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We present a framework in which the transition between a many-body localised (MBL) phase and
an ergodic one is symmetry breaking. We consider random Floquet spin chains, expressing their
averaged spectral form factor (SFF) as a function of time in terms of a transfer matrix that acts
in the space direction. The SFF is determined by the leading eigenvalues of this transfer matrix.
In the MBL phase the leading eigenvalue is unique, as in a symmetry-unbroken phase, while in
the ergodic phase and at late times the leading eigenvalues are asymptotically degenerate, as in
a system with degenerate symmetry-breaking phases. We identify the broken symmetry of the
transfer matrix, introduce a local order parameter for the transition, and show that the associated
correlation functions are long-ranged only in the ergodic phase.

Broken symmetry has been a useful concept in the de-
scription of many phase transitions [1–3], extending even
to the Anderson localisation of single-particle wavefunc-
tions. In that context, it was a consideration of disorder-
averaged Green’s functions which showed how the corre-
sponding delocalisation transition could be understood as
symmetry breaking in a field theory [4]. There has since
been substantial progress in the study of many-body lo-
calisation, the analogue of Anderson localisation in the
presence of interactions [5–11]. The many-body localisa-
tion transition, however, has not so far been described in
the language of symmetry breaking, nor has a local order
parameter been identified.

The many-body localised (MBL) phase is charac-
terised by its failure to equilibrate, and so falls outside
the regimes described by statistical mechanics [10, 11].
It is to be contrasted with the ergodic phase, where
in the thermodynamic limit local observables approach
their equilibrium values under unitary dynamics [12–16].
This fundamental difference in dynamics is reflected in
the spectral properties; indeed the many-body localisa-
tion transition, which separates the MBL and ergodic
phases, can be characterised as an eigenstate phase tran-
sition [10].

Because the dynamics is in question it is natural to
adopt a space-time description. Such an approach has
been central to recent advances in our understanding of
entanglement growth [17–19] and the measurement tran-
sition [20–23] in many-body systems. In these investiga-
tions random quantum circuits, minimal models for dis-
crete time evolution with local interactions, have proved
exceedingly useful. In addition, their time-periodic coun-
terparts, random Floquet circuits, have cast light on the
spectral properties of local evolution operators [24–28],
including examples which are believed to be representa-
tive of Floquet systems more generally.

In this Letter we study the spectral form factors (SFFs)
of random Floquet circuits across a many-body localisa-
tion transition [29–33]. The SFF K(t) at time t probes
spectral statistics on quasienergy scales 2π/t, and its dis-
order average 〈K(t)〉 is very different in the two phases.
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FIG. 1. (a) Floquet operator W (light) and its complex conju-
gate W ∗ (dark) with space x running horizontally and time t
running vertically. Vertical black lines represent the positions
of spins, and squares the 4× 4 unitary matrices U which act
on nearest neighbours. (b) Illustration of the spectral form
factor K(t). The light outer cylinder represents TrW (t) and
the dark inner cylinder TrW ∗(t). (c) Matrices acting on the
space of single-site orbit pairs, shown as the 2× (2t)-site spin
ladder on the right, to generate K(t).

For a spin-1/2 chain with L sites, and without time-
reversal symmetry, 〈K(t)〉 ' t in the ergodic phase for
sufficiently large t < 2L ≡ tH, the Heisenberg time. On
the other hand, in the MBL phase 〈K(t)〉 ' 2L for t >∼ 2.
Our approach, as in Ref. [28], is to express the disorder-
averaged SFF in terms of an averaged transfer matrix
which acts in the space direction.

Related transfer matrices have been used to study
kicked Ising models [34–36], while those generating the
SFF have been used to study the dual-unitary point
[27, 37] and signatures of localisation away from it [38].
Analogous objects have been introduced to study en-
tanglement growth and dynamical correlations in dual-
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unitary models [39, 40], as well as thermalisation via an
influence matrix in more general settings [41, 42]. Using
the transfer matrix representation of the average SFF we
will show that the MBL-ergodic transition is symmetry
breaking.

Our models are Floquet spin-1/2 Heisenberg chains
with random local fields. The evolution operator for inte-
ger time t is W (t) ≡W t, where the Floquet operator W
is a 2L× 2L unitary matrix with the brickwork structure
shown in Fig. 1(a). During a single time step each site
x = 0 . . . (L − 1) interacts first with one neighbour and
then with the other. These interactions are described
by 4 × 4 unitary matrices Ux−1,x and Ux,x+1 with the
parametrisation

U =[B ⊗B′][cos(πJ) + i sin(πJ)Σ][A⊗A′]. (1)

Here A,A′, B and B′ are independent Haar-random U(2)
matrices representing the local fields, Σ is the two-site
swap operator, and J is the coupling strength. Our
model has no conserved densities, and does not have
time-reversal symmetry. Furthermore, all points in the
spectrum are statistically equivalent, precluding a mo-
bility edge and removing the need for any unfolding pro-
cedure in the analysis of the spectrum. For J = 1/2
our model is dual unitary, falling into the non-interacting
class of Refs. [43, 44]. Here, however, we are concerned
only with 0 ≤ J ≤ 0.3. Our model is MBL for J < Jc
and ergodic for Jc < J < 1/2, with the critical point
Jc ≈ 0.07 [45]. We focus on behaviour within each of the
two phases and defer consideration of critical properties
for future work.

The SFF is defined by K(t) = |TrW (t)|2 [see Fig. 1(b)],
and using the spectral decomposition W =

∑
n e

iθn |n〉〈n|
with n = 1 . . . 2L we see that K(t) =

∑
nm e

i(θn−θm)t.
This is the Fourier transform of the two-point correlator
of the level density. Moreover, TrW (t) can be expressed
as a sum over closed paths, or many-body orbits, in the
space of spin configurations. K(t) is then a sum over
pairs of such many-body orbits; we will refer to those
coming from TrW (t) as forward orbits, and those com-
ing from the conjugate as backward orbits. For Floquet
systems with local interactions this sum over pairs of for-
ward and backward orbits can be generated by transfer
matrices acting in the space direction, as we now discuss.

The orbits of individual spins can be represented as
the states of a spin chain, and orbit pairs as the states
of a spin ladder. To see this note that these orbits are
sequences of 2t states, and we can write these as vectors
|a0b0 . . . at−1bt−1〉, where ar, br = 0, 1 represent the state
at times r and (r+ 1/2) respectively, for r integer. Orbit
pairs are then naturally represented as tensor products
|a0b0 . . .〉 ⊗ |a∗0b∗0 . . .〉. Here unstarred labels correspond
to the forward orbit, and starred to the backward. These
are the states of a 2× (2t)-site spin ladder, shown on the
right in Fig. 1(c).

The transfer matrices generating K(t) act on states
of this spin ladder. In a given disorder realisation these
are tensor products of matrices which act on the two
spin chains, generating TrW (t) and its conjugate, re-
spectively [see Fig. 1(c)]. Details of this construction
are given in Refs. [28, 45]. We denote matrices gener-
ating K(t) in this way by Rx,x+1 for bonds (x, x + 1)
with x even, and it is clear from Fig. 1(c) that for x
odd these matrices are shifted by half of a time step
with respect to those with x even. On single-site or-
bits this shift is described by the operator S defined by
S|a0b0 . . . at−1bt−1〉 = |b0a1 . . . bt−1a0〉. On orbit pairs, it
is described by the operator S = S ⊗ S.

With periodic boundary conditions, which necessitates
L even, we then have

K(t) = tr[R0,1SR1,2S−1 . . .SRL−1,0S−1], (2)

where the trace tr is over single-site orbit pairs. Be-
cause the matrices Ux,x+1 are independently and identi-
cally distributed, Rx,x+1 can be averaged independently
for each x and we write 〈Rx,x+1〉 = 〈R〉. The average
SFF is then

〈K(t)〉 = tr[S−L[S〈R〉]L], (3)

where we have used time periodicity to write 〈K(t)〉 in
terms of a single kind of averaged transfer matrix, S〈R〉.
Open boundary conditions are instead encoded in vectors
〈BL| and |BR〉 so that

〈K(t)〉 = 〈BL|[S〈R〉]L−1|BR〉. (4)

We now elaborate on how the MBL-ergodic transi-
tion is symmetry breaking. The transfer matrices, which
act on pairs of single-site orbits, commute with the time
translation operations S2 ⊗ 1 and 1 ⊗ S2 acting on the
respective forward and backward orbits. These symme-
tries imply that S〈R〉 can be block-diagonalised into t2

sectors labelled by the t different eigenvalues of each of
S2 ⊗ 1 and 1 ⊗ S2. In the regimes we consider no more
than t eigenvalues control 〈K(t)〉, and one of these re-
sides in each sector with eigenvalue e2πiν/t under S2 ⊗ 1
and e−2πiν/t under 1 ⊗ S2, for integer ν = 0 . . . (t − 1).
We denote these eigenvalues of S〈R〉 by λ(ν, t), and the
corresponding right and left eigenvectors by |ν, t;R〉 and
〈ν, t;L|, respectively. In the MBL phase λ(0, t) is the
unique leading eigenvalue, and the corresponding eigen-
vector is invariant under relative translation of forward
and backward orbits. In the ergodic phase all λ(ν, t) are
asymptotically degenerate at large t. The corresponding
eigenvectors break the symmetry of the transfer matrix
under relative time-translation of orbits within a pair.

This behaviour of the eigenvalues can be related to the
dependence of 〈K(t)〉 on t and L in the two phases as
follows. First note that in the limit of decoupled sites
(J = 0), 〈K(t)〉 = 〈k(t)〉L, where 〈k(t)〉 is the average
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FIG. 2. (a)-(c) Absolute values of all nonzero eigenvalues λ
of the transfer matrix S〈R〉 at times (a) t = 2 (b) t = 3
and (c) t = 4, with J = 0.025m and m = 0, 1 . . . 12. The t
leading eigenvalues at each J , some of which are degenerate,
are shown black. For these times the largest is unique and in
the ν = 0 sector. (d) λ(0, t) calculated from the average SFF
with open boundary conditions using Eq. (5). (e) Ratio of
〈K(t)〉 with periodic boundary conditions, and with L = 12,
to the contribution of only the ν = 0 sector. The black dashed
line shows t.

SFF for 2× 2 Haar-random unitary matrices. 〈k(1)〉 = 1
and 〈k(t ≥ 2)〉 = 2 so 〈K(t)〉 saturates at 2L for t ≥ 2. In
this case there is one nonzero eigenvalue λ(0, t) = 〈k(t)〉.
For small J < Jc the other eigenvalues are nonzero, but
λ(0, t) remains dominant. By contrast in the ergodic
phase 〈K(t)〉 ' t for tTh < t < tH, where tTh (a func-
tion of L) is the Thouless time. This arises from having
t eigenvalues λ(ν, t) ' 1 for all ν [28].

To support these claims and investigate behaviour at
general J we use a variety of numerical approaches. At
very short times we can diagonalise S〈R〉 exactly and
in Figs. 2(a)-(c) we show the magnitudes of all nonzero
eigenvalues for 0 ≤ J ≤ 0.3 and t = 2, 3, 4. Even for
these small values of t we see that increasing J causes
the separation between the λ(ν, t) to decrease, and a gap
between them and all other eigenvalues to appear. For
these times λ(0, t) > 1, whereas λ(ν 6= 0, t) < 1, with
λ(0, t)� λ(ν 6= 0, t) at small J .

To elucidate the behaviour of S〈R〉 in each phase it
is necessary to go to much larger t, where exact diag-
onalisation is computationally too demanding. Instead
we compare the average SFF with open and periodic
boundary conditions. Because 〈BL| and |BR〉 are invari-
ant under translation by integer time steps, the SFF with
open boundary conditions has contributions from only
the ν = 0 sector, while with periodic boundary condi-
tions all sectors contribute.

From Eq. (4) and the spectral decomposition of S〈R〉
we have with open boundary conditions

〈K(t)〉 = λL−1(0, t)〈BL|0, t;R〉〈0, t;L|BR〉+ . . . , (5)

where the ellipses represent the contributions from sub-
leading eigenvalues. Note that here the result 〈K(t)〉 ' t
at late times in the ergodic phase arises from λ(0, t) ' 1
and 〈BL|0, t;R〉〈0, t;L|BR〉 ' t [28]. From the scaling of
〈K(t)〉 with L at fixed t we extract λ(0, t), and the results
are shown in Fig. 2(d) for various J and for t ≤ 28. At
late times we see for small J that λ(0, t) ' 2, while for
large J , λ(0, t) ' 1.

With periodic boundary conditions

〈K(t)〉 =

t−1∑

ν=0

λL(ν, t) + . . . , (6)

where again the ellipses represent contributions from sub-
leading eigenvalues. For a transfer matrix S〈R〉 with t
degenerate leading eigenvalues λ(ν, t) = 1, and all oth-
ers negligible, we expect 〈K(t)〉/λL(0, t) = t. If only one
eigenvalue dominates, and it is in the symmetric ν = 0
sector, 〈K(t)〉/λL(0, t) = 1. Precisely this behaviour, in
the ergodic and MBL phases, respectively, is shown in
Fig. 2(e).

To probe symmetry breaking more directly we intro-
duce a local order parameter. The relevant symmetry,
time-translation of backward orbits with respect to for-
ward orbits, is at time t the symmetry of a t-state clock
model. We can therefore represent the order parameter
by a complex number. We define a diagonal operator C
acting on the space of single-site orbit pairs

C|a0b0 . . .〉 ⊗ |a∗0b∗0 . . .〉 (7)

=
2

t

t−1∑

p,r=0

δapa∗re
2πi(p−r)/t|a0b0 . . .〉 ⊗ |a∗0b∗0 . . .〉.

The diagonal matrix elements of C in this basis are the
values of the order parameter for each orbit pair.

We want to study correlations of C in the averaged sum
over orbit pairs that generates the SFF. The one-point
function O1(x, t) associated with our order parameter is
obtained by inserting C into the sum at the site x, aver-
aging, and dividing the result by 〈K(t)〉. For example,
with periodic boundary conditions,

O1(x, t) =
tr[S−LC[S〈R〉]L]

tr[S−L[S〈R〉]L]
. (8)

Since our model has no symmetry-breaking fields or
boundary conditions O1(x, t) is identically zero. In
Eq. (8) this is due to a selection rule on matrix elements
of C which arises from (S2 ⊗ 1)C(S−2 ⊗ 1) = e2πi/tC.
The two-point function O2(x, y, t) is found by inserting
the operators C∗ and C at the sites x and y, respectively.
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We expect O2(x, y, t) to show long-range correlations in
a symmetry-broken phase.

Using the spectral decomposition of the transfer ma-
trix, and the selection rule indicated above, the two-point
function in the thermodynamic limit L→∞ can be writ-
ten

O2(x, y, t) = [λ(1, t)/λ(0, t)]|x−y|F (t) + . . . , (9)

where the form of the (real) amplitude F (t) depends on
the parity of |x − y|. For example, with |x − y| even,
F (t) = 〈0, t;L|C∗|1, t;R〉〈1, t;L|C|0, t;R〉 [45]. The el-
lipses denote the contributions from subleading eigenval-
ues. From Eq. (9) we find the correlation length ξ(t)
with

1/ξ(t) = ln |λ(0, t)/λ(1, t)|. (10)

Hence ξ(t) is small if the transfer matrix has a single
dominant eigenvalue λ(0, t), as in the MBL phase, and is
divergent if λ(0, t) and λ(1, t) are degenerate at large t,
as in the ergodic phase.

Alternatively, using the spectral decomposition of the
Floquet operator, the two-point function can be ex-
pressed as [45]

O2(x, y, t) =
〈∣∣∑

mn

Gmn(t)〈n|Z(x)|m〉 (11)

×〈m|Z(y)|n〉
∣∣2〉/〈K(t)〉

where Z(x) is the Pauli matrix acting at site x,

and Gmn(t) = eiθnt
∑t−1
r=0 e

i(2π/t+θm−θn)r selects for
quasienergy separations (θn − θm) ∼ 2π/t. From this
perspective, in the MBL phase we expect O2(x, y, t) to
be small for large |x− y|, because in that case there are
few pairs of eigenstates n and m for which 〈n|Z(x)|m〉
and 〈m|Z(y)|n〉 are both large. Conversely, modelling
these matrix elements using the eigenstate thermalisa-
tion hypothesis [12–16], expected to be applicable in the
ergodic phase for t� tTh, yields O2(x, y, t) = 1 for x 6= y
and t� tH [45].

In Fig. 3 we test these suggestions for the behaviour
of O2(x, y, t) against numerics. From Fig. 3(a) we see a
rapid decay with |x − y| in the MBL phase (J = 0.05),
but find O2(x, y, t) approximately independent of |x− y|
in the ergodic phase (J = 0.25). Aspects of this be-
haviour depend on t, as we examine in Fig. 3(b). In the
ergodic phase, variation is weak provided t is sufficiently
large. By contrast, in the MBL phase the amplitude of
the two-point function increases with t as a power law,
and ξ(t) increases slowly but remains small over the ac-
cessible range of t. We note that at low frequencies both
power-law growth of matrix elements of local operators,
and logarithmic growth in an associated lengthscale, are
known features of the MBL phase [46–50]. To investi-
gate in detail the dependence of ξ(t) on t, we extract it

(a) (b)

(c) (d)

FIG. 3. Two-point function. With periodic boundary condi-
tions, (a) O2(0, x, t = 26) versus x and (b) O2(0, x = L/2, t)
versus t in the MBL (J = 0.05) and ergodic (J = 0.25) phases.
L = 8, 10, 12 as indicated. (c) L-scaling of O2(0, L−1, t) with
open boundary conditions, with t on the legend. Lines are fits
to L ≥ 6. (d) Correlation length ξ(t) for various J , extracted
from O2(0, L− 1, t) as in (c).

from the scaling of O2(x, y, t) with separation [45], as il-
lustrated in Fig. 3(c). Results for a range of t and J are
shown in Fig. 3(d). These show a very rapid divergence
of ξ(t) with t in the ergodic phase, and a much slower
increase in the MBL phase.

The fact that ξ(t) increases with t for all values of
J raises the question of whether it is possible to make
a sharp distinction between the two phases from the
behaviour of O2(x, y, t). This can be answered in the
affirmative using the links between (i) ξ(t) and λ(ν, t)
[Eq. (10)], and (ii) λ(ν, t) and 〈K(t)〉 [Eq. (6)], together
with the known behaviour of 〈K(t)〉 [Fig. 2]. These imply
in the ergodic phase that ξ(t)� L for tTh � t < tH, since
all λ(ν, t) are quasi-degenerate, and in the MBL phase
that ξ(t) � L for t < tH, since λL(0, t) � λL(ν 6= 0, t).
Hence, for large L and t, O2(x, y, t) reveals long-range or-
der in the ergodic phase and disorder in the MBL phase.
A prescription that ensures the two phases are distin-
guished is to take the limits L, t → ∞ with t = tHf ≡
2Lf for fixed 0 < f < 1.

In summary we have shown how, in a spatially ex-
tended many-body Floquet system with local interac-
tions, the transition from an MBL phase to an ergodic
one can be viewed as symmetry breaking. To do this we
have related the disorder-averaged SFF to the spectrum
of a transfer matrix acting in the space direction. In the
ergodic phase this transfer matrix has t leading eigenval-
ues which are asymptotically degenerate at large t, and
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these are associated with symmetry-breaking eigenvec-
tors. The MBL phase on the other hand is characterised
by a transfer matrix with one dominant eigenvalue, and
the corresponding eigenvector breaks no symmetries. We
have defined a local order parameter for the transition,
and have shown that the behaviour of the SFF in the
ergodic phase is associated with long-range correlations
of this order parameter.

This perspective on the many-body localisation tran-
sition, and the set of tools we have developed, open new
opportunities and raise a number of questions. While our
focus here has been on behaviour deep within each phase,
one can ask, for example, how ξ(t) behaves in the vicinity
of the critical point. Further questions concern the roles
played by time-reversal symmetry, and by charge con-
servation. Finally, it would of course be interesting to
adapt our ideas to a Hamiltonian system. This will re-
quire technical developments paralleling work described
for Floquet systems in Ref. [28]; a possible route might
build on recent work described in Ref. [51]. Note that
the broken symmetry in the Hamiltonian setting would
be a continuous one.

In contrast with work emphasising rare-region effects
at the transition [52, 53], here we have focused only on an
averaged quantity, the SFF. This nevertheless captures
the distinction between the MBL and ergodic phases. A
natural next step is to consider higher moments of the
SFF, whereas an alternative is to study products of un-
averaged transfer matrices, and the associated Lyapunov
exponents [54].

We are grateful to S. Roy for collaboration on related
work, and to S. Parameswaran and A. Nahum for very
useful discussions. This work was supported in part by
EPSRC Grants EP/N01930X/1 and EP/S020527/1.
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In “Many-Body Delocalisation as Symmetry Breaking” we have studied the spectral form factors (SFFs) of a class
of random Floquet spin chains across a many-body localisation transition. Before outlining the content of this note,
we briefly give additional details on numerical calculations appearing in that Letter. Figs. 2(d) and (e) are based
on length-scaling of the average SFF; SFFs were calculated via exact diagonalisation (ED) of Floquet operators, and
averaged over 106 disorder realisations for system sizes 3 ≤ L ≤ 8, 2× 105 for L = 9, 10, and 2× 104 for L = 11, 12.
In Fig. 3 we have calculated a certain averaged two-point function, also via ED of Floquet operators. There for L ≤ 9
we average over 105 disorder realisations, and for L ≥ 10 over 104.

Here we discuss the following technical aspects of the Letter

S1 Standard spectral and entanglement probes of the MBL transition in our model.

S2 Construction of the transfer matrix generating the SFF.

S3 Correlations of the clock-model order parameter.

S4 Response of the SFF to symmetry-breaking fields.

S1. SPECTRAL AND ENTANGLEMENT PROBES OF THE TRANSITION

Here we characterise the MBL transition in our model. First, as in the main text, we consider the many-body
spectrum. A standard probe is the r-statistic [S1], defined as follows. Writing ∆θn = |θn+1 − θn| with θn the ordered
quasienergies of the Floquet operator, r ≡ min(∆θn,∆θn+1)/max(∆θn,∆θn+1). In the ergodic phase we expect
r ' 0.60, as for the circular unitary ensemble, whereas in the MBL phase we expect r = (2 ln 2 − 1) ' 0.39, the
result for θn uncorrelated random numbers. In Fig. S1(a) we show r for various L with periodic boundary conditions,
computed from averages over the entire spectrum and over N = 104 disorder realisations. There is a clear transition
in behaviour, which becomes sharper with increasing L, and this result indicates a critical coupling Jc ≈ 0.07. We
have not attempted to locate the transition more precisely for this work, since we are concerned with behaviour deep
in each phase rather than critical phenomena. The corresponding transition in the behaviour of the average SFF

(a) (b)

FIG. S1. Spectral statistics. (a) r-statistic for level correlations on the finest scales. The different shades show different system
sizes L (legend). The red dashed line is the result for Haar-random unitary matrices (≈ 0.60) and the blue is the result for
uncorrelated levels (2 ln 2 − 1 ≈ 0.39). Here we use periodic boundary conditions. (b) Average SFF 〈K(t)〉 for L = 12 and
various J (legend). The solid line shows the result with periodic boundary conditions and the dashed with open.
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(a) (b) (c)

FIG. S2. Half-chain von Neumann entanglement entropy SvN. (a) SvN for eigenstates of the Floquet operator as a function
of J , and for various L shown on the legend. The dashed lines show the Page value (1/2)(L ln 2− 1) neglecting corrections of
order 1/2L, and the statistical errors are not visible on this scale. (b) Growth of SvN with time for circuits with J = 0.025, and
starting from a randomly chosen eigenstate of the decoupled system. The legend shows L, and dashed lines indicate logarithmic
growth. (c) As for (b), here with J = 0.05.

〈K(t)〉 is shown in Fig. S1(b) for L = 12 sites, 1 ≤ t ≤ 213, and both periodic and open boundary conditions. Here
also N = 104.

The difference between the ergodic and MBL phases is also clear in eigenstate entanglement [S2], and in the
growth of entanglement with time from initially unentangled states [S3–S6]. We focus on the half-chain von-Neumann
entanglement entropy SvN = −Tr[ρ ln ρ], where ρ is the reduced density matrix over half of a chain with periodic
boundary conditions. In Fig. S2(a) we show SvN for Floquet eigenstates, averaged over the spectrum and N =
104, 104, 103, 102 disorder realisations for L = 6, 8, 10, 12, respectively. At large J in the ergodic phase our results
approach the Page value (1/2)(L ln 2− 1) +O(2−L/2) corresponding to volume-law entanglement [S7]. For small J on
the other hand we find an L-independent SvN, which in one dimension corresponds to area-law entanglement [S2]. In
Figs. S2(b) and (c) we calculate SvN as a function of time t starting from eigenstates of the decoupled system (J = 0).
In the MBL phase it is expected that SvN increases logarithmically with t [S3–S6]. In Fig. S2(b) we evolve the states
under Floquet operators with J = 0.025 and in (c) with J = 0.05, averaging over 104 disorder realisations in each
case, and find approximately this behaviour.

S2. CONSTRUCTION OF THE TRANSFER MATRICES

In this section we give details on the transfer matrices which generate the SFF K(t) = |TrW (t)|2, following Ref. [S8].
The evolution operator W (t) is constructed from 4 × 4 unitary matrices Ux,x+1 acting on pairs of sites (x, x + 1).
With x even Ux,x+1 evolves the sites from integer time r to (r + 1/2). The amplitude for evolving the sites from the
product state |ar〉 ⊗ |a′r〉 to |br〉 ⊗ |b′r〉, where unprimed and primed labels correspond to x and (x+ 1), respectively,
is Ubrb′r,ara′r , where we have suppressed the position label (x, x+ 1).

From these matrix elements we define a non-unitary matrix Ũ via Ũarbr,a′rb′r = Ubrb′r,ara′r . Ũ acts on the path of

site (x+ 1) over the time interval (r, r+ 1/2). Taking the tensor product of t copies of Ũ we find Ũ⊗t, a non-unitary

matrix which acts on the entire path, or orbit, of the site (x + 1). Ũ⊗t can be visualised as acting on a 2t-site spin
chain with periodic boundary conditions [see Fig. 1(c) of the main text].

Using the half-step time translation operator for orbits, S [see main text], TrW (t) is given by

TrW (t) = tr[Ũ⊗t0,1SŨ
⊗t
1,2S

−1 . . . Ũ⊗tL−2,L−1SŨ
⊗t
L−1,0S

−1], (S1)

with periodic boundary conditions, which necessitates L even. The trace tr is over single-site orbits. Across bonds
(x, x+ 1) with x even we act with Ũ⊗tx,x+1 and with x odd we act instead with SŨ⊗tx,x+1S

−1.

The matrices which generate the SFF in this way are tensor products of those generating TrW (t) and its conjugate.
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Defining Rx,x+1 = Ũ⊗tx,x+1 ⊗ [Ũ⊗tx,x+1]∗ we find, again with periodic boundary conditions,

K(t) = tr[R0,1SR1,2S−1 . . .RL−2,L−1SRL−1,0S−1], (S2)

where S = S ⊗ S is the half-step time-translation operator for orbit pairs. Time periodicity implies [S2,Rx,x+1] = 0,
and this allows us to write K(t) in terms of transfer matrices which have the same structure on each bond, SRx,x+1.
With open boundary conditions for example,

K(t) = 〈BL|(SR0,1) . . . (SRL−2,L−1)|BR〉, (S3)

where 〈BL| and |BR〉 are vectors invariant under S2 ⊗ 1 and 1⊗ S2 which encode the boundary conditions [S8]. For
example |BR〉 in Eq. (S3) is

|BR〉 =
∑

a0b0...

a∗0b∗0 ...

( t−1∏

r=0

δar+1brδa∗r+1b
∗
r

)
|a0b0 . . .〉 ⊗ |a∗0b∗0 . . .〉. (S4)

The disorder average of each Rx,x+1 is the same on each bond, 〈Rx,x+1〉 = 〈R〉, so the average SFF 〈K(t)〉 can
be expressed in terms of powers of the average transfer matrix S〈R〉. In large systems the spectral statistics of
the Floquet operator are therefore determined by the leading eigenvalues of S〈R〉. As indicated in the main text,
the corresponding left and right eigenvectors (〈ν, t;L| and |ν, t;R〉, respectively) are invariant under S2. From this
property it is straightforward to derive a relation between them. The eigenvectors satisfy

S〈R〉|ν, t;R〉 = λ(ν, t)|ν, t;R〉, (S5)

〈ν, t;L|S〈R〉 = λ(ν, t)〈ν, t;L|,

and the matrix 〈R〉 is real and symmetric. Taking the Hermitian conjugate of the second equation, and then multi-
plying on the left by S, we find

S〈R〉S|ν, t;L〉 = λ∗(ν, t)S|ν, t;L〉, (S6)

where we have used S−1|ν, t;L〉 = S|ν, t;L〉. Within each of the sectors labelled by ν the leading eigenvalue λ(ν, t) is
real and non-degenerate, and consequently we must have S|ν, t;L〉 = |ν, t;R〉.

S3. CORRELATIONS OF THE LOCAL ORDER PARAMETER

To express the SFF K(t) = |TrW (t)|2 as a sum over orbit pairs, we first choose a basis for the many-body space. As
in the main text it is convenient to use product states over sites, and to be concrete we work in the basis of eigenstates
of the Pauli-Z operators {Z(x)} for x = 0 . . . (L− 1). We can then write TrW (t) =

∑
P AP , where P are closed paths

of t steps in the space of Z⊗L eigenstates. The complex amplitudes AP are then products of t matrix elements of W
in this basis, and the SFF is

K(t) =
∑

PQ

APA
∗
Q. (S7)

The weights associated with each orbit pair APA
∗
Q are complex, although K(t) is real and non-negative. In our work

we are interested in averaged properties of the sum over orbit pairs in Eq. (S7).
In the main text we have introduced a clock-model order parameter C for single-site orbit pairs |a0b0 . . .〉⊗|a∗0b∗0 . . .〉.

There C has been chosen to be a diagonal operator acting as

C|a0b0 . . .〉 ⊗ |a∗0b∗0 . . .〉 =
2

t

∑

p,r

δapa∗re
2πi(p−r)/t|a0b0 . . .〉 ⊗ |a∗0b∗0 . . .〉. (S8)

In this way we can assign the many-body orbit pairs in Eq. (S7) values of the order parameter at each site x. For
orbits P,Q we write these numbers as CP,Q(x). The one-point function is naturally defined as

O1(x, t) =
〈∑PQAPA

∗
QCP,Q(x)〉

〈∑PQAPA
∗
Q〉

, (S9)
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where we have averaged the numerator and denominator separately so that O1(x, t) probes the same average of the
sum over orbit pairs as 〈K(t)〉.

To write O1(x, t) in terms of the evolution operator we use 2δapa∗r = (Zapap(x)Za∗ra∗r (x) + 1) and find

O1(x, t)× 〈K(t)〉 =
1

t

∑

p,r

e2πi(p−r)/t〈Tr[W (t− p)Z(x)W (p)]Tr[W (t− r)Z(x)W (r)]∗〉. (S10)

Since W (p)W (t−p) = W (t) for p integer, the sum on p in Eq. (S10) ensures that the one-point function O1(x, t) = 0.
The two-point function O2(x, y, t) is given by inserting C∗ at the site x and C at the site y,

O2(x, y, t) =
〈∑PQAPA

∗
QC∗P,Q(x)CP,Q(y)〉

〈∑PQAPA
∗
Q〉

. (S11)

In this way the numerator is related to a scalar product of (two-component vector) local order parameters. To find an
expression in terms of W (t) we must sum over p, r at each of the sites x and y. One finds an expression of the form

O2(x, y, t)× 〈K(t)〉 =
1

t2

t−1∑

px,rx,py,ry=0

e−2πi(px−rx−py+ry)M(px, py)M∗(rx, ry), (S12)

where M(px, py) is related to a trace over TrW (t) but with an insertion of Z(x) at time step px, and Z(y) at time
step py. It can be shown that

O2(x, y, t)× 〈K(t)〉 =
〈∣∣
t−1∑

r=0

Tr[W (t− r)Z(x)W (r)Z(y)]e2πir/t
∣∣2〉. (S13)

Writing W (t) =
∑
n e

iθnt|n〉〈n| and evaluating the sum over r in Eq. (S13), we find

O2(x, y, t)× 〈K(t)〉 =
〈∣∣∣
∑

mn

Gmn(t)〈n|Z(x)|m〉〈m|Z(y)|n〉
∣∣∣
2〉
, (S14)

where the selection function Gmn(t) = eiθnt
∑t−1
r=0 e

i(θm−θn+2π/t)r emphasises contributions from pairs of levels sepa-
rated in quasienergy by (θn − θm) ∼ 2π/t.

As a toy model for the ergodic phase we briefly discuss the two-point function in the case where W is a 2L × 2L

Haar-random unitary matrix. Then for t � 2L the right-hand side of Eq. (S13) can be calculated using standard
techniques [S9]. Expanding the modulus-squared sum in the average in Eq. (S13) we have t2 terms, but only the t
diagonal terms contribute for large 2L. Each of these gives unity, and because 〈K(t)〉 = t we find O2(x, y, t) = 1.

In addition to expressing O2(x, y, t) in terms of the spectral decomposition of W (t), it is useful to relate it to the
transfer matrix that generates the SFF. This is straightforward because the numerator and denominator of Eq. (S11)
are averaged independently. For example with periodic boundary conditions, and x and y both odd,

O2(x, y, t) =
tr
[
S−L(S〈R〉)L−|x−y|C∗(S〈R〉)|x−y|C]

tr
[
S−L(S〈R〉)L]

, (S15)

where |x− y| is defined modulo L. At any finite t the eigenvalue λ(0, t) > λ(ν 6= 0, t), so taking the thermodynamic
limit L→∞ with t and |x− y| fixed we find

O2(x, y, t) = [λ(1, t)/λ(0, t)]|x−y|〈0, t;L|C∗|1, t;R〉〈1, t;L|C|0, t;R〉+ . . . , (S16)

where the ellipses denote the contributions of subleading eigenvalues, which are suppressed for large |x − y|. Here
we have used the selection rule coming from (S−2 ⊗ 1)C(S2 ⊗ 1) = e−2πi/tC. In the main text we have denoted
the above amplitude F (t) = 〈0, t;L|C∗|1, t;R〉〈1, t;L|C|0, t;R〉. For x and y both even we instead find F (t) =
〈0, t;L|SC∗S|1, t;R〉〈1, t;L|SCS|0, t;R〉 = 〈1, t;L|C|0, t;R〉∗〈0, t;L|C∗|1, t;R〉∗, where we have used S|ν, t;L〉 = |ν, t;R〉
[see Sec. S2]. Since the choice of spatial origin is arbitrary, this must be equal to the amplitude appearing in the case
where x and y are both odd, and this implies that F (t) = 〈0, t;L|C∗|1, t;R〉〈1, t;L|C|0, t;R〉 is real. When one of x
and y is odd, and the other is even, the amplitude is instead F (t) = |〈1, t;L|C|0, t;R〉|2.

It is clear from the above that the two-point function decays over a lengthscale ξ(t) set by the ratio λ(1, t)/λ(0, t).
To extract this it is convenient to consider a system with open boundary conditions, and with x = 0 and y = (L− 1)
the two end sites. We find

O2(0, L− 1, t) = [λ(1, t)/λ(0, t)]L−1
〈BL|C∗|1, t;R〉〈1, t;L|C|BR〉
〈BL|0, t;R〉〈0, t;L|BR〉

+ . . . (S17)
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(a) (b)

FIG. S3. Response of the average SFF to local symmetry-breaking fields in the MBL (J = 0.05, dashed) and ergodic (J = 0.25,
solid) phases. (a) 〈K2(t)〉/〈K(t)〉 for various L (legend). (b) 〈Kb(t)〉/〈K(t)〉 for L = 8 and b = 2, 3, 4 as indicated. Horizontal
dotted lines show 1/b, the value expected in the symmetry-broken phase. 〈Kb(t)〉 is defined only for t an integer multiple of b,
and here we use periodic boundary conditions. For L = 8, 10 we average over N = 105 disorder realisations, and for L = 12
over N = 104.

for large L. By following the scaling of O2(0, L−1, t) with L at fixed t we extract ξ(t) = 1/ ln[λ(0, t)/λ(1, t)] as shown
in Fig. 3(d) of the main text.

S4. RESPONSE TO SYMMETRY-BREAKING FIELDS

In the main text, and in Sec. S3, we have studied correlations of the clock order parameter. In the ergodic phase
we have shown that there are long-range correlations of this order parameter, as in the symmetry-broken phase of
a classical clock model, whereas in the MBL phase the correlations are short ranged. Another way to investigate
the sum over many-body orbit pairs generating the SFF is to consider the response to a symmetry-breaking field.
For example at times t with t/b and b both integers a natural choice is to break the symmetry locally from t-fold to
t/b-fold. In the symmetry-broken phase of a classical clock model, one expects this to reduce the partition function
by a factor b. In the symmetric phase there is a much weaker response.

Locally breaking the symmetry from t-fold to t/b-fold can be achieved in practice by locally punctuating the
time evolution with 2 × 2 Haar-random unitary matrices which repeat only after b time steps. For example with
b = 2, breaking the symmetry at just one site x, the evolution operator for t even is changed from W (t) = W t to
(W (2)W (1))t/2, where W (1) differs from W (2) only in the realisation of the randomness at x. Since W (2)W (1) is simply
another Floquet operator, but now for evolution with period 2, it is natural to expect that in the ergodic phase the
new SFF for time t (and so t/2 periods) is t/2. More generally we expect

〈Kb(t)〉 =
〈∣∣Tr[(W (b) . . .W (2)W (1))t/b]

∣∣2〉 ' t/b (S18)

in the ergodic phase for large t < 2L. In the limit of decoupled sites (J = 0) one instead finds that for t ≥ 2b,
〈Kb(t)〉 = 〈K(t)〉. For small J < Jc in the MBL phase we therefore expect 〈Kb(t)〉 ' 〈K(t)〉. In Fig. S3 we show
〈Kb(t)〉/〈K(t)〉 as a function of t for various b and L, and find excellent agreement with the above predictions. There
is a clear difference in response between the ergodic and MBL phases, demonstrating a form of long-range rigidity in
the former that arises from the broken symmetry.
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