation used for the PUD model and using DBSCAN
clusterization. It displays the same butterfly-like shape as for
the PUD, but in this case the number of distinct clusters is re-
duced by two. Specifically, the two mirror-symmetric clusters
on the lower part of the butterfly for the PUD model have dis-
appeared. When mapping the data points onto the (J̃, T̃ ) pa-
rameter space, as depicted in Fig. 8 b), it is clear this reduction
is related to the fact that the ZZD model is characterized by
two instead of three phases, displaying a ferromagnetic phase
for positive values of J̃ and low T̃ and a disordered paramag-
netic phase for negative values of J̃ or high temperatures. After
grouping the clusters belonging to the same region of the phase
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Figure 8: (Color online) Auto-encoder results for ZZD model. a) Hyperspheri-
cal latent space after DBSCAN clustering, with different clusters represented by
different colored circles. b) Spin configurations plotted in the (J̃, T̃ ) parameter
space, maintaining the colors from a). c) Corresponding ZZD phase diagram as
obtained by SVM classification. Different background colors represent regions
defined by the SVM as belonging to a specific class. The boundaries between
them represent the decision thresholds. White dashed line represents analytical
critical line from Eq. (3).

diagram into distinct classes and training an SVM classifier we
obtain the critical line separating both phases as the boundary
separating both background colors, as shown in Fig. 8 c). As for
the PUD model, the agreement with the exact result described
by Eq. (3), shown as the white dashed line, is excellent.

An interesting question is to what extent there is a relation
between the structural characteristics of the optimized auto-
encoder and the fundamental physical characteristics of the two
spin models. In this context, we note that for both spin models
the best results are obtained using a bottleneck layer formed by
2 neurons, obtaining a reproduction fidelity & 90%. If, for in-
stance, only a single neuron is used, the optimized fidelity does
not exceed ∼ 50%, whereas a bottleneck layer containing three
neurons does not significantly improve the fidelity. The fact
that the optimal latent-space dimension is two for both systems,
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even though the number of distinct phases for both models is
different (3 for the PUD versus 2 for the ZZD), suggests that
the optimal dimension of the latent space may be related to the
number of independent parameters required to characterize the
phase diagram. A further indication for the connection between
the structure of the auto-encoder latent space and the physical
characteristics of the system can be seen in Figs. 5 c) and 8 a).
The butterfly-shaped hyper-spherical latent spaces are mirror-
symmetric with respect to the vertical axis passing through the
origin, with the symmetry-related cluster pairs belonging to the
same regions in the phase diagram. The symmetry brought out
by the clustered auto-encoder results thus provides insight into
the physical system under consideration, revealing that opposite
clusters contain configurations that are spin reversals of each
other. In other words, the vertical axes in Figs. 5 c) and 8 a) cor-
respond to the spin-reversal symmetry underlying the system
Hamiltonians. This “discovery” of a fundamental system sym-
metry through the optimization of the auto-encoder is a further
example that the global ML phase exploration employed here
can be useful in perceiving fundamental properties of physical
systems when prior theoretical insight is unavailable.

In a similar context, the existence of two density profiles in
the Cartesian auto-encoder latent space for the PUD model, as
shown in Fig. 5 b), is in fact related to the nature of its ferro
and antiferromagnetic phases of the PUD model. Theoretical
analysis [28] indicates that the entropy of its anti-ferromagnetic
phase is much greater, meaning that the variability among dif-
ferent samples is much larger compared to that for the ferro-
magnetic configurations. This is the reason underlying the
existence of the two density profiles for the ranked sample-
sample distances in Fig. 5 b). Whereas the clusters belonging
to the lower ε (i.e., higher density) correspond to ferromagnetic
configurations, the ones for the larger ε value represent anti-
ferromagnetic spin conformations. Even though the data does
not allow quantification of the configurational entropy for both
phases, it does provide qualitative indications that it is larger for
the striped anti-ferromagnetic phase, without previous knowl-
edge of the system.

It is interesting to contrast the present fully-connected auto-
encoder approach to that employed for the two-dimensional
frustrated antiferromagnetic Ising model as reported in Ref. 6.
In the latter, a convolutional auto-encoder (CAE) was used to
determine the critical line between the antiferromagnetic and
paramagnetic phases. The advantage of CAEs over the fully
connected auto encoder utilized in the present work is that they
are characterized by a much smaller number of parameters and
feature the ability to recognize spatial correlations by the appli-
cation of filters or local transformations on the images, allow-
ing, for instance, to construct the phase diagram of the Bose-
Hubbard model [46]. Even so, in addition to the fact that the im-
plementation of CAEs is generally substantially more involved,
the CAEs in Ref. 6 do not have a low-dimensional latent space,
such that its detection of phase transitions is not based on di-
mensionality reduction, but rather on anomaly detection. In this
sense, both auto-encoder techniques approach the construction
of phase diagrams in very different manners and may be con-
sidered as complementary to each other. Particularly useful fea-

tures of the present fully-connected auto-encoder approach are
its interpretability in terms of the latent space features and its
efficiency, giving accurate estimates for the critical lines based
on only 1400 MC spin configurations.

A final point concerns the influence of the system size on
the global estimate of phase diagrams. In applications of ML
techniques used to locate a single critical point, such a size-
dependence analysis has been instrumental in achieving quan-
titative accuracy [3, 4]. In the context of classical spin systems,
for instance, such an analysis involves generating configura-
tions in the vicinity of a critical point for different linear lattice
dimensions L, after which pertinent outcomes are analyzed as a
function of some power of L. For instance, using PCA for the
standard 2D ferromagnetic Ising model, its critical temperature
can be determined by plotting the temperature for which the
quantified second principal component reaches its maximum as
a function of L−1, followed by extrapolation to the limit of infi-
nite lattice dimension [4].

In the present global ML approach, however, in which one
uses a single data set consisting of configurations sampled from
the entire parameter space of the system, local scaling prop-
erties become blurred. First, the dimensionality reduction en-
codes the characteristics of the phase diagram as a whole, in-
corporating a continuum of critical temperatures instead of a
particular single value. Furthermore, in a similar fashion, the
final estimates for the critical lines are obtained using a SVM
classifier, whose result corresponds to the minimum of a clas-
sification error that is global in nature rather than reflecting be-
havior in the vicinity of a single critical point. This is illustrated
in Fig. 9, which displays the PCA results for the PUD model
for lattice dimensions L = 8, 16 and 64. The size effect on
the distribution of the data points in the clustered latent space
is evident. Whereas the results display appreciable dispersion
for L = 8, the projections onto the first two principal compo-
nents become progressively sharper as the system size grows,
increasing the distinguishability among the ferromagnetic, anti-
ferromagnetic and paramagnetic phases. On the other hand,
even though the SVM critical lines for L = 64 are visibly better
than those obtained for L = 8 in an overall sense, there is no
manifestly visible size-scaling behavior. This is shown in the
inset of Fig. 9 f), which plots the SVM critical temperature as
a function of 1/L for the case of the standard 2D Ising model
(i.e., J̃ = 1). Even though the estimates are within 7% of the
exact value for all system sizes, there is no discernible L−1 de-
pendence.

In this sense, the present global ML approach can be consid-
ered to be complementary to the schemes that have been utilized
to quantify the parameters characterizing a particular critical
point [3, 4]. Whereas the present approach allows one to obtain
a good first picture of the overall phase diagram when no a pri-
ori insight is available, the latter can subsequently be used to
systematically obtain better accuracy for the critical parameters
by targeting the generation of additional data in the vicinity of
the initial transition estimate and using techniques as described
in Refs. 3 and 4. This is also consistent with the findings of
Théveniaut and Alet for the many-body localization transition
in the Heisenberg spin 1/2 chain [25], who reported that uncer-
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tainties in the estimates for critical parameters extracted from
neural-network structures tend to be larger than those obtained
from conventional approaches.

5. Conclusions

In summary, we consider a ML approach for obtaining a
global prediction of the phase diagrams for two frustrated Ising
models, which are characterized by the presence of critical lines
rather than a single critical point. Using raw MC spin configura-
tions generated for random parameter values from the entire pa-
rameter space, we first apply unsupervised learning techniques
such as PCA and auto-encoders to achieve dimensionality re-
duction, followed by clustering using the DBSCAN method and
a classification step using a SVM approach. The resulting es-
timates for the critical lines of both systems are in excellent
agreement with available exact results, even though the data
points were selected randomly and uniformly within an ample
region of the parameter space, without any predisposition to-
ward the critical lines.

In both cases, the auto-encoder dimensionality-reduction ap-
proach is found to provide better quantitative results as com-
pared to those based on PCA. The main origin of this differ-
ence is that the optimized auto-encoder gives an image fidelity
& 90%, with two neurons in the bottleneck layer. In contrast,
the corresponding two-dimensional latent space for PCA cap-
tures only 34% of variance in the data. A further observation
is that the latent-space characteristics of the optimized auto-

encoders appear to relate to fundamental physical characteris-
tics of both considered spin models. In addition to recogniz-
ing the spin-up/spin-down symmetry, in both cases the best re-
sults are obtained using a bottleneck layer formed by 2 neurons,
indicating that the optimal latent-space dimension is linked to
the number of independent parameters required to characterize
the phase diagram. Although this relation between the opti-
mal auto-encoder structure and the physical properties requires
further study, it suggests that the present ML approach may be
helpful in perceiving fundamental physical properties when, for
instance, a priori theoretical insight is unavailable.

Finally, although the approach provides good estimates for
the phase diagram as a whole, it is not naturally suited to be
used in finite-size scaling procedures that are often employed
to accurately quantify critical parameters. This is due to the
fact that the predictions are based on data sets generated for the
entire parameter space rather than in the vicinity of a particular
critical point. In addition, the estimates for the transition lines
are obtained using a classification procedure that seeks to min-
imize a global classification error across the phase diagram as
a whole such that local critical properties become obscured by
global optimization criteria. In this sense, the present approach
is complementary schemes that are utilized to quantify critical
parameters by focusing on data generated in the vicinity of a
critical point.
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