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Current quantum simulation experiments are starting to explore non-equilibrium many-body dy-
namics in previously inaccessible regimes in terms of system sizes and time scales. Therefore, the
question emerges which observables are best suited to study the dynamics in such quantum many-
body systems. Using machine learning techniques, we investigate the dynamics and in particular
the thermalization behavior of an interacting quantum system which undergoes a non-equilibrium
phase transition from an ergodic to a many-body localized phase. We employ supervised and unsu-
pervised training methods to distinguish non-equilibrium from equilibrium data, using the network
performance as a probe for the thermalization behavior of the system. We test our methods with
experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results pro-
vide a path to analyze highly-entangled large-scale quantum states for system sizes where numerical
calculations of conventional observables become challenging.

Introduction.– After a global quench in a thermaliz-
ing system, local observables approach a value which
corresponds to their expectation value in a typical mi-
crocanonical many-body eigenstate of the system [1–3].
Depending on the properties of the system and the ini-
tial state, the path to thermal equilibrium can vary. For
example, conserved quantities can slow down the equi-
libration process [4–6] or a quasi-stationary prethermal
state can form, which exhibits properties different from
the true thermal equilibrium state [7].
Quantum simulation experiments can enable the obser-
vation of the time-evolution of a quantum many-body
system starting from a non-equilibrium state with al-
most perfect isolation from the environment. In the past
decade, a variety of non-equilibrium phenomena has been
observed with examples ranging from exotic phases real-
ized through Floquet driving [8–10] to many-body local-
ization [11] and prethermalization [12].
In many cases, theory can provide a clear prediction
which observables should be studied, such as a given or-
der parameter for a well-known phase transition. For
some problems, however, it is not as clear which observ-
able to look at, and by making a choice for one spe-
cific quantity, valuable information might be discarded.
In many platforms with microscopic readout, Fock space
snapshots of the quantum many-body state are the mea-
sured data set. Fock space snapshots provide a wealth
of information about the quantum many-body state by
providing access to both local observables and non-local,
high-order correlations.

In order to address the challenge of finding suit-
able observables, artificial neural networks have recently
emerged as a valuable tool in quantum many-body
physics [13–17], and in nonequilibrium statistical me-

chanics [18]. Previous machine learning approaches to
study non-equilibrium systems have focused on quanti-
ties such as the entanglement spectrum [19–21] or full
eigenstates [22], which are, however, experimentally in-
accessible.
In this work we study the dynamics of an interacting
quantum many-body system in terms of experimental
Fock space snapshots with the help of neural networks,
Fig. 1a). We find this analysis to have two main ad-
vantages: (i) these snapshots are directly measured in
many quantum simulation platforms, and large numbers
of snapshots can be routinely obtained. (ii) Raw data is
used, where no analysis for specific quantities has taken
place and all available information can be used with-
out any bias. We consider the one-dimensional Bose-
Hubbard model

Ĥ =
∑
i

[
−J

(
â†i âi+1 + h.c.

)
+
U

2
n̂i(n̂i − 1) +Whin̂i

]
.

(1)

Here, â
(†)
i annihilates (creates) a boson on site i and

n̂i = â†i âi is the particle number operator. The first term
corresponds to hopping between neighboring sites, the
second term is the interaction, here fixed at U/J = 2.9,
and the last term is the quasi-periodic potential mim-
icking on-site disorder with amplitude W , which can be
created in a cold atom setup with an incommensurate
lattice as hi = cos(2πβi + φ). In this work, we consider
1/β = 1.618.
This system exhibits a many-body localized (MBL)
phase, where thermalization breaks down as the disor-
der strength is increased beyond a critical value. The
transition from an ergodic to a many-body localized
phase is fundamentally different from the well-studied
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FIG. 1. Machine learning many-body localization. The
Bose-Hubbard model with a quasi-periodic disorder potential
exhibits a many-body localized (MBL) phase, where thermal-
ization breaks down, as the disorder strength is increased be-
yond a critical value. a) We study the dynamics of the system
after a quench for different disorder strengths by evaluating
snapshots from a quantum gas microscope with neural net-
works. b) A neural network is trained to distinguish exact
diagonalization snapshots at W/J = 0.3 and W/J = 11 for
U/J = 2.9 and a system with 8 and 12 sites at time tJ = 100
after a global quench. After the training process is finished,
snapshots at intermediate values of the disorder strength are
used as input. The plot shows the resulting classification for
numerical data (shaded band) as well as experimental snap-
shots (symbols). As the system size is increased, the fraction
of snapshots classified as MBL begins to increase at larger
values of W , indicating the transition in the finite size sys-
tem. The accuracies are averaged over two independent runs
and the errors denote one s.e.m.

case of equilibrium phase transitions, as it describes a
non-equilibrium setting [23–31]. Finding the transition
point is numerically challenging, because it is usually ob-
tained from entanglement properties or the level statis-
tics, which can only be obtained for small system sizes
where full diagonalization of the Hamiltonian is possible.
Here, we focus on Fock space snapshots of the many-
body quantum state as input data, which are the direct
output of quantum gas microscopy experiments and thus
experimentally readily accessible for the systems of inter-
est. This approach has the advantage that significantly
bigger system sizes can be reached experimentally.
We consider the dynamics of two one-dimensional sys-

tems of 8 and 12 sites, which are initialized in a Mott-
insulating state with exactly one particle per site. In
Fig. 1, we first train the network to distinguish snapshots
of the many-body quantum state, obtained from exact
diagonalization calculations, for low (W/J = 0.3) and
high (W/J = 11.0) disorder strength for an interaction
strength of U/J = 2.9 in the comparatively long-time
limit at time tJ = 100. We average over ten different
disorder realizations, obtained by varying the phase φ
in the potential. After the network has learned to la-
bel the extremal cases correctly with sufficiently high
accuracy (> 90%), we input snapshots for intermedi-
ate values of the disorder strength. After training the
neural network on numerically simulated snapshots, we
use experimental data as input, where each snapshot
stems from a different disorder realization. As output,
for each disorder strength we obtain the fraction of snap-
shots labeled as many-body localized and thermalizing,
see Fig. 1. Based on these results, we conclude that the
many-body localization transition is located within the
range of W/J ≈ 4− 8 with strong finite-size drifts. This
result is in agreement with previous experiments [32, 33],
which considered conventional observables such as the lo-
cal entropy. Notably, the local entropy exhibits volume
law scaling both in the thermal and the MBL phase and is
thus by itself not sufficient to locate the transition with-
out exact numerics [32]. Our results, in contrast, are
able to distinguish the two phases without any theoreti-
cal input, which suggests that the network learned a more
suitable observable to distinguish the two phases. In [34],
we show the level statistics for system sizes L = 6, 7, 8 for
comparison. Similar to the machine learning analysis of
a disordered spin chain based on the entanglement spec-
trum in [19], the transition found by the neural network
is as sharp as the level statistics, but exhibits a small
shift to larger disorder strengths.

While we have only compared two extremal disorder
strengths in the long-time limit, the full dynamics of the
system contain much more information. We proceed by
analyzing the time- and disorder-strength dependence of
the system after the global quench.

Learning thermalization.– We now investigate the
system’s approach to thermal equilibrium by comparing
each time step to a thermal state of the same Hamilto-
nian. The performance of the network in distinguishing
dynamics from equilibrium can then be used as a probe
of thermalization.
In order to compare the time evolved state to thermal
equilibrium, all conserved quantities of the model should
be considered [3]. In our experiment, both the energy
density and the particle number are conserved during
the many-body evolution. The energy density of the
initial state is matched by choosing the temperature of
the thermal state accordingly. We take the conservation
of the total particle number into account by calculating
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a) b) c)

FIG. 2. Learning thermalization. A system with 8 sites and U/J = 2.9 is initialized in a Mott-insulating state of one
particle per site and the ensuing time evolution is investigated. In each time step, the neural network is trained to distinguish
snapshots from the current time step from snapshots from a thermal state with the same energy density, both obtained from
exact diagonalization. A high accuracy indicates that the current time step can be easily distinguished from the thermal
state. a) The resulting classification as dynamics versus equilibrium for W/J = 1.0 and W/J = 7.3, averaged over 12 different
disorder realizations (shaded line). Experimental data from the dynamics after the quench is used as input at selected time
steps (symbols). b) Exact diagonalization results for disorder strengths between W/J = 1 and W/J = 10 for the full dynamics.
c) Classification as dynamics versus equilibrium at time tJ = 100 for disorder strengths between W/J = 1 and W/J = 10. The
results are averaged over 10 independent runs and the error bars correspond to the s.e.m.

the thermal state within a fixed particle number sector.
We numerically generate snapshots from such a state
in thermal equilibrium as well as from the time-evolved
state for each time step under consideration.
For each time step, we train the network to label the
snapshots from the thermal equilibrium distribution as
equilibrium, and the snapshots from the numerically
time-evolved initial state as dynamics. The neural net-
work parameters optimized for each time step seperately.
We then test the network’s performance by inputting
experimental data with different evolution times. In
Fig. 2a) the resulting classification into the categories
dynamics versus equilibrium is shown as a function
of time. Here, we average over 12 different disorder
realizations and take snapshots at the corresponding
effective temperatures.
For small W/J , the system thermalizes comparably fast:
for times tJ > 10, the network reaches an accuracy of
50%, equivalent to guessing between the two classes.
This means the network fails to distinguish snapshots
from the time-evolved state from the corresponding
thermal state. For high values of W/J the system fails
to thermalize on the time-scales accessed here, and the
network is able to distinguish the current timestep from
the thermal equilibrium state with a high accuracy.
Using an interpretable network architecture [45], we find
that for intermediate disorder strengths, higher order
correlations play a role in the classification task, see [34].
We study the long time limit at tJ = 100 for a range of
values of the disorder strength. As shown in Fig. 2c),
the fraction of snapshots classified as dynamics rises
strongly between W/J ≈ 4 and W/J ≈ 8 and reaches

values close to 1, indicating that the system has not
reached thermal equilibrium.
We benchmark our experimental results by testing the
network with theoretical snapshots not used during
training and find good agreement throughout the range
of the covered parameters.
This procedure has the advantage that the features used
to make the classification can vary for different time
steps and the network specifically searches for differences
between the current time and thermal equilibrium. It
is therefore in principle capable of identifying specific
observables that have not yet reached their thermal
equilibrium value and thus find, for example, (almost-)
conserved quantities. Indeed, with this method we find
deviations from thermal equilibrium already in the range
of W/J ≈ 2− 5, in contrast to the results from the clas-
sification scheme in Fig. 1b). This indicates an improved
sensitivity of our method. Here we consider a system
which exhibits a transition from thermalizing behavior
to many-body localization, which constitutes a canonical
example in the study of non-equilibrium phenomena.
Note, however, that our scheme is not limited to the
system considered here and can be applied to a variety of
models. This method also allows to detect, for example,
prethermal behavior and the existence of conserved
quantities that keep their value during the dynamics
and therefore never reach a generic thermal equilibrium
value. Another canonical model to study equilibration
behavior is the transverse field Ising model, which has
an extensive number of conserved quantities. In [34],
we show that a neural network performs significantly
worse in distinguishing the time-evolved state from an
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approximative generalized Gibbs ensemble, where a few
conserved quantities are taken into account, than the
simple thermal state discussed above, where only the en-
ergy density is considered. This highlights the capability
of our approach to identify conserved quantities, which
can drastically alter the thermalization process. Our
method comes at the expense that one needs snapshots
from the thermal density matrix for training, which –
especially in the case of a non-thermalizing phase such
as MBL – may need to be generated numerically. In the
following, we overcome this limitation by analyzing the
transition in the dynamics with an unsupervised scheme
that, in principle, does not rely on theory data.

Confusion learning.– Several unsupervised learning
schemes that use the network performance to probe
whether and where a phase transition or more general, a
qualitative change in the data, exists have been proposed
[37–39]. Here, we adapt a scheme termed “confusion
learning” introduced in Ref. [37]. In brief, the scheme
works as follows: We have a dataset of snapshots for
values of the disorder strength 0.3 ≤ W/J ≤ 11.0. The
goal is to test whether a value W ∗ exists at which the
data changes qualitatively. We start with a guess for
W ∗ and label all snapshots for W ≤W ∗ as phase A and
correspondingly all snapshots with W > W ∗ as phase
B. Assuming the snapshots are qualitatively different
for W ≤ W ∗ as compared to W > W ∗, the network
should achieve a high accuracy in assigning the correct
labels. However, if there is no qualitative change at the
W ∗ under consideration, there will be confusion about
the correct labels and the accuracy will thus be lower.
Therefore, if there is a qualitative change in the data,
the accuracy as a function of W ∗ will be maximal if
W ∗ corresponds to the transition point. Trivially, the
test accuracy is expected to approach unity when the
guessed W ∗ corresponds to the minimum or maximum
value of W , because all data are labelled equally and no
confusion occurs. In total, the presence of a critical point
is therefore signalled by a characteristic W -shape of the
test accuracy as a function of the control parameter.
We train the neural network with numerical snapshots
in the long-time limit (tJ = 100) in order to test for
the presence of a phase transition. Subsequently, we use
experimental data as input to the network, Fig. 3a). The
data shows the onset of a maximum around W ∗/J = 7,
indicating the presence of a critical point in agreement
with Fig. 1b). The contrast in the W -shape achieved
here is comparable to the signal seen for a spin model in
[37], where instead of snapshots the entanglement spec-
trum is used as input to the neural network. In order to
isolate the signal of the phase transition from the trivial
part of the W -shape, we subtract the accuracy obtained
when training on randomly labeled data. The resulting
difference, shown in the inset of Fig. 3a), exhibits a
clear peak at W ∗/J = 7, that indicates the transition

a)

b) accuracy

a)

b)

FIG. 3. Confusion learning. Snapshots of the many-body
quantum state of a system with 12 sites, U/J = 2.9, and var-
ious disorder strengths W/J are analyzed using the confusion
learning scheme. A neural network is trained to label all snap-
shots with W < W ∗ as phase A and the remainder as phase
B. If a qualitative change in the data occurs, the accuracy will
peak at an intermediate value of W ∗. a) The resulting accu-
racy at time tJ = 100 after the global quench for training on
numerically simulated data (shaded line) and sorting exper-
imental data (symbols). Inset: same data after subtracting
the accuracy for randomly labeled data. b) The accuracy for
repeating the training process for different time points during
the dynamics after the quench using numerically simulated
data. The results are averaged over 10 independent runs and
the error bars correspond to the error based on one s.e.m.

between the different dynamical phases. We also check
with theoretical snapshots not used during training and
find qualitatively similar behaviour. We attribute the
slight deviation in the maximum to the coarse resolution
in the disorder strength for the experimental data.
Since differences in the thermalization behavior only
present themselves in the course of the dynamics, we
expect the phase transition to remain hidden at short
evolution times. In order to reveal this effect, we perform
the same method with theoretical snapshots at different
evolution times. In Fig. 3b), the resulting accuracy
achieved by the network is shown as a function of W ∗.
These results have several advantages compared to the
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previous methods: as opposed to Fig. 1b), we do not a
priori assume that there is a transition. Moreover, we
specifically train the network to find differences between
the snapshots at all available values of the disorder
strength, thus avoiding bias from the choice of training
data.

Summary and Outlook.– In this work, we used ma-
chine learning techniques to study the non-equilibrium
dynamics after a global quench in the one-dimensional
Bose-Hubbard model with a quasi-periodic disorder
potential. We used supervised as well as unsupervised
machine learning methods to probe for a qualitative
change in experimental snapshots as the disorder
strength is tuned. Comparing the results for systems
with 8 and 12 sites, we find that the critical value of the
disorder strength increases with the system size, proving
the need for methods applicable in large – experimentally
accessible – systems. In contrast to standard tools to
locate the MBL transition, the methods used here can
be directly applied to experimental data taken with a
quantum gas microscope and are not limited to small
system sizes. We furthermore studied the approach to
thermal equilibrium – or lack thereof – by training a
neural network to distinguish snapshots from the current
time step from snapshots from a thermal ensemble at
the same energy and particle density. The accuracy
achieved by the network indicates how non-thermal the
time-dependent quantum many-body state is.
An exciting future research direction consists of applying
the same scheme to identify conserved or almost-
conserved quantities in experimentally accessible data,
for example by using a generalized Gibbs ensemble for
comparison. Apart from the concrete system studied
here, it would be interesting to consider other models
and phenomena, for example quantum scars [40, 41]
and Hilbert space fragmentation [42–44]. In order to
gain additional physical insights, interpretability is an
extremely important direction for future work and it
would be interesting to study which observables the
network uses to make the classifications considered here
[45], and how those observables change during the time
evolution of the many-body system.
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FIG. 4. Level statistics. Average value of the ratio of ad-
jacent energy gaps for different system sizes L = 6, 7, 8 at
a density of one particle per site as a function of disorder
strength.

SUPPLEMENTARY INFORMATION

TRANSITION

Upon increasing the disorder strength, the level statis-
tics of the Hamiltonian evolves from the Gaussian-
orthogonal ensemble to Poisson statistics as the system
enters the MBL phase [25, 26]. We consider the level
spacings

δ
(n)
φ = |E(n)

φ − E(n−1)
φ |, (2)

where E
(n)
φ is the n-th eigenenergy of Hamiltonian (1) in

the main text with disorder realization given by φ. The
ratio of adjacent gaps is then given as

r
(n)
φ = min

(
δ

(n)
φ , δ

(n+1)
φ

)
/max

(
δ

(n)
φ , δ

(n+1)
φ

)
. (3)

For a given system size L, we fix the particle density to
one particle per site and for each disorder strength W/J
obtain the average value of this ratio over 30 disorder
realizations, i.e. different values of φ. In Fig. 4, the
resulting average value of the ratio of adjacent energy
gaps 〈r〉 is shown as a function of the disorder strength
for system sizes L = 6, 7, 8. The shift of the drop in
〈r〉 to larger values of W/J agrees well with the results
presented in Fig.1b) of the main text.

In order to relate to previous work, in particular
Ref. [33], we directly evaluate observables from the snap-
shots and calculate the transport distance ∆x, defined as

∆x = 2
∑
d

|d| ·
〈
G(2)
c (i, i+ d)

〉
i

(4)

with

G(2)
c (i, i+ d) = 〈n̂in̂i+d〉 − 〈n̂i〉 〈n̂i+d〉 , (5)

FIG. 5. Observables. The transport distance ∆x and on-
site fluctuations F , see text, are evaluated from the same
snapshots. Shaded bands correspond to exact diagonaliza-
tion snapshots, symbols are based on experimental data. We
simultaneously evaluate snapshots from ten different disorder
realizations in the numerical data. In the experimental data,
each snapshot is from a different disorder realization. The
errors denote one s.e.m.

and the on-site fluctuations F , defined as

F = G(2)
c (d = 0), (6)

in Fig. 5. Comparing the output of the neural network in
Fig.1b) of the main text with the transport distance ∆x
shows a similar behavior, from which one might conjec-
ture that the network uses a similar observable to make
the distinction. Note that with this approach, we are
able to make a quantitative prediction on the basis of
single or few snapshots, for which the observables shown
in Fig. 5 are not clearly converged to their average value.

Confusion learning: experimental data

In Fig. 6, we show the same analysis as presented in
Fig.3 of the main text, but using a network that has
been solely trained on experimental data. A clear “W”-
shape does not emerge. The experimental result agrees
qualitatively with the result using exact numerical data,
where we only used data at the same values of disorder
strength as available from the experiment. We hence
attribute the lack of a clear “W”-shape to the rough grid
of values of the disorder strength – consisting of eight
values between W/J = 2 and W/J = 10.

Unsupervised learning of the transition

We use the unsupervised scheme introduced in [38, 39]
to locate the transition to the many-body localized phase
as a function of the disorder strength W . In Fig. 7, we
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FIG. 6. Confusion learning - experimental data. Same
analysis as shown in Fig.3 of the main text with training on
experimental data (red symbols). The same analysis is per-
formed for numerical data from exact diagonalization, using
the same values of the disorder strength.
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FIG. 7. Unsupervised learning of a phase transition.
Snapshots of the many-body quantum state of a system with
6, 8, and 12 sites, U/J = 2.9, and various disorder strengths
W/J are analyzed using the unsupervised learning scheme
introduced in [38, 39]. A neural network is trained to la-
bel a given snapshot with the corresponding value of W/J .
If a qualitative change in the data occurs, the derivative
δWpred/δWlabel will exhibit a maximum. The plot shows
Wpred as a function of Wlabel. Shaded bands are exact di-
agonalization and symbols experimental data. The results
are averaged over 25 independent runs and the error bars cor-
responds to one s.e.m. .

show the predicted values of the disorder strength as a
function of the actual values, Wlabel. The experimental
data agrees well with numerics. The steepest slope, indi-
cating the transition, shows a similar shift as observed in
the supervised learning scheme used in Fig.1 of the main
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FIG. 8. Effective temperatures. Effective inverse temper-
atures βeff for U/J = 2.9, W/J = 4.5 as a function of φ for a
system with L = 6 sites and a density of one particle per site.

text.

LEARNING THERMALIZATION

In order to compare the time evolved state to ther-
mal equilibrium, all conserved quantities of the model
should be taken into account. The energy density of
the initial state can be matched by choosing the tem-
perature of the thermal state accordingly. In particu-
lar, the energy density of the initial state |ψ0〉 is given
by Ei = 〈ψ0|Ĥ|ψ0〉. The effective temperature Teff is
then determined such that the density matrix of the sys-
tem, ρ̂β = 1

Z exp(−βeffĤ), with the inverse temperature

βeff = 1/Teff and Z = tr(exp(−βeffĤ)) fufills

Ei = tr
(
Ĥρ̂β

)
. (7)

The energy density E(β) = tr(Ĥρ̂β) is calculated for a
range of values β until the effective temperature is deter-
mined such that Eq. 7 is fulfilled. Due to the disorder
potential, this effective temperature varies for different
values of φ, where φ determines the disorder realization.
In Fig. 8, the effective inverse temperature is shown as a
function of φ for a system with L = 6 sites at unity filling
for interaction strength U/J = 2.9 and disorder strength
W/J = 4.5.

Interpretability: higher-order correlation functions

Following the same approach as in main text Fig. 2,
but using the correlator convolutional neural network
(CCNN) architecture, we can gain insights into the in-
formation used to solve the classification task. In par-
ticular, the order of correlation considered enters as a
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FIG. 9. Accuracy as a function of order of correlations. Accuracy obtained for comparing snapshots from time step
tJ = 7.3 to a thermal ensemble using the correlator convolutional neural network (CCNN) architecture [45]. The order of
correlation functions used by the neural network serves as a hyper parameter in the CCNN architecture. The top plot shows
the obtained accuracy for different disorder strengths for correlation orders 2,3,4, and 5. The bottom plot shows the difference
to the accuracy obtained when taking second order correlation functions into account to allow for a better comparison of the
results between the different disorder strengths.

hyper parameter of the network architecture. The net-
work can thus be trained to distinguish dynamics from
thermal equilibrium taking into account for example only
correlations up to second order. Note that given the Fock
space snapshots we consider here, all correlations consid-
ered are density-density correlations. In Fig. 9, we com-
pare the accuracies obtained by the network when taking
into account correlations up to second, third, fourth, and
fifth order for different disorder strength, for comparing
the time step tJ = 7.3 to thermal equilibrium. Since the
overall scale increases significantly with increasing dis-
order strength, as the state becomes less and less ther-
mal, we show in Fig. 9 bottom the accuracies obtained
for correlations of order 3 − 5 with the accuracy for or-
der 2 subtracted. For low and high disorder, taking into
account correlation functions of order higher than two
does not significantly increase the accuracy obtained by
the CCNN. However, for intermediate disorder strengths,
higher order correlations play a role in the classification
task and the accuracy improves by up to 5% when con-
sidering higher order correlators. This result is in accor-
dance with Ref. [33], which showed sizable higher order

correlations in the critical regime at intermediate disor-
der strength.

Transverse field Ising model and generalized Gibbs
ensemble

The transverse field Ising model,

Ĥ = −J
∑
i

(
σ̂zi σ̂

z
i+1 + hσ̂xi

)
, (8)

has an extensive number of local conservation laws, which
are known to be [35, 36]

I(n,+) = −J
∑
j

(Sxxj,j+n+Syyj,j+n+2)+h(Sxxj,j+n−1+Syyj,j+n−1)

(9)
and

I(n,− = −J
∑
j

(Sxyj,j+n − S
yx
j,j+n) (10)
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FIG. 10. Thermalization and conserved quantities. We
consider the dynamics after initializing the system in a prod-
uct state in the transverse field Ising model (TFIM). In the
TFIM, there is an extensive number of conserved quantities,
which have to be considered to correctly describe the long-
time limit. Top: If only the conserved energy is taken into
account (red), the long-time limit is still comparably easy
to distinguish from the thermal density matrix. The perfor-
mance of the network drops significantly if the first (i.e., most
local) two conserved quantities are additionally taken into ac-
count in an approximation of the generalized Gibbs ensemble
(green). Bottom: Difference between the accuracies shown in
the top plot.

with I(1,+) = H and

Sαβj,j+l = σαj

[
l−1∏
k=1

σzj+k

]
σβj+l, Syyj,j = −σzj . (11)

We numerically simulate the dynamics for J = 1, h = 2
starting from the initial product state

|ψ0〉 =
∏
i

(sin θ/2| ↑〉i cos θ/2| ↓〉i) (12)

with θ = 3.0 using exact diagonalization for a system
of size L = 12. We then train a neural network to dis-
tinguish snapshots sampled from the time-evolved state

a)

b) accuracy

a)

b)

a)b)
accuracy

a)b)

FIG. 11. Learning thermalization. The system is initial-
ized in a uniform state (|111111111111〉) and the ensuing time
evolution is investigated. In each time step, the neural net-
work is trained to distinguish snapshots from the current time
step from snapshots from the long-time limit. The plots show
the resulting accuracy for W/J = 6.4, U/J = 2.9.

from a thermal ensemble. For the thermal ensemble, we
consider two different choices:

• a thermal ensemble ρ = 1/Z exp(−βH), where the
inverse temperature β is determined by the energy
〈ψ0|H|ψ0〉 as discussed above

• an approximation to the generalized Gibbs en-
semble, ρGGE = 1/ZGGE exp(−βH − λ2I

2,+ −
λ3I

3,+) with Lagrange multipliers λ2,3 determined
in the same way for the conserved quantities de-
fined above, with ZGGE the corresponding parti-
tion sum for the approximation of the GGE, such
that trρGGE = 1. We determine the parameters to
match the expectation values in the initial state,
yielding β = 0.304, λ2 = 0.336, and λ3 = 0.1.

As shown in Fig. 10, the performance of the neu-
ral network in distinguishing dynamics from ther-
mal/generalized Gibbs ensemble is significantly worse in
the latter case, indicating that the long-time dynamics
is better described by the GGE. This emphasizes the
importance in taking conserved quantities into account
in order to correctly describe the equilibration behavior,
and in particular the ability of a neural network to cap-
ture the differences between the time evolved state and
the standard thermal ensemble.

Distinguish from long-time limit

In order to study the dynamics of the quantum many-
body system, we here compare snapshots from the cur-
rent time step to the long-time limit. In a thermaliz-
ing system, the long-time limit corresponds to a thermal
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equilibrium state and the scheme is thus basically the
same as the thermalization learning scheme introduced in
the main text. This is, however, not the case for the MBL
phase. In Fig. 11, the accuracy achieved on a test set not
used during training is shown as a function of time. In
each time step, the neural network parameters are opti-
mized to enable the classification of snapshots into the
categories current timestep versus long-time limit. This
procedure has the advantage that the features used to
make the classification can vary for different time steps
and in particular, the network specifically searches for
differences between the current time and the long-time
limit. It is therefore in principle capable of identifying
specific observables that have not yet reached their long-
time value.
In Fig. 12, the accuracy achieved on a test set not used

during training is shown as a function of time when start-
ing from the product state

|ψ0〉 = |2020202020〉 (13)

for W/J = 0, 4.8, 8.9. We compare the resulting accuracy
to the imbalance, defined as

I =
1

L ·Ns

∑
s

∑
i

(
nsi − nref

i

)
, (14)

where Ns is the number of snapshots, the first sum runs
over all snapshots, nsi is the occupation of site i in snap-
shot s, and nref

i = 0(2) for i even (odd).
In all three cases, the first tunneling events cause a sharp
decay in the imbalance on a time scale of one hopping
time. The accuracy with which the neural network can
distinguish the current time step from the long-time limit
is always larger than the difference of the imbalance to
its long-time limit.
In the many-body localized case, Fig. 12c), the accu-
racy shows qualitatively the same behavior as the imbal-
ance. However, in the critical phase, Fig. 12b), there is no
fast initial decay in the accuracy and instead, it is still
higher than 50%, which corresponds to its lower limit,
after several hundred hopping times. Without disorder,
Fig. 12a), the imbalance has almost reached its long-time
value after one hopping time. The accuracy with which
the network can distinguish the current time step from
the long-time limit decays on a slower time-scale of about
ten hopping times.
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[7] J. Berges, Sz. Borsányi, and C. Wetterich. Prethermal-
ization. Phys. Rev. Lett., 93:142002, Sep 2004.

[8] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch. Realization of the hofs-
tadter hamiltonian with ultracold atoms in optical lat-
tices. Physical Review Letters, 111:185301, 2013.

[9] Hirokazu Miyake, Georgios A. Siviloglou, Colin J.
Kennedy, William Cody Burton, and Wolfgang Ketterle.
Realizing the harper hamiltonian with laser-assisted tun-
neling in optical lattices. Phys. Rev. Lett., 111:185302,
Oct 2013.

[10] Gregor Jotzu, Michael Messer, Rémi Desbuquois, Mar-
tin Lebrat, Thomas Uehlinger, Daniel Greif, and Tilman
Esslinger. Experimental realization of the topologi-
cal haldane model with ultracold fermions. Nature,
515(7526):237–240, Nov 2014.

[11] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Luschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch. Observation of many-body localization of inter-
acting fermions in a quasirandom optical lattice. Science,
349(6250):842–845, Jul 2015.

[12] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa,
B. Rauer, M. Schreitl, I. Mazets, D. A. Smith, E. Dem-
ler, and J. Schmiedmayer. Relaxation and prether-
malization in an isolated quantum system. Science,
337(6100):1318–1322, Sep 2012.

[13] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla,
Matthias Troyer, Roger Melko, and Giuseppe Carleo.
Neural-network quantum state tomography. Nature
Physics, 14(5):447–450, Feb 2018.

[14] Giuseppe Carleo, Kenny Choo, Damian Hofmann,
James E.T. Smith, Tom Westerhout, Fabien Alet,
Emily J. Davis, Stavros Efthymiou, Ivan Glasser, Sheng-
Hsuan Lin, and et al. Netket: A machine learning toolkit
for many-body quantum systems. SoftwareX, 10:100311,
Jul 2019.

[15] Benno S. Rem, Niklas Käming, Matthias Tarnowski,
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