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Fractional quantum Hall (FQH) states and their closely related cousins, quantum spin liquids (QSL), are

paradigmatic examples of symmetry-enriched topological states (SETs). In addition to the intrinsic topological

order, which is robust to arbitrary symmetry-breaking perturbations, they possess symmetry-protected topolog-

ical invariants, such as fractional charge of anyons and fractionally quantized Hall conductivity, which require

U(1) charge conservation symmetry. In this paper, we develop a comprehensive theory of symmetry-protected

topological invariants for FQH states with continuum or crystalline spatial symmetries, which applies to both

Abelian and non-Abelian topological states, by using a recently developed framework of G-crossed braided

tensor categories (BTCs) for SETs. Specifically, we consider clean FQH systems with U(1) charge conserva-

tion, magnetic translational, and spatial rotational symmetries, both in the continuum and for all 5 orientation-

preserving crystalline space groups in two spatial dimensions, allowing arbitrary rational magnetic flux per unit

cell, and considering the case where symmetries do not permute anyon types. In the continuum, we find that

symmetry fractionalization is characterized by the fractional charge and fractional angular momentum of the

anyons, while the quantized response theory contains three distinct known invariants: Hall conductivity, shift,

and angular momentum of curvature sources. We provide a derivation of the relation between the filling frac-

tion and the Hall conductivity contained entirely within the framework of G-crossed BTCs, without relying

on Galilean invariance. In the crystalline setting, which also applies to fractional Chern insulators and QSLs,

we find that symmetry fractionalization is fully characterized by a generalization to non-Abelian states of the

charge, spin, discrete torsion, and area vectors, which specify fractional charge, angular momentum, linear mo-

mentum, and fractionalization of the translation algebra for each anyon. The latter two have no analog in the

continuum, while the discrete torsion vector is only non-trivial for 2,3, and 4-fold rotational symmetry. The

fractionally quantized response theory contains 9 terms, which attach, in various topologically protected ways,

charge, linear momentum, and angular momentum to magnetic flux, lattice dislocations, disclinations, corners,

and units of area. These are characterized by the Hall conductivity, discrete version of the shift, angular momen-

tum of disclinations, fractionally quantized charge and angular momentum polarizations, a quantized torsional

response, and charge, angular momentum, and linear momentum filling fractions. We provide a derivation

within the G-crossed BTC framework of a generalized Lieb-Schulz-Mattis formula relating the charge filling

to the Hall conductivity and flux per unit cell. We provide systematic formulas for topological invariants that

fully characterize SETs with the above symmetries in terms of the data of the G-crossed BTC; this gives, for

example, a new definition of the Hall conductivity in terms of G-crossed BTC data. We also systematically

provide solutions of the G-crossed BTC equations for the symmetry groups under consideration. As a byprod-

uct of our analysis, we also derive the classification of (2+1)D symmetry-protected topological (SPT) states for

orientation-preserving space groups with U(1) charge conservation symmetry and in the presence of a magnetic

field.
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I. INTRODUCTION

The fascinating quantized properties of fractional quantum

Hall (FQH) systems [1] are broadly a result of the interplay

between their intrinsic topological order and a global sym-

metry. The intrinsic topological order is characterized by

the braiding and fusion properties of topologically non-trivial

quasiparticles and is robust to arbitrary perturbations of the

system, irrespective of any symmetries [2, 3]. The presence
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of a global symmetry such as charge conservation or spatial

rotational symmetry endows the FQH system with additional

symmetry-protected topological invariants. The fractionally

quantized Hall conductivity and the fractional electric charge

of quasiparticles, for example, correspond to quantized topo-

logical invariants that are well-defined only in the presence of

U(1) charge conservation symmetry. With continuous transla-

tional and spatial rotational symmetry, FQH systems also pos-

sess a shift and spin vector [4], which are closely related to a

quantized Hall viscosity [5, 6], and which yield an additional

set of symmetry-protected invariants that can be used to distin-

guish FQH states. FQH systems are therefore a paradigmatic

example of symmetry-enriched topological phases of matter

(SETs).

A natural question is to understand the full set of symmetry-

protected topological invariants of FQH states, given the full

group of global symmetries of the system. In the case of clean,

isotropic FQH states in the continuum, the past few years have

seen intense study of the coupling of FQH states to continuum

geometry [7–11]. The quantized geometric response is char-

acterized by a set of quantized symmetry-protected invariants

associated with the continuum spatial symmetry of the unper-

tubed system (e.g. in flat space) combined with U(1) charge

conservation. A natural question is whether these studies have

found the full set of symmetry-protected topological invari-

ants of clean, continuum FQH states. At the very least, these

studies do not provide a complete account of the fractionaliza-

tion of spatial rotational symmetry in non-Abelian FQH states

(i.e. a generalization of the spin vector used in Abelian FQH

states to non-Abelian FQH states).

Moreover, clean FQH states can also arise in lattice systems

with crystalline space group symmetries, where they are often

referred to as fractional Chern insulators (FCIs). While FCIs

have been the subject of intense theoretical study [12, 13],

there has been little work in systematically identifying all pos-

sible crystalline symmetry-protected topological invariants.

These questions are particularly relevant given the recent ex-

perimental realization of FCIs in graphene [14], where exper-

imental observation of non-trivial quantized geometrical re-

sponses may be within reach.

FQH states on a lattice can not only possess symmetry-

protected invariants that are discrete analogs of those in the

continuum, but they can also possess symmetry-protected in-

variants that have no analog in the continuum [15]. To fully

understand this physics, we need to complete a program to

systematically identify all possible topological invariants in-

dependently for each symmetry group of physical interest.

Recently, a systematic theory to fully characterize SETs

has been developed usingG-crossed braided tensor categories

(BTCs) [16]. Roughly speaking,G-crossed BTCs are defined

by a set of data that determines the combined braiding and

fusion properties of anyons and symmetry defects. Topolog-

ical invariants are associated with gauge-invariant combina-

tions of the G-crossed data, while different SETs correspond

to gauge inequivalent solutions of the G-crossed BTC consis-

tency equations. The main purpose of this paper is to apply

the theory of G-crossed BTCs to fully characterize and clas-

sify FQH states with space group symmetries and to develop

a comprehensive understanding of their symmetry-protected

topological invariants.

In this paper, we consider symmetry groups that consist of

U(1) charge conservation symmetry, magnetic translational

symmetry, and spatial rotational symmetry. More specifi-

cally, we consider both the cases of (1) continuum spatial

symmetries, where the global symmetry group is a central

extension of the Euclidean group by U(1), which includes

the magnetic translation algebra corresponding to a non-zero

magnetic field, and (2) crystalline space group symmetries,

where the global symmetry group is a central extension of an

orientation-preserving crystalline space group symmetry by

U(1), specified by a fixed magnetic flux per unit cell.

Our results give a classification of SETs with the above

symmetries, and thus are applicable to FQH states and quan-

tum spin liquids [17] with the above symmetries. We mathe-

matically define a FQH state to be any (2+1)D topologically

ordered state of matter consistent with the above symmetries,

and which has a non-zero fractionally quantized Hall conduc-

tivity. As such, our results give a classification of FQH states

with the above spatial symmetries [18].

We restrict to the special case where discrete symmetries of

the system do not permute topologically distinct quasiparticle

types [16, 19, 20], leaving the case with permutations to future

work.

In the case of Abelian topological phases of matter with

global symmetry G = U(1) × Gspace, where Gspace is

an orientation-preserving crystalline space group symmetry,

Ref. [15] recently developed a systematic classification and

quantized response theory using crystalline gauge fields and

Abelian Chern-Simons theory, assuming symmetries do not

permute anyons. Here we generalize these results in two di-

rections. First, our results generalize those of Ref. [15] to the

case of non-zero magnetic fields, where G becomes a non-

trivial central extension of Gspace by U(1). Secondly, our re-

sults generalize those of Ref. [15] to the case of non-Abelian

topological phases of matter, for which the G-crossed BTC is

a more direct description of the topological properties of the

system than CS gauge theory.

Our main results are as follows. We provide a classifica-

tion of SETs with the above symmetries, including the non-

commuting nature of magnetic translations, by computing the

relevant cohomology groups (see Table I) and then explic-

itly classifying and presenting the distinct solutions of the G-

crossed BTC consistency equations. We provide general for-

mulas for symmetry-protected topological invariants in terms

of gauge-invariant combinations of the G-crossed BTC data,

for all of the above symmetries (see Tables II and III). We

further describe the physical meaning of these topological in-

variants, which lead to both fractional quantum numbers of

the quasiparticles and fractionally quantized responses (for a

summary see Tables II and III).

The fractional quantum numbers of the quasiparticles are

characterized in the continuum by two quantities: the frac-

tional electric charge and fractional orbital angular momen-

tum. In the discrete setting, the fractional quantum numbers

are characterized by four quantities: the fractional electric

charge, fractional orbital angular momentum, fractional lin-
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ear momentum, and fractionalization of the translation alge-

bra. In particular, our general formulas provide a way to gen-

eralize the spin vector, defined previously for Abelian FQH

states, to non-Abelian FQH states and also to discrete rota-

tional symmetries. They also allow us to generalize the dis-

crete torsion vector and area vector, introduced in Ref. [15]

for crystalline SETs with Abelian topological order, to non-

Abelian FQH states and also to the case of non-zero magnetic

flux per unit cell.

In the continuum, the fractionally quantized responses are

given by the Hall conductivity, shift, and fractional angular

momentum of sources of curvature. In the discrete setting, the

fractionally quantized responses are given by discrete analogs

of the continuum responses, together with several additional

responses summarized in Table III [15]. These include a dis-

crete analog of the shift, the angular momentum of disclina-

tions, quantized charge and angular momentum polarizations,

a quantized torsional response, and quantized charge, angu-

lar momentum, and linear momentum per magnetic unit cell.

Importantly, our results give category theoretic definitions of

nearly all of the topologically invariant responses and frac-

tional quantum numbers, such as the Hall conductivity, which

might eventually lead to new ways of extracting these invari-

ants from ground state wave functions [21, 22].

In addition, using the G-crossed BTC framework, we show

how continuous magnetic translation symmetry alone can be

used to relate the Hall conductivity and the filling fraction,

without using Galilean invariance. Moreover, in the pres-

ence of discrete magnetic translation symmetry, we use the G-

crossed BTC framework to derive a generalized Lieb-Schultz-

Mattis (LSM) formula relating the Hall conductivity to the

filling per unit cell, which was previously derived using flux

insertion arguments [23].

Our general classification results provide an independent,

systematic framework to show that the gravitational response

theories discussed previously [4, 7–11] are exhaustive, once

the symmetry fractionalization class is specified.

In a number of specific cases such as the bosonic Laugh-

lin, Moore-Read [24], and Read-Rezayi [25] topological or-

ders, we provide an explicit counting of the number of distinct

SETs for the case where G = ZM appropriate for M -fold ro-

tational symmetries and G = U(1) ⋋φ [Z2 ⋊ ZM ] appropri-

ate to discrete magnetic translations and rotational symmetry

(see Table VI and IV). We assume that the integer part of the

Hall conductivity and the charge and angular momentum fill-

ing fractions are fixed. With these assumptions, we find 1024

distinct SET phases with the topological order of the bosonic

Moore-Read Pfaffian for the case of a square lattice, where

the symmetry group is G = U(1) ⋋φ [Z2 ⋊ Z4]. For the

SU(2)3 Read-Rezayi state, which contains Fibonacci anyons,

the same count gives 576 distinct SETs (Table IV).

When our results are applied to the case of trivial intrin-

sic topological order, we obtain a classification of symmetry-

protected topological (SPT) phases [26] for each orientation-

preserving space group symmetry combined withU(1) charge

conservation and arbitrary magnetic flux per unit cell. Such a

classification has not been studied explicitly to date.

A. Classification method

Our method of characterizing and ultimately classifying

topological phases of matter with symmetry is based on the

mathematical framework of G-crossed BTCs [16]. The idea

is to first fix a particular intrinsic topological order, which is

described mathematically by a unitary modular tensor cate-

gory (UMTC) C0. C0 consists of a finite set of topologically

distinct anyons together with the algebraic data – the F andR
symbols – which capture the braiding and fusion properties of

the anyons. Given C0 and the symmetry group of the system,

G, we then consider the properties of the symmetry defects

(i.e. the symmetry fluxes) associated with G. The braiding

and fusion properties of the symmetry defects, and their in-

terplay with the anyons, are captured by a G-crossed BTC,

denoted C×
G . The data of C×

G should be interpreted as a set of

algebraic data that characterize the essential algebraic prop-

erties of extended operators that create and transport anyons

and symmetry defects (see e.g. Ref. 27 for a microscopic

definition of F and R symbols of C0).

Given a particular C0 and G, there is a set of inequivalent

possible G-crossed extensions, C×
G , which can be obtained by

systematically solving a set of consistency equations for the

algebraic data that defines C×
G , which we review in Sec. II A.

There are an infinite number of different UMTCs, whose

classification is an ongoing research direction related to the

classification of rational conformal field theories (see e.g. Ref

[28]). However given a fixed UMTC C0, the classification

of the distinct G-crossed extensions is a significantly simpler

problem. In this paper, we will study the classification of dis-

tinct G-crossed extensions for a fixed C0 for the symmetry

groups G which are of relevance to the FQH problem in the

continuum and on the lattice. In some cases, by fixing C0 to

correspond to well-established topological orders, such as the

Laughlin, Moore-Read, or Read-Rezayi states, we obtain an

explicit counting of the number of distinct possible SETs (see

Table IV and VI).

We note that while the study of FQH states is often ad-

vanced through the study of model wave functions, we are

interested in the classification of distinct gapped quantum

phases of matter, which correspond to equivalence classes of

many-body wave functions. Distinct (2+1)D gapped phases

of matter with symmetry are distinguished by their topological

properties, which are encapsulated in the mathematical frame-

work of G-crossed BTCs. Consequently, we do not study

model wave functions, but rather the G-crossed BTCs with

the symmetry group G that is of interest. Obtaining model

wave functions for each possible choice of C×
G is an interest-

ing and important problem.

1. Applicability of G-crossed BTC to spatial symmetries

An important question is the applicability of the G-crossed

BTC theory when G contains spatial symmetries. The G-

crossed BTC can be thought of as prescribing the rules for

coupling a (2+1)D topological quantum field theory (TQFT),

specified by C0 and the chiral central charge c, to (flat) non-
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Symmetry, G Symmetry fractionalization, H2(G,A), Defect classes, H3(G,U(1))
U(1) A Z

U(1)⋋ R2 A Z

U(1)⋋ E2 A×A Z3

U(1)⋋φ Z2 A×A Z2

U(1)× ZM A× (A/MA) Z× Z2
M

U(1)⋋φ [Z2 ⋊ Z2] A×A× (A/2A) × (Z2
2 ⊗A) Z2 × Z7

2

U(1)⋋φ [Z2 ⋊ Z3] A×A× (A/3A) × (Z3 ⊗A) Z2 × Z5
3

U(1)⋋φ [Z2 ⋊ Z4] A×A× (A/4A) × (Z2 ⊗A) Z2 × Z3
4 × Z2

2

U(1)⋋φ [Z2 ⋊ Z6] A×A× (A/6A) Z2 × Z3
6

TABLE I. Cohomology groups classifying symmetry fractionalization and defect classes for various symmetries relevant for the FQH effect,

with A defined as the Abelian group characterizing fusion of Abelian anyons. E2 = R2 ⋊ SO(2) is the special Euclidean group consisting of

continuous translations and spatial rotations of the plane, while U(1) ⋋φ [Z2 ⋊ ZM ], for M = 2, 3, 4, 6, denotes the group of U(1) charge

conservation, magnetic translations (associated to the flux φ per unit cell) and M -fold point group rotations. Note that the classification is the

same for every rational value of φ. The notation G⋋H denotes a non-trivial central extension of H by G. The groups with the ⊗ symbol are

defined in Eq. 41.

trivial background gauge fields of G. That is, by defining

the TQFT on (flat) principal G bundles. This corresponds to

defining the TQFT with an internal symmetry G. This raises

the question of whether such a theory is applicable when G is

a spatial symmetry of the microscopic system for which the

TQFT is a long-wavelength description. It is a well-motivated

assertion that spatial symmetries can be treated as internal

symmetries when studying the classification of SETs. Below

we provide a brief (non-rigorous) discussion of the justifica-

tion for this (see also Ref. 15 for a similar discussion).

Let us consider a TQFT with an internal symmetryGIR, i.e.

a TQFT that can be defined onGIR bundles. The full symme-

try of such a TQFT is of the form GIR = GIR × Diff(M),
where Diff(M) is the diffeomorphism group of the space-

time manifold M . Now let G be the full global symmetry

of the system of interest. The action of G in the TQFT is

via a group homomorphism α : G → GIR × Diff(M). If

g ∈ G is a spatial symmetry such as a spatial translation or ro-

tation, then α(g) restricts to a corresponding isometry group

element of Diff(M). Moreover, α(g) will also generally be

non-trivial when restricted to GIR. The most general possi-

bility is that GIR = G, and α is the identity homomorphism

when restricted to GIR. Distinct SETs with symmetry group

G should therefore correspond to distinct ways of coupling

the TQFT to an internal symmetryG. We note that this under-

standing is actually more general than TQFTs, and applies to

any system which is described at long wavelengths by a QFT,

in which case Diff(M) is replaced by the space-time symme-

try of the QFT. In all known examples, spatial symmetries in

a lattice model map in the low energy effective QFT descrip-

tion to a combination of internal symmetries and isometries

of the spatial symmetry group of the QFT. See, for example,

the action of translation symmetry in spin-1/2 chains and the

corresponding action in the Luttinger liquid description [29].

The expectation that spatial symmetries should be treated as

internal symmetries in the classification of topological phases

with symmetry was formalized as the “crystalline equivalence

principle” in Ref. [30]. In the case of symmetry-protected

topological states (SPTs), which are symmetric topological

phases with no intrinsic topological order, the crystalline

equivalence principle has been well-tested by comparing the

group cohomology classification with more direct classifica-

tions of crystalline SPTs developed in Refs. [31–33].

Therefore, in this work we assume that SETs can be classi-

fied by G-crossed BTCs, even when G contains spatial sym-

metries. A mathematically rigorous formulation of the notion

of a gapped phase of matter and a justification that UMTCs

and G-crossed BTCs, together with the chiral central charge,

can fully characterize and classify gapped phases of matter in

(2+1)D is an important open mathematical problem.

2. Continuity and finiteness of G

A further complication of the application of G-crossed

BTCs to our problem is the fact that in the cases we con-

sider in this paper, G is a group extension involving con-

tinuous groups, corresponding to U(1) charge conservation,

SO(2) spatial rotational symmetry, and R2 continuous trans-

lational symmetry. When studying crystalline space group

symmetries,G contains an infinite discrete subgroup, Z2, cor-

responding to discrete translational symmetry.

The consistency equations developed in Ref. [16] apply

equally well to such continuous and/or infinite groups. How-

ever when G has continuous components, it is not clear what

continuity properties to require of the algebraic data of the

G-crossed BTC. Some natural choices include requiring the

algebraic data to be either piecewise continuous or measur-

able functions of the group elements of G (requiring the data

to be continuous or smooth functions of G is too restrictive,

as it does not reproduce known results, as seen in the example

G = U(1)). We will see that for the symmetry groups con-

sidered in this paper, both requirements of either piecewise

continuous or measurable are equivalent, so that the issue is

easily resolved (see Appendix C). Presumably this is the case

for all physically relevant symmetry groups, although we do

not have a completely general proof.

A second complication is that whenG is continuous but not

compact, it is a priori possible that there could be a continuous

parameter family of inequivalent solutions to the G-crossed
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BTC data. This is related to the well-known fact that topo-

logical effective actions can sometimes have non-quantized

coefficients (such as the theta term in Maxwell theory in even

space-time dimensions). While we do not directly run into this

problem for the symmetry groups of interest in this work, we

expect that any two solutions belonging to the same continu-

ous family should be regarded as defining equivalent SETs.

We note that while the classification of G-graded exten-

sions of fusion categories and G-crossed braided extensions

of braided fusion categories has been studied in the mathemat-

ics literature [34–36], the analysis is typically restricted to the

case whereG is finite [34, 35] or otherwiseG is always treated

as a discrete group (i.e. with the discrete topology) [36]. In the

case where symmetries do not permute anyons, which is the

case considered in this paper, Ref. [16] explicitly solved the

G-crossed BTC consistency equations in full generality, with-

out imposing any finiteness or discreteness requirements on

G. The result is that distinctG-crossed BTCs can be related to

each other by elements of the cohomology groups H2(G,A)
and H3(G,U(1)). Here A is the finite Abelian group associ-

ated with fusion of the Abelian anyons of C0. The continuity

properties of the algebraic data of the G-crossed BTC is then

identical to the continuity properties required of the cochains

for the stated cohomology groups.

When G is a finite or compact Lie group, one has

H3(G,U(1)) ∼= H4(G,Z). We show that for the non-

compact symmetry groups we consider in this paper, one can

give a precise meaning to H3(G,U(1)) modulo the contin-

uous part, and that this is isomorphic to H4(G,Z) (see Ap-

pendix H 1 b). Therefore H4(G,Z) is the natural group to

consider for classifying SETs using G-crossed BTCs. (Note

also that for measurable (Borel) group cohomology, we have

H4(G,Z) ∼= H4(BG,Z), where H denotes the singular co-

homology of BG, the classifying space of G [37] ).

Moreover, we show that H3(G,U(1)) ∼= H4(G,Z) for

the non-compact symmetry groups considered in this pa-

per, although our derivation assumes the applicability of the

Lyndon-Hochcshild-Serre spectral sequence to measurable

group cohomology with continuous coefficients, for which we

are unaware of a rigorous mathematical theorem.

In the main text below we will refer to H3(G,U(1)) in-

stead of H4(G,Z), as the former is more directly related to

the algebraic data of the G-crossed BTC.

Note that other proposals for characterizing and classifying

SETs and SPTs have revolved around “gauging the symme-

try” (i.e. promoting the background gauge field to a dynam-

ical gauge field) and studying the resulting topological order

(see eg. Ref. [38]). Such procedures are in general inappli-

cable for continuous and/or infinite symmetries (they are also

inapplicable for anti-unitary symmetries, which are not con-

sidered in this paper) [39]. In contrast, the G-crossed BTC

framework of Ref. 16 is applicable to continuous and/or infi-

nite symmetry groups as well as finite symmetry groups.

3. Relation to other classification approaches

There have been a number of approaches in the past to de-

velop classifications of FQH states and more generally SETs,

which we briefly comment on.

A general method to classify SETs is via the projective

symmetry group (PSG) approach [40], which is based on a

projective construction of mean field theories (sometimes re-

ferred to as parton mean-field theories). The relation between

the G-crossed BTC approach and the PSG approach was dis-

cussed in detail in Ref. [16]. The G-crossed BTC approach

directly describes the physical processes that distinguish dif-

ferent SETs – namely the properties of the anyons and the

symmetry defects – and gives a systematic framework to char-

acterize distinct SETs and obtain a complete set of topological

invariants. In contrast, the PSG approach is biased because it

depends on a choice of parton decomposition and subsequent

mean-field ansatz, of which there are infinitely many; extract-

ing the intrinsic topological order and SET data given a partic-

ular mean field ansatz is in general difficult. Moreover, many

distinct parton mean-field theories describe equivalent SETs

due to hidden dualities, and it is a difficult problem to un-

derstand all of these redundancies without passing to a more

direct analysis using G-crossed BTCs.

The G-crossed BTC framework is also directly related to

exactly solvable models, either in (2+1)D for non-chiral topo-

logical orders [41, 42] or at the (2+1)D surface of (3+1)D

SPTs for general topological orders [43]. However the G-

crossed BTCs do not directly give model (2+1)D wave func-

tions for chiral topological orders. Therefore the PSG frame-

work will still be useful for constructing variational many-

body wave functions for SETs.

A distinct approach to systematically classifying FQH wave

functions is in terms of the pattern of zeros [44–47], vertex

algebra [24, 25, 48], or Jack polynomials [49]. These ap-

proaches classify model FQH wave functions that are exact

ground states of a certain class of model Hamiltonians, and

which can be written as a correlation function of vertex op-

erators in a vertex algebra. As such, they do not directly and

systematically classify SETs and their associated symmetry-

protected topological invariants. It is also not expected that all

SETs for a given intrinsic topological order can be obtained

from such an approach. It is an interesting open question to

understand to what extent these approaches can describe dif-

ferent SETs.

B. Summary of main results

To obtain the classification of SETs, we assume that the

intrinsic topological order, which is robust in the absence of

any symmetries, is fixed. Mathematically, this corresponds to

a choice of the pair (C0, c), where C0 is the UMTC and c is

the chiral central charge. For bosonic systems, C0 determines

c mod 8. For fermionic systems, C0 is spin modular, and de-

termines c mod 1/2.

Our mathematical results are formulated and most complete

for bosonic systems. As such, in the remainder of this paper
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we will restrict to bosonic systems. Many of our results carry

over to the fermionic case as well, however we leave a com-

prehensive analysis of the fermionic case for future work.

Once the intrinsic topological order described by (C0, c) is

fixed, we carry out the classification of SET phases through

the following steps. Note that throughout this paper we con-

sider the case where symmetries do not permute anyon types.

1. Compute symmetry fractionalization classification,

H2(G,A). This determines the possible fractional

charge assignments of the anyons.

2. Compute the defect classification, H3(G,U(1)). This

group structure determines how distinct possible braid-

ing and fusion properties of the symmetry defects can

be related to each other, once symmetry fractionaliza-

tion has been fixed. H3(G,U(1)) is also equivalent to

the classification of SPTs, so this freedom can be un-

derstood as “stacking” an SPT to a given SET to obtain

a (possibly) different SET. Alternatively, it can be un-

derstood as adding a Dijkgraaf-Witten term [50] to the

topological action for the backgroundG gauge field.

3. Determine all possible solutions to the consistency

equations of the G-crossed BTC, using the results from

the computation of H2(G,A) and H3(G,U(1)).

4. Determine invariants of the G-crossed braided tensor

category that distinguish inequivalent solutions of the

G-crossed BTC consistency equations. Then compute

reduction of H2(G,A) and H3(G,U(1)). These invari-

ants can be associated with physically meaningful, frac-

tionally quantized responses of the system to symmetry

defects.

The results for steps (1) and (2) are listed in Table I for the

various symmetry groups considered in this paper. The com-

putations summarized in Table I, which treat the full magnetic

translation group combined with spatial rotations, are an im-

portant result of this paper and are explained in Appendix H

using the Lyndon-Hochshild-Serre spectral sequence.

Importantly, the SET classification is upper bounded by the

cardinality of the group H2(G,A) × H3(G,U(1)). In some

cases, different symmetry fractionalization classes H2(G,A)
may be physically equivalent and can be related to each other

by relabeling anyons. Furthermore, upon fixing a given sym-

metry fractionalization class, changing the defect class by an

element of H3(G,U(1)) (i.e. stacking an SPT state) may

not change the SET and may instead be accounted for by

a relabeling of the symmetry defects. Therefore the cor-

rect classification needs to account for these potential equiv-

alences, which reduce the number of distinct states from

|H2(G,A)×H3(G,U(1))|. This is where the G-crossed BTC

is indispensable – the G-crossed BTC must be used to fully

characterize inequivalent SETs and obtain topological invari-

ants that can detect these redundancies.

Note that in this paper, for the last step of the classification

we will focus on the reduction of H3(G,U(1)). The reduction

of H2(G,A) is already easy to understand.

Below we will summarize briefly our main results regard-

ing the symmetry-protected topological invariants that appear

for various symmetry groups. Our explicit solutions of the

G-crossed consistency equations for the various symmetry

groups of interest are presented in Appendix D and will not

be reviewed in the following summary.

1. Symmetries under consideration

We are interested in orientation-preserving space group

symmetries in the presence of a magnetic field. Before dis-

cussing the topological invariants for different symmetries, we

will make some remarks on the definition of these symmetry

groups. A more extensive discussion is given in Appendix A.

In the continuum, the magnetic translation group consists

of the operators T̂r1 , T̂r2 , and Uc(θ) with the relations

T̂r1 T̂r2 = Uc

(
r1 × r2

2l2B

)

T̂r1+r2 (1)

Here Uc(θ) is the symmetry operator corresponding to a U(1)
rotation by an angle θ. For a many-body quantum system, this

is represented as Uc(θ) = eiθN̂ where N̂ is the total number

operator. The symmetry group is therefore a central extension

of the continuous translation group, R2, by U(1). We denote

this magnetic translation group by U(1)⋋lB R2. Note that by

rescaling space, we see that groups with different values of lB
can be related to each other; therefore we drop the subscript

lB and denote the magnetic translation group as U(1) ⋋ R2.

Central extensions labeled by different lB are all isomorphic

to each other, so as far as the symmetry group is concerned,

no information is lost by dropping the subscript.

With continuous spatial rotations, we replace R2 with the

Euclidean group E2 = R2 ⋊ SO(2). In the presence of a

magnetic field, we then consider the central extension U(1)⋋
E2.

The discrete case is similar. The discrete magnetic transla-

tions with a flux φ per unit cell are given by

T̂r1 T̂r2 = Uc

(

φ
r1 × r2

2

)

T̂r1+r2 , (2)

where now r1 and r2 are discrete lattice vectors. Note that

in this case since the lattice vectors are discrete, we cannot

rescale space, so we keep the subscript φ in U(1)⋋φ Gspace.

We note that the full space group symmetry we have consid-

ered is a global symmetry of an infinite plane, but not that of

closed surfaces. However we note that in the thermodynamic

limit, we can define whether a system on a closed surface

possesses these space group symmetries by comparing the re-

duced ground state density matrices ρR and ρR′ for patches R
and R′ related to each other by an element of the space group

(see Appendix A).

2. General results on G-crossed invariants

Explicit forms of the G-crossed invariants studied in this

work are given throughout Section III and these results are
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Summary for G = U(1) ⋋ E2, continuous magnetic translations and rotations

Symmetry fractionalization, H2(U(1)⋋ E2,A) = A×A
Fractional quantum number Anyon Description Required symmetry Classification Eq. No.

{e2πiQa} = {Ma,v} v Anyon induced by 2π flux insertion, deter-

mines fractional charge

U(1) A 102

{e2πiLa} = {Ma,s} s Anyon induced by 2π curvature flux

insertion, determines fractional angular

momentum

SO(2) A 118

Defect (SPT) classification, H3(U(1) ⋋ E2, U(1)) = Z3

Invariant Required symmetry Classification

k1 = ⌊σ̄H/2⌋ U(1) Z
k2 = ⌊S⌋ U(1)× SO(2) Z
k3 = ⌊ℓs/2⌋ SO(2) Z

Fractionally quantized physical responses

Label Physical description Required symmetry Eq. No.

σ̄H = Qv + 2k1 Hall conductivity, determines charge induced by magnetic flux U(1) 103

S = v ⋆ s+ k2 Shift, determines charge induced by curvature flux and angular momen-

tum induced by magnetic flux

U(1)× SO(2) 124

ℓs = Ls + 2k3 Angular momentum induced by inserting curvature flux SO(2) 123

ν = σ̄H Filling (charge per magnetic unit cell) U(1)⋋ R2 114

TABLE II. Summary of the parameters that completely describe SET phases with continuous magnetic translation and plane rotation symmetry.

Charge conservation symmetry is denoted as U(1), while plane rotation symmetry is denoted as SO(2). We have defined the ⋆ product:

⋆ : A×A → [0, 1), such that Ma,b = e2πia⋆b, where a ⋆ b ∈ [0, 1). Recall also that Qv = 2hv ∈ [0, 2) and Ls = 2hs ∈ [0, 2) are defined

modulo 2. The ’Eq. No.’ column references the equation number for the G-crossed invariant corresponding to each parameter.

summarized in Tables V and VII. The general method used

to obtain these invariants is summarized in Section III A. The

derivations of the general G-crossed identities involved are

given in Appendix B 4 and B 5. These results are applied to

obtain specific invariants for different symmetry groups in Ap-

pendix E. Here we will present the main takeaways from Sec-

tion III A without any explicit formulas.

The first general result is regarding invariants for symmetry

fractionalization, which fixes the H2(G,A) freedom in defin-

ing a G-crossed extension C×
G given a UMTC C0. In general,

the symmetry fractionalization class is specified by a set of d
Abelian anyons f1, f2, . . . fd, subject to a set of equivalence

relations (the value of d depends on G). The invariants for the

symmetry fractionalization class give the quantities Mfi,a in

terms of the G-crossed data (see Eq. 76 - 77). Mfi,a is the

phase obtained by a full braid between an arbitrary (possibly

non-Abelian) anyon a and fi. Physically, the computation in-

volves the insertion of a quantum of symmetry flux, and the in-

variant computes the braiding phase between a and the anyon

fi associated to the symmetry flux quantum. We believe that

this procedure can be used to find symmetry fractionalization

invariants for arbitrary G.

The second general result is regarding formulas in terms of

the G-crossed data for topological invariants that physically

describe fractionally quantized responses. These invariants

fix the remainingH3(G,U(1)) freedom in fixing C×
G , thus fix-

ing the symmetry defect fusion and braiding properties, once

symmetry fractionalization is fixed. Physically, these invari-

ants measure the fractional quantum numbers of the symmetry

defects, which defines the response theory. One of our gen-

eral results shows how to obtain such invariants associated to

a U(1) or Zm subgroup of G. Such invariants can always be

obtained in terms of a formula involving theG-crossed modu-

lar T -matrix, defined in Ref. [16] (see Eq. 81,82,83). Simple

variations on this formula also give the mixed defect invari-

ants (i.e. mixed responses) for Zm × Zn symmetries (see Eq.

89,91). This approach allows us to completely characterize

the defect response for the examples in this paper, apart from

the U(1) charge, linear and angular momentum per magnetic

unit cell.

A separate formula (see Eq. 93) allows us to determine

the charge filling per magnetic unit cell ν, in both continuum

and discrete FQH systems. Although they are well-motivated

by group cohomology and topological field theory, we have

not been able to find G-crossed invariants for the linear and

angular momentum per magnetic unit cell; this problem is left

for future work.

We note that the G-crossed BTC contains a number of am-

biguities: (1) gauge transformations of the G-crossed data,

referred to as vertex basis and symmetry action gauge trans-

formations, and (2) relabelings of the topologically distinct

anyons and symmetry defects. Let us refer to expressions that

are invariant under (1) as gauge-invariant quantities of the G-

crossed BTC data. Expressions that are invariant under both

(1) and (2) will be referred to as absolute invariants. In gen-

eral, it is possible to write down gauge-invariant quantities,

and these are mainly what we present for all symmetry groups.

However writing down absolute invariants does not appear to

be possible for generic symmetry groups; rather, in general

the best we can do is list a collection of gauge-invariant quan-
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tities subject to possible equivalences arising from relabeling

anyons and symmetry defects. For specific types of symme-

try groups, such as U(1) or ZM , it is possible to write down

absolute invariants, however in these cases this can only be

done with precise knowledge of the group A and the braiding

statistics of C0. In this paper, by “invariant” we generally refer

to gauge-invariant quantities of the G-crossed BTC data. Fur-

thermore, when we use the terminology “physical responses,”

we generally refer to the quantum numbers of defects defined

in terms of these gauge-invariant quantities. These responses

are not generally absolute invariants when the relevant sym-

metry is discrete, because the quantum numbers of defects are

ambiguous up to the quantum numbers of anyons that can be

attached to those defects, which corresponds to the ambiguity

under relabeling symmetry defects.

3. G = U(1), charge conservation

ForG = U(1), the topological invariants are fully specified

as follows.

The classification of symmetry fractionalization is given by

H2(U(1),A) = A. (3)

This class is fully determined by a choice of anyon v ∈ A,

referred to as the vison (sometimes referred to as the fluxon),

which is the Abelian anyon associated to adiabatic 2π flux

insertion. v determines the fractional U(1) chargeQa of each

anyon a (including non-Abelian anyons),

ei2πQa =Mv,a, (4)

where Mv,a is the phase obtained by a full braid between v
and a. We can obtain v uniquely by measuring the full set of

fractional charges {e2πiQa} and knowing the braiding statis-

tics. A formula for e2πiQa in terms of the data of the G-

crossed BTC is given in Eq. 102 and which we reproduce

here:

e2πiQa =
(
R0g,aRa,0g

)p
p−1
∏

j=1

ηa(g,g
j) (5)

Here R and η are part of the data of the G-crossed BTC, re-

viewed in Sec. II A, and 0g labels a choice of (Abelian) g-

symmetry defect. We have defined g ∈ U(1) such that gp = 1
and p = lcm(n1, · · · , nr), assuming the fusion of Abelian

anyons forms the group Zn1 × · · · × Znr .

The defect classification is given by

H3(U(1), U(1)) = Z. (6)

The fractionally quantized U(1) response is the Hall con-

ductivity, σH . In units where e = ~ = 1, we define

σ̄H = 2πσH . (7)

In what follows, we will refer to σ̄H as simply the Hall con-

ductivity.

The Hall conductivity σ̄H changes by an even inte-

ger when we change the defect class by the generator of

H3(U(1), U(1)) = Z. Therefore the even integer part of σ̄H
fixes the defect class. Since no two values of σ̄H are physi-

cally equivalent, there is no reduction in the defect classifica-

tion in this case.

The fractional part of the Hall conductivity is given by the

charge of the vison,

σ̄H = 2(hv + k1) = Qv + 2k1, (8)

where k1 is the integer part that is determined by the

H3(U(1), U(1)) freedom, and we have defined e2πihv = θv,

with hv ∈ [0, 1), where θv is the topological twist of the anyon

v. In this notation, e2πiQv = Mv,v = θ2v = e4πihv . We then

define

Qv = 2hv ∈ [0, 2), (9)

so that Qv is well-defined modulo 2.

One of the results of this paper is an explicit formula for the

Hall conductivity in terms of the data of the G-crossed BTC

(see Eq. 103 - 104), which we reproduce below:

e2πiσ̄H/(2n) = θn0g

n−1∏

j=0

η0g(g,g
j). (10)

θ and η are part of the defining data of the G-crossed BTC

that we review in Sec. II A, n is any integer, and g ∈ U(1)
has order n: gn = 1. 0g here is a g-defect that is continuously

connected to the trivial excitation (by adiabatically turning on

the U(1) flux), which is well-defined for large enough n. This

gives a new categorical definition of the Hall conductivity in

any topological order with U(1) symmetry.

4. G = U(1) ⋋ R2, continuous magnetic translational symmetry

Here we consider the case of a clean FQH system, where

we have U(1) charge conservation together with continuous

translation symmetry in two dimensions. The presence of a

magnetic field implies that we should consider magnetic trans-

lations, which do not commute. Thus the group is a central ex-

tension of R2 by U(1), which we denote as G = U(1)⋋ R2.

We do not assume spatial rotational symmetry for this exam-

ple.

The G-crossed invariants for continuum translational and

rotational symmetries of the FQH system are summarized in

Table V. In this case, the presence of the continuous transla-

tions does not change the SET classification. Our computa-

tions in Appendix H 2 show that

H2(U(1)⋋ R2,A) = A

H3(U(1)⋋ R2, U(1)) = Z. (11)

The presence of translation symmetry implies that the sys-

tem now has a uniform U(1) charge density set by the filling

fraction ν, which can be interpreted as the charge per magnetic
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unit cell. We derive a formula for ν in terms of the data of the

G-crossed BTC (see Eq. 114), which we reproduce below:

e2πiν/n =
η0g(x,y)

η0g(y,x)
, (12)

where n is any integer, g is a pure U(1) rotation such that

gn = 1 and x,y ∈ R2 are pure translations that span a mag-

netic unit cell. As above, 0g is a g-symmetry defect that is

continuously connected to the trivial excitation by adiabati-

cally turning on the U(1) flux.

Moreover, the G-crossed BTC framework can be used to

prove the identity

e2πiσ̄H = e2πiν (13)

Using the G-crossed formalism, in all cases where we have

obtained particular explicit solutions to the G-crossed BTC

equations (see Appendix D), we can verify the stronger result

that

σ̄H = ν. (14)

Note that this is a rather remarkable result, because it does not

rely on Galilean invariance. The usual argument for Eq. 13,14

requires Galilean invariance [51], which is not a conventional

global symmetry of a quantum system because it is a space-

time symmetry; to our knowledge such a relation has not been

established without assuming Galilean invariance.

5. G = U(1) ⋋ E2, continuous magnetic translational and

rotational symmetry

Next we consider the Euclidean group E2 = R2 ⋊ SO(2).
In the presence of a magnetic field, the symmetry group of the

system is a central extension of the Euclidean group by U(1),
corresponding to the continuum magnetic translation algebra

reviewed in Appendix A.

The presence of the spatial rotational symmetry SO(2) now

adds additional symmetry fractionalization and defect classes.

In this case we have

H2(U(1)⋋ E2,A) = A×A. (15)

The first factor is from the U(1) charge fractionalization,

while the second factor is due to fractionalization of the

SO(2) spatial rotational symmetry, which corresponds to a

fractional orbital angular momentum. These symmetry frac-

tionalization classes are therefore specified by two Abelian

anyons

(v, s) ∈ A×A, (16)

where v is the vison discussed in the U(1) case.

The anyon s is more subtle. Within the G-crossed BTC

formalism, s is the anyon obtained under insertion of a unit

flux of the SO(2) symmetry. However from the point of view

of the microscopic theory, 2π curvature flux is not trivial and

in fact changes the topology of the manifold according to the

Gauss-Bonnet theorem. This is related to the issue discussed

in Sec. I A 1, where the G-crossed BTC is characterizing dif-

ferent ways of coupling the intrinsic topological order to an

internal symmetry of the TQFT. The spatial symmetries of the

microscopic system map to a combination of internal symme-

tries of the TQFT and spatial isometries of the spatial mani-

fold on which the TQFT is defined.

The choice of s determines the fractional orbital spin of the

anyons:

ei2πLa =Ms,a, (17)

where La is the fractional orbital spin. Similar to the case of

the fractional chargeQa, we provide an explicit expression for

e2πiLa in terms of the data of the G-crossed BTC in Eq. 118.

The total spin of an anyon can be defined by the Aharonov-

Bohm phase acquired by adiabatically transporting an anyon

a around a curvature angle Ω:

γAB(Ω) = eiSaΩ. (18)

The total spin Sa is given by (see also Refs. [52, 53])

e2πiSa = θae
2πiLa . (19)

Here θa is the topological twist of the anyon a, which is a

property of the UMTC defining the intrinsic topological order.

The additional contribution La thus arises from fractionaliza-

tion of the spatial rotational symmetry.

The defect classification is given by (see Appendix H 2)

H3(U(1)⋋ E2, U(1)) ∼= Z3. (20)

The defect classification determines the integer part of various

physical quantized responses. In particular, we have three dis-

tinct fractionally quantized physical responses: the Hall con-

ductivity σH , the shift S, and ℓs. These correspond to in-

dependent gauge invariant quantities in the G-crossed BTC.

Explicit formulas for S and ℓs in terms of the data of the G-

crossed BTC are given in Eq. 124 and Eq. 128 (see also Table

II).

They can also be understood in terms of the well-known

effective response theory of FQH states on curved space:

Lresponse =
σH
2
AdA+

S

2π
ωdA+

ℓs
4π
ωdω + Lanom, (21)

where A is the background gauge field for the U(1) charge

conservation symmetry, and ω is a background SO(2) ∼=
U(1) gauge field corresponding to the spatial component of

the spin connection.

To express these quantized responses in terms of the frac-

tional quantum numbers, we define the ⋆ product:

⋆ : A×A → [0, 1),

e2πia⋆b =Ma,b. (22)

We then have:

S = v ⋆ s+ k2, (23)
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where k2 ∈ Z. The integer k2 can be chosen arbitrarily, and

contributes one of the Z factors in the defect classification.

The shift of a FQH state defined on a closed surface of Euler

characteristic χ with NΦ flux quanta uniformly piercing the

surface and N particles is defined by the relation

N = σ̄HNΦ +Sχ. (24)

Note that the quantity usually referred to as the shift in the

FQH literature is defined by S = 2S/σ̄H , so that NΦ =
σ̄−1
H N −Sχ/2. Here we instead refer to S as the shift, which

is well-defined even when σ̄H vanishes.

Lanom is a gravitational CS term proportional to the chiral

central charge c, which arises from the framing anomaly of CS

theory [54]. Setting all but the spatial component of the spin

connection to zero, Lanom = − c
48πωdω. ℓs, together with the

chiral central charge c, determines the angular momentum of

a curvature flux [11].

ℓs can be determined in terms of the angular momentumLs
of s:

ℓs = Ls + 2k3, (25)

where Ls = 2hs ∈ [0, 2) is defined modulo 2, since we can

define hs modulo 1 via θs = e2πihs .

The three independent integer-valued invariants associated

with H3(U(1) ⋋ E2, U(1)) ∼= Z3 correspond to the integer

parts of the fractionally quantized responses, σ̄H/2, S, and

ℓs/2, as shown in Table II.

It is important to note that there can be additional invariants

which are not independent due to constraints on the various

parameters specifying the FQH state. For example, in a sys-

tem with continuous translation symmetry we can also define

a quantized filling per magnetic unit cell; this is however con-

strained by symmetry to equal the Hall conductivity.

6. G = U(1)⋋φ Z2, discrete magnetic translational symmetry

Systems with discrete magnetic translation symmetry are

associated to a flux per unit cell given by φ = p/q, and a

filling, which we define as the U(1) charge per magnetic unit

cell, ν. Note that the charge per unit cell, which is often also

called the filling, is denoted here by ν/q.

The symmetry fractionalization is given by

H2(U(1)⋋φ Z
2,A) = A×A. (26)

Therefore, the symmetry fractionalization is completely char-

acterized by two Abelian anyons,

(v,m) ∈ A×A. (27)

v is the vison which determines the fractionalU(1) charge. m
is the anyon per unit cell [55–60], which has no analog in the

case with continuous symmetries. Adiabatically transporting

an anyon a around a unit cell gives rise to a phase

e2πiτa =Ma,m, (28)

which can be understood as the fractionalization of the trans-

lation algebra.

The defect classification is

H3(U(1)⋋φ Z
2, U(1)) ∼= H4(U(1)⋋φ Z

2,Z) ∼= Z2. (29)

These correspond to the integer parts of the physical re-

sponses, as follows.

The fractionally quantized physical responses of the system

are fully characterized by the Hall conductivity σ̄H and the

charge per magnetic unit cell, ν. Note that the filling can be

interpreted as a response, in the sense that the total charge

changes when the number of magnetic unit cells is changed.

As discussed previously, we can write the Hall conductivity as

given in Eq. 103. From an effective response theory written

using crystalline gauge fields, the filling ν can be read off in

terms of σ̄H as follows (see Table III and Sec III E)

ν = p(Qv + 2k1) + q(Qm + k6)

= q(φσ̄H +Qm + k6) (30)

Note that, importantly, we define Qv = 2hv ∈ [0, 2), but

Qm = v ⋆ m ∈ [0, 1) since we can only define Qm through

e2πiQm = Mv,m. An explicit formula for ν given the data of

theG-crossed theory is given in Eq. 138, which we reproduce

below:

e
2πi
n ν =

η0g(r1, r2)

η0g(r2, r1)
, (31)

where r1 and r2 correspond to pure translation group ele-

ments that span a magnetic unit cell and g is a pure U(1)
rotation with gn = 0. 0g is the symmetry defect continu-

ously connected to the trivial particle, which is well-defined

for large enough n.

The defect classes classified by H3(U(1) ⋋φ Z2, U(1)) =
Z2 are therefore characterized by two integer invariants k1 and

k6, corresponding to the integer parts:

k1 = ⌊σ̄H/2⌋,

2pk1 + qk6 = ν − (pQv + qQm). (32)

The contribution (pQv + qQm) can be understood as the con-

tribution to the filling arising from symmetry fractionaliza-

tion. Changing k1 → k1 + 1 corresponds to stacking with a

(bosonic) IQH state, which changes the Hall conductivity by

an even integer. Changing k6 → k6+1 corresponds to chang-

ing the charge per unit cell by 1; this means that the charge per

magnetic unit cell ν is shifted by q. The total contribution to

the charge per magnetic unit cell from the parameters k1 and

k6 equals 2pk1 + qk6 = q(2φk1 + k6).
The fractional part of ν is therefore determined by a gener-

alized LSM type relation,

e2πiν = e2πiq(Qm+φσ̄H ). (33)

Eq. 33 was derived in Ref. [23] and also in Ref. [61] as-

suming an additional rotation symmetry. Here we rederive

this relation in a different way, entirely within the G-crossed
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BTC framework. Whenever we can write down explicit so-

lutions to the G-crossed BTC equations, we can verify the

stronger result, Eq. 30. Although expected from crystalline

gauge theory, to our knowledge, this stronger result has not

been stated or rigorously proven in previous work. Obtaining

a completely general proof of this result within the G-crossed

BTC formalism is an interesting problem which we leave for

future work.

7. G = ZM , discrete rotational symmetry

Next we temporarily drop the charge conservation symme-

try and consider G = ZM . This can correspond to an inter-

nal symmetry with M arbitrary, or to a rotation point group

symmetry with M = 2, 3, 4, 6. It is useful to study this case

because it helps us isolate which topological invariants can

be associated to purely discrete rotational symmetry alone, as

opposed to mixed invariants that rely on rotational symmetry

together with other symmetries.

When the ZM symmetry corresponds in the microscopic

system to a discrete rotational symmetry of a lattice, the el-

ementary ZM flux physically corresponds to an elementary

disclination of angle 2π/M , while unit ZM charge corre-

sponds to a unit angular momentum.

The symmetry fractionalization classification is given by

H2(ZM ,A) ∼= A/MA. (34)

In other words, the symmetry fractionalization is specified by

an equivalence class [s] ∈ A/MA, where s ∈ A is a rep-

resentative anyon. s can be thought of as the Abelian anyon

obtained by inserting M elementary ZM fluxes. However if

s = s′M for some s′ ∈ A, then the symmetry fractionalization

class is trivial because it can be completely accounted for by

attaching the anyon s′ to each elementary ZM flux, which can

be done by adjusting local energetics. Therefore, the anyons

s and ss′M specify the same fractionalization class. Conse-

quently the non-trivial symmetry fractionalization classes are

classified by A/MA, where MA := {s′M , s′ ∈ A}. For

A =
∏k
i=1 Zni , we have A/AM =

∏k
i=1 Z(M,ni), where

(n,m) := gcd(n,m).
The symmetry fractionalization implies that each anyon

carries a fractional ZM charge La, where

e2πiLa =Ma,s. (35)

Note that different fractional values of La may actually be

physically equivalent since s ∼ ss′M . Therefore, the invari-

ants correspond to the set {e2πiLa}, with the equivalence

{e2πiLa} ∼ {e2πiLaMa,s′M }, ∀s′ ∈ A (36)

An explicit formula for e2πiLa in terms of the G-crossed data

is given in Eq. 127.

In the case where ZM is a discrete rotational symmetry,

La corresponds to a fractional angular momentum. The total

Aharonov-Bohm phase γAB obtained by an anyon a adiabat-

ically transported around M elementary disclinations is then

expected to be

γAB = θae
2πiLa , (37)

which is a discrete analog of the continuum result, Eq. 19

[52]. The contribution from the topological twist θa arises

when an anyon encircles a 2π source of curvature, which

arises because an elementary 2π/M disclination acts as a

source of 2π/M curvature in the TQFT (see e.g. Ref. 62 for

numerical evidence of this for integer quantum Hall states).

The defect classification is

H3(ZM , U(1)) ∼= ZM . (38)

There are naively M distinct defect classes. These M classes

correspond to changing the ZM charge of an elementary ZM
flux by an even integer.

For this symmetry group, the third step of the classifica-

tion in general gives a non-trivial reduction of H3(ZM , U(1)).
That is, the classification of SETs is in general reduced

from the naive estimate of |H2(G,A) × H3(G,U(1))| =
(|A/MA| ×M). Physically, this means that one can stack a

nontrivialZM SPT onto a system, but then relabel the symme-

try defects so that all the topological properties (fusion, braid-

ing, etc) correspond exactly to those of the original system.

The symmetry fractionalization and the defect class com-

bine together to define a physical response, which is a frac-

tionally quantized ZM charge of an elementary ZM flux.

When ZM is a lattice rotation symmetry, this contributes a

fractionally quantized angular momentum ℓs/M of an ele-

mentary disclination. This fractional angular momentum is

given by

ℓs = 2(hs + k3) = Ls + 2k3 (39)

where we have introduced the topological spin hs ∈ [0, 1),
defined by θs = e2πihs , and k3 is an integer specifying the

defect class. The fractional orbital angular momentum of s
is defined by Ls = 2hs ∈ [0, 2), in analogy with the way

the charge of the vison, Qv = 2hv, was defined while dis-

cussing the Hall conductivity. However, importantly ℓs is not

completely invariant. Under gauge transformations of the G-

crossed BTC (referred to as vertex basis and symmetry action

gauge transformations), ℓs only stays invariant modulo 2M .

A formula for eπiℓs/M is given in terms of the data of the G-

crossed theory in Eq. 128.

Note that eπiℓs/M is also not an absolute invariant in gen-

eral, as we discuss in more detail in Appendix G. Physically,

this is because the fractional angular momentum of a discli-

nation can change by binding an anyon to it. Therefore the

topologically invariant response is defined by eπiℓs/M up to a

certain equivalence determined by the fractional angular mo-

mentum of the Abelian anyons. An absolute invariant can be

obtained by raising eπiℓs/M to a suitable power that depends

on the group structure of A and the braiding statistics, as well

as the symmetry fractionalization class.

Mathematically, the invariant used to obtain ℓs depends on

the choice of a particular ZM defect 0g. It is however possible

to relabel the defects such that 0g → ag = a × 0g without
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changing the data associated to 0g, for certain special values

of the anyon a. The G-crossed invariant evaluated with 0g
and ag thus may give two different values of eiπℓs/M , corre-

sponding to different values of k3, which equally well charac-

terize the defect class. Values of k3 related in this way must

be treated as physically equivalent, and therefore we have a re-

dundancy in the counting of SETs. These issues are discussed

in detail in Appendix G 1. For concrete results of the final

counting of SETs in some well-known topological orders, see

Table VI.

Furthermore, note that the total angular momentum of a

disclination is expected to receive an additional contribution

proportional to the chiral central charge, arising from the grav-

itational CS term (see e.g. Ref. 15 for a recent discussion).

8. G = U(1)⋋φ [Z2 ⋊ ZM ], discrete magnetic translational and

rotational symmetry

Finally we consider FQH systems with a symmetry group

consisting of U(1) charge conservation, discrete magnetic

translations which form an algebra determined by the flux

φ per unit cell, and ZM point group rotation symmetry, for

M = 2, 3, 4, 6. This symmetry group describes a large class

of fractional Chern insulators (FCIs) and FQH states in the

presence of a periodic potential.

The symmetry fractionalization and defect classifications

are summarized in Table III, along with the interpretation of

the various parameters.

The symmetry fractionalization classification is given by

H2(G,A) ∼= A×A× (A/MA)× (KM ⊗A). (40)

Here the groupKM = Z2/ (1−h)Z2, where h denotes the gen-

erator of 2π/M rotations and acts on lattice vectors, which are

elements of Z2, through a 2×2 matrix written in the lattice ba-

sis. The notation 1−hZ2 refers to the set of vectors generated

by r− hr, where r generates Z2. KM is related to the conju-

gacy classes of defects with disclination angle 2π/M , associ-

ated with the fact that the Burgers vector of an impure 2π/M
disclination is only defined modulo a 2π/M rotation, as has

been noted in previous works studying disclination defects on

a lattice (see for example Refs. [63–66]). KM can also be

understood as a finite group grading on Burgers vectors in the

presence of M -fold rotational symmetry, as discussed in Ref.

[15].

We find that KM = Z2
2,Z2,Z2,Z1 for M = 2, 3, 4, 6 re-

spectively. The group KM ⊗ A is mathematically defined in

Appendix J. For A =
∏k
i=1 Zni , we have

K2 ⊗A =

k∏

i=1

Z2
(2,ni)

K3 ⊗A =
k∏

i=1

Z(3,ni)

K4 ⊗A =
k∏

i=1

Z(2,ni)

K6 ⊗A = Z1 (41)

A particular symmetry fractionalization class is specified

by the equivalence classes of anyons

(v,m, [s], [tx, ty]) ∈ A×A× (A/MA)× (KM ⊗A). (42)

The anyons v, m, and s have been discussed above: they de-

fine U(1) charge fractionalization, the anyon per unit cell, and

ZM rotational symmetry fractionalization, respectively.

The anyons tx, ty ∈ A give a generalization of the discrete

torsion vector recently introduced in Ref. 15. tx, ty are sub-

ject to an equivalence relation, which gives rise to the equiva-

lence class [tx, ty] ∈ (KM ⊗A) (see also Section III F). The

class [tx, ty] is associated to a mixed symmetry fractionaliza-

tion class involving translational and rotational symmetry; this

particular type of symmetry fractionalization requires both

discrete translational and rotational symmetries, although it

is only non-trivial for 2-,3-, and 4-fold rotational symmetry.

The symmetry fractionalization class [tx, ty] associates a

fractional linear momentum to each anyon, as follows. Con-

sider a defect with Burgers vector b = (bx, by) (this can cor-

repond to a pure dislocation, i.e. a defect with zero disclina-

tion angle, or to an ’impure’ disclination, which additionally

has a nonzero disclination angle). Letting h be the elementary

2π/M rotation operator, consider also the rotated defect with

Burgers vector hb. Let γa,b be the Berry phase accumulated

by braiding the anyon a around the defect with Burgers vector

b. Then, we have

γa,b
γa,hb

=Ma,~t·b, (43)

where we have defined the Abelian anyon ~t · b = tbxx t
by
y . In

other words, the symmetry fractionalization is defined by as-

sociating the anyon ~t ·b to the dislocation with Burgers vector

b− hb. The braiding phase between an anyon and a disloca-

tion can be viewed as defining the charge under translations,

which is the linear momentum. Therefore, we can view

ei2π
~Pa·(b−

hb) =Ma,~t·b (44)

as defining a fractional linear momentum ~Pa, modulo certain

equivalences. One equivalence is due to the fact that ~Pa can

only be defined via Eq. 44, dotted into the vector b− hb, for

any integer vector b.

A second equivalence for ~Pa arises because different

choices of ~t can describe the same symmetry fractionalization
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Summary for G = U(1)⋋φ [Z2 ⋊ ZM ], discrete magnetic translations and rotations

Symmetry fractionalization, classified by H2(U(1)⋋φ [Z2 ⋊ ZM ],A) = A×A×A/MA× (KM ⊗A)
Fractional quantum numbers H2 class Description Required symmetry Classification Eq. No.

{e2πiQa} = {Ma,v} v Inserting 2π flux induces v, specifies fractional U(1)
charge

U(1) A 102

{e2πiLa} = {Ma,s} [s] M elementary disclinations fuse to s, specifies fractional

orbital angular momentum

ZM A/MA 127

{ei2π
~Pa·(b−

hb)} = {Ma,~t·b} [tx, ty] Elementary dislocation with total Burgers vector b −
hb induces the anyon ~t · b, specifies fractional linear

momentum

Z2 ⋊ ZM KM ⊗A See Table VII

{e2πτa} = {Ma,m} m Anyon per unit cell, specifies fractionalization of transla-

tion algebra

Z2 A 137

Defect (SPT) classification, H3([U(1) ⋋φ Z2] ⋊ ZM , U(1)) = Z2 × Z3
M ×K2

M

Invariant Required symmetry Classification

k1 = ⌊σ̄H/2⌋ U(1) Z
k2 = ⌊S⌋ U(1) × ZM ZM

k3 = ⌊ℓs/2⌋ ZM ZM

~k4 = ⌊(1−h) ~Pc⌋ [U(1) ⋋φ Z2]⋊ ZM KM

~k5 = ⌊(1−h) ~Ps⌋ Z2 ⋊ ZM KM

k6 = ν/q − φσH − v ⋆ m U(1) × Z2 Z
k7 = νs/q − φS− s ⋆ m Z2 ⋊ ZM ZM

Fractionally quantized physical responses

Response coefficient Physical description Required symmetry Eq. No.

σ̄H = Qv + 2k1 Hall conductivity U(1) 103

S = v ⋆ s+ k2 mod M Discrete shift: angular momentum of flux and charge of

disclination.

U(1) × ZM 163

ℓs = Ls + 2k3 mod 2M Angular momentum of a disclination ZM 128

~Pc = (1−h)−1

(~t ⋆ v + ~k4) mod Z2 Quantized charge polarization: charge of dislocation and

momentum of flux

[U(1) ⋋φ Z2]⋊ ZM See Table VII

~Ps = (1−h)−1

(~t ⋆ s+ ~k5) mod Z2 Quantized angular momentum polarization: angular mo-

mentum of dislocation

Z2 ⋊ ZM See Table VII

ν = q(φσ̄H + v ⋆ m+ k6) Charge per magnetic unit cell U(1) ⋋φ Z2 138

νs = q(φS+ s ⋆ m+ k7) mod M Angular momentum per magnetic unit cell Z2 ⋊ ZM Not determined

Πij Quantized torsional response: momentum of dislocation Z2 ⋊ ZM 169

~νp Momentum per magnetic unit cell Z2 ⋊ ZM Not determined

TABLE III. Summary of the invariants that completely describe SET phases with G = U(1) ⋋φ [Z2 ⋊ ZM ], corresponding to U(1) charge

conservation, discrete magnetic translation and ZM point group rotation symmetry. The system is assumed to have a flux φ = p/q per unit

cell. We have defined a⋆b such that Ma,b = e2πia⋆b, where a⋆b ∈ [0, 1). h is a 2×2 matrix representing the generator of the 2π/M rotation,

written in the lattice basis. The group KM is defined as follows: K2
∼= Z2 × Z2,K3

∼= Z3,K4
∼= Z2,K6

∼= Z1. The entries associated with

Πij and ~νp are separated from the rest as they are already fully specified by the other topological invariants; they do not have a corresponding

SPT term and arise purely from the topological order and symmetry fractionalization. The “Eq. No.” column refers to the equation in the main

text that defines the invariant in terms of the data of the G-crossed BTC. The quantities S, ℓs, ~Ps, νs, ~νp,Πij are in general not completely

invariant, but can be subject to some further equivalences arising from relabeling defects; these equivalences depend sensitively on the group

A, the braiding statistics, and the symmetry fractionalization class.

class. Specifically, the symmetry fractionalization is trivial if

it can be completely accounted for by binding an anyon to the

elementary dislocations, as this can be done trivially by ad-

justing local energetics. Therefore, we have the equivalences

{ei2π
~Pa·(b−

hb)} ∼ {ei2π
~Pa·(b−

hb)Ma,~χ·(b−hb)}, (45)

for any χx, χy ∈ A. This leads to a classification by the group

KM ⊗A, as we discuss in Appendix H 4.

We present explicit formulas for ei2π
~Pa·(b−

hb) in terms of

the data of the G-crossed BTC, as summarized in Table VII,

and in Eqs. (154),(155),(156), for M = 2, 3, 4 respectively.

These equations are written for specific choices of b, and give

the part of ~Pa which is invariant under the equivalences de-

scribed above.

The defect (SPT) classification is (see Appendix H 4)

H3(G,U(1)) ∼= H4(G,Z) ∼= Z2 × Z3
M ×K2

M (46)

Changing the defect class corresponds to changing certain in-

teger parts of the fractionally quantized responses to lattice

dislocations and disclinations. These responses are essentially
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the same as those discussed recently in Ref. [15], which are

summarized in Table III, and which we briefly review below.

The G-crossed invariants used to extract these responses are

summarized in Table VII. Importantly, not all of these differ-

ent H3 classes give physically inquivalent SETs. The gauge-

invariant quantities associated with the fractionally quantized

responses can be used to determine when changing the defect

class may in fact yield a physically equivalent SET.

The fractionally quantized responses can be separated ac-

cording to the relevant symmetries involved. For the group

U(1) × ZM alone, the quantized responses include the Hall

conductivity σH , the discrete shift S, and the disclination an-

gular momentum, ℓs. Including the discrete magnetic transla-

tion symmetry then also adds the U(1) charge filling (charge

per magnetic unit cell) ν, the angular momentum filling νs,

quantized charge polarization ~Pc, quantized angular momen-

tum polarization ~Ps, quantized torsional response (the mo-

mentum of a dislocation) Πij , and the linear momentum fill-

ing, ~νp.

As in the continuum case, the above physical responses can

be conveniently represented in terms of an effective response

theory involving background gauge fields for the symmetry

group. This was explained in the Abelian case for the case of

zero flux per unit cell in Ref. [15]. In this paper we extend

the results to the non-Abelian case and with non-zero flux per

unit cell. Below we briefly summarize the response theory,

and leave a detailed derivation for Appendix I. We refer the

reader to Ref. [15] for additional discussion on the physical

meaning of these quantized responses.

The response theory is defined in terms of background

gauge fields A, ~R, and C associated with the U(1), Z2,

and ZM symmetries, respectively. However, because of the

non-commuting nature of the group elements, they should be

viewed together as a gauge field (A, ~R,C) for the full sym-

metry group G = U(1) ⋋φ [Z2 ⋊ ZM ]. The response theory

is then written as follows:

Leff =
σH
2
A ∪ dA+

S

2π
A ∪ dC +

ℓs
4π
C ∪ dC +

~Pc

2π
· (A ∪ d~R) +

~Ps

2π
· (C ∪ d~R) +

1

2π
(νA+ νsC) ∪ AXY

+
Πij
4π

Ri ∪ dRj +
~νp
2π

· ~R ∪ AXY +
α

4π
AXY ∪ d−1AXY + Lanom, (47)

where the term Lanom = − c
48πC ∪ dC with chiral central

charge c is due to the framing anomaly [15, 54] (note we as-

sume that the spin connection of the space-time manifold has

only a spatial component, which is set by the rotation gauge

field C). The gauge fields are defined so A and C are the lifts

of U(1) and ZM to R and 2π
M Z, respectively, and the action is

independent of the precise choice of lift. Here we have defined

the Lagrangian on an arbitrary triangulation of the space-time,

and ∪ refers to the cup product of cohomology. The term
1
2πdC represents the flux of C and physically describes the

disclination density. The term 1
2π

(1−h)−1

d~R represents the

gauge-invariant part (mod 1) of the Burgers vector of a lattice

defect [15]. The term AXY is defined in terms of the ~R and

C gauge fields, and its integral over space counts the number

of unit cells in the lattice. The main difference between the

above action and the one written down in Ref. [15] is that

the parameters associated to AXY depend on φ, because each

unit cell is associated to the flux φ (see Appendix I 2 for a

derivation). The other parameters are φ-independent.

The discrete shift S [62, 65, 67, 68], which is the ana-

log of the shift in continuum FQH states, is protected by

the discrete rotational symmetry. It associates a charge of

S/M = (v ⋆ s + k2)/M to an elementary 2π/M disclina-

tion and a corner angle of 2π/M . Presumably the fractionally

quantized charge localized to a corner angle on the boundary

of the system remains well-defined only if the edge theory is

gapped. We can also define the angular momentum of a 2π/M
flux as S/M : since we have the relation e2πiS = Mv,s, this

implies that the angular momentum of a 2π flux is indeed that

of the anyon v, as expected. This response defines a notion of

fractional “higher order” topological phases, for both Abelian

and non-Abelian FQH states [69–71].

The term ℓs which contributes a fractional angular momen-

tum of ℓs/M to an elementary 2π/M disclination, is reviewed

above (see Eq. 39).

The response ~Pc defines a quantized charge polarization

compatible with rotational invariance [15]. The component

Pc,i of the charge polarization can be given various interpre-

tations: (i) the charge per unit length on a system with bound-

ary along the i direction, (ii) the fractional charge associated

to an elementary dislocation in the i direction, or (iii) the ith
component of the linear momentum of a 2π instanton. Note

that a nontrivial Burgers vector can also be associated to a

disclination: such disclinations are sometimes referred to as

’impure disclinations’. This response is also computed in free

fermion systems in Ref. [65]; the linear and angular momenta

of 2π instantons have also been studied in Refs. [72, 73] in

the context of Dirac spin liquids, which raises the interesting

question of how these results, which apply to gapped topolog-

ical phases, can be extended to gapless phases.

Similarly, ~Ps defines a quantized angular momentum po-

larization. The componentPs,i of the angular momentum po-

larization can be interpreted as (i) the angular momentum per

unit length on a system with boundary along the i direction,

or (ii) the angular momentum associated to an elementary dis-

location in the i direction.

The quantized torsional response Πij , which is only non-

trivial for M = 2, 3, 4, associates a fractionally quantized
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Classification of SU(2)k topological orders with G = U(1)⋋φ [Z2 ⋊ ZM ]
Anyon model A M H2(G,A) H3(G,U(1)) Naive SET count (k1, k6, k7 fixed) Reduced SET count (k1, k6, k7 fixed)

SU(2)k , k odd

Z2 2 Z5
2 Z2 × Z7

2 2048 400

Z2 3 Z2
2 Z2 × Z5

3 729 729

Z2 4 Z4
2 Z2 × Z2

2 × Z3
4 1024 576

Z2 6 Z3
2 Z2 × Z3

6 288 162

SU(2)k , k even

Z2 2 Z5
2 Z2 × Z7

2 2048 2048

Z2 3 Z2
2 Z2 × Z5

3 729 729

Z2 4 Z4
2 Z2 × Z2

2 × Z3
4 1024 1024

Z2 6 Z3
2 Z2 × Z3

6 288 288

TABLE IV. Results of the relabeling analysis for SU(2)k topological orders with G = U(1) ⋋φ [Z2 ⋊ ZM ]. Note that SU(2)1 describes

the topological order of the bosonic 1/2 Laughlin state, SU(2)2 describes the bosonic Moore-Read Pfaffian state, and SU(2)k for k > 2
describes the bosonic Read-Rezayi states. See Appendix G 2 for further details regarding the derivation. To obtain the SET counts, we have

fixed k1, k6, and k7, which are the integer parts of the Hall conductivity, and the charge and angular momentum fillings. If we do not fix k7,

we do not have a rigorous analysis within the G-crossed BTC formalism because we do not have a formula for the angular momentum filling

νs derived using the G-crossed BTC data. However if we use the formula for νs predicted by the effective response action and allow k7 to

vary, the SET counts all get multiplied by an additional factor of M , implying that there is no additional reduction in the count due to k7.

momentum pi =
∑

j Πijbj to a defect with dislocation Burg-

ers vector b. After making some simplifying assumptions,

we derive a formula for Πij modulo 1/M in terms of the

data of the G-crossed theory using Eq. 169. This term is

related to the “torsional Hall viscosity” studied Ref. 74 and

75, however in those contexts the response term was found to

be non-quantized, since the theories studied were coupled to

continuum geometry, rather than a discrete background gauge

field as appropriate for crystalline space group symmetries.

In contrast, in our theory the torsional response Πij is indeed

quantized.

The response coefficient νs associates an angular momen-

tum νs per magnetic unit cell, while ~νp associates a linear mo-

mentum ~νp per magnetic unit cell to the system. These def-

initions are motivated by crystalline gauge theory and group

cohomology; we have however not been able to find invari-

ants for νs, ~νp in terms of G-crossed BTC data, and leave this

problem for future work. Note that ~νp is only specified by the

topological field theory modulo the same equivalences that ex-

ist for the linear momentum of m, ~Pm. Also, note that Π and

~νp do not receive any pure SPT contribution; they appear only

due to the non-trivial topological order and symmetry frac-

tionalization.

As discussed in Ref. [15], certain terms, such as Πij and

~νp may receive an additional quantized contribution that is

topologically trivial (corresponding to a coboundary term in

the group cohomology classification of topological terms), but

nonetheless may have physical consequences. Such contribu-

tions, if they exist, cannot be determined from the G-crossed

BTC. It is not clear whether they do in fact physically arise

and will not be studied further here.

We note that the last term in Eq. 47 arises from the exis-

tence of an anyon per unit cell; it is not clear how to physi-

cally interpret it as a response, and as such we will ignore it.

Its effect is completely accounted for by specifying the anyon

per unit cell.

The G-crossed identities studied in this work only allow

us to determine directly the properties of U(1) fluxes and de-

fects with a nonzero disclination angle, where several identi-

cal copies of these defects fuse to give an anyon. In particular,

we cannot directly obtain the charge, angular momentum or

linear momentum of a pure dislocation defect, which does not

have this property. However, we can always treat a disloca-

tion as a dipole of two disclinations with opposite disclination

angles. The symmetry charges associated to a dislocation are

then obtained by summing the symmetry charges associated to

the two disclinations which form the dipole. This procedure is

consistent in the following sense: the individual disclinations

can be arbitrarily chosen, but as long as their fusion product

is fixed, the charge of a dislocation is well-defined up to the

charge of arbitrary anyons, which can be attached to the dis-

location by adjusting local energetics. (See Section III F 5 for

further discussion of these issues, and Appendix E 5 for the

mathematical derivations.)

We make two general remarks about the SET classification.

First, note that the classification is independent of the flux per

unit cell; therefore each of these responses can be observed at

any value of φ. Secondly, as in the case of pure ZM symmetry,

we find that the total number of SET phases is in fact different

from the naive estimate of |H2(G,A)H3(G,U(1))|, and the

exact reduction depends sensitively on the topological order

as well as the value of M . Using G-crossed BTC data, the re-

duction in the SET count has been computed explicitly for the

bosonic Laughlin, Moore-Read, and Read-Rezayi FQH topo-

logical orders with G = U(1)⋋φ [Z2 ⋊ ZM ] as summarized

in Table IV. We have also computed the exact SET counting

with simply G = ZM symmetry for a variety of topological

orders, as summarized in Table VI.

C. Possible experimental applications

Although the main objective of this work is to obtain a

mathematically complete description of different symmetry-

enriched FQH states, our analysis has nonetheless pointed out

several new phenomena, particularly in systems with space

group symmetry, that can potentially be realized with avail-

able experimental technology. In this section we will briefly
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point out some concrete measurements that could be per-

formed, and mention some promising experimental platforms.

We will primarily focus on the measurement of dislocation

and disclination charges; note that Ref. [15] has a detailed dis-

cussion of the mathematically allowed response properties of

the 1/2 Laughlin topological order and of gapped Z2 quantum

spin liquids, with topological order described by a Z2 gauge

theory (Z2 toric code), with the symmetryG = U(1)×Gspace.

Our work indicates that certain novel phenomena can be

studied by measuring the fractional charge in lattice FQH sys-

tems, as we now summarize. There are two distinct ways in

which fractional charges appear in lattice FQH systems: they

can appear in conjunction with anyons, or they can be bound

to lattice defects such as dislocations, disclinations and cor-

ners. For example, in the 1/2 Laughlin state on a lattice with

magnetic translations and either Z2 or Z4 point group rotation

symmetry, the quasiholes can carry a half-charge independent

of any spatial symmetries, while dislocations can also carry

integer or half-integer charges independent of the topologi-

cal order. Therefore we might naively think that the minimal

charge that can be measured in a system with both anyons and

dislocation defects must be half-integer. However, our work

predicts that due to the interplay of the space group symmetry

with the topological order, in the above mentioned systems

a dislocation can in fact carry a 1/4 charge (see the discus-

sion of this response in [15]). This happens when the form of

symmetry fractionalization which we refer to as the ’torsion

vector’ ~t is nontrivial.

A similar phenomenon can be observed in the 1/3 Laughlin

state on a lattice with Z3 point group rotation symmetry. Here

the minimal anyon charge as well as the minimal dislocation

charge from symmetry alone is 1/3, however if our formal-

ism is applied to the 1/3 Laughlin state, the minimal charge

bound to a dislocation should be 1/9. In general, such effects

occur when there is some commensuration between the group

of Abelian anyons and the ZM point group symmetry.

The charge associated to disclination or corner angles is an

independent invariant which is a discrete analog of the shift

(see the response denoted by S), and is also necessary to char-

acterize the FQH state. Note that if we can measure the charge

at an arbitrary disclination, we can also measure the charge at

an arbitrary dislocation, since any dislocation can be treated

as a dipole of two disclinations with equal and opposite Frank

angles, but unequal Burgers vectors.

Below we mention some experimental platforms in which

lattice integer and fractional quantum Hall effects have been

successfully realized, and in which it may be possible to mea-

sure dislocation and disclination charges in the near future.

FCIs in twisted bilayer graphene: Fractional Chern insu-

lator (FCI) states have been extensively studied in previous

numerical work ([12, 13]) and were recently observed exper-

imentally in twisted bilayer graphene (TBG) aligned with a

hexagonal boron nitride substrate [14]. This has motivated

several recent works studying the properties of FCIs in TBG

with and without a magnetic field [76–78]. It may be possi-

ble to prepare a 1/3 Laughlin state with Z3 point group ro-

tation symmetry in such a platform; this would be a simple

state in which the fractional charges bound to dislocations and

disclinations can be studied, which would give an experimen-

tal probe of the torsion vector, spin vector, shift, and quantized

charge polarization predicted by theory. It would be interest-

ing to study the interplay with symmetry of more complicated

topological orders, which can be accessed using TBG accord-

ing to the numerical evidence from the works above. Related

2D systems such as twisted transition metal dichalcogenides

(e.g. WSe2) also appear to have Chern bands as well as strong

interactions in their moire lattices [79], and could also serve

as model systems to study some of our predictions.

FCIs in optical lattices: In recent years there has been

substantial effort aimed towards numerically simulating

bosonic fractional Chern insulators, in particular the 1/2

Laughlin state, in optical lattices [80–83]. Previous work in-

cludes studies on adiabatic state preparation [84–86] and char-

acterization of quasiholes [87, 88], in various lattice geome-

tries [89]; on the experimental front, the Chern number of a

Chern band of ultracold bosons was first measured in Ref.

[90]. Proposals exist for measuring the anyon charge using

quantum gas microscopy [87]; similar techniques could po-

tentially allow us to measure the fractional charge at lattice

defects.

Chern insulators in photonic crystals Photonic crystals

(reviewed in Ref. [91]), in which the spatial periodicity of

the material properties can result in a photonic band struture

with nonzero Chern number, are a well-established platform

for realizing analog IQH states, and therefore offer promise

in experimentally realizing the bosonic SPT states studied in

this work. In recent work [92], a photon zero mode bound to

a dislocation was predicted and also experimentally measured

in a square lattice geometry. We expect that such measure-

ments should be possible in other lattice geometries and also

for disclination defects. Photonic materials with continuum

symmetries are also of much interest. In another work [93] a

Landau level of photons was prepared in a continuum system

with a conical curvature defect, and the fractional number ex-

cess at the conical tip (i.e. the shift response in the photonic

system) was experimentally measured.

In the above discussion, we have restricted our attention to

the fractional charge at lattice defects, for which the available

experimental imaging technology is most developed. It is an

open and interesting question to develop probes that could im-

age angular momentum or linear momentum in a manner that

can give access to the other invariants studied in this work.

We expect that optical lattices will offer the most feasible way

to make such measurements in bosonic systems.

D. Organization of paper

Below we explain the organization of the paper.

Section II gives a brief review of the G-crossed BTC for-

malism of Ref. [16] and the crystalline gauge theory devel-

oped in Ref. [15] for Abelian topological phases, which we

use to provide a topological effective action for the response

theories.

Section III presents the major results of the paper but with-

out proofs. First, in Section III A, we discuss general iden-
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tities in terms of the G-crossed data that are repeatedly used

in this paper to derive the formulas for topological invariants.

The rest of Section III summarizes the topological invariants

for different symmetry groups. The tables in this Section list

the different invariants characterising the symmetry fraction-

alization and the topological response. They also summarize

the mathematical classification, formulas for theG-crossed in-

variants, and the physical interpretation of these invariants. In

this section we also write down topological effective actions

that describe Abelian SET phases with these symmetries, in

terms of crystalline gauge fields. We conclude and discuss

future directions in Section IV.

The technical calculations of this paper are organized in the

appendices.

In Appendix A we review the derivation of the group multi-

plication laws for FQH systems with magnetic translation and

spatial rotation symmetries, both in the continuum and on the

lattice. These symmetries being usually defined on the infinite

plane, we also briefly discuss how to define them on compact

manifolds whose global topology may be inconsistent with the

symmetry.

In Appendix B, we review in more detail the mathemati-

cal formulas and consistency relations among the G-crossed

data used in this paper, and also review gauge transformations

of the data. We review a general solution to the G-crossed

data for arbitrary G, which can be written for non-permuting

symmetries. We then describe, with proofs, the general pro-

cedures to construct invariants for symmetry fractionalization

and for the defect response. These constructions are new to

this paper.

Appendix C describes how, for our examples, the SET clas-

sification is the same whether the G-crossed data are assumed

to be measurable or piecewise continuous. Appendix D lists

solutions to theG-crossed BTC equations for each of the sym-

metry groups in this paper. In Appendix E, we use G-crossed

identities to construct specific topological invariants for the

symmetry fractionalization and defect classes in each case.

In Appendix F, we discuss the derivation of LSM-type re-

lations between the filling and Hall conductivity using G-

crossed invariants, both in the continuum and on the lattice. In

Appendix G, we discuss how to account for redundancies in

the SET classification due to possible relabelings of the sym-

metry defects.

The cohomology calculations underlying the G-crossed

BTC results are given in Appendix H. The derivation of ef-

fective actions for the symmetry groups studied in this paper,

in terms of crystalline gauge fields, is given in Appendix I. Fi-

nally, in Appendix J we review the group cohomology results

used in this paper, and in Appendix K we review the method

of spectral sequences that is required in order to study systems

with magnetic translation symmetry.

II. REVIEW

A. Brief review of G-crossed BTC framework

1. Overview

The G-crossed braided tensor category (BTC) theory is a

mathematical framework to characterize and classify the dif-

ferent topological phases that can be realized when a topolog-

ically ordered system is endowed with a symmetry described

by the groupG, such that the ground state preserves the sym-

metry [16]. The starting point is a unitary modular tensor cat-

egory C0, which characterizes the braiding and fusion proper-

ties of the anyons via a self-consistent set of algebraic data, the

F and R symbols. C0, together with the chiral central charge

c, are believed to fully characterize intrinsic topological orders

in (2+1)D, in the absence of symmetry.

The G-crossed BTC C×
G keeps track of the anyons and the

topologically inequivalent symmetry defects, and their com-

bined fusion and braiding properties. This is specified by a

consistent set of symbols {F,R,U, η}. The G-crossed BTC

thus contains two additional symbols: the U symbol specifies

how symmetry group elements act on the fusion and splitting

spaces in the space of topological states, while the η symbol

defines symmetry fractionalization.

Below we give a brief description of the essentials of the

G-crossed BTC framework. Additional details are presented

in Appendix B. A more complete account, using the same no-

tation, can be found in Ref. 16.

2. The basic G-crossed data

Anyon model: The anyon model, described by a UMTCC0,

consists of a full description of the topological phase without

G symmetry [2, 3]. Below we briefly review some of the key

defining properties of C0 and set notation. Ref. 16 contains

a more in-depth review aimed at physicists, using the same

notation. Recently Ref. 27 has shown how the defining data

of a UMTC can be obtained from the microscopic properties

of a quantum state of matter.

The UMTC C0 contains a finite set of topological charge

labels, a, referred to as anyons. For anyons a, b, c, there exists

a set of vector spaces, referred to as fusion spaces, V cab, and

their dual “splitting” spaces V abc . The dimensions of these

vector spaces give the fusion coefficients:

N c
ab = dim V cab = dim V abc . (48)

States in these spaces are depicted graphically as follows

(dc/dadb)
1/4

c

ba

µ = 〈a, b; c, µ| ∈ V cab, (49)

(dc/dadb)
1/4

c

ba

µ = |a, b; c, µ〉 ∈ V abc , (50)
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where µ = 1, . . . , N c
ab. da is the quantum dimension of a,

given by the largest eigenvalue of the fusion matrix [Na]
c
b :=

N c
ab, and the factors

(
dc
dadb

)1/4

are a normalization conven-

tion for the diagrams. Physically, the splitting diagram above

can be interpreted as an anyon c which is split into two anyons

a and b by the action of a “splitting operator” [27]. The in-

dex µ corresponds to distinct possible ways this can happen

to yield orthogonal many-body states.

The fusion coefficients are encapsulated in the fusion rules

written as:

a× b =
∑

c∈C0

N c
abc. (51)

The theory contains a unique “trivial” particle 0, which physi-

cally corresponds to topologically trivial excitations. For each

anyon a, we have a unique conjugate ā, such that

a× ā = 0 + · · · . (52)

We can define fusion and splitting spaces for multiple anyons

by decomposing into fusion channels. For example,

V abcd ≃
⊕

e

V abe ⊗ V ecd ≃
⊕

f

V bcf ⊗ V afd , (53)

which follows from associativity of the fusion rules. The F -

symbols are unitary maps encoding the basis transformations

between the above decompositions; they are written in com-

ponents as [F abcd ](e,α,β)(f,µ,ν), where the Greek indices refer

to the fusion channels, which run over the basis states of the

splitting spaces. In a diagrammatic calculus that corresponds

to moving, splitting, and braiding anyons in time (with the

time direction oriented vertically) (see e.g. Ref. 27 for a re-

cent discussion), the F -symbol can be depicted graphically as

follows:

a b c

e

d

α

β
=
∑

f,µ,ν

[
F abcd

]

(e,α,β)(f,µ,ν)

a b c

f

d

µ

ν
. (54)

TheR-symbols, written in components as [Rabc ]µν , are uni-

tary matrices that describe half-braids between a and b, which

fuse to c. They are defined via the the following diagram:

c

ba

µ =
∑

ν

[
Rabc

]

µν

c

ba

ν . (55)

The consistency of fusion and braiding operations is en-

forced via the pentagon equation, which can be schemati-

cally written as FF =
∑
FFF , and the hexagon equa-

tions, which can be represented as RFR =
∑
FRF and

R−1FR−1 = FR−1F .

The F and R symbols can be used to define the gauge-

invariant data of the UMTC. This includes the topological S

matrix, which is a unitary non-degenerate symmetric matrix

Sab, and the topological twists θa.

An anyon a is Abelian if the fusion outcome with any other

anyon b is unique. That is, N c
ab 6= 0 for exactly one choice of

c, given any other anyon b. Such anyons a form an Abelian

group under fusion, denoted as A, which plays a central role

in the classification of symmetry fractionalization.

Notation: For later convenience we will define two quan-

tities below. First, for an anyon a, we define the topological

spin

h : A → [0, 1), (56)

as defined by the relation

e2πiha := θa. (57)

For Abelian anyons, we have θa = Raa.

Second, we define the product

⋆ : A×A → [0, 1) (58)

between two Abelian anyons a, b ∈ A by the relation

e2πia⋆b :=Ma,b = RabRba. (59)

Note that for Abelian anyons a, b ∈ A, the fusion outcome of

a × b is fixed, so Rab is short-hand for Raba×b. Furthermore,

note that we have 2ha mod 1 = a ⋆ a mod 1, but the two

sides need not be equal as real numbers since 2ha ∈ [0, 2).
In the above, e2πia⋆b is a symmetric bilinear form from

A × A → U(1), and e2πiha for Abelian a is its quadratic

refinement.

Note that the double braid

Mab := Raba×bR
ba
a×b, (60)

is a U(1) phase whenever a ∈ A, for any b.
Anyon permutations and action on topological state space:

The first important piece of data in specifying the way the in-

trinsic topological order interacts with the global symmetry

group G is a group homomorphism [ρ] : G → Aut C0. Here

Aut C0 is the group of intrinsic symmetries of C0, which cor-

responds to the group of permutations on the anyons which

keep their topological properties invariant (up to gauge trans-

formations). These are sometimes referred to as topological

or anyonic symmetries. Mathematically, Aut C0 contains the

group of braided auto-equivalences of C0, although it can also

contain anti-unitary and parity-reversing symmetries. In this

paper we will completely ignore the anti-unitary or parity-

preserving part and assume always that the maps in question

are unitary, parity-preserving.

A particular element ρg of the equivalence class [ρg] is an

invertible map from the UMTC C0 back to itself. In particular,

this has an action on the anyons:

ρg : a→ ga, (61)

which is the same for every member of the equivalence class

in [ρg]. ρg further has a unitary action on the fusion and split-

ting spaces:

ρg : V cab → V
gc
ga, gb, (62)
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which in a particular basis is written as

ρg|a, b; c, µ〉 =
∑

ν

[Ug(
ga, gb; gc)]µν |

ga gb; gc, ν〉, (63)

where |a, b; c, µ〉 ∈ V abc , µ = 0, · · ·N c
ab − 1. The maps ρg

only form a group up to a special class of “do-nothing” maps

referred to as natural isomorphisms. Changing ρg by a nat-

ural isomorphism is referred to as a symmetry action gauge

transformation, which is further reviewed in Appendix B.

In this paper, we will always consider the case where the

group homomorphism [ρ] is trivial, in which case there is a

gauge in which we can set U = 1 whenever a, b, c are all

anyons.

The action Ug on the fusion and splitting spaces can be rep-

resented diagrammatically by consider a codimension-1 sheet,

labeled g, passing through the anyon vertex, as shown in Fig.

1.

Symmetry fractionalization: The second important piece of

data which determines the SET phase is the symmetry frac-

tionalization class. Below we provide a description in the spe-

cific case under consideration in this paper, where symmetries

do not permute anyons, so that the map ρ is trivial.

Consider a many-body state of the microscopic system

whose long wavelength description is in terms of the UMTC

under consideration, and which contains n anyons, written

as |Ψa1,...,an〉. It is an important property of the topologi-

cal phase that such a state is only partially described by the

Hilbert space of the TQFT, i.e. by the vector spaces defined

by the UMTC C0.

The action of the global symmetry on |Ψa1,...,an〉 can be de-

composed into local unitary operations in the neighbourhood

of the aj as follows:

Rg |Ψa1,...,an〉 =

n∏

j=1

U (j)
g |Ψa1,...,an〉 . (64)

Here Rg is the representation of g on the many-body Hilbert

space of the microscopic system. We note that in the case with

anyon permutations, where the map ρ is non-trivial, the RHS

has an additional action of ρg, which acts only in the topologi-

cal state space associated with the above many-body quantum

state. In this case, the above decomposition may be in con-

flict with associativity for certain choices of [ρ], as quantified

by the symmetry-localization obstruction [O] ∈ H3
ρ(G,A)

[16, 94]. Such an obstruction indicates that the TQFT has

a 2-group symmetry where G and A are intrinsically inter-

twined in a way which is incompatible with G being an ordi-

nary global symmetry of the microscopic system.

Without loss of generality [16], we can consider the opera-

tors Rg, which have support over the whole system, to form

a linear representation of G. Nevertheless, the operators U
(j)
g

need not in general form a linear representation ofG; the man-

ner in which they fail to do so is referred to as symmetry frac-

tionalization.

Let us define gU
(j)
h = RgU

(j)
h R−1

g . One can show that in

general (assuming [ρ] is trivial), we have

U (j)
g (gU

(j)
h ) |Ψa1,...,an〉 = ηaj (g,h)U

(j)
gh |Ψa1,...,an〉 , (65)

FIG. 1. Diagrammatic representations of the actions of the U and

η symbols. Anyon lines are black and symmetry defect sheets are

orange.

where ηa(g,h) is a U(1) phase. We have that η0(g,h) = 1
and ηa(g,0) = ηa(0,h) = 1 (0 being the identity element in

G), for any topological charge a.

ηa must be compatible with the fusion rules:

ηa(g,h)ηb(g,h) = ηc(g,h) if N c
ab > 0, due to which

we can always set [16]

ηa(g,h) =Ma,w(g,h), (66)

for an A-valued 2-cocyle w(g,h). Under a local redefinition

of the local operators U
(j)
g , w(g,h) changes by an A-valued

2-coboundary. Therefore distinct symmetry fractionalization

patterns are characterized and classified by H2(G,A).
We note that in the case where permutations [ρ] are non-

trivial, ηa(g,h) can still be defined, however the relation

with the local operators U
(j)
g is more non-trivial; moreover,

w(g,h) is no longer a 2-cocyle. However distinct choices of

ηa(g,h) and therefore w(g,h) are related to each other by an

A-valued 2-cocycle [t] ∈ H2
ρ(G,A). In this case, H2

ρ(G,A)
classifies, while {ηa(g,h)} characterizes, symmetry fraction-

alization.

The η symbols for the anyons can also be defined diagram-

matically in terms of passing the anyon world-lines through

tri-junctions of the codimension-1 symmetry defect sheets, as

shown in Fig. 1.

Note also that the description above is for the case where

G acts as an on-site symmetry in the microscopic system; the

generalization of the discussion to time-reversal and transla-

tion symmetries is discussed in Ref. [16]. We are not aware

of a similar discussion starting from the microscopic many-

body state that applies directly to spatial rotational symme-

tries; nevertheless, as discussed in Sec. I A 1, we ultimately

treat spatial and internal symmetries on equal footing in the

algebraic G-crossed BTC formalism.

Topological charges and extrinsic defects: Just as the fun-

damental objects in C0 are anyons with associative fusion and

braiding, the objects in C×
G are comprised of anyons and sym-

metry defects. For each group element g, there is a set Cg con-

taining topological charges written as ag. The set C0 is the set

of anyons; thus a0 = a. The topological charge ag is called

a g-defect, understood as a localized symmetry flux. Such
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a flux is non-dynamical and can be introduced by an appro-

priate deformation of the system Hamiltonian, while remain-

ing in the same SET phase. However, there can be multiple

defects associated to a g-flux that are still topologically dis-

tinct from each other, in the sense that no local operation can

convert one such flux to the other. This happens for example

when an anyon is bound to a given g-flux: no local operator

can convert the original flux into a composite of that flux and

an anyon.

The G defects form a G-graded fusion category, and thus

can be fused with each other as follows:

ag × bh =
∑

c∈Cgh

N
cgh
agbh

cgh (67)

It is often useful to designate a special g-defect to be la-

beled as 0g. In general there is no unique way to specify

0g. This means that one may be able to relabel 0g by an-

other defect ag of the same quantum dimension. Therefore

the G-crossed data corresponding to two seemingly different

SET phases may actually be equivalent upon such a relabel-

ing of topological charges. This must be kept in mind while

computing the final SET classification.

In particular, in the case where symmetries do not permute

the anyons so [ρ] is trivial, we can always pick a choice of 0g
such that

ag = a0 × 0g = 0g × a0, (68)

and

0g × 0h = w(g,h) × 0gh. (69)

Redefining 0g → χ(g) × 0g for an Abelian anyon χ(g) ∈
A corresponds to changing w(g,h) by an A-valued 2-

coboundary.

We can now define the generalized F -symbols [F
agbhck
eghk ]

and the generalizedR-symbols [R
agbh
cgh ] which encode several

of the fusion and braiding properties of the symmetry defects.

The braiding involvingG-defects is referred to as aG-crossed

braiding because such braidings do not generally preserve the

topological charges: braiding bh through a ag branch sheet

results in the defects gbh = b′
ghg−1 and ag.

The action ρg defined above on the UMTC C0 is extended

to the full G-crossed BTC, which means that Ug is then ex-

tended to be defined for the full G-crossed BTC. We consider

the diagram

xk
k̄b

k̄c

ba

µ

=
∑

ν

[Uk (a, b; c)]µν xk

k̄c

c

ba

ν

(70)

where one can also choose a, b, and c to be defects with non-

trivial G-grading. Here, the worldlines of the defects ag are

understood to be codimension-2 boundaries of codimension-1

symmetry defect sheets labeled by g, which go into the page.

As discussed above, since the symmetry action on anyons

is trivial, Ug is trivial when restricted to the anyons. How-

ever, the symmetry may still permute defects, for example if

G is a non-Abelian symmetry. Therefore Ug can still be non-

trivial when acting on the symmetry defect fusion and splitting

states.

Similarly, the η symbol also gets extended to be defined

for the full G-crossed BTC, corresponding to the following

diagram:

x

ḡx

h̄ḡx

cgh

bhag

µ

= ηx (g,h)
x

h̄ḡx

cgh

bhag

µ

. (71)

The set of consistency equations that must be satisfied by

the data {F,R,U, η} of the G-crossed BTC is summarized

in Appendix B. Furthermore, the data {F,R,U, η} is sub-

ject to two distinct types of gauge transformations, referred to

as symmetry action and vertex basis gauge transformations,

which are also summarized in Appendix B.

3. Classification

As mentioned above, symmetry fractionalization is classi-

fied by H2(G,A), which in the case where symmetries do

not permute anyons can be understood as distinct possible A-

valued 2-cocycles w(g,h), modulo A-valued 2-coboundaries

that correspond to redefining 0g.

We can define w purely in terms of the symmetry action on

the anyons. However, in order to define the full theory C×
G ,

we need to show that [w] is compatible with the fusion and

braiding of g-defects. In general, each symmetry fractional-

ization class defines an obstruction class [O] ∈ H4(G,U(1)),
which is referred to as a symmetry fractionalization anomaly,

or a ’t Hooft anomaly. If [O] is nontrivial, there is no so-

lution to the full G-crossed consistency equations, and the

fractionalization class [w] cannot be associated to an SET

phase. Physically, a solution with a non-trivial H4 obstruc-

tion is understood as an anomalous SET [43, 95, 96]. Viewing

H4(G,U(1)) as the classification of SPT phases ofG in (3+1)

dimensions, we say that the state with the symmetry fraction-

alization class [w] can only be realized on the surface of the

SPT corresponding to the class [O], but not in a standalone

(2+1)D system. This has been demonstrated in full general-

ity in Ref. 43. In the present work all our choices of G have

trivial H4(G,U(1)).
When the obstruction class [O] is trivial, we can finally

solve the G-crossed consistency equations and obtain the full

description of the SET phase. Given one solution C×
G , it has

been proved (within our usual assumptions) that a complete

set of solutions to the G-crossed consistency equations can be

obtained by stacking an arbitrary (2+1)D G-SPT state onto

the SET given by C×
G . Therefore the set of gauge-inequivalent

solutions for a particular symmetry fractionalization class is

given by a torsor over H3(G,U(1)), the group of G-SPT

phases in (2+1)D; each solution of this type is said to belong

to a unique defect class.

Although mathematically complete, this procedure in gen-

eral has redundancies: different defect classes may turn out to
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describe the same phase upon relabelling the defects in the re-

spective theories, so the correct defect classification is in fact

a torsor over a subgroup of H3(G,U(1)); this subtlety must

be taken into account when determining the final SET classi-

fication.

B. Brief review of crystalline gauge theory

In this section we will briefly describe the crystalline gauge

fields that were defined in Ref [15] (and to which the reader is

referred for a more detailed treatment). In this work they are

used to write down effective actions for Abelian topological

orders enriched by an orientation-preserving spatial symme-

try group G. The approach based on topological actions is

particularly useful in describing the various types of topolog-

ical response allowed in these systems. Therefore we will use

it in parallel with the G-crossed treatment to gain additional

insight into the behaviour of clean quantum Hall systems in

the topological limit.

Consider a (2 + 1)D space-time manifold M = Σ2 × R,

where Σ2 is the space on which the clean lattice system is

defined. We fix an arbitrary triangulation of M and we define

on the links a gauge field valued in the symmetry group G.

For example, we define a U(1) gauge field Aij on the link

ij of the triangulation, with the link directed towards j (with

Aij = −Aji andAij ∼ Aij +2π). More generally, the gauge

field B places a group element lifted to the real numbers on

each link ij; this group element is written asBij . WhenG is a

crystalline symmetry group with discrete Z2 translations and

ZM point group rotations, we write Bij = (~Rij , Cij), where
1
2π
~R ∈ Z2 and C ∈ 2π

M Z. When G is a central extension of

such a space group by U(1), we define Bij = (Aij , ~Rij , Cij)
whereA is now the U(1) component of the fullG gauge field.

Since these gauge fields are non-Abelian, the product BijBkl
is defined by the group multiplication law of G, and due to

this, the componentsA, ~R and C are not independent.

The topological effective Lagrangian is

L = −
1

4π
aI ∪KIJda

J + Lfrac + LSPT . (72)

The non-degenerate D × D symmetric integer matrix K ,

which couples the dynamical U(1) gauge field aI , character-

izes the intrinsic topological order [1]. As in the case of the

symmetry gauge fields discussed above, the gauge field aI is

a lift of a gauge field configuration of U(1) group elements to

R. Topologically distinct quasiparticles correspond to integer

vectors ~l ∼ ~l + K~Λ, where ~l, ~Λ ∈ ZD . The quasiparticles

form an Abelian group A = Zn1 × · · · × ZnD under fusion,

where the ni are the diagonal entries in the Smith normal form

of K .

The terms in Lfrac can be given a general interpretation

as follows: they associate flux of the symmetry group G to

anyons, and therefore collectively describe the symmetry frac-

tionalization class of the SET. In our examples these fluxes are

of four types, and are defined on 2-simplices of the triangula-

tion as follows: (i) the U(1) flux dA, where d is the simplicial

coboundary operator, i.e. dA[012] = A01+A12−A20; (ii) the

ZM flux dC, which corresponds to the disclination density;

(iii) the flux d✓✓~R = (1− h)−1d~R, whose fractional part repre-

sents the local, gauge-invariant part of the dislocation density.

Here h is the 2 × 2 matrix representation of the generator of

the point group rotations, written in the lattice basis. This ma-

trix implements the physical fact that the allowed choices for

the gauge-invariant dislocation flux are quantized by rotation

symmetry (see Ref [15] for further explanation); and (iv) the

area flux AXY , which measures the number of unit cells in a

spatial slice of the manifold M . The terms in Lfrac couple

the above symmetry fluxes to the internal gauge fields.

The terms in LSPT involve only the symmetry gauge fields.

They can also be given a general interpretation: in each SPT

term, a symmetry charge is associated to one of the above

symmetry fluxes.

As is familiar from the continuum CS theory for U(1) sym-

metry, the internal gauge fields can be integrated out to give

an effective response theory. Such a theory encodes the topo-

logical response in terms of the SPT action as well as con-

tributions due to symmetry fractionalization (for example, in

a theory with only U(1) charge conservation symmetry, the

response coefficient is the Hall conductivity, which has an in-

teger part contributed by an IQH state, and a fractional part

coming from the symmetry fractionalization, as specified by

the charge vector of the theory). The various examples studied

in later sections will highlight this feature.

III. TOPOLOGICAL INVARIANTS FROM G-CROSSED

BTCS AND RESPONSE THEORIES

In this section we summarize in detail the results of the

G-crossed BTC analysis. We derive formulas for the invari-

ants that characterize distinct G-crossed BTCs, and thus pro-

vide symmetry-protected topological invariants that character-

ize distinct SETs. These invariants were briefly summarized

in Section I B.

The SET can be physically characterized by its topolog-

ically quantized response properties, which are most easily

studied by writing down topological field theories in terms

of background gauge fields associated with the global sym-

metry. We have done this for Abelian topological orders

described by a K matrix. As discussed in the preceding

section, in general, the effective action is given by L =
− 1

4πKIJa
I ∪ daJ + Lfrac + LSPT . Here aI represent in-

ternal dynamical gauge fields associated to the topological or-

der. The terms in Lfrac describe symmetry fractionalization

by coupling the fields aI to the background symmetry gauge

fields, while those in LSPT involve only the symmetry gauge

fields. The approaches based on the G-crossed theory and

the effective action together provide a unified understanding

of the SET phase and the invariants that characterize it. Both

the G-crossed BTC and effective action approaches require a

knowledge of the cohomology groups of G as well as a rep-

resentative set of cocycles for symmetry fractionalization and

for G-SPTs. These details, which are more technical, will be

discussed in the appendices.
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We note that in all our examples, H4(G,U(1)) vanishes.

Therefore, there are no symmetry fractionalization anomalies

to be concerned about. Furthermore, since the symmetries do

not permute anyon types, the symmetry localization obstruc-

tion [16, 94], valued in H3(G,A), also vanishes.

A. General results on invariants in G-crossed BTCs

In this paper, we repeatedly use certain general identities

to construct G-crossed invariants distinguishing the symme-

try fractionalization and defect classes. These invariants are

summarized in Tables V and VII for the continuum and lat-

tice cases respectively. A description of these formulas and

their physical meaning is provided below. The mathematical

derivation of the identities can be found in Appendix B.

1. Symmetry fractionalization invariants

In general, the classification of symmetry fractionalization

is of the form H2(G,A) ∼= Ad/ ∼, meaning that the symme-

try fractionalization classes are specified by a set of d anyons

(f1, . . . , fd) ∈ Ad, (73)

modulo some equivalence relation ∼. Here the value of d de-

pends on G. Therefore, identifying the fi will allow us to fix

the symmetry fractionalization class. The fi can in turn be

found by measuring the quantities Mfi,a for each anyon a.

Below we discuss a general prescription to write down formu-

las for the quantities Mfi,a in terms of the G-crossed data.

Let us fix a set of defects 0g for every g ∈ G, which are

Abelian, in the sense that they have unit quantum dimension,

d0g = 1. Any two such Abelian defects 0g and 0h fuse to give

the defect 0gh and an anyonw(g,h), according to the relation

0g × 0h = 0gh ×w(g,h). (74)

We can generalize this fusion rule to an arbitrary number of

defects 0gi, i = 1, . . . , n:

0gn × · · · × 0g1 = w(g2,g1)×w(g3,g2g1)× · · · ×w(gn,gn−1 . . .g1)× 0gn...g1 . (75)

The anyon on the rhs can be measured in terms of G-crossed

data. Suppose we perform the sequence of symmetry opera-

tions g1, . . . ,gn in the neighbourhood of a. In terms of the

G-crossed data, we have the following identity (see Appendix

B 4 for a proof):

Fa(g1, . . . ,gn)

:=

(
n∏

i=1

Ra,0giR0gi ,a

)

Ra,0gn...g1R0gn...g1,a

n−1∏

i=1

ηa(gi+1,gi . . .g1)

=Ma,
∏n−1

i=1 w(gi+1,gi...g1)
(76)

Now we claim that for each fj , we can find a sequence of

operations {gi} such that

fj =

n−1∏

i=1

w(gi+1,gi . . .g1). (77)

For example, when the gi correspond to U(1) rotations by the

angle 2π/n for i = 1, 2, . . . , n, the anyon f coresponds to the

vison v which is induced by a 2π flux insertion. When the

gi correspond to a sequence of translations which transport a
around a lattice unit cell, f corresponds to the anyon m asso-

ciated to each unit cell of the lattice. We do not present here

a general method to obtain the correct sequence {gi} associ-

ated to each fj , for arbitrary groups G; in our examples this

has been done on an individual basis, by inspection.

The above identity depends on a particular choice of the

defect 0g. However, this choice is not necessarily canonical.

Consider changingw by a coboundary,w(g,h) → w(g,h)×

χ(g)χ(h)χ(gh), for χ(g) ∈ A. Then,

fi → fi × χ(gn . . .g1)×

n∏

i=1

χ(gi). (78)

Such a change is effectively the same as relabeling the de-

fects 0g → 0g × χ(g). Therefore the anyon associated to

the fusion of defects has an ambiguity under a relabeling of

the defects. In general, this means that different choices of

{fi} may correspond to the same symmetry fractionalization

class. This redundancy is in fact the origin of the equivalence

relation in the definition of H2(G,A).
The fractional quantum numbers which determine the sym-

metry fractionalization class are therefore specified by the set

{Ma,fi}, i = 1, · · · , d, ∀a ∈ C0 (79)

subject to the equivalence relation of Eq. 78 for fi.

2. Physical responses and defect (SPT) invariants

Here we discuss methods to obtain invariant formulas for

the gauge invariant quantities that capture the fractionally

quantized physical responses. Once the symmetry fraction-

alization is fixed, these quantized physical responses then fix
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Invariant Formula Details

Symmetry fractionalization invariants, A = Zn1 × · · · × Znr ; p = lcm(n1, . . . , nr)

{Qa} e2πiQa = Mv,a = Fa(g1, . . . ,gp) g1 = · · · = gp = (ei2π/p,0, 1)

{La} e2πiLa = Ms,a = Fa(g1, . . . ,gp) g1 = · · · = gp = (1,0, ei2π/p)
Defect invariants

σ̄H e2πi
σ̄H
2p = Ip(0g) g = (ei2π/p,0, 1)

S e
2πiS

p =
Ip(0gh)

Ip(0g)Ip(0h)
g = (ei2π/p,0, 1);h = (1, 0, ei2π/p)

ℓs e2πi
ℓs
2p = Ip(0h) h = (1,0, ei2π/p)

Additional quantized invariants

ν e2πi ν
n =

η0g (r1,r2)

η0g (r2,r1)
g = (ei2π/n,0, 1); r1, r2 span a magnetic u.c.

TABLE V. List of G-crossed invariants studied in this paper for G = U(1)⋋E2. A general group element is written as g = (e2πiz, r, e2πih),
where the three components refer to U(1), translation and rotation symmetries respectively.

the freedom associated with H3(G,U(1)), which then com-

pletely characterizes the symmetry defect properties. Unlike

in the case of symmetry fractionalization, we do not know

a completely general procedure to determine these defect in-

variants. However, all the defect invariants presented in this

paper have been obtained using two general formulas.

First, consider a defect 0g such that

0ng = f (80)

for some integer n. To obtain nontrivial invariants, f should

correspond to some combination of the anyons fi which char-

acterize the symmetry fractionalization. The defect invariant

is then written as

In(0g) := [T n]
(g,0)
0g0g

= θn0g

n−1∏

j=0

η0g(g,g
j). (81)

Here T refers to the G-crossed modular T matrix, defined in

Ref. [16]. As we explain below, the invariant In(0g) mea-

sures one half of the g-symmetry charge that is associated to

the g-defect (g-flux) 0g. That is, if we let Q
(g)
0g

be the charge

of 0g under symmetry transformations generated by g, we can

write

In(0g) = e
2πiQ

(g)
0g
/2

(82)

For example, if g denotes 1
n th of a completeU(1) rotation, the

above invariant measures 1
2 × σ̄H

n , i.e. In(0g) = ei2πσ̄H/2n.

As such, the argument of In(0g) can be associated with the

fractionally quantized physical responses of the system, such

as the Hall conductivity.

In Appendix B it is shown that in general, when 0ng = f ,

we have

(In)
2n(0g) =Mf,f = e2πif⋆f , (83)

which implies

In(0g) = eiπ
f⋆f+k

n . (84)

The integer part k ∈ Z2n characterizes the defect class.

Using Eq. 83, we can understand Eq. 82 as follows. Sup-

pose n copies of the flux 0g fuse to a single flux quantum (i.e.

n is the minimal order of g). We know that Mf,f is the phase

obtained by adiabatically transporting n copies of the flux 0g
around another set of n copies of 0g and completing a full

braid. Now the fractional g-charge Q
(g)
0g

of 0g can be mea-

sured by taking 0g around a unit flux quantum, i.e. taking 0g
around a set of n copies of 0g. Therefore taking n copies of

0g around another n copies of 0g should give

e
2πinQ

(g)
0g =Mf,f = I2n

n (0g). (85)

This justifies Eq. 82.

In the example where g is a pure U(1) symmetry element,

this means that (In)
2n(0g) =Mv,v = e2πiv⋆v , where v is the

vison. Therefore, we must have In(0g) = eπi
v⋆v+k

n for some

k ∈ Z2n. The integer k mod 2n (which is even for bosonic

systems) represents the contribution of bosonic integer quan-

tum Hall states to σ̄H , and characterizes the defect class. In

the U(1) case, we can make n arbitrarily large, so that the

defect class is actually characterized by an integer k ∈ Z. In

the absence of topological order, k parametrizes the U(1) SPT

state.

In is invariant under the gauge transformations of the G-

crossed theory discussed in Appendix B. Therefore, if we fix

the defect 0g, this formula is fully invariant. However, it is in

general not invariant under relabelings of defects. From Eq.

(80), we see that a relabeling of the defect 0g → 0gχ(g),
for χ(g) ∈ A, will generally change the obtained value of

k. Conversely, changing the integer k by certain integers may

be compensated for by a relabeling of 0g. This corresponds

to the known ambiguity that changing the G-crossed data by

different elements of H3(G,U(1)) may lead to the same SET

upon a relabeling of defects. In other words, the classifica-

tion of distinct SETs requires a reduction of H3(G,U(1)). In

Appendix G we use this redundancy in the defect invariant

to determine the correct counting of SET phases for different

lattice FQH systems.

Eq. (83) can be further utilized to determine mixed defect

invariants. We will demonstrate the basic idea for the exam-

ple of G = Zm×Zn. Similar ideas can be used to find mixed

defect classes associated to a Zm×Zn subgroup of G, if such

defect classes exist within the group cohomology classifica-

tion. These ideas will be used to calculate several mixed de-
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fect invariants in this paper.

Suppose G = Zm × Zn. Since H3(Zm × Zn, U(1)) ∼=
Zm×Zn×Zl, we see that there are l = gcd(m,n) mixed de-

fect classes. Suppose the Zn and Zm subgroups are generated

by g and h, respectively, and we have the defect fusion rules

0ng = p ∈ A

0mh = q ∈ A. (86)

Let L = lcm(m,n) and l = gcd(m,n). Also suppose that

the system does not have mixed symmetry fractionalization

associated to the Zm × Zn symmetry (this will be true for

all examples considered in this paper), so that we can pick a

gauge in which

0g × 0h = 0gh. (87)

Then it can be shown (see Appendix B 5) that the defect 0gh
is of order L, and consequently

(

IL(0gh)

I
n/l
m (0h)I

m/l
n (0g)

)L

=

(
θp×q
θpθq

)L/l

=ML/l
p,q . (88)

Therefore this invariant has the form

IL(0gh)

I
n/l
m (0g)I

m/l
n (0h)

= e2πi
p⋆q+k

l . (89)

Now the integer k ∈ Zl parametrizes the defect class; in the

absence of topological order, it gives the mixed SPT invariant.

In the simplest case, where L = l = m = n, this becomes

In(0gh)

In(0g)In(0h)
= e2πi

p⋆q+k
n . (90)

Eq. (89) also has a natural physical interpretation in terms

of flux braiding. Suppose we raise Eq. (89) to the power 2L.

The terms on the lhs can then be interpreted as follows:

1. The term I2L
L (0gh) in the numerator measures the

braiding phase between L copies of 0g and 0h with

another set of L copies of 0g and 0h.

2. The term I
2Ln/l
m (0g) = I

2m(n/l)2

m (0g) in the denom-

inator measures the braiding phase between m(n/l)
copies of 0g and another set of m(n/l) copies of 0g.

Sincemn/l = L, this braiding phase is cancelled by an

equal contribution from the braiding of 0g defects in the

numerator. Simlarly, the contribution from the second

term in the denominator is cancelled by the braiding of

0h defects in the numerator.

The remaining contribution can be written as ei2θ , where eiθ

is the braiding phase between L copies of 0g and L copies of

0h. Note that the braiding phase between 0g and m copies of

0h defines e
2πiQ

(h)
0g , the h-charge of 0g. Now ei2θ measures

the phase due to 2L2/m such braids. Thus we can write

(

IL(0gh)

I
n/l
m (0h)I

m/l
n (0g)

)2L

= e
2πi 2L

2

m Q
(h)
0g (91)

We conclude that the mixed defect invariant measures the frac-

tional part of L
mQ

(h)
0g

. In fact, we can use the rhs of Eq. (89),

along with the identity L/m = n/l, to write

n

l
Q

(h)
0g

mod 1 =
p ⋆ q + k

l
mod 1. (92)

By interchanging g and h in the argument, we can also see

that the invariant measures the fractional part of LnQ
(g)
0h

. When

m = n = L, the invariant directly gives Q
(h)
0g

= Q
(g)
0h

.

The second general formula that we use to obtain fraction-

ally quantized responses applies to systems with translation

symmetry and a magnetic field, either discrete or continuous.

In general it measures a generalized filling, νH , defined as the

H symmetry charge per magnetic unit cell. Consider any de-

fect 0h, where hn = 0, such that h generates a Zn subgroup

H ∼= Zn ⊆ G. Consider also the translations r1 and r2, which

are assumed to span a single magnetic unit cell. In particular

we require that r1, r2 commute with each other, as well as

with H . Then the formula for this invariant is

e2πiνH/n =
η0h(r1, r2)

η0h(r2, r1)
. (93)

Let

b :=
w(r1, r2)

w(r1, r2)
∈ A (94)

be the anyon per magnetic unit cell, which is a gauge-invariant

quantity (i.e. invariant under coboundary operations). In gen-

eral, this will consist of the anyons in each unit cell, and also

the anyon associated to the flux quantum contained in the

magnetic unit cell. We can show that if

0nh = f, (95)

then

e2πiνH =

(
η0h(r1, r2)

η0h(r2, r1)

)n

=Mf,b. (96)

Therefore this invariant takes the form

e2πiνH/n = e2πi
f⋆b+k

n . (97)

The integer k in this case parametrizes the defect (SPT) class

modulon, and represents the integer part of the totalH-charge

associated to each magnetic unit cell. As in the case of the

formulas discussed above, this quantity is invariant under the

gauge transformations of the theory but may have an ambigu-

ity upon relabeling 0h.

Next we will study the different symmetry groups of inter-

est one by one. Proofs and further derivations of the results

stated below can be found in Appendix E; Tables V and VII

summarize the G-crossed invariants for the continuum and

discrete cases respectively.
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B. G = U(1)

The classification of SETs with U(1) symmetry and a fixed

intrinsic topological order is A×Z, before accounting for re-

labelings of anyons and defects. The factor A comes from the

symmetry fractionalization, H2(U(1),A) = A. The factor

of Z comes from the defect class H3(U(1), U(1)) = Z, and

specifies the even integer part of the Hall conductivity.

For Abelian FQH states, this data can be conveniently en-

coded via an Abelian Chern-Simons theory where the cou-

pling to the background U(1) field A is given by

Lfrac =
1

2π
qIa

I ∪ dA; LSPT =
2k1
4π

A ∪ dA, (98)

where qI is the charge vector. The Hall conductivity is then

given by

σ̄H = ~qTK−1~q + 2k1, (99)

where

Leff =
σ̄H
4π

A ∪ dA (100)

is the effecive response theory obtained by integrating out the

internal gauge fields. The different possible choices of charge

vector ~q, after accounting for relabelings of the K matrix the-

ory, correspond to different choices of the symmetry fraction-

alization class. Thus there are at most |A| = detK distinct

choices. For general G the number of distinct fractionaliza-

tion classes is less than |A| because of the possibility of re-

labeling the anyons that can identify the different elements of

H2(U(1),A).
With gi = e2πizi , we can pick a gauge in which the sym-

metry fractionalization cocycle is

w(g1,g2) = vz1+z2−[z1+z2] (101)

where [z1+z2] := z1+z2 mod 1. Note that in this notation,

the anyon v0 is the trivial topological charge, which here we

label as 1; previously we also referred to the trivial topological

charge using the label 0.

The vison v (which is conventionally represented as ~q in

the K matrix theory) is the anyon associated to the insertion

of one quantum of U(1) flux. This is reflected in the structure

of the above cocycle, which takes the values v or 1 depend-

ing on whether the total flux inserted through the symmetry

operations g and h is greater than or less than one flux quan-

tum. Therefore the choice v ∈ A determines the symmetry

fractionalization class.

For non-Abelian FQH states, describing the distinct possi-

ble fractional charge assignments of quasiparticles using CS

theory is much more cumbersome. However, using the G-

crossed BTC formalism, we can provide a topological invari-

ant:

e2πiQa = Fa(g1 = g, . . . ,gp = g)

:=
(
R0g,aRa,0g

)p
p−1
∏

j=1

ηa(g,g
j) =Mv,a. (102)

This formula defines Qa, the fractional U(1) charge of the

quasiparticle a. Here a is any anyon, not necessarily Abelian,

and g = e2πi/p.

In the above equation, we can take p to be a common mul-

tiple of (n1, ..., nr), where A =
∏r
i=1 Zni , in which case

one can show that Eq. (102) is invariant under any relabel-

ing of the defects, 0g → 0gχ(g), for χ(g) ∈ A. On the

other hand, if we use a generic integer p > 1, then we pick

a canonical 0g that is continuously connected to the identity

anyon, which can be made precise by demanding that Rb,0g

and R0g,b approach 1, for any anyon b, as g → 0. As we dis-

cuss in Appendix C, since the data of the G-crossed BTC can

equivalently be taken to be piecewise continuous as a function

of group elements in G, it follows that for g close enough to

the identity, there is a choice of 0g that is continuously con-

nected to the trivial anyon 0. Therefore for large enough p,

there is a canonical choice of 0g with g = e2πi/p.

The different defect classes, whose ambiguity is specified

by H3(U(1), U(1)) = Z, can be distinguished from the fol-

lowing invariant quantity in the G-crossed BTC:

In(0g) := [T n]
(g,0)
0g0g

= θn0g

n−1∏

j=0

η0g(g,g
j), (103)

where g = e2πi/n and n is any integer.

To obtain an absolute invariant of the G-crossed BTC, we

take 0g as the unique g-defect that is continuously connected

to the identity particle, which as discussed above is well-

defined as long as n is taken to be sufficiently large. Eq. (103)

in general gives us an infinite set of invariants, as we can pick

g to be any root of unity, and thus n can be any integer. Since

we know that different defect classes are related by bosonic

integer quantum Hall states, we expect that In should be re-

lated to the Hall conductivity, which is the physical quantity

that distinguishes these states. This is indeed the case; we can

show (see Appendix E 1) that

(In)
2n(0g) = e2πiσ̄H (104)

Note that setting g = e2πi/n, then changing the defect class by

the generator of H3(U(1), U(1)), changes the above invariant

as

In → Ine
2πi/n, (105)

while physically changing the Hall conductivity σ̄H → σ̄H +
2. The fractional part of the Hall conductivity is determined

by the symmetry fractionalization class through the relation

e2πiQv = e2πiσ̄H (106)

C. G = U(1) ⋋ E2

The FQH system in the continuum possesses, in addi-

tion to U(1) charge conservation symmetry, also SO(2) ∼=
U(1) continuous rotational symmetry and magnetic transla-

tion symmetry. The continuum magnetic translation group,



27

which we denote as U(1) ⋋ R2, is a central extension of the

continuous translation group R2, by U(1) as indicated by the

short exact sequence

1 → U(1) → U(1)⋋lB R2 → R2 → 1,

with the group multiplication law

(e2πiz1 , r1)(e
2πiz2 , r2) = (e

2πi(z1+z2+
r1×r2

2l2
B

)
, r1 + r2)

(107)

(see Appendix A 1 for a derivation). Since groups defined

with different values of the magnetic length lB are isomor-

phic under a rescaling of space, we will drop the subscript lB
in the following discussion. The full symmetry of FQH states

G = [U(1)⋋ R2]⋊ SO(2) is then captured by the following

split extension:

1 → U(1)⋋ R2 → G→ SO(2) → 1, (108)

where e2πih ∈ SO(2) acts on U(1)⋋R2 by rotating the trans-

lation component r of (e2πiz, r, e2πih) by an angle 2πh. This

action is summarized by the following group multiplication

law:

(e2πiz1 , r1, e
2πih1)(e2πiz2 , r2, e

2πih2) = (e
2πi(z1+z2+

r1×
h1 r2

2l2
B

)
, r1 + h1r2, e

2πi(h1+h2)) (109)

Note that we can represent the symmetry group in two equiv-

alent ways depending on the order in which the group ex-

tensions are carried out: G = [U(1) ⋋ R2] ⋊ SO(2) ≃
U(1)⋋ [R2 ⋊ SO(2)].

In this case we find (see Appendix H 2)

H2(U(1)⋋ E2,A) = A×A

H3(U(1)⋋ E2, U(1)) = Z3. (110)

Interestingly, these cohomology groups are independent of the

value of the magnetic field. Moreover, the cohomology groups

are also independent of the translations; one would obtain the

same results for just U(1)× SO(2) symmetries (i.e. for U(1)
charge conservation and SO(2) ∼= U(1) spatial rotation sym-

metries). However, in the absence of spatial rotational sym-

metry, the cohomology groups reduce to those with just the

U(1) charge conservation symmetry, discussed in the previ-

ous section.

The continuum field theory for Abelian FQH systems is

generally written [7–9] in terms of a 1-form U(1) gauge field

A (the usual vector potential) and the 1-form SO(2) spin con-

nection ω. The full action, including the symmetry fractional-

ization, is L = L0 + Lfrac + LSPT, where

L0 = −
1

4π
KIJa

IdaJ (111)

Lfrac =
qI
2π
aIdA+

sI

2π
aIdω (112)

LSPT =
k1
4π
AdA +

k2
2π
Adω +

k3
4π
ωdω (113)

where for bosonic systems, k1, k3 are assumed to be even in-

tegers and k2 is any integer.

The factor of A coming from U(1) charge fractionalization

and the factor of Z coming from the Hall conductivity were

discussed in the preceding section, and can be obtained from

the same formulas, Eq. 102 and 103, after setting both trans-

lations and rotations to zero. However in this case we have an

additional constraint. The translational symmetry allows us to

define a filling fraction ν, which is the charge per magnetic

unit cell. This is measured as follows: let x,y be pure transla-

tions in the x and y directions which span a magnetic unit cell,

and let g = (ei2π/n,0, 1) (note that we use 1 for the identity

element of the rotation group and 0 as the identity element of

the translation component). Define

e2πiν :=

(
η0g(x,y)

η0g(y,x)

)n

. (114)

This allows us to define the filling ν in terms of the projective

phase associated to adiabatically transporting a 2π/n U(1)
flux around a magnetic unit cell.

Now one has the condition (see Appendix F 1) that

e2πiν =Mv,v = e2πiσ̄H . (115)

Although we do not have a formal proof usingG-crossed iden-

tities, under certain assumptions on the anyon F and R sym-

bols (see Appendix D) we can construct particular solutions

to the G-crossed equations, and in all these cases verify that

e2πiν/n = e2πiσH/n, (116)

for every n > 0. This allows us to verify the well-known

equation

ν = σ̄H . (117)

The fact that ν = σ̄H is well-known from Galilean invariance,

however it has not been proven more generally from transla-

tional symmetry alone.

The second factor of A is associated with fractionalization

of the SO(2) ≃ U(1) spatial rotational symmetry. The as-

sociated invariant is also given by the general U(1) symme-

try fractionalization formula, this time after setting the charge

conservation and translation components to zero:

e2πiLa =
(
R0g,aRa,0g

)p
p−1
∏

j=1

ηa(g,g
j), g = (1,0, ei2π/p)

(118)
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As in the case of the fractional charge Qa, in the above equa-

tion, we can take p to be a common multiple of (n1, ..., nr),
where A =

∏r
i=1 Zni , in which case one can show that

Eq. (118) is invariant under any relabeling of the defects,

0g → 0gχ(g), for χ(g) ∈ A. On the other hand, if we use

a generic integer p > 1, then we pick a canonical 0g that is

continuously connected to the identity anyon as g → 0.

La can be understood as a fractional orbital angular mo-

mentum of the anyon a. Under adiabatic transport of the

anyon a around a region of curvature Ω the wave function

picks up a phase

γAB = eiSaΩ, (119)

where

e2πiSa = θae
2πiLa . (120)

Such a calculation was performed explicitly for Abelian topo-

logical phases in [52, 53]; we are not aware of such a calcula-

tion for non-Abelian topological orders.

The H3(G,U(1)) = Z3 classification can be understood

through the effective SPT action, LSPT defined in Eq. 111.

The total response theory, which can be obtained in the

Abelian case by integrating out the dynamical U(1) gauge

fields, is of the form

LResponse =
σ̄H
4π

AdA +
S

2π
ωdA+

(
ℓs
4π

−
c

48π

)

ωdω.

(121)

The last contribution is proportional to the chiral central

charge c, and arises from framing anomaly [9, 54]. To obtain

it we have kept only the spatial component of the space-time

spin connection.

The G-crossed formulas for σ̄H and ℓs, which is the an-

gular momentum associated to a conical defect of angle 2π,

can be obtained from the formula for the U(1) defect class,

Eq. (103). Specifically, we define g = (e2πi/n,0, 1),h =
(1,0, e2πi/n), and obtain

eiπσ̄H/n := In(0g) = e2πi(hv+k1)
1
n (122)

eiπℓs/n := In(0h) = e2πi(hs+k3)
1
n (123)

Here we have used the topological spin ha ∈ [0, 1), defined in

terms of the topological twist θa = e2πiha .

The mixed defect class is measured by the shift S. To find

the correspondingG-crossed invariant, we define

ei2πS/n :=
In(0gh)

In(0g)In(0h)
= e2πi(v⋆s+k2)

1
n (124)

Note that the usual definition of the shift S in the FQH litera-

ture is related to S as follows:

S =
2S

σ̄H
. (125)

D. G = ZM

Although systems with G = ZM do not describe FQH

states, they provide an instructive example of how the SET

classification based on H2(G,A) and H3(G,U(1)) can be

reduced after taking into account defect relabelings, as we

discuss in detail in Appendix G. This example will also help

us build towards our subsequent analysis of FQH states with

space group symmetries.

Each symmetry fractionalization class corresponds to a

choice of s = 0Mh : throughout this section, we take h =

e2πi/M to be the generator of the group ZM . The defect 0h is

understood as an elementaryZM flux; insertingM such fluxes

induces the anyon s. We use the symbol s since in the context

of point group symmetry this anyon is a discrete analog of the

spin vector. However, there is a redundancy in the description

of symmetry fractionalization classes, as there is no way to

canonically define the elementary defect 0h. We can equally

define the elementary flux as s′h = 0h × s′, in which case the

anyon induced by inserting M such defects is s× s′M .

The inequivalent choices of s are hence classified by

A/MA, where MA = {aM , a ∈ A}. When A = Zn1 ×
· · ·×Znr , the symmetry fractionalization classes form a group

H2(ZM ,A) = Z(M,n1) × · · · × Z(M,nr).

In terms of a discrete backgroundZM gauge field C, which

is defined on a triangulation of the manifold M and is valued

in 2π
M Z, we can write the following Abelian CS action captur-

ing these phases:

Lfrac =
sI
2π
aI ∪ dC; LSPT =

k3
2π
C ∪ dC (126)

In the context of point group symmetries described by the

above field theory, where a ZM flux is simply a disclination,

the A/MA classification of spin vectors arises from the fact

that s is the anyon induced by inserting M elementary discli-

nations; but we can always trivially associate an anyon s′

to each elementary disclination by adjusting local energetics.

Therefore the anyons s and s × s′M describe the same sym-

metry fractionalization class.

In the G-crossed theory, a representative s of the symmetry

fractionalization class is determined by the following formula,

which also gives the fractional ZM charge (angular momen-

tum) La of an anyon a:

e2πiLa = Fa(g1 = h, . . . ,gn = h)

:=
(
R0h,aRa,0h

)M
M−1∏

j=1

ηa(h,h
j) =Ms,a. (127)

If Ms,a is known as a function of a, the value of s can be

determined. Note that the fractional ZM charge of an anyon

is not invariant for a given symmetry fractionalization class

due to the ambiguity in s: for a given fractionalization class,

the quantity e2πiLa is determined only up to terms of the form

Ms′M ,a upon relabeling the defects.

The defect classes form a torsor over H3(ZM , U(1)) ∼=
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Topological order A Rab
a+b H2(G,A) P No. of distinct defect classes

1/N Laughlin (N even) ZN e
πiab
N Zd

2d
(2d,2s+cd)

M×(2d,2s+cd)
2d

SU(2)k Read-Rezayi Z2 e
πikab

2 Z(M,2)
2

(2,k(s+M/2))
if M ∈ 2Z; 1 otherwise

M×(2,k(s+M/2))
2

if M ∈ 2Z; M otherwise

Z2 toric code Z2 × Z2 e
πi
2

aT σxb Z2
(M,2)

2
(s1,s2)

if M ∈ 2Z; 1 otherwise M
2

if M ∈ 2Z and s1 = s2 = 1; M
otherwise

Z
(p)
N anyons, N even ZN e

2πipab
N Zd

2d
(2d,p(2s+cd))

; (2p,N) = 1 M
(M,P )

Z
(p)
N anyons, N odd ZN e

2πipab
N Zd

2d
(2d,p(2s+cd))

; (p,N) = 1 M
(M,P )

TABLE VI. The effect of relabelings on the defect classification for various topological orders with G = ZM . The defect classification prior

to considering relabelings is a torsor over H3(ZM , U(1)) ∼= ZM ; but the true classification is a torsor over a subgroup of ZM , denoted as

ZM/(M,P ). The quantity IP
M (0h) is an absolute SET invariant. For a given symmetry fractionalization class, the integer P depends sensitively

on the group structure and braiding data of A. We have also defined d = gcd(M,N) and c = MN
d2

, while the Abelian anyon s is a

representative of H2(G,A). For details of the derivation, see Appendix G 1.

ZM ; they can be measured using the formula

eπiℓs/M := IM (0h) = θn0h

M−1∏

j=0

η0h(h,h
j) = ei2π

hs+k3
M ,

(128)

where k3 ∈ ZM is the defect (SPT) invariant. We note that

for ZM SPTs characterized by a 3-cocycle α, with [α] ∈

H3(ZM , U(1)), this invariant takes the form
M−1∏

j=0

α(h,hj ,h)

that has been discussed previously in Refs [97, 98].

Next we discuss a redundancy in the defect classification.

By making certain gauge choices, the remaining G-crossed

data forG = ZM are completely determined by the data of the

UMTC and the symmetry fractionalization cocycle w(g1,g2)
(see Appendix B 3). Under a relabeling which takes 0h →
s′h = 0h × s′, we have, for gi = e2πihi/M ,

w(g1,g2) = 0g1
0g2

0g1g2

→ 0g1
0g2

0g1g2
× s′h1+h2−[h1+h2]M . (129)

Note that s′h1+h2−[h1+h2]M equals either the trivial anyon

or the anyon s′M . Thus, whenever s′M is itself trivial, a re-

labeling of this type leaves the cocycle w(g1,g2), and hence

the entire G-crossed data, invariant. However, the quantities

IM (0h) and IM (s′h) may be unequal: they can correspond to

different values of k3, and hence different values of ℓs. These

values of k3 parametrize the same defect class, because we

can always relabel 0h as s′h without changing the symmetry

fractionalization anyon s, or the other G-crossed data.

Although the above argument involves only a subset of all

possible relabelings, it accounts for all the nontrivial equiva-

lences among defect classes. This can be independently veri-

fied for Abelian SET phases using relabelings in the field the-

ory [15, 99]. The procedure here thus gives the complete set

of equivalences even in SETs with non-Abelian anyon mod-

els. An example of how the classification is reduced is given

in Table VI, where we consider some common anyon models

with ZM symmetry.

E. G = U(1)⋋φ Z2

The symmetry G = U(1) ⋋φ Z2 is given by discrete mag-

netic translations, whose associated many-body operators in a

system of N particles form the algebra

TxTy = TyTxe
iφN , (130)

where φ is the flux per unit cell, and x and y are the basis

vectors of the lattice. The symmetry group in this case can

be considered a central extension of Z2 by the U(1) charge

conservation symmetry, as encapsulated by the short exact se-

quence

1 → U(1) → U(1)⋋φ Z
2 → Z2 → 1. (131)

Different values of N correspond to different representations

of the same group. With group elements given by g =
(e2πiz, r), the group multiplication law is given in symmet-

ric gauge by

(e2πiz1 , r1)(e
2πiz2 , r2) = (e2πi(z1+z2+

φ
2 r1×r2), r1 + r2)

(132)

We can construct a background gauge field forG symmetry

in terms of the pair (A, ~R), where A ∈ R/2πZ and 1
2π
~R =

1
2π (X,Y ) ∈ Z2. A topological field theory for Abelian FQH

states with G symmetry can now be written in terms of this

gauge field as

Lfrac =
qI
2π
aI ∪ dA+

mI + φqI
2π

aI ∪ AXY (133)

LSPT =
k1
2π
A ∪ dA+

k6 + 2φk1
2π

A ∪ AXY

+
φ2k1
2π

d−1(AXY ∪ AXY ), (134)

where we have defined the area elementAXY = 1
4π (X ∪Y −

Y ∪ X). The appearance of terms explicitly depending on φ
is a direct consequence of the group multiplication law, which

mixes translations into the U(1) components (see Appendix

I 1 for a derivation).

Now we find

H2(U(1)⋋φ Z
2,A) = A×A

H3(U(1)⋋φ Z
2, U(1)) = Z2. (135)
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In this case it is possible to show explicitly that H3(U(1) ⋋φ
Z2, U(1)) ∼= H4(U(1)⋋φ Z2,Z). Importantly, the SET clas-

sification does not depend on φ, even though the G-crossed

data, the effective actions, and the allowed values of the in-

variants all depend on φ.

Each symmetry fractionalization class can be understood in

terms of two anyons: (i) the vison v, which is the anyon as-

sociated to the insertion of 2π flux, as discussed previously,

and (ii) the anyon per unit cell m. If the magnetic transla-

tion algebra is trivial (i.e. if φ = 0), we can define m in a

gauge-invariant manner through the formula m = b(x,y) :=

w(x,y)w(y,x), where x,y are the elementary translations.

When φ = p/q is fractional, m cannot be defined in terms

of pure translations alone. Assuming that r1, r2 are magnetic

translations that span a q × 1 magnetic unit cell, we can write

(see Appendix H 3):

b(r1, r2) = vp ×mq. (136)

m is an anyon that can be associated to a single unit cell, as

we discuss below. Eq. 136 can be understood as the anyon

associated to a magnetic unit cell, which takes the above form

because each magnetic unit cell contains qφ = p flux quanta

(associated to vp) and q unit cells (associated to mq).

The anyon m can be measured by applying the following

sequence of elementary translation operations to an anyon a:

g1 = (1,x);g2 = (1,y);g3 = (1,−x);g4 = (1,−y), so

that Φ = g4g3g2g1 = (eiφ,0). In terms of the associated

projective phases, we can write the invariant as

Fa(g1,g2,g3,g4) :=

4∏

i=1

Ra,0giR0gi ,a

(Ra,0ΦR0Φ,a)
ηa(g4,g1g2g3)ηa(g3,g1g2)ηa(g2,g1) =Ma,m (137)

The symmetry operations take a around a unit cell contain-

ing the anyon m, and the above invariant measures the braid-

ing between them. From the group multiplication law, the

process of going around the unit cell by a sequence of trans-

lations is equivalent to inserting a flux φ, and transporting the

anyon around a region containing this flux introduces an addi-

tional phase. This extra phase is cancelled by the denominator

in Eq. 137.

Similar to the case with continuous translation symmetry, it

is possible to define a filling corresponding to the charge per

magnetic unit cell ν, which in the G-crossed BTC is given by

the formula

e
2πi
n ν =

η0g(r1, r2)

η0g(r2, r1)
, (138)

where g = (e2πi/n,0) for an integer n, and 0g is a U(1) flux.

The vectors r1 and r2 must be chosen to span a magnetic

unit cell, in order for this formula to be gauge-invariant. The

charge per unit cell, defined by the Z2 translations, is then ν
q .

The filling is related to the Hall conductivity and the anyon

per unit cell as follows:

e2πiν =Mv,mq × e2πiqφσ̄H (139)

Since ν is typically fixed in terms of the microscopic defini-

tion of the system, Eq. 139 can be viewed as a constraint on

the fractional statistics and symmetry fractionalization class

in terms of the charge and flux per unit cell. As such, this can

be viewed as a strengthened version of a Lieb-Schulz-Mattis

constraint [23, 59]. Eq. 139 was first shown in [23] using flux

insertion arguments. In Appendix F 2 we provide a proof of

Eq. 139 within the framework of the G-crossed BTC.

Note that whenever we can write down explicit solutions

to the G-crossed BTC equations, we can verify the stronger

result

ν = q(φσ̄H +Qm + k6). (140)

Eq. (139) is a weaker result obtained by equating the two

sides of this equation only modulo 1. To our knowledge, this

stronger result has not been stated or rigorously proven in pre-

vious work. Obtaining a completely general proof of this re-

sult entirely within the framework of G-crossed BTCs is an

interesting problem which we leave for future work.

The stronger LSM constraint can also be read off from the

topological actions in Eqs. (133) and (134) after integrating

out the internal gauge fields. First we obtain σ̄H = Qv +
2k1 = 2(hv + k1) (the response theory coefficient of A∪ dA)

and then we obtain

ν

q
= v ⋆ m+ 2φ(hv + k1) + k6, (141)

which is the response theory coefficient of A ∪ AXY . How-

ever, this is not a fully rigorous derivation because the re-

sponse theory has fractional coefficients and is not gauge-

invariant.

The defect classification H3(U(1) ⋋φ Z2, U(1)) = Z2

has two contributions associated with the integers k1 and k6,

which correspond to changing the Hall conductivity by an

even integer and the charge per unit cell by an integer.

F. G = U(1) ⋋φ [Z2 ⋊ ZM ]

1. Group structure and properties of defects

Here we consider the orientation-preserving space group

Gspace = Z2 ⋊ZM with M -fold rotations. The full symmetry
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Invariant Formula Details

Symmetry fractionalization invariants, A = Zn1 × · · · × Znr ; p = lcm(n1, . . . , nr)

{Qa} e2πiQa = Mv,a = Fa(g1, . . . ,gp) g1 = · · · = gp = (ei2π/p,0, 1)

{La} e2πiLa = Ms,a = Fa(g1, . . . ,gM ) g1 = · · · = gM = (1,0, ei2π/M )
{τa} e2πiτa = Mm,a = Fa(g1, . . . , g4) g1 = (1,x, 1);g2 = (1,y, 1);g3 = (1,−x, 1);g4 =

(1,−y, 1)

{~Pa} We define e2πi~Pa·
1−hr := M~t·r,a

M = 2 M~t·r,a = Fa(g,g)
Fa(h,h)

g = (1, r, e2πi/2),h = (1,0, e2πi/2)

M = 3 Ma,~t·(x−y) =
Fa(g,g,g)
Fa(k,k,k)

= M
a,txt2y

g = (e2πiz,x, e2πi/3),k = (e2πiz,y, e2πi/3)

M = 4 M~t·1+hr,a = Fa(g,g)
Fa(k,k)

= Ma,(txty)rx×(txty)
ry g = (1, r, e2πi/2),k = (1, 0, e2πi/2)

Fractionally quantized responses

σ̄H e2πi
σH
2p = Ip(0g) g = (ei2π/p,0, 1)

S e2πi S

M =
IM (0gh)

IM (0g)IM (0h)
g = (ei2π/M ,0, 1);h = (1,0, ei2π/M )

ℓs e2πi
ℓs
2M = IM (0h) h = (1, 0, ei2π/M )

ν e2πi ν
n =

η0g (r1,r2)

η0g (r2,r1)
g = (ei2π/n,0, 1); r1, r2 span a magnetic u.c.

νs Not determined
~Pc

M = 2 eiπ
σH
2 × e2πiS

2 × e2πi ~Pc·r =
I2(0g)

I2(0k)
g = (eiπ, r, e2πi/2);k = (1, r, e2πi/2); g2 = k2 = 0

M = 3 eiπσH × e2πi S
3 × e2πi ν

3 × e2πi 1
3
~Pc·

2+hr =
I3(0g)

I3(0k)
g = (e2πi 2−φ

3 , r, e2πi/3),k = (e2πi 1−φ
3 , r, e2πi/3);

g3 = k3 = 0

M = 4 eiπ
σH
2 × e2πiS

2 × e2πi 1
2
~Pc·

1+hr =
I2(0g)

I2(0k)
g = (eiπ, r, e2πi/2),k = (1, r, e2πi/2); g2 = k2 = 0

~Ps

M = 2 e2πi
~Ps·r
2 × e

iπ
2

(~t·r)⋆((~t·r)) =
I2(0g)

I2(0h)
g = (1, r, eiπ),h = (1,0, eiπ); g2 = h2 = 0

M = 3 e2πi 1
3
~Ps·

2+h(x−y) × e2πiS
3 × e

πi
3

(tx⋆ty+ty⋆tx+ty⋆ty) ×

e2πiz ~Pc·
2+h(x−y) =

I3(0g)

I3(0k)

g = (e2πi 1−φ
3 ,x, ei2π/3),k = (e2πi 1−φ

3 ,y, ei2π/3);
g3 = k3 = 0

M = 4 e2πi
~Ps·

1+hr
2 × e

iπ
2

(~t·r)⋆((~t·1+hr)) =
I2(0g)

I2(0k)
g = (1, r, eiπ),k = (1,0, eiπ) ; g2 = k2 = 0

Πij e2πiMrT Πr′ := IM (d4)IM (d1)
IM (d2)IM (d3)

d1 = 0(1,0,e2πi/M ); d2 = 0(1,r′ ,e2πi/M ); d3 =
0(1,r,e2πi/M ); d4 = 0(1,r+r′ ,e2πi/M ); we have assumed

that v,m are trivial in this formula

~νp Not determined

TABLE VII. List of G-crossed invariants studied in this paper for G = [U(1) ⋋ Z2] ⋊ ZM . A general group element is written as g =

(e2πiz, r, e2πij/M ), where the three components refer to U(1), translation and rotation symmetries respectively. The group element h is the

generator of ZM rotations, and h is its 2× 2 matrix representation. See Appendix E for derivations.

group is then a central extension of Gspace by U(1):

1 → U(1) → G = U(1)⋋φ [Z
2 ⋊ ZM ] → Gspace → 1.

(142)

The group multiplication law (which is derived in Appendix

A) can be written as follows:

(e2πiz1 , r1, e
2πih1/M )(e2πiz2 , r2, e

2πih2/M ) = (e2πi(z1+z2+φw(r1,
h1r2)), r1 +h1 r2, e

2πi[h1+h2]M/M ) (143)

Here the function w(r1, r2) may be real valued but satisfies

w(r1, r2)−w(r2, r1) = r1×r2. We will choosew(r1, r2) =
1
2r1 × r2 so as to be invariant under overall rotations, i.e. to

be in symmetric gauge.

The symbol h1r2 denotes a rotation of the vector r2 by the

matrix corresponding to the point group element h1. Now, a

general symmetry defect can be written as ag, where g =

(e2πiz , r, e2πij/M ). This defect can be written as a × 0g,

where a ∈ C0 is an anyon, and is understood as follows: it

is associated to a disclination angle of 2πj/M , a dislocation

Burgers vector r, and a localized U(1) flux equal to z mod 1
in units of the flux quantum. Furthermore, the defect ag is

obtained from the defect 0g by attaching the anyon a to the

defect core.

Although the symmetry action does not permute the

anyons, it does permute the defects. A defect ag associated
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to the group element g can be conjugated by the group ele-

ment k to obtain a defect ρk(ag), which is associated to the

group element kgk̄, where k̄ denotes the inverse of k. The

symmetry action on defects comes from the fact that if g and

k do not commute, the group element associated to the fusion

of two defects ag and ck depends on the order in which they

fuse. In our examples, we can always choose the explicit form

of ρk(ag) so that the following fusion relation is satisfied:

ck × ag = ρk(ag)× ck (144)

This leads to the following definition of ρ:

ρk(ag) = [aw(k,g)w(kgk̄,k)]kgk̄

= [aw(g, k̄)w(k̄,kgk̄)]kgk̄ (145)

The mathematical classification of symmetry fractionaliza-

tion and defect classes in the discrete case is given in Table III,

and a summary of formulas for the differentG-crossed invari-

ants is given in Table VII. Importantly, the fractional quan-

tum numbers associated to two distinct defects ag and ρk(ag)
should be the same up to the corresponding quantum numbers

of arbitrary anyons, for any k. This can be verified in each

of the invariant formulas. The derivation of these invariants is

given in Appendix E.

2. Symmetry fractionalization invariants

ForG = U(1)⋋φ [Z
2⋊ZM ] there are four symmetry frac-

tionalization parameters, given by the anyons {v, s,m,~t} and

a set of equivalence relations among them. The classification

for general M is as follows (see Appendix H 4 for a deriva-

tion):

H2(U(1)⋋φ[Z
2⋊ZM ],A) ∼= A×A×(A/MA)×(KM⊗A).

(146)

The parameters v, s,m were discused above: the distinct

choices of v, s,m are classified by the groups A,A/MA,A
respectively, and these anyons can be measured using the

sameG-crossed identities as given previously, after setting ro-

tation group elements to zero.

For a 2π/M disclination with M ∈ {2, 3, 4, 6}, we define

the group KM as follows:

KM :=
Z2

1−hZ2
(147)

where h, the generator of 2π/M rotations, has the usual rota-

tion action on vectors in Z2 (i.e. the action of h is represented

by a 2× 2 matrix written in the lattice basis). We find that

K2 = Z2
2

K3 = Z3

K4 = Z2

K6 = Z1. (148)

The group KM , which is discussed in additional detail in

Ref. [15], represents a finite group grading on Burgers vec-

tors, which can physically be understood in terms of conju-

gacy classes of the translation component of G. Physically

this arises because the Burgers vector of an “impure” discli-

nation is only well-defined up to a 2π/M rotation. For ex-

ample, when M = 2, a π disclination defect Burgers vector

b = (bx, by)
T falls into one of four conjugacy classes deter-

mined by the values of bx mod 2, by mod 2.

Consider the case with M = 2. In this case, the π discli-

nation defect corresponding to g = (1,x, eiπ) has the prop-

erty that g2 = 0; hence two 0g defects must fuse to give an

Abelian anyon, 02g = a. In certain cases this anyon can be

completely accounted for by rotation symmetry fractionaliza-

tion: we could also obtain 02h = a for h = (1,0, eiπ). In

the general case we have 02g = 02h × tx for some Abelian

anyon tx. Now if tx = a2 for some a ∈ A, this anyon can

be trivialized by relabeling 0h → ah. However, if tx 6= a2

for any a ∈ A, then there is a nontrivial symmetry fraction-

alization anyon associated to the fusion of two disclination

defects with g = (1,x, eiπ). The anyon tx cannot be under-

stood in terms of rotational symmetry fractionalization alone.

The number of distinct choices for tx is therefore given by the

group A
{a2,a∈A} = A/2A. For M = 2 we can follow the

same logic and independently associate an anyon to the fu-

sion product of two dislocation defects g′ = (1,y, eiπ), and

the number of distinct assignments is again given by A/2A.

The total number of distinct assignments is given by

K2 ⊗A = (A/2A)× (A/2A). (149)

The definition of ⊗ is reviewed in Appendix J. Although we

cannot directly discuss pure dislocation defects using these

ideas, we can nonetheless treat a dislocation as a dipole of two

disclination defects with opposite disclination angles. Since

two copies of a disclination defect with Burgers vector b fuse

to give an anyon tbxx t
by
y := ~t · b, a dislocation with Burgers

vector (2bx, 2by) can also be associated to the anyon ~t · b.

The above discussion is extended to M = 3, 4, 6 as fol-

lows. Given a 2 × 2 integer matrix W =

(
a b
c d

)

and a

pair of anyons ~t = (tx, ty), let W~t denote the pair of anyons

(tax × tby, t
c
x × tdy) (this defines the action of W on the group

A×A). Then, we find in general that a dislocation with Burg-

ers vector b − hb is associated to the anyon ~t · b. (As in the

case M = 2 discussed above, this symmetry fractionalization

can also be understood by considering the fusion product of

disclinations with nonzero b, and subtracting away the pos-

sible contributions from rotational symmetry fractionalization

alone.) Two pairs (tx, ty) and (t′x, t
′
y) describe the same sym-

metry fractionalization if

~t = ~t′ × ~χ× [h
T

~χ]−1. (150)

Here hT refers to the transpose of the 2×2 matrix h. Now the

difference between the pairs ~t and ~t′ corresponds to attaching

the anyons ~χ · b and ~χ · hb = hT

~χ · b to the dislocations

with Burgers vectors b and hb respectively. This attachment

can always be achieved by adjusting local energetics in the

underlying system Hamiltonian; therefore the symmetry frac-

tionalization class remains the same upon replacing ~t with ~t′

according to the equation above.
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The equivalence relation on ~t implies that the classification

of (tx, ty) is not simply A × A: in fact, any pair of the form

(tx, ty)
T = 1−hT

(t′x, t
′
y)
T can be seen to belong to the trivial

symmetry fractionalization class. The physically distinct pairs

(tx, ty) ∈ A × A give a set of symmetry fractionalization

classes forming the groupKM ⊗A, where

K2 ⊗A = (A/2A)× (A/2A)

K3 ⊗A = A/3A

K4 ⊗A = A/2A

K6 ⊗A = Z1. (151)

Just as the anyons v and s yield the fractional U(1) charge

and angular momentum of an anyon a via mutual braiding, the

anyon~t allows us to define a fractional linear momentum ~Pa in

terms of braiding anyons around dislocations, as follows. The

phase obtained by braiding an anyon a around a dislocation

with Burgers vector 1−hr, which is in the trivial KM grading,

is given by

e2πi
~Pa·

1−hr :=Ma,~t·r. (152)

We can obtain a formula for Ma,~t·r, which allows us to ef-

fectively measure ~t, using the G-crossed data by relying on

the ideas discussed above for M = 2. We consider an ‘im-

pure’ disclination defect, i.e. a defect 0g with nonzero discli-

nation angle and dislocation Burgers vector b (forM = 2, we

chose g = (1,x, eiπ)). We can measure the anyon induced

by the fusion of n such impure disclinations, with n being

some integer that divides M (above we chose n = 2). This

is done using the invariant Fa(g1 = g, . . . ,gn = g). Next

we subtract away the contributions coming from U(1) and ro-

tational symmetry fractionalization. These contributions are

measured by the invariant Fa(g1 = h, . . . ,gn = h) for some

suitably defined h. (Above, this was done by considering

h = (1,0, eiπ).) The symmetry fractionalization invariant

which measures ~t thus takes the form

Fa(g1 = g, . . . ,gn = g)

Fa(g1 = h, . . . ,gn = h)
, (153)

where g contains a nontrivial translation component (corre-

sponding to a non-trivial dislocation Burgers vector), and the

translation component of h is the identity (corresponding to a

trivial dislocation Burgers vector); the other components of g

and h are equal.

The explicit formulas for each M are summarized in Table

VII, and a detailed derivation is discussed in Appendix E 5.

There are a few subtleties regarding the choice of g that are

also discussed there in detail.

For each anyon a, the invariant
Fa(g1=g,...,gn=g)
Fa(g1=h,...,gn=h) which

measures ~t can also be related to the fractional linear momen-

tum ~Pa of the anyon a. Note that there is some ambiguity in
~Pa as determined by these formulas, as we discuss below.

1. For M = 2, we expect from group cohomology that

the symmetry fractionalization class is specified by the

anyons tx, ty modulo anyons a2, where a ∈ A. Thus

the proposed invariant must measure Ma,~t·r where r is

arbitrary. Indeed, if we choose g = (1, r, eiπ) and h =
(1,0, eiπ), we obtain

Fa(g,g)

Fa(h,h)
=Ma,~t·r = e2πi(2

~Pa·r), (154)

as desired. Note that only the components of 2 ~Pa are

determined modulo 1: fixing the symmetry fractional-

ization class does not completely fix ~Pa.

2. For M = 3, we expect from group cohomology that

the symmetry fractionalization class is specified by

the combination txty (or equivalently txty
2
) modulo

anyons of the form a3, where a ∈ A. Thus the

proposed invariant must measure Ma,txty
2 . In this

case, if we choose g = (e2πiz,x, e2πi/3) and h =
(e2πiz ,y, e2πi/3), we have

Fa(g,g,g)

Fa(h,h,h)
=Ma,txt2y

= e2πi(3
~Pa·(x−y)). (155)

The relation to ~Pa was obtained using the definition

in Eq. (152). (The value of z is chosen so that

g3 = h3 = 0, but the final answer is independent of z.)

Now, only the quantity 3 ~Pa · (x−y) = 3(Pa,x−Pa,y),
is determined modulo 1. Here we have used the matrix

representation h =

(
0 1
−1 −1

)

.

3. For M = 4, we expect from group cohomology that

the symmetry fractionalization class is specified by the

combination txty (or equivalently txty) modulo anyons

of the form a2, where a ∈ A. Thus the proposed invari-

ant must measureMa,txty
. If we choose g = (1, r, eiπ)

and h = (1,0, eiπ), we obtain

Fa(g,g)

Fa(h,h)
=Ma,(txty)rx×(txty)

ry = e2πi(2
~Pa·r). (156)

Again, we used Eq. (152) to relate the invariant to
~Pa. Therefore the invariant does measure the symme-

try fractionalization class, but only the components of

2 ~Pa are determined modulo 1. We have used the matrix

representation h =

(
0 1
−1 0

)

in the above calculation.

The more detailed aspects of the derivations above are given

in Appendix E 5. By choosing different values of r, we can

determine tx and ty up to equivalences. The values of ~t mea-

sured with these formulas will change when we relabel the

defects or consider a different defect in the same conjugacy

class. However, as we show in Appendix E 5, this change is

trivial and is accounted for precisely by the equivalence rela-

tion on ~t.
The full symmetry fractionalization data can be understood

within an effective Lagrangian approach, which we summa-

rize for Abelian topological orders below.
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3. Effective action and response theory

Different terms in the SET classification can also be associ-

ated to concrete physical responses via an effective action in

terms of a background symmetry gauge field (A, ~R,C) which

obeys the above group multiplication law. For Abelian topo-

logical phases described by a K matrix, the effective action

(derived in Appendix I 2) can be written as follows:

Lfrac =
1

2π
aI ∪ (vIdA+ sIdC + ~tI · d

~
�R+ (mI + φqI)AXY )

LSPT =
k1
2π
A ∪ dA+

k2
2π
A ∪ dC +

k3
2π
C ∪ dC +

1

2π
A ∪ (~k4 · d

~
�R) +

1

2π
C ∪ (~k5 · d

~
�R) +

(
k6 + 2φk1

2π
A+

k7 + φk2
2π

C

)

∪ AXY

+
φ2k1
2π

d−1(AXY ∪ AXY ) +
φ

2π
AXY ∪ (~k4 ·

~
�R) (157)

This is the generalization to φ 6= 0 of the result of Ref. [15].

Here we have used ~v to denote the charge vector, to avoid

confusion with the denominator of φ = p/q Also, we have

defined ~�R = (1−h)−1 ~R.

In our simplicial formulation, the above action is defined

on a 3-manifold M by demanding that (i) the gauge field

(A, ~R,C) is flat, and (ii) the partition function of the system

is invariant under a retriangulation ofM . Note that in the case

with φ 6= 0, some of the terms acquire an explicit dependence

on φ.

The terms in the SPT effective Lagrangian LSPT are in

direct correspondence with the group cohomology classifica-

tion,

H3(U(1)⋋φ [Z2 ⋊ ZM ], U(1)) = Z2 × Z3
M ×K2

M . (158)

The coefficients k1, k6 are Z valued, the coefficients k2, k3, k7
correspond to the Z3

M part of the classification, and ~k4, ~k5 cor-

respond to the K2
M part of the classification. We emphasize

that different choices of the ki do not give distinct SETs in

general, and one needs to compute a further reduction to fully

classify distinct SETs. In the effective Lagrangian for Abelian

topological orders presented above, this reduction can be com-

puted by considering redefinitions of the internal dynamical

gauge fields.

Now we can integrate out the dynamical gauge fields aI and

obtain the following response theory:

Leff =
σH
2
A ∪ dA+

S

2π
A ∪ dC +

ℓs
4π
C ∪ dC +

~Pc

2π
· (A ∪ d~R) +

~Ps

2π
· (C ∪ d~R) +

1

2πq
(νA+ νsC) ∪ AXY

+
~νp
2πq

· ~R ∪AXY +
Πij
4π

Ri ∪ dRj +
α

4π
AXY ∪ d−1AXY + Lanom, (159)

where Lanom is the gravitational CS term that arises from the

framing anomaly. Since the gauge field C is the gauge field

associated with SO(2) rotations, we set it equal to the spatial

component of the spin connection that arises in the gravita-

tional CS term, and set the other components of the space-

time spin connection to zero (see also Ref. 15 for a discussion

of this). We thus get

Lanom = −
c

48π
C ∪ dC. (160)

We have normalized the fillings ν, νs, ~νp by q so that they

correspond to theU(1) charge, angular momentum, and linear

momentum per magnetic unit cell.

The individual responses associated to each of these terms

are discussed in Table III. For Abelian topological phases,

the effective action and the associated response theory pro-

vide a complete characterization of the allowed SET phases.

Although we do not write down the effective action for gen-

eral non-Abelian topological orders, the response theory will

take the same general form as in the Abelian case. In the

G-crossed BTC, the response coefficients can be determined

entirely from the fusion and braiding data associated to the

Abelian anyons and defects.
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An important result of our calculations is that the SET clas-

sification with G symmetry for any value of flux φ is isomor-

phic to that of Gspace × U(1), even though the G-crossed data

and the effective action explicitly depend on φ.

The G-crossed invariants are summarized in Table VII. Be-

low we discuss them in more detail.

4. Defect invariants

Here we discuss the invariants which measure the defect

class. From Appendix H 4 we find that for G = U(1) ⋋φ
[Z2 ⋊ ZM ],

H3(G,U(1)) ∼= H4(G,Z) ∼= Z2 × Z3
M ×K2

M . (161)

We have already discussed how to measure the Hall conduc-

tivity σ̄H , the filling per magnetic unit cell ν and the quantity

ℓs, which defines the angular momentum of an elementary

2π/M disclination. We further have a discrete analog of the

shift S, which is a mixed topological invariant of U(1) and

ZM symmetry, which is defined modulo M . We define the

shift as follows:

S = k2 + v ⋆ s. (162)

To obtain the corresponding G-crossed invariant, we set g =
(e2πi/M ,0, 1),h = (1,0, e2πi/M ), and evaluate

e
2πi
M S =

IM (0gh)

IM (0g)IM (0h)
(163)

The fractionalU(1) charge associated to an elementary 2π/M
disclination or to a corner of angle 2π is given by S/M . The

angular momentum of a 2π/M U(1) flux is given by S/M .

As with ℓs (which is defined modulo 2M ), e2πiS/M as

defined above may change under a defect relabeling, which

physically means that the fractional U(1) charge and angular

momentum of a disclination are only well-defined modulo the

charge and angular momentum of certain anyons that can be

used to relabel the disclination defects without changing the

other G-crossed BTC data (see Appendix G).

Next we discuss fractionally quantized responses in which

defects with nontrivial dislocation Burgers vectors possess

a fractional charge and angular momentum. The fractional

charge of a dislocation with Burgers vector b is given by
~Pc · b, where we define

~Pc =
(1−h)−1

(v ⋆ ~t+ ~k4). (164)

~Pc can be interpreted as a fractionally quantized charge polar-

ization, which also associates a momentum ~Pc to a 2π instan-

ton uniformly spread out throughout the system, and a bound-

ary charge ~Pc · n̂ per unit length for a boundary along the n̂
direction. Note that this response is nonquantized in the ab-

sence of rotational symmetry [100], because in that case one

can add a term dA∪ ~R to the topological response theory with

arbitrary coefficient and which is topologically invariant, but

corresponds to a coboundary term and is therefore topologi-

cally trivial (and thus not fixed by the G-crossed theory).

An analogous fractional angular momentum polarization
~Ps, which gives the fractional angular momentum ~Ps ·b to a

dislocation with Burgers vector b is given by

~Ps =
(1−h)−1

(s ⋆ ~t+ ~k5). (165)

The method used to extract ~Pc and ~Ps is similar to the

method for measuring the symmetry fractionalization param-

eter ~t. We choose g = (e2πiz , r, e2πi/n) as an order n el-

ement of G, where for M = 2, 3, 4, we have n = 2, 3, 2
respectively. We measure the total symmetry charge associ-

ated to a g-flux by computing the quantity In(0g), and then

subtract various contributions from the responses already dis-

cussed above in order to extract the desired contribution from
~Pc and ~Ps. The explicit formulas which accomplish this are

given in Table VII, and a derivation is discussed in Appendix

E 5.

A formula for the filling ν was given in Eq. (138). Anal-

ogously, we have the angular momentum filling νs, defined

as the total angular momentum per magnetic unit cell. From

group cohomology, we expect that there is additionally an

SPT state associated to an integer angular momentum per unit

cell, given by k7 mod M . The total angular momentum per

magnetic unit cell is then intuitively given by the sum of qk7
and the fractional angular momentum of the anyon vp × mq

in each magnetic unit cell. That is, we expect

νs = qk7 + qLm + pLv, (166)

where recall La is the angular momentum of a. Although the

rhs does appear in the response theory as the coefficient of the

term C ∪AXY , we have not been able to find a corresponding

G-crossed invariant.

In addition to the defect (SPT) invariants presented above,

there are additional quantized responses that are not associ-

ated to SPTs but are nonetheless constrained by the symmetry

fractionalization parameters discused above. Two responses

of this type are the quantized torsional response Πij and a

momentum per unit area ~νp in the ground state.

The quantized torsional response Πij is defined as the i
component of linear momentum associated to a dislocation

whose Burgers vector is a unit vector in the j direction. Thus,

the momentum pi of a dislocation with Burgers vector b is

given by pi =
∑

j Πijbj .
From crystalline gauge theory, written in a K-matrix for-

malism, we obtained [15]

Πij =
∑

k,l

(1− h)−1
ik (~tTkK

−1~tl)(1− h)−1
lj . (167)

We will derive an invariant within theG-crossed theory which

is consistent with this definition of Πij ; however, this invari-

ant will not unambiguously determine the components Πij .

Indeed, just as the momentum of an anyon ~Pa was not fully

determined by G-crossed invariants, we will see that only the

componentsMΠij mod 1 are fixed by this invariant.
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We saw that we can determine the anyon momentum com-

ponents ~Pa · (b − hb) mod 1. Therefore we naively expect

that we should also be able to determine the dislocation mo-

mentum components Πij(bj −
hbj) mod 1. Our proposed

invariant gives a coarser characterization than expected: for

example, withM = 4we expect to be able to fix 2Πij mod 1
by taking b = (1,±1), but this invariant only fixes 4Πij
mod 1. It is possible that a finer characterization exists, but

we have not derived it in this paper; this problem will be left

for future work.

Below we will describe the invariant. Define the defects

d1 = 0(1,0,e2πi/M), dM1 = s

d2 = 0(1,r′,e2πi/M ), dM2 = s× ~t · M(1−h)−1

r′

d3 = 0(1,r,e2πi/M), dM3 = s× ~t ·M(1−h)−1

r

d4 = 0(1,r+r′,e2πi/M ), dM4 = s× ~t · M(1−h)−1

(r+ r′)

(168)

For simplicity, we have assumed here that v = m = 0. In the

general case the formula below can still be used, but additional

contributions from v and m need to be subtracted carefully in

order to isolate Πij .
We then define

e2πiMrT Πr′ :=
IM (d4)IM (d1)

IM (d2)IM (d3)
. (169)

Note that the exponent in the lhs has a factor of M . In

Appendix E 4 we use the ribbon property of anyons to show

that

(
IM (d4)IM (d1)

IM (d2)IM (d3)

)M

=M~t·M(1−h)−1
r,~t·M(1−h)−1

r′
. (170)

In order to be consistent with the field theory result, we

see that the rhs of the above equation should be equal to

e2πiM
2 ∑

i,j riΠijr
′
j ; this justifies the factor of M in the lhs

of Eq. (169). The proposed invariant therefore gives the value

of

M~p · r mod 1 =M
∑

j

riΠijr
′
j mod 1, (171)

where pi = Πijr
′
j is the momentum of a dislocation with

burgers vector b = r′. By choosing different values of r,

the above formula allows us to obtain the momentum Mpi
mod 1. Thus there is an ambiguity in the value of the frac-

tionally quantized torsional response, similar to the ambiguity

that exists for the momentum of an anyon.

Finally, the response theory also predicts a fractionally

quantized momentum ~νp, corresponding to a fractional linear

momentum per magnetic unit cell. This is understood as the

momentum of the anyon vp ×mq in each magnetic unit cell.

The crystalline gauge theory gives the expected result

~νp = p~Pv + q ~Pm. (172)

From group cohomology we find that there are no additional

SPT coefficients associated to this response: therefore the mo-

mentum filling is simply given by the total momentum of the

anyons in each magnetic unit cell. However, similar to the

angular momentum filling, we do not have a formula for this

quantity in terms of G-crossed defect data.

5. Fractional quantum numbers of arbitrary symmetry defects

In the previous section, we saw that the invariants mea-

suring the charge, angular momentum and linear momentum

of certain specially chosen defects can be used to character-

ize SET phases in the G-crossed BTC formalism. An im-

portant related question is whether we can compute these

symmetry properties for arbitrary defects ag, where g =

(e2πiz, r, e2πij/M ), and j = 0, · · · ,M − 1. This involves

generalizing the formulas for the defect quantum numbers, to

arbitrary a as well as arbitrary g. The generalization to arbi-

trary a is straightforward: we simply add the quantum num-

bers of 0g, which were discussed above, to those of a. How-

ever, the generalization to arbitrary g is less straigntforward.

This problem is discussed below.

Fractional U(1) charge of defects First, consider the

U(1) charge of a defect ag. Note that Qag = Qa + Q0g

(with all quantities defined modulo 1), so the problem lies in

determining Q0g for arbitrary g. Now there is a natural way

in which the fractional charge of such a defect can be mea-

sured if the defect satisfies 0pg = f , where f is an Abelian

anyon. (This condition requires that gp = 0.) The idea is that

if p copies of 0g give the anyon f , then the fractional charge

Q0g of 0g is 1/pth that of f , which is in turn given by Qf
mod 1 = v ⋆ f mod 1. The formulas for deriving Q0g fol-

low from our earlier discussion in Section III A; they apply to

any combination of U(1) fluxes and disclination defects with

nonzero disclination angle.

However, not all defects are contained within the above dis-

cussion. For example, pure dislocation defects, correspond-

ing to g = (1, r, 1), cannot fuse with each other to give an

anyon, because gp is always nonzero in this case. Now we

cannot directly apply the above formula. However, we can

always express a pure dislocation defect as a fusion product

of two disclination defects ag1
, bg2

with opposite disclination

angles. We can measure the fractional charge of ag1
and bg2

separately; the charge of a pure dislocation is then obtained as

the sum of the charges of ag1
and bg2

.

If this procedure were completely well-defined, the U(1)
charge of a dislocation dipole obtained in this way would have

the same value irrespective of the choice of ag1
and bg2

. In

general, however, we do not expect this. In fact, from crys-

talline gauge theory predictions [15], we only expect that the

charge of a dislocation is well-defined up to the charges of

the Abelian anyons in the system. This is because we can al-

ways attach anyons to a localized defect by adjusting the local

energetics of the system.

Fractional angular momentum of defects Next, we con-

sider the fractional angular momentum of defects. First note

that Lag = La + L0g (with all quantities defined modulo 1),



37

so the problem lies in determining L0g for arbitrary g. It is

straightforward to define the angular momentum for defects

0g where g belongs to the U(1) × ZM subgroup of G. In

this case, the angular momentum L0g is obtained by a direct

application of the formula for the mixed defect invariant, Eq.

(89).

By performing the explicit computations, we can verify the

expected result that the angular momentum of the defect 0g
for g = (e2πik/n,0, e2πij/M ) equals

L0g = j
ℓs
M

+
k

n
S, (173)

i.e., it is the sum of two angular momenta: that of the U(1)
flux component of 0g, and the pure disclination component

of 0g. Note that ℓs and S are not absolute SET invariants:

they may transform under defect relabelings, as we discuss in

Appendix G.

When we try to generalize this procedure to defects with

nonzero dislocation Burgers vector, we encounter the diffi-

culty that even if gn = 0 for some n, the anyon associated

to 0ng has in general a contribution from m due to transla-

tion symmetry fractionalization. Accounting for this added

subtlety requires a more elaborate analysis, which we do not

pursue here. However, if m = 0, the procedure is similar.

As in the case of the fractional charge, we cannot directly

determine the angular momentum of a pure dislocation by us-

ing the usual defect invariants. In this case we define the an-

gular momentum as the sum of the angular momenta of two

disclinations whose dipole gives the dislocation with the cor-

rect Burgers vector. However, this definition has an ambigu-

ity. When we consider different decompositions of this kind,

we can only expect to obtain answers that differ by the angular

momentum of arbitrary anyons, as was found in the crystalline

gauge theory approach [15].

Fractional linear momentum of defects Finally, we dis-

cuss how to measure the linear momentum of an arbitrary de-

fect. Note that there is an extra ambiguity in the definition of

linear momentum compared to those of U(1) charge and an-

gular momentum: the momentum ~Pa of an arbitrary anyon a

is only determined through the components ~Pa ·
1−hb mod 1.

Since the quantum numbers of defects are constrained by the

quantum numbers of anyons due to symmetry fractionaliza-

tion, we will only be able to determine the momentum of sym-

metry defects up to this constraint.

There is no direct formula to measure the fractional mo-

mentum of 0g when 0g is a pure U(1) flux. The only exact

statement we can make is that the momentum of a 2π flux

equals ~Pc, which can be determined unambiguously and char-

acterizes the defect class associated to the charge polarization.

Note that ~Pc itself transforms under a relabeling of defects,

and is not an absolute SET invariant (see Appendix G 2 for a

discussion). The momentum of a fractional flux can be de-

fined indirectly by demanding that the momentum is additive

as well as a continuous function of the flux, however the mo-

mentum of a fractional flux cannot be measured directly by a

G-crossed invariant.

Similarly, there is no direct formula to measure the momen-

tum of an elementary disclination. The only exact statement

we can make is that the momentum of a composite of M ele-

mentary disclinations equals ~Ps, which characterizes the de-

fect class associated to the angular momentum polarization.
~Ps is also not an absolute SET invariant.

The fractional momentum of a dislocation is defined within

a field theory formalism by the quantity
∑

j Πijbj mod 1,

where b is the Burgers vector of the dislocation. However, the

G-crossed invariant we have proposed only measures MΠij
mod 1. As discussed in the previous section, it is not clear

whether this formula gives the sharpest possible characteriza-

tion within the G-crossed theory.

In addition to these constraints, we note that when we try to

compute the momentum of composite defects, the following

subtleties encountered in the calculation of angular momen-

tum are also present while calculating the linear momentum:

1) when the system has m 6= 0, the computations require a

more elaborate analysis; and 2) The momentum of the fusion

product ag × bh can be determined from those of ag and bh
up to the momentum of arbitrary anyons.

IV. DISCUSSION

In this paper we have used G-crossed BTCs to give a sys-

tematic classification and characterization of (2+1)D topologi-

cal orders with U(1) charge conservation symmetry, magnetic

translational symmetry, and spatial rotational symmetry, both

in the continuum and on the lattice, and in the presence of

an arbitrary magnetic field (with rational flux per unit cell).

Our results can thus be viewed as providing a classification of

FQH states on a lattice, fractional Chern insulators, or quan-

tum spin liquids, for all 5 orientation-preserving space group

symmetries on a lattice. Our results are comprehensive for

bosonic topological phases. For fermionic states, the analog

of G-crossed BTCs is not fully developed, although we ex-

pect only minor modifications in the presence of U(1) charge

conservation symmetry; for example the quantization rules of

various quantized response properties may be slightly modi-

fied.

Our work has uncovered a new class of symmetry fraction-

alization quantum numbers, which associates fractional linear

momentum to the anyons, in addition to providing a general

framework to characterize fractional charge, angular momen-

tum, and fractionalization of the translation algebra for both

Abelian and non-Abelian topological phases of matter. Fur-

thermore, our work shows that for the symmetry groups con-

sidered here, these fractional quantum numbers fully classify

all possible patterns of symmetry fractionalization.

Our study of the fractionally quantized responses has un-

covered a large class of responses to lattice defects, and ex-

plicit formulas for these responses in terms of data of the

G-crossed BTC have been obtained. The understanding of

these responses in terms of G-crossed BTC data may provide

a new way of extracting these properties from the properties

of ground state many-body wave functions. It would be in-

teresting to revisit the large class of fractional Chern insula-

tors discovered in numerical simulations and in experiments
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[12, 14] and to fully characterize the associated SET invari-

ants keeping the full space group symmetry in mind.

An important next step is to develop a more comprehen-

sive understanding of model wave functions that can give rise

to phases that possess the distinct symmetry fractionalization

and response properties studied here, and to complement the

mathematical analysis here with microscopic numerical calcu-

lations on model wave functions. We note that the methods of

Ref. 41–43 can be used in principle to derive exactly solvable

models in general for either non-chiral SET phases in purely

(2+1)D [41, 42] or at the (2+1)D boundary of (3+1)D SPTs

[43].

We have not obtained expressions for the linear and angu-

lar momentum per unit cell in terms of the G-crossed data,

which we leave as a problem for future work. Furthermore,

the G-crossed formulas for the quantized torsional response

only determined MΠij mod 1 as opposed to Πij mod 1,

where M is the order of the rotation point group; we leave

it as a problem for future work to provide a more complete

formula.

The explicit solutions to the G-crossed BTC equations that

we presented were complete for the case of G = U(1) and

G = ZM . However for the rest of the symmetry groups

considered in this paper, we made an additional technical

assumption on the form of the solutions discussed in Ap-

pendix D. Consequently, our proof of ν = σ̄H holds for these

classes of solutions (note that the relation e2πiν = e2πiσ̄H

was proven in general without making any assumptions). To

complete the analysis, it may be useful to find solutions to the

G-crossed equations in complete generality without making

any assumptions, which may then allow a completely general

proof of the relation ν = σ̄H within the framework of G-

crossed BTCs. Analogously, for lattice FQH systems, when-

ever we are able to write explicit solutions, we can prove that

ν = q(v ⋆ m+ k6) + qφσ̄H (Appendix F). Without using ex-

plicit solutions, we can only prove this result modulo 1 within

the framework of G-crossed BTCs.

It would be interesting to further generalize our results to

larger continuous non-Abelian on-site symmetries, such as

SO(3) as appropriate for quantum spin liquids, and derive ex-

pressions for the associated quantized responses entirely in

terms of the G-crossed BTC data.

In our work we have assumed the case where symmetries

do not permute anyon types. One can also consider the case

where lattice symmetries permute distinct anyons types, in

which case lattice dislocations or disclinations can become

non-Abelian defects [20, 101]. Moreover, including addi-

tional symmetries such as a layer permutation symmetry can

also give rise to such non-Abelian twist defects. We leave

a comprehensive classification of such possibilities for future

work.

We note that while FQH states break time-reversal T
and reflection R symmetries, they preserve the combination.

Therefore one can also study the role of RT symmetry, and

thus extend the classification in principle to all 17 space

groups in two spatial dimensions with a flux φ per plaque-

tte. However such an analysis will require a general system-

atic mathematical framework to treat anti-unitary and spatial

reflection symmetries, which is currently only partially devel-

oped [16, 43, 95, 102].

Finally, we note that a non-interacting system projected to

a single Landau level has a W∞ symmetry. It may be inter-

esting to consider other unconventional subgroups of the W∞

symmetry that may be preserved in the presence of specially

chosen interactions, beyond the case G = U(1)⋋ E2.
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Appendix A: Spatial symmetries of FQH states

1. Group multiplication laws for G = U(1)⋋ E2 and

G = U(1) ⋋φ [Z2 ⋊ ZM ]

In this Appendix, we review our notation for the symmetry

of continuum and lattice FQH systems in the two-dimensional

plane, in the presence of a uniform background magnetic field.

We will focus on certain subtleties that may not fall in stan-

dard treatments of magnetic translation symmetry.

First we study continuum FQH systems with U(1) charge

conservation and R2 translation symmetry. A general group

element of the magnetic translation symmetry of an N -

particle system is denoted g = (e2πiNz , r). In terms of sym-

metry operators it can be represented as

U(g) = Uc(z)T̃r, (A1)

where the U(1) symmetry operators Uc(z) and the magnetic

translation operators T̃r are defined as follows:

Uc(z) = exp

(

i2πz

∫

d2R ρ(R)

)

= ei2πzN , (A2)

T̃r = exp

(∫

d2Rψ†(R) [rx (−i∇x +Ax(R)) + ry (−i∇y +Ay(R))]ψ(R)

)

, (A3)

where ψ(R) is the quantum field describing the particles

in the microscopic system, and ρ(R) is the charge den-

sity. Here ~A is the usual vector potential. Using the Baker-

Campbell-Haussdorf formula, with ~A in symmetric gauge the

group multiplication law for g1 = (e2πiNz1 , r1) and g2 =
(e2πiNz2 , r2) is seen to be

U(g1)U(g2) = Uc(z1)T̃r1Uc(z2)T̃r2

= Uc

(

z1 + z2 +
(r× r′)z

2l2B

)

T̃r+r′ (A4)

or abstractly,

(e2πiNz1 , r1)(e
2πiNz2 , r2)

=

(

e
2πiN(z1+z2+

(r×r′)z

2l2
B

)
, r1 + r2

)

. (A5)

Note that the magnetic translation groups corresponding to

different values of lB are isomorphic, and that the isomor-

phism between the groups U(1)⋋lB R2 and U(1)⋋lB=1 R
2

is given by scaling the r variables by lB. Therefore we will

denote the magnetic translation group as U(1)⋋ R2, without

loss of generality.

We also note that the U(1) component of the group ele-

ments contains an overall factor of N . The Uc symmetry op-

erators form an N -particle representation of the group U(1),
and therefore the symmetry operators defined above form an

N -particle representation of the magnetic translation group.

The group cohomology of U(1)⋋ R2, and the resulting clas-

sification of SET phases, is however independent of N . As a

matter of convention we will hereafter write the group multi-

plication law in the N = 1 representation:

(e2πiz1 , r1)(e
2πiz2 , r2) = (e

2πi(z1+z2+
r×r′

2l2
B

)
, r1 + r2).

(A6)

We will be interested in the limit where the system size

tends to infinity, i.e. where N → ∞.

To summarize, we can view the magnetic translation group

U(1)⋋R2 as a central extension of the ordinary translational

symmetry group R2 by the charge conservation symmetry

U(1). Formally, we have a short exact sequence

1 → U(1) → U(1)⋋ R2 → R2 → 1, (A7)

where the cocycle of the extension is

c(r1, r2) =
(r1 × r2)

2l2B
=
r1xr2y − r1yr2x

2l2B
. (A8)

The above derivation was done with ~A chosen in symmet-

ric gauge. It has a seeming ambiguity: if we repeat this cal-

culation in Landau gauge, we will obtain a different form of

the group multiplication law. Specifically, the cocycle of the

group extension will now equal

c′(r1, r2) =
r2xr1y
l2B

. (A9)

Even though we have two seemingly different group multi-

plication laws defined above, they are physically equivalent.

This is because the cocycles of the central extension are re-

lated by a coboundary: c′(r1, r2) = c(r1, r2) + f(r1) +
f(r2) − f(r1 + r2) with f(r) = −rxry/2l

2
B. The above

group multiplication law can be written for a general vector

potential gauge choice in the following manner:

(e2πiz1 , r1)(e
2πiz2 , r2) = (e2πi(z1+z2+w(r1,r2)), r1 + r2)

(A10)

where, in order to satisfy the magnetic translation algebra,

the quantity w(r1, r2) must be a cocycle representative of

H2(R2, U(1)) ∼= R.

Now suppose the Hamiltonian is also rotationally symmet-

ric, with the associated symmetry operators given by
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Urot(h) = exp

(

i2πh

∫

d2Rψ†(R) [Rx (−i∇y)−Ry (−i∇x)]ψ(R)

)

. (A11)

To incorporate the rotational symmetry in the full operator

algebra, we first notice that the rotational symmetry has a non-

trivial action on the r component of g = (e2πiz, r, e2πih) by

conjugation:

Urot(h)
(

Uc(z)T̃r

)

U †
rot(h) = Uc(z)T̃hr (A12)

where hr is the result of rotating the vector r by an angle 2πh.

Therefore G is defined as the semi-direct product group G =

U(1)⋋ [R2 ⋊ SO(2)] corresponding to the group extension

1 → U(1)⋋ R2 → G→ SO(2) → 1 (A13)

We can now represent the symmetry operator associated to

a general group element g = (e2πiz , r, e2πih) as

U(g) = Uc(z)T̃rUrot(h). (A14)

The operator multiplication law for g1 = (e2πiz1 , r1, e
2πih1)

and g2 = (e2πiz2 , r2, e
2πih2) is now obtained from another

application of the Baker-Campbell-Haussdorf formula:

U(g1)U(g2) = Uc

(

z1 + z2 +
(r1 ×

h1r2)z
2l2B

)

T̃r1+h1r2
Urot(h1 + h2) = U(g1g2). (A15)

Abstractly, we have the following group multiplication law:

(e2πiz1 , r1, e
2πih1)(e2πiz2 , r2, e

2πih2)

=

(

e
2πi(z1+z2+

(r1×
h1 r2)z

2l2
B

)
, r1 + h1r2, e

2πi(h1+h2)

)

.

(A16)

We have used symmetric gauge so that the cocycle associ-

ated to magnetic translations is rotationally symmetric: this

will be convenient for future calculations.

The derivation of the group multiplication law for lattice

FQH systems, with magnetic translation and point group ro-

tation symmetry defined on the infinite 2D plane, is almost

identical to the continuum derivation discussed above. The

main difference is that the uniform magnetic field B is ex-

pressed as a flux per unit cell, given by φ = BA/φ0, where

A is the area of a unit cell and φ0 is the flux quantum. We

choose units where A = φ0 = 1, and can thereore simply use

B = 1/l2B = φ.

Since the above arguments for adding rotation symmetry

in the continuum are valid for arbitrary U(1) rotations and

magnetic translations, they also hold when the rotation sym-

metry is broken down to a discrete ZM subgroup, and the

magnetic translation symmetry is broken down to a discrete

Z2 subgroup. Defining a general group element as gi =
(e2πizi , ri, e

2πihi/M ), where hi ∈ Z/MZ, we have

(e2πiz1 , r1, e
2πih1/M )(e2πiz2 , r2, e

2πih2/M )

=

(

e2πi(z1+z2+φ
(r1×

h1 r2)
2 ), r1 + h1r2, e

2πi(h1+h2)/M

)

.

(A17)

If there is no rotational symmetry, this can be written as

(e2πiz1 , r1)(e
2πiz2 , r2) = (e2πi(z1+z2+φw(r1,r2)), r1 + r2).

(A18)

The function w(r1, r2) can be chosen arbitrarily, as long as

w(r1, r2) − w(r2, r1) = r1 × r2. In a lattice model, the

precise form of w(r1, r2) depends on a choice of gauge for

the magnetic vector potential. For example, in the Landau

gauge, we have w(r1, r2) = x1y2; in symmetric gauge, we

have w(r1, r2) =
1
2r1 × r2. In specific calculations we will

generally work in symmetric gauge, which allows us to easily

generalize our results if we later impose rotation symmetry.

However, when we restrict to magnetic translation symmetry

alone, the final results will not depend on the choice of gauge,

as long as we compute observables depending on the gauge-

invariant combination w(r1, r2)− w(r2, r1).

2. Defining the symmetry of FQH states on compact manifolds

We briefly note that the continuum symmetry group dis-

cussed above is a global symmetry of a system only in flat

Euclidean space, while the discrete symmetry group dis-

cussed above requires an infinite lattice embedded in Eu-

clidean space. When the spatial manifold on which the system

is defined is a compact space, such as a torus, then the above

global symmetries defined in the standard way are inappli-

cable; for example, the torus topology is incompatible with

continuous SO(2) rotational symmetry.

We can redefine the spatial symmetry in such a case by con-

sidering a local action of the symmetry restricted to disk-like

patches. We consider the limit where the patch size and the

area of the total system are taken to infinity in such a way that
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the ratio of the two goes to zero. We consider the reduced

density matrix ρD on a disk-like patch D with vanishing cur-

vature. The spatial translation and rotational symmetries map

D to a different patch,D′. Whether a given state has the above

symmetries then corresponds to whether the symmetry opera-

tors map ρD to ρD′ .

Appendix B: Further details of G-crossed BTC theory

In this section we provide a more detailed introduction to

the G-crossed BTC theory developed in Ref. [16]. In parts

B1-B3 we review the mathematical relations and formulas

used in this paper. The formulas are all written assuming

anyons are not permuted by the symmetry. Parts B 4 and B 5

are new to this paper, where we prove identities that will be

used to generate topological invariants for our examples.

1. Consistency relations and identities

We begin this section by discussing the manner in which

the topological charges transform under symmetry action. Al-

though we will assume that the global symmetry G does not

permute anyons, there is always a symmetry action on defects,

arising from the group structure of G. Specifically, a symme-

try operation h applied to a g-defect ag ∈ Cg gives a defect
hag ∈ Chgh−1 , i.e. the group element which labels the defect

is conjugated by h. Here we have introduced the notation

h(ag) = ρhag (B1)

hg = hgh−1 (B2)

ḡ = g−1 (B3)

This additional subtlety becomes important whenever g and

h do not commute. The action ρg is a self-consistent exten-

sion of the action ρ on anyons, to the full set of topological

charges. We will state the explicit form of ρg that we use for

computations in Section B 3.

The consistency relations between G-crossed braiding and

fusion are a generalization of the hexagon equations, known

as the heptagon equations. Throughout this section, let

ag, bh, ck, dghk, egk, fgh, ghk (a, b, . . . , g in short) be topo-

logical charges and α, β, . . . represent different fusion path-

ways. The heptagon equations for clockwise and anticlock-

wise braiding exchanges are

∑

λ,γ

[Race ]αλ[F
ack̄b
d ](e,α,β)(f,δ,σ)[R

bc
g ]γµ =

∑

f,σ,δ,η,ψ

[F c
k̄ak̄b
d ](e,α,β)(k̄f,δ,σ)[Uk(a, b; f)]δη[R

fc
d ]σψ [F

abc
d ](f,η,ψ)(g,µ,ν)

(B4)
∑

λ,γ

[(Rcae )−1]αλ[F
aḡcb
d ](e,α,β)(f,δ,σ)[(R

ḡcb
g )−1]γµ =

∑

f,σ,δ,η,ψ

[F cabd ](e,α,β)(f,δ,σ)ηc(g,h)[(R
cf
d )−1]σψ [F

abh̄ḡc
d ](f,η,ψ)(g,µ,ν)

(B5)

When ag, bh and ck are also Abelian defects, the fusion

products and fusion pathways become unique, and we can ig-

nore subscripts without loss of clarity. When additionally, the

group action on the defects is trivial, we can also drop the

superscripts indicating this action. This occurs for example

when g,h,k are all powers of the same group element g0. It

is then possible to combine the above equations in the follow-

ing manner:

Uk(a, b; ab)

ηc(g,h)
=
RacRcaRbcRcb

Rab,cRc,ab
, (B6)

which will be useful in applications. Some other important

consistency relations are the 2-cocycle condition for η, arising

from the requirement that symmetry fractionalization be con-

sistent in the G-crossed theory: given any topological charge

x we have

ηx(g,h)ηx(gh,k) = ηḡx(h,k)ηx(g,hk). (B7)

We also have the following useful relation between η and U
factors:

ηb(k, l)ηa(k, l)
∑

λ

[Ul(
k̄a,k̄ b;k̄ c)]µλ[Uk(a, b; c)]λν = [Ukl(a, b; c)]µνηc(k, l). (B8)

Finally we have a composite identity known as the G- crossed ribbon property:

∑

λ

[Rbh
h̄ag

cgh
]µλ[R

agbh
cgh

]λµ =
θc
θaθb

[Ugh(a, b; c)]µν

ηa(g,h)ηb(h, h̄g)
(B9)
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where θa =
∑

c,µ

dc
da
[Raac ]µµ is the topological twist of a and da

is the quantum dimension of a.

2. Gauge transformations and defect relabelings

The formulas in this section are all written for trivial [ρ].
There are two main types of gauge transformations in G-

crossed BTCs:

1. Fusion/splitting vertex basis gauge transformations: these

allow us to redefine a basis state in the topological state space

as

˜|a, b; c;µ〉 =
∑

µ′

[Γabc ]µµ′ |a, b; c;µ′〉 (B10)

where Γabc is unitary, and µ, µ′ label the different fusion paths.

One must fix Γa0a = Γ0b
b = Γ00

0 . This operation results in the

following transformation of the G-crossed data:

[F̃ abcd ](e,α,β)(f,µ,ν) =
∑

α′,β′,µ′,ν′

[Γabe ]αα′ [Γecd ]ββ′ [F abcd ](e,α′,β′)(f,µ′,ν′)[(Γ
bc
f )−1]µ′µ[(Γ

af
d )−1]ν′ν (B11)

[R̃agbhcgh ]µν =
∑

µ′,ν′

[Γb
h̄a
c ]µµ′ [Ragbhcgh ]µ′ν′ [(Γabc )−1]ν′ν (B12)

[Ũk(a, b; c)]µν =
∑

µ′,ν′

[Γ
k̄ak̄b
k̄c

]µµ′ [Uk(a, b; c)]µ′ν′ [(Γabc )−1]ν′ν (B13)

η̃x(g,h) = ηx(g,h) (B14)

2. Symmetry action gauge transformations: These corre-

spond to changing the symmetry action ρg to ρ̌g = Υgρg,

where Υ is a natural isomorphism between symmetry actions,

which are therefore physically equivalent. We fix γ0(g) =
γa(0) = 1. The transformation enacted on theG-crossed data

is as follows:

[F̌ abcd ](e,α,β)(f,µ,ν) = [F abcd ](e,α,β)(f,µ,ν) (B15)

[Řagbhcgh
]µν = γa(h)[R

agbh
cgh

]µν (B16)

[Ǔk(a, b; c)]µν =
γa(k)γb(k)

γc(k)
[Uk(a, b; c)]µν (B17)

η̌x(g,h) =
γx(gh)

γx(g)γḡx(h)
ηx(g,h) (B18)

In addition to these gauge transformations, it is possible to

change the symmetry fractionalization class [w] ∈ H2(G,A)
by a 2-coboundary, and leave the topological data invariant. If

we change w(g,h) → ŵ(g,h) = w(g,h)×f(g)f(h)f(gh)
where f : G → A is a function with f(0) = 0 (the identity

particle), then in order to preserve the defect fusion rules we

must also modify ag → âg = ag × f(g). Hence, a change

in the symmetry fractionalization cocycle is accompanied by

a relabeling of defects. It is possible to achieve a relabeling

0g → ag that preserves the form of w(g,h). In this case, the

two defects are physically indistinguishable. The existence of

relabelings of this type can reduce the classification of SET

phases from H3(G,U(1)) to a subgroup, as discussed in Ap-

pendix G.

3. General solution of G-crossed BTC equations for

non-permuting symmetries

This section summarizes the results of Sec. X of Ref. [16].

To preface the discussion below, we note that our objective

is to determine the complete data for {F,R,U, η} in terms

of three pieces of information: a set of defect F -symbols,

denoted as F 0g0h0k , the symmetry fractionalization cocycle

w(g,h), and the data of the UMTC C0. The defectF -symbols

are determined by solving Eq. (B27) below, which relates

them to the defect obstruction O, as defined for a specific

gauge choice in Eq. (B28). The symmetry fractionalization

cocycle can be obtained from group cohomology calculations,

and we assume that the data of C0 are known. With this in

hand, the complete data for {F,R,U, η} are obtained using

Eqs. (B29), (B30),(B31),(B32).

One ingredient in the G-crossed BTC which we have not

introduced previously is the symmetry localization obstruc-

tion O(g,h,k), which is a 3-cocycle representative of the

group H3
[ρ](G,A); however, for symmetries than do not per-

mute anyons, this obstruction is always in the trivial class of

H3(G,A), so we will not discuss it further.

We start by choosing a gauge in which

Uk(a0, b0; c0) = 1 (B19)

O(g,h,k) = 1 (B20)

ηc0(g,h) =Mc0w(g,h) (B21)

with [w] ∈ H2(G,A) being the symmetry fractionalization

class. Mab is equal to the mutual braiding statistics RabRba

of a and b (for Abelian anyons). It can be shown that there

is always an Abelian defect in each Cg: we choose one such
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defect and label it as 0g. Every other defect in Cg can be

written as ag = a × 0g where a ∈ C0. This accounts for all

the defect types in Cg. Therefore in this case, Cg is in bijection

with C0. The defects 0g satisfy the fusion rule

0g × 0h = 0gh ×w(g,h) (B22)

where [w] is the symmetry fractionalization class. When

we wish to specify that w(g,h) ∈ C0, we will write it as

[w(g,h)]0; however, if there is no risk of confusion we will

drop the 0 subscript. From the above equation, we can deter-

mine the general defect fusion rule

ag × bh =
∑

c∈C0

N c
ab[cw(gh)]gh. (B23)

By demanding that the fusion rules are consistent with G-

crossed braiding, the symmetry action on the topological

charges can now be determined explicitly as follows:

ρk(ag) = [aw(k,g)w(kgk̄,k)]kgk̄ (B24)

= [aw(g, k̄)w(k̄,kgk̄)]kgk̄. (B25)

We present the solution below assuming that N c
ab = 1 if

a, b fuse to give c, and N c
ab = 0 otherwise. We use the vertex

basis and symmetry action gauge freedom to fix

[F a0b00k ]c0bk = [F a00hb0 ]ahbh = [F 0gb00k ]bgbk

= [F a00hbk[cw(h,k)]hk
]ah[bw(h,k)]hk

= R
0gb0
bg

= Rag0h = 1.

(B26)

The final additional piece we need is a function F 0g0h0k .

Mathematically, the functions F 0g0h0k are solutions to the

consistency condition

F 0gh0k0lF 0g0h0kl

F 0g0h0kF 0g0hk0lF 0h0k0l
= O(g,h,k, l) (B27)

where we define the defect obstruction O as follows:

O(g,h,k, l) =
Fw(g,h)w(k,l)w(gh,kl)

Fw(k,l)w(g,h)w(gh,kl)

Fw(k,l)w(h,kl)w(g,hkl)

Fw(h,k)w(hk,l)w(g,hkl)

Fw(h,k)w(g,hk)w(ghk,l)

Fw(g,h)w(gh,k)w(ghk,l)
Rw(g,h)w(k,l). (B28)

Assuming Eq. (B27) is solvable, we can now finally write down the general solution to theG- crossed consistency equa-

tions, using the gauge choices made above. It is as follows:

[F
agbhck
[dw(g,h)w(gh,k)]ghk

][ew(g,h)]gh[fw(h,k)]hk
= [F

a0[bw(g,h)]0[cw(gh,k)]0
[dw(g,h)w(gh,k)]0

][ew(g,h)]0[fw(g,h)w(gh,k)]0

×
F
b0[w(g,h)]0[cw(gh,k)]0
[fw(g,h)w(gh,k)]0

F
b0[cw(h,k)]0[w(gh,k)]0
[fw(g,h)w(gh,k)]0

F c0[w(g,h)]0[w(gh,k)]0

F [w(g,h)]0c0[w(gh,k)]0F c0[w(h,k)]0[w(g,hk)]0

F 0g0h0k

R[w(g,h)]0c0

(B29)

R
agbh
[cw(gh)]gh

= Ra0b0c0

F
a0b0[w(g,h)]0
[cw(gh)]0

F
b0a0[w(g,h)]0
[cw(gh)]0

(B30)

Uk(ag, bh; [cw(g,h)]gh) =
F
ag0k[bw(h,k)w(k,k̄hk)]k̄hk

[cw(g,h)w(gh,k)]ghk

F
agbh0k
[cw(g,h)w(gh,k)]ghk

F
0k[aw(g,k)w(k,k̄gk)]k̄gk[bw(h,k)w(k,k̄hk)]k̄hk

[cw(g,h)w(gh,k)]ghk

(B31)

ηck(g,h) =
F 0g[cw(k,g)w(g,ḡkg)]ḡkg0h

F ck0g0hF 0g0h[cw(k,gh)w(gh,h̄ḡkgh)]h̄ḡkgh

Rck[w(g,h)]gh (B32)

This set of data completely specifies the SET phase, and

contains the information about SET invariants characterising

the phase, up to gauge transformations which alter the form of

F 0g0h0k . The above solution gives additional insight into the

meaning of the defect obstruction and of defect classes. It can

be shown that O is an element of Z4(G,U(1)). Moreover,

it can be shown that gauge transformations, as well as defect

relabelings that change the form of w by a 2-coboundary in

B2(G,A), only modify the defect obstruction O by an ele-

ment ofB4(G,U(1)). If [O] is the trivial obstruction class, we
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can thus find a solution F 0g0h0k to the equation dF = O−1.

Starting with this solution, we can produce a complete set

of physically distinct solutions by multiplying F with cocy-

cle representatives of H3(G,U(1)). Therefore the distinct

choices of F 0g0h0k determine the defect classes associated to

[w]; these defect classes form a torsor over H3(G,U(1)).

To summarize, our objective is to completely determine

the data for {F,R,U, η} in terms of the defect F -symbols

F 0g0h0k , the symmetry fractionalization cocyclew(g,h), and

the data of the UMTC C0. The defect F -symbols F 0g0h0k

are determined by solving Eq. (B27), in terms of a defect

obstruction cocycle representative O (Eq. (B28)), assum-

ing that the defect obstruction class is trivial. The symme-

try fractionalization cocycle is obtained from group coho-

mology calculations, and we assume that the data of C0 are

known. Finally, {F,R,U, η} are obtained using Eqs. (B29),

(B30),(B31),(B32).

4. General invariant for symmetry fractionalization

Having reviewed the general aspects ofG-crossed BTC the-

ory in the preceding subsections, we now derive the main

identities that are new to this paper. Using the mathemati-

cal relations listed above, it is possible to write down a gen-

eral formula which can be used to derive invariants for all the

symmetry fractionalization classes studied in this work. The

intuition behind the formula can be summarized in two steps.

First, the insertion of a symmetry flux through the symme-

try operations g1, . . . ,gn induces a certain Abelian anyon f .

Second, if we know the mutual braiding statistics Ma,f for all

anyons a, we can identify f uniquely, since braiding is non-

degenerate. Doing this for all possible nontrivial symmetry

fluxes will give us the complete set of anyons that define the

symmetry fractionalization class.

The first step can be made mathematically precise as fol-

lows. For an arbitrary groupG, consider the symmetry opera-

tions gi, 1 ≤ i ≤ n. Each defect 0gi is aG-flux. Then, repeat-

edly using the fusion rules 0gi × 0gj = 0g1gj × [w(gi,gj)]0,

we see that

0gn × 0gn−1 × . . . 0g1 =

n−1∏

i=1

[w(gi+1,gi . . .g1)]0 × 0gn...g1 .

(B33)

Now we define

f =

n−1∏

i=1

[w(gi+1,gi . . .g1)]0. (B34)

This relation identifies f as the anyon associated to the inser-

tion of G flux via the symmetry operations g1, . . . ,gn. Note

that f is nontrivial only for certain suitable choices of the sym-

metry operations gi, and when the system has nontrivial sym-

metry fractionalization.

The second step is to observe that the quantity

Fa(g1, . . . ,gn) =

(
n∏

i=1

Ra,0giR0gi ,a

)

Ra,0gn...g1R0gn...g1,a

n−1∏

i=1

ηa(gi+1,gi . . .g1)

(B35)

is gauge invariant under the vertex basis and symmetry ac-

tion gauge transformations (the product of R symbols and

the product of η symbols are separately invariant under vertex

basis transformations, while under symmetry action transfor-

mations these two factors transform in an equal and opposite

manner).

Using the general consistency equations, we show below

that this quantity is equal to Ma,f , with f defined as above.

First, we can use Eq. (B6) to write

ηa(g,h) =
Ra,0g×0hR0g×0h,a

Ra,0gR0g,aRa,0hR0h,a
(B36)

=
Ra,0ghR0gh,aMa,[w(g,h)]0

Ra,0gR0g,aRa,0hR0h,a
. (B37)

Here we used the result R0g0h,aRa,0g0h =
R0gh,aRa,0ghMa,w(g,h), which can in turn be derived

as a special case of Eq. (B6). Applying the last result

repeatedly, we obtain
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n−1∏

i=1

ηa(gi+1,gi . . .g1) =

n−1∏

i=1

Ra,0gi+1...g1R0gi+1...g1 ,aMa,[w(gi+1,gi...g1)]0

Ra,0gi+1R0gi+1
,aRa,0gi...g1R0gi...g1 ,a

Ra,0gn...g1R0gn...g1,a (B38)

=

n−1∏

i=1

Ma,[w(gi+1,gi...g1)]0

n∏

i=1

Ra,0giR0gi ,a

Ra,0gn...g1R0gn...g1,a (B39)

=⇒ Fa(g1, . . . ,gn) :=

(
n∏

i=1

Ra,0giR0gi ,a

)

Ra,0gn...g1R0gn...g1,a

n−1∏

i=1

ηa(gi+1,gi . . .g1) =

n−1∏

i=1

Ma,[w(gi+1,gi...g1)]0 (B40)

=Ma,
∏n−1

i=1 [w(gi+1,gi...g1)]0
=Ma,f . (B41)

By moving the R-symbols on the second line to the lhs,

we obtain an expression on the rhs of the third line purely in

terms of anyons. In the last line, we have used the relation

that for anyons a, b1, b2 where b1, b2 are Abelian,Ma,b1×b2 =
Ma,b1Ma,b2 . Crucially, a does not have to be Abelian in any

of the above steps. In general, the quantity Fa(g1, . . . ,gn)
defines a fractional quantum number of a. By choosing differ-

ent sets of group elements g1, . . . ,gn, we can determine the

complete set of anyons that characterize the symmetry frac-

tionalization class. In the special case where gn . . .g1 = 0,

the factor of Ra,0gn...g1R0gn...g1,a in the denominator be-

comes trivial. This special case will apply to many of our

examples.

5. Invariants measuring the defect class

In this section we prove general identities that will be used

to derive the defect invariants discussed in this paper. All the

derivations shown here are new results of this work.

a. Derivation of In(0g)

The first invariant is related to the G-crossed modular T -

matrix [16], and is defined as follows:

In(0g) := [T n]
(g,0)
0g0g

= θn0g

n−1∏

j=0

η0g(g,g
j), (B42)

where we require gn = 0. We can check that this is invari-

ant under both vertex basis and symmetry action gauge trans-

formations. Its relation to defect responses can be stated as

follows. Suppose 0ng = f , i.e. inserting n copies of g-flux

induces the anyon f . Then the invariant satisfies

(In)
2n(0g) = (θf )

2 =Mf,f (B43)

The proof is given below. Let θf = e2πihf for some

hf ∈ [0, 1). Note that if we fix one of the 2nth roots of Mf,f

and denote it as e2πihf/n, the invariant associated to a general

defect class will be In(0g) = eiπ
2hf+k

n , were the integer k
mod 2n parametrizes the defect class.

Proof: We begin the proof by deriving the following ex-

pressions in terms of η and U variables using the heptagon

equations:

η0g(g, jg) =
R0g,0

j+1
g

R0g,0gR0g,0
j
g

1

F 0g0
j
g0g

(B44)

=⇒
(
R0g0g

)n
n−1∏

j=0

η0g(g, jg) = R0g,f
n−1∏

j=0

1

F 0g0
j
g0g

,

(B45)

and

Ug(0g, 0
j
g) =

R0g0gR0jg0g

R0j+1
g 0g

1

F 0g0
j
g0g

(B46)

=⇒
1

(R0g0g)
n

n−1∏

j=0

Ug(0g, 0
j
g) =

1

Rf,0g

n−1∏

j=0

1

F 0g0
j
g0g

.

(B47)

Now for group elements k, l ∈ G and Abelian topological

charges ag, bh such that kag = ag and kbh = bh, we can

simplify Eq. (B8) as follows:

ηa(k, l)ηb(k, l)

ηc(k, l)
=

Ukl(a, b)

Uk(a, b)Ul(a, b)
(B48)

where we now have cgh = ag × bh. Setting a = 0g, b = 0jg
and k = g, l = ig for integers i and j, so that the above

equation is valid, we can then take its product over all 0 ≤
i, j ≤ n− 1. This gives

n−1∏

i,j=0

η0g(g, ig)η0jg(g, ig)

η0j+1
g

(g, ig)
=

n−1∏

i,j=0

U(i+1)g(0g, 0
j
g)

Ug(0g, 0
j
g)Uig(0g, 0

j
g)
.

(B49)

The lhs can be simplified as follows:

n−1∏

i,j=0

η0g(g, ig)η0jg(g, ig)

η0j+1
g

(g, ig)
=

n−1∏

i=0

(η0g (g, ig))
n

ηf (g, ig)
. (B50)
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Now the general symmetry fractionalization formula for a se-

quence of n symmetry operations g1 = · · · = gn = g, which

we derived above, is applied as follows:

n−1∏

i=0

ηf (g, ig) =
Mf,f

(Rf,0gR0g,f )
n (B51)

=⇒

n−1∏

i=0

(η0g(g, ig))
n

ηf (g, ig)
=

(
Rf,0gR0g,f

)n

Mf,f

(
n−1∏

i=0

η0g(g, ig)

)n

.

(B52)

Furthermore, the rhs of Eq (B49) can be simplified as follows:

n−1∏

i,j=0

U(i+1)g(0g, 0
j
g)

Ug(0g, 0
j
g)Uig(0g, 0

j
g)

=





n−1∏

j=0

1

Ug(0g, 0
j
g)





n

.

(B53)

Equating the two sides and comparing with the product of Eqs.

(B45) and (B47) gives




R0g,f

Rf,0g

n−1∏

j=0

(
1

F 0g0
j
g0g

)2




n

=
Mf,f

(Rf,0gR0g,f )
n (B54)

which means that

Mf,f =



R0g,v
n−1∏

j=0

(
1

F 0g0
j
g0g

)




2n

(B55)

= (In(0g))
2n, (B56)

where the last line follows from the relation derived at the start

of the proof. Therefore we have proved that Mf,f = θ2f =

(In(0g))
2n.

b. Derivation of mixed defect invariant for G = Zm × Zn

We can use this result to identify invariants corresponding

to mixed SPTs (or more generally, defect invariants which de-

pend on a combination of symmetry groups). We will derive

the mixed defect invariant assuming that G = Zm × Zn, and

that there is no mixed symmetry fractionalization class. We

apply similar ideas to extract mixed defect invariants associ-

ated to different Zm × Zn subgroups of a larger symmetry

groupG, if such nontrivial defect classes actually exist within

the group cohomology classification.

Let the generators of Zm × Zn be given by g and h. Let

0ng = p and 0mh = q. Then, gh is an element of order L =
mn/l, where l = gcd(m,n) and L = lcm(m,n). Moreover,

we have 0Lgh =
∏L−1
k=1 w(gh,ghk).

Now we write the identity

(0gh ×w(g,h))L = (0g × 0h)
L (B57)

=⇒
L−1∏

k=1

w(gh,ghk)×w(g,h)L =
L−1∏

k=1

w(g,gk)

×

L−1∏

k=1

w(h,hk) (B58)

=

n−1∏

k=1

w(g,gk)L/m ×

m−1∏

k=1

w(h,hk)L/n (B59)

= pL/m × qL/n. (B60)

Since there is no mixed symmetry fractionalization class, we

can set w(g,h) = 1, and we therefore have

L−1∏

k=1

w(gh,ghk) = pL/m × qL/n = pn/l × qm/l (B61)

As a result, we have

ILL (0gh) = θpn/l×qm/l = θn
2/l2

p θm
2/l2

q Mmn/l2

p,q (B62)

To expand θpn/l×qm/l , we used the G-crossed ribbon prop-

erty for Abelian anyons θab = θaθbMa,b, along with the iden-

tities θam = (θa)
m2

, and Mam,b =Ma,bm =Mm
a,b.

Now we can use the relations Inn (0g) = θp and Imm (0h) =
θq to isolate the braiding term as follows:

ILL (0gh)

I
mn2/l2
m (0h)I

m2n/l2
n (0g)

=Mmn/l2

p,q (B63)

=⇒

(

IL(0gh)

I
n/l
m (0h)I

m/l
n (0g)

)mn/l

=Mmn/l2

p,q (B64)

Defining Mp,q = e2πip⋆q , and taking the l/(mn)th power of

the last equation, we can finally write

IL(0gh)

I
n/l
m (0h)I

m/l
n (0g)

= e2πi
p⋆q+k

l (B65)

for some k ∈ Zl. This integer k parametrizes the mixed de-

fect class. Since from group cohomology we expect exactly l
mixed defect classes, this invariant provides a complete char-

acterization.

c. Derivation of the filling invariant

The second defect invariant is a generalized filling per mag-

netic unit cell, which is written as νH , where H is some sub-

group ofG. Let g be an element ofH such that gn = 0. Also,

let 0ng = f . Let r1, r2 be elementary magnetic translations,

i.e. r1 and r2 must commute. Then we define
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e2πi
νH
n :=

η0g(r1, r2)

η0g(r2, r1)
(B66)

The rhs is a gauge-invariant quantity whenever ri0g = 0g.

For this to happen, it is necessary that g commutes with the

ri. If b(r1, r2) is the anyon associated to each magnetic unit

cell, then we have the general identity

e2πiνH =

(
η0g(r1, r2)

η0g(r2, r1)

)n

=Mf,b(r1,r2). (B67)

Note that the proof below will only make use of the trans-

lation symmetry and the additionalH symmetry.

Proof : The proof is as follows. First we recall the combined

heptagon equation for η and U , Eq. (B6):

ηa(g,h) =
Ma,0g×0h

Ma,0gMa,0h

(B68)

=
Ma,0gh ×Ma,w(g,h)

Ma,0gMa,0h

. (B69)

Taking g = r1,h = r2 and a = f , we obtain

ηf (r1, r2) =
Mf,0r1+r2

×Mf,w(r1,r2)

Mf,0r1
Mf,0r2

; (B70)

now we can interchange r1 and r2 and divide the two ex-

pressions. Since magnetic translations commute, r1 + r2 =
r2 + r1. Therefore, upon simplifying, we obtain

ηf (r1, r2)

ηf (r2, r1)
=Mf,b(r1,r2) =Mf,f . (B71)

Next, we use the relation between η and U variables, Eq.

(B8), to write

η0k+1
g

(r1, r2)

η0kg(r1, r2)η0g(r1, r2)
=
Ur1(0

k
g, 0g)Ur2(0

k
g, 0g)

Ur1+r2(0
k
g, 0g)

(B72)

The rhs is invariant under the substitution r1 ↔ r2. This

means that

η0k+1
g

(r1, r2)

η0kg(r1, r2)η0g(r1, r2)
=

η0k+1
g

(r2, r1)

η0kg(r2, r1)η0g(r2, r1)
(B73)

Now we take the product of the above relations for k =
0, 1, . . . , n − 1. This cancels out all the η0kg factors except

for k = 0, n. Noting that 0ng = f , we obtain

(
η0g(r1, r2)

η0g(r2, r1)

)n

=
ηf (r1, r2)

ηf (r2, r1)
(B74)

=Mf,f (B75)

which completes the proof. When H = U(1), νH is the usual

filling per magnetic unit cell, denoted as ν, and f is denoted as

the vison v. In the context ofU(1) symmetry, it is important to

emphasize that we have not made any additional assumptions

of Galilean invariance in this argument.

Appendix C: Consistency of SET classification with piecewise

continuous and measurable data

In situations where G has continuous components, it is not

clear a priori what continuity properties should be imposed

on the G-crossed BTC data in order to fully capture all possi-

ble SETs. It is clear that requiring the data to be continuous

is not sufficient, as it does not capture all possible SETs. The

next possible choices are to require the data to be either piece-

wise continuous or measurable functions on the group mani-

fold. In the context of SPT states, Ref. [103] suggested that

Borel cohomology, which requires the group cochains to be

measurable functions, should be used to obtain a proper clas-

sification. Here we will briefly explain how these two choices

are equivalent for the symmetry groups of interest in our pa-

per. In practice we are therefore justified in working entirely

with piecewise continuous data for the G-crossed theory, at

least for the symmetry groups of interest in this paper (see

Appendix D below).

Ref. [16] showed that, when the symmetries do not permute

anyons, the G-crossed BTC solutions can be fully parameter-

ized by elements of H2(G,A) and H3(G,U(1)), where the

continuity properties of the cochains defining the above co-

homology groups are inherited from those of the G-crossed

data. Let H2
meas(G,A) and H3

meas(G,U(1)) denote the co-

homology groups defined using measurable cochains, while

H2
pc(G,A) and H3

pc(G,U(1)) denotes cohomology groups

defined using piece-wise continuous cochains. Below we

will explain that, for the symmetry groups of interest in this

paper, H2
meas(G,A) ∼= H2

pc(G,A) and H3
meas(G,U(1)) ∼=

H3
pc(G,U(1)). Moreover, H2

meas(G,A) and H3
meas(G,U(1))

always have representative cocycles that are piecewise contin-

uous. Therefore we find that assuming piecewise continuous

(p.c.) G-crossed data is sufficient and equivalent to assum-

ing measurable G-crossed data, for the symmetry groups of

interest in this paper.

Since p.c. functions are also measurable, there is a natu-

ral map ι : H3
pc(G,U(1)) → H3

meas(G,U(1)). For the G
studied in this paper, our calculations involving spectral se-

quences are associated with H3
meas(G,U(1)), and we have

explicitly found p.c. cocycle representatives for every ele-

ment of H3
meas(G,U(1)). Therefore, ι is surjective. Next,

let us prove that ι is injective. Suppose the contrary, that

there are two distinct classes [w]pc, [v]pc ∈ H3
pc(G,U(1))

which map to the same class in H3
meas(G,U(1)). This would

imply that the representative cocycles w and v are related

by a measurable coboundary. But since w and v are them-

selves p.c., this coboundary would itself have to be p.c.; thus

w and v must represent the same element of H3
pc(G,U(1))

as well, which is a contradiction. Therefore the map ι is

both injective and surjective, and this completes the proof

of our claim. A similar argument can be made to show that

H2
meas(G,A) ∼= H2

pc(G,A).
Finally, let us consider the specific formulas for the sym-

metry fractionalization and defect invariants presented in this

paper. These are defined in terms of some defect denoted as

0g. In fact the symmetry fractionalization invariant does not

depend on the specific choice of 0g. However, some of the
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defect invariants we study are meaningful only if we have a

canonical way in which to identify the elementary defect 0g.

While working with p.c. data, we can canonically define 0g
for continuous g by demanding that it is the unique defect for

which the functions R0g,a, a ∈ A, are continuous for suffi-

ciently small g and approach 1 as g → 0 (such a defect will

always exist). This formalizes our intuition that 0g represents

the unique g- flux that can be turned on continuously from

zero.

When we work with measurable data, however, the cocy-

cle representative of w may be highly discontinuous, and the

choice of 0g can be unclear. In this case, we first have to per-

form gauge transformations which convert the data into a p.c.

form. We expect that the possible gauge transformations will

only allow the braiding data for a unique g-defect to be con-

tinuously connected to the identity. However, we do not fully

understand how to identify the necessary gauge transforma-

tions in practice, or how to directly identify 0g canonically if

the data is highly discontinuous.

Finally, if g is discrete, we cannot fix 0g canonically: there

may always be relabelings of the defects that leave the fu-

sion rules unchanged, and the defects involved will be indis-

tinguishable. This is the origin of the redundancy in the defect

classes measured by H3(G,U(1)), as discussed in Appendix

G.

Appendix D: G-crossed solutions

In this section we will present solutions to the G-crossed

consistency equations for each of the symmetry groups stud-

ied in this paper. We will rely on the general solution to theG-

crossed BTC equations for non-permuting symmetries, which

is given in Appendix B 3. Since the solutions discussed below

are not completely general, we will not use them to derive

invariants in subsequent Appendices. However, the solutions

give useful insight into how the SET parameters discussed in

the main text are related to theG-crossed data. One important

application of these explicit solutions is that whenever they

can be written down, we can use them to prove stronger LSM

constraints involving the filling than have been proven previ-

ously. For continuum FQH systems we can prove the relation

ν = σH . Without using explicit solutions, we can only es-

tablish that ν = σH mod 1. Analogously, for lattice FQH

systems we can prove that ν = q(v ⋆ m + k6) + qφσ̄H (Ap-

pendix F). Without using explicit solutions, we can only prove

this result modulo 1.

First let us establish notation. Suppose the Abelian anyons

form a group A = Zn1 × · · · × Znr . If an anyon is written

as a = (a1 mod n1, . . . , ar mod nr), the fusion rule for

two anyons is given by a × b := [a + b]A = ((a1 + b1)
mod n1, . . . , (ar+br) mod nr). The anyons form the defect

category C0. Since the symmetry does not permute anyons,

the g-defects corresponding to each g ∈ G form a category

Cg, which is in bijection with C0. Also recall the definitions

h : A → [0, 1), e2πiha := θa; (D1)

⋆ : A×A → [0, 1), e2πia⋆b :=Ma,b = RabRba. (D2)

When C0 consists entirely of Abelian anyons, we can write

a ⋆ b = ~aTK−1~b, where the nongedenerate, symmetric K
matrix with even diagonal entries now specifies the topologi-

cal order. Here ~a is the integer vector that is associated to the

anyon a. Two vectors ~a,~a′ represent the same anyon if and

only if ~a′ = ~a +K~Λ for some integer vector ~Λ. Then the F -

and R- symbols for operations within A are given by [95]

F abca+b+c = eiπa⋆(b+c−[b+c]A) (D3)

Raba+b = eiπa⋆b (D4)

Here we use the symbol [a + b]A for an anyon which has

been translated back into its fundamental domain of defini-

tion, analogous to the expression [a + b]N ≡ a + b mod N
for ZN anyons.

When C0 has non-Abelian anyons, the Abelian sector of

C0 need not be modular, and in that case a nondegenerate K
matrix associated to A might not exist. However, given any

Abelian braided fusion category A, we can always consider

the Drinfeld center Z(A), which is an Abelian UMTC with

A as a subcategory. Therefore Z(A) will have a well-defined

bosonic K matrix, which can be used to define the F and R
symbols within A. We can then give an equivalent definition

of the h symbol and the ⋆ operation using the K matrix of

Z(A), as follows:

ei2πha := eiπ~a
TK−1~a (D5)

eiπa⋆b := eiπ~a
TK−1~b. (D6)

Using these definitions, the F - and R-symbols within A can

also be defined using Eqs. (D3),(D4), when A is not modular.

Our strategy to obtain solutions is the following. A com-

plete solution to the G-crossed equations consists of the fol-

lowing information: (i) a symmetry fractionalization cocycle

representative for each element of H2(G,A); (ii) a solution

to the obstruction equation, Eq. (B28), which determines the

contribution to the defectF -symbols from symmetry fraction-

alization, and (iii) a representative cocycle for each element

of H3(G,U(1)), which determines the part of the defect F -

symbols corresponding to the different defect classes. Using

these results, the G-crossed data for the full defect sector can

be written down using the formulas in Eqs. (B29),(B31), and

(B32). In the following sections, steps (i) and (iii) will be ad-

dressed in full generality. However, in general, step (ii) will

only be solved by making the assumption that the obstruc-

tion equation written in the gauge choices of Appendix B 3

reduces to O(g,h,k, l) = Rw(g,h)w(g,h). This is the case,

for example, when the F -symbols of the anyons correspond-

ing to certain fusion paths can all be set to 1 if those fusion

paths are allowed, and zero otherwise. Solving step (ii) in full

generality is an interesting direction which we leave for future

work. Note, however, that the assumptions made to carry out

step (ii) in fact always hold for G = U(1) and G = ZM .



49

1. G = U(1)

Here the symmetry fractionalization classes can be de-

scribed by the following set of representative cocycles in

H2(U(1),A) ∼= A: with gi = e2πizi ,

w(g1,g2) = vz1+z2−[z1+z2] (D7)

where [z1 + z2] = z1 + z2 mod 1. The same cocycle can

also be written as follows:

w(g1,g2) =

{
v, z1 + z2 ≥ 1

0, otherwise
(D8)

where v ∈ A and z1, z2 ∈ [0, 1) are added as real numbers. In

general, the fusion of symmetry defects is given by the rule

ag1
× bg2

= ([a+ b]A)g1g2
×w(g1,g2). (D9)

The equation Eq.(B27) defining the defect obstruction has a

solution only if the 4-cocycle O(g,h,k, l) is trivial, i.e. it is a

4-coboundary in B4(G,U(1)). In this case, H4(G,U(1)) ∼=
Z1, so O is indeed trivial. Therefore we look for explicit so-

lutions. When G = U(1), with the above representation of

the F -symbols and of w, one can show that the contribution

to the defect obstruction from the F -symbols cancels out even

if the F -symbols are nonzero. Thus in this particular case, the

expression for O always simplifies to give

O(g,h,k, l) = Rw(g,h)w(k,l) = eiπw(g,h)⋆w(k,l) (D10)

Let gi = e2πizi ,h = e2πiz2 ,k = e2πiz3 . For the form of

w(g,h) in Eq. (D7), it can be checked that the following

functions form a set of solutions to Eq. (B27):

F 0g0h0k = e−2πi( v⋆v
2 +k1)z1(z2+z3−[z2+z3]) (D11)

Here k1 is an integer. As required by the theory, chang-

ing the value of k1 changes the solution by an element of

H3(U(1), U(1)) ∼= Z, and physically this corresponds to

stacking a U(1) SPT state atop the existing SET state.

2. G = U(1) ⋋ E2

Denote a general group element as gi = (e2πizi , ri, e
2πihi).

As we derive in Appendix H 2, a general symmetry fraction-

alization cocycle is parametrized by v, s ∈ A, and takes the

form

w(g1,g2) = v
z1+z2+

r1×
h1 r2

2l2
B

−[z1+z2+
r1×

h1 r2

2l2
B

]

× sh1+h2−[h1+h2]. (D12)

Define A12 := r1×
h1r2

2l2B
, z12 := z1 + z2 − [z1 + z2 +

r1×
h1r2

2l2B
] = z1 + z2 − [z1 + z2 +A12], and h12 := h1 + h2 −

[h1 + h2].
In this case it is not true that the contribution from the

F -symbols to Eq. (B27) identically vanishes; therefore the

solution below will be written only for those topological or-

ders where the contribution from F -symbols is indeed trivial.

In solving the obstruction equation we encounter a subtlety

which, for convenience, we will discuss in the K-matrix for-

malism introduced at the beginning of this Appendix (as dis-

cussed there, when the topological order is non-Abelian we

will use the nondegenerate bosonic K matrix associated to

Z(A), which contains A as a subcategory, to represent the F -

and R- symbols within A). In the K matrix formalism, the

anyon a is written as a vector ~a, and the symmetry fractional-

ization anyon w(g1,g2) is written as the vector ~w(g1,g2).
In order to solve the obstruction equation, we would like

to decompose the exponent of Rw(g1,g2),w(g3,g4) into terms

proportional to v ⋆ v, s ⋆ s and v ⋆ s, and evaluate the con-

tribution of each term of this type to the defect F -symbol.

The subtlety is that we cannot directly write Rv
a×sb,vc×sd =

eiπ(a~v+b~s)
TK−1(c~v+d~s). This is because a braiding term in-

volving va × sb is defined using a particular representative

vector which is equivalent to (a~v + b~s) as an anyon up to

some additional bosonic particle, but may not be equal to the

vector (a~v + b~s). In general we have

Rv
a×sb,vc×sd = eiπ[a~v+b~s]

T
A
K−1[c~v+d~s]A (D13)

= eiπ(a~v+b~s+K
~Λ1)

TK−1(c~v+d~s+K~Λ2) (D14)

for some integer vectors ~Λ1, ~Λ2. Therefore we write

O(g1,g2,g3,g4) = eπi(~w(g1,g2)+K~Λ(g1,g2))
TK−1(~w(g3,g4)+K~Λ(g3,g4)) (D15)

= eπi(~w(g1,g2)
TK−1~w(g3,g4)+~Λ(g1,g2)

T ~w(g3,g4)+~w(g1,g2)
T ~Λ(g3,g4)+~Λ

T (g1,g2)K~Λ(g3,g4)) (D16)

= eπi{~v
TK−1~v(z12+A12)(z34+A34)+~v

TK−1~s((z12+A12)h34+h12(z34+A34))+~s
TK−1~s(h12h34)}

× eiπ(
~ΛT

12(~v(z34+A34)+~sh34)+(~v(z12+A12)+~sh12)
T ~Λ34) (D17)

=⇒ F 0g10g20g3 = e−iπ(v⋆v(z12z3+A12z3+z1A23)+v⋆s(z12h3+h12z3+A12h3+h1A23)+s⋆sh1h23)

× e−iπ(
~ΛT

12(~vz3+~sh3)+(~vz1+~sh1)
T ~Λ23) × e−iπv⋆vλ(g1,g2,g3). (D18)
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Here, λ is a function which satisfies dλ(g1,g2,g3,g4) =
A12A34. This function always exists, but we will not need

to determine it explicitly for our subsequent applications.

Note that the K matrix is symmetric with even diagonal

entries, and therefore the contribution eπi
~ΛT (g1,g2)K~Λ(g3,g4)

is trivial and does not appear in the expression for the

defect F -symbol. This is important because the quan-

tity ~ΛT (g1,g2)K~Λ(g3,g4) cannot be easily expressed as a

coboundary of some 3-variable function.

Having obtained this particular solution for the defect F -

symbols, the full set of G-crossed solutions can now be

parametrized by the integers k1, k2, k3 as follows:

F 0g10g20g3 = e
−2πi( v⋆v

2 +k1)(z1z23+z1 r2×
h2 r3

2l2
B

+
r1×

h1 r2

2l2
B

z3)
× e

−2πi( v⋆s
2 +k2)(h1(z23+

r2×
h2 r3

2l2
B

)+(z12+
r1×

h1 r2

2l2
B

)h3)

× e−2πi( s⋆s
2 +k3)h1h23 × e−iπ(

~ΛT
12(~vz3+~sh3)+(~vz1+~sh1)

T ~Λ23) × e−iπ(v⋆v+k1)λ(g1,g2,g3) (D19)

ηa(g1,g2) =Maw(g1,g2) (D20)

The contributions from k1, k2, k3 are precisely the defect F -

symbols associated to the SPT states with G symmetry, de-

rived in Appendix H 2.

3. G = ZM

From standard results on the cohomology of cyclic groups

(see Appendix J, Eq.(J9)), the group of symmetry fractional-

ization classes is H2(ZM ,A) ∼= A/MA. MA is the group

of M th powers of all anyons in A. We write a general sym-

metry fractionalization cocycle as follows. Let gi = e2πihi/M

where 0 ≤ hi < M . Then we can write

w(g1,g2) =

{
s, h1 + h2 ≥M

0, otherwise
(D21)

= s
h1+h2−[h1+h2]M

M (D22)

With this choice, we understand symmetry fractionalization as

inducing an anyon s whenM elementary units of ZM flux are

inserted. Now, suppose s is of the form s′M , for some anyon

s′. Then the above cocycle is

w(g1,g2) = s′h1+h2−[h1+h2]M (D23)

= dχ(g1,g2) (D24)

where χ(gi) = s′hi . Therefore, symmetry fractionalization

cocycles associated to anyons of the form s′M are in fact 2-

coboundaries.

The set of symmetry fractionalization classes is therefore

the full set of anyons modded out by the subgroup of all

anyons of the form s′M . If we specialize to A = ZN with

the generator ψ, the group AM is just the group generated

by ψd, where d = (M,N). Therefore there are d different

fractionalization classes, and for a given system, the class la-

belled by q ∈ Zd is associated to an anyon in the set ψq+kd.

The above discussion shows that unlike the U(1) case, there

is no unique anyon that can be associated to the insertion of a

ZM flux quantum.

TheG-crossed solution in our usual choice of gauge is very

similar to the solution for U(1) symmetry. If the F - and R-

symbols of the Abelian anyons are written in the usual nota-

tion, the obstruction is given by

O(g1,g2,g3,g4) = e
2πis⋆s
2M2 (h1+h2−[h1+h2]M )(h3+h4−[h3+h4]M )

(D25)

and so the defect F -symbols take the form

F 0g0h0k = e−
2πi
M2 ( s⋆s

2
+k3)h1(h2+h3−[h2+h3]M ). (D26)

The obstruction equation for G = ZM does not rely on any

assumptions on the anyon F -symbols, which always cancel

out from the definition of w. The above exponent can now

be written as e−2πi
s⋆s+2k3

2M

h1(h2+h3−[h2+h3]M )

M . Note that the

topological twist θs of s is well-defined up to multiples of 2π,

and consequently s ⋆ s = 1
π arg(θs) is defined up to an even

integer. In the equation above, we define s⋆s
2M := 1

2πM arg(θs)
assuming 0 ≤ θs < 2π. Therefore, if we change s ⋆ s by the

integer 2k, we must correspondingly shift k3 → k3 − k in

order to describe the same defect class.

4. G = U(1) ⋋φ Z2

The cohomology calculations forG = U(1)⋋φZ
2 are out-

lined in Appendix H 3. Using the results from that section, we

see that symmetry fractionalization is classified by

H2(G,A) ∼= A×A (D27)

with a general symmetry fractionalization cocycle taking the

form

w(g1,g2) = vz1+z2+φw(r1,r2)−[z1+z2+φw(r1,r2)]×mw(r1,r2).
(D28)

Here we have defined a magnetic translation group element

as gi = (e2πizi , ri), and in symmetric gauge we have
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w(r1, r2) =
r1×r2

2 . The anyon v is associated to U(1) charge

fractionalization, while m refers to the anyon per unit cell

and is associated to the fractionalization of Z2 translational

symmetry. The symmetry fractionalization cocycle gives frac-

tional values of the anyon w(g1,g2) when we work in sym-

metric gauge. Therefore only gauge-invariant combinations of

w are guaranteed to be well-defined anyons. Alternatively, in

this example we can choose to work throughout in an integer-

valued gauge such as the Landau gauge; in that case w(g1,g2)
will always be well-defined.

Next we consider the defect data. Defining z12 = z1 +
z2 − [z1 + z2 + φw(r1, r2)], we can write the above symme-

try fractionalization cocycle as w(g1,g2) = vz12+φw(r1,r2)×
mw(r1,r2). We assume that the defect obstruction simplifies

to the form

O(g1,g2,g3,g4) = Rw(g1,g2),w(g3,g4). (D29)

Note that if h(g) = z is a projection map, then dh(g1,g2) =
h(g1) + h(g2) − h(g1g2) = z12. As we showed in Ap-

pendix D 2, when we use aK matrix to represent braiding data

and when the symmetry fractionalization anyon w(g1,g2) is

a product of the form va × mb, we need to be careful about

the choice of the vector corresponding to va × mb. In gen-

eral the anyon ~w(g1,g2) (written as a vector in the K matrix

formalism) does not lie in the fundamental domain of anyons,

which is used to define the R symbols; therefore the correct

choice of vector is actually ~w(g1,g2)+K~Λ(g1,g2), for some

integer vector ~Λ(g1,g2). With this, the obstruction takes the

form

O(g1,g2,g3,g4)

= eiπ(~w(g1,g2)+K~Λ(g1,g2))
TK−1(~w(g3,g4)+K~Λ(g3,g4))

(D30)

(D31)

In this notation the obstruction equation becomes

O(g1,g2,g3,g4) = expπi (v ⋆ v(z12z34) + v ⋆ (φv +m)(z12w(r3, r4) + w(r1, r2)z34) +m ⋆m(dλ)(r1, r2, r3, r4))

×O~Λ(g1,g2,g3,g4) (D32)

Here we have absorbed the extra contributions from

the bosonic particles corresponding to K~Λ(g1,g2) and

K~Λ(g3,g4) into the definition of O~Λ. Also, λ is

some 3-variable function such that dλ(r1, r2, r3, r4) =
w(r1, r2)w(r3, r4). A possible choice for λ, assuming

w(r1, r2) =
1
2 (x1y2 − x2y1), is

4λ(r1, r2, r3)

= x1y1(x2y3 − x3y2)− x1y
2
2x3 − x21y2y3 − 2x1x2y2y3.

(D33)

However, we will not need to know this explicit form in sub-

sequent calculations.

The symbols F 0g10g20g3 are the solutions to dF = (O)−1.

Specifically, we have

F 0g10g20g3 = exp−πi (v ⋆ v(z1z23) + v ⋆ (φv +m)(z1w(r2, r3) + w(r1, r2)z3) +m ⋆m(λ(r1, r2, r3)))

× F
0g10g20g3
~Λ

. (D34)

Here, the function F
0g10g20g3
~Λ

is obtained as a solution to the

equation dF
0g10g20g3
~Λ

= O−1
~Λ

(g1,g2,g3): the steps are simi-

lar to those explained in Appendix D 2.

As a last step, it is necessary to look for solutions to dF = 1
which yield representatives of H3(G,U(1)). From the spec-

tral sequence (Appendix H 3), we can see that H3(G,U(1)) ∼=
H4(G,Z) ∼= H4(U(1),Z) × H2(Z2,Z) ∼= Z × Z. The first

term corresponds to SPTs of pureU(1) symmetry, i.e. bosonic

IQH states (with Hall conductivity 2k1). The second term cor-

responds to a mixed SPT of U(1) and Z2 symmetry, where an

integer number of U(1) charges (given by k6 ∈ Z) is placed

in each unit cell. Using the results of Appendix H 3, a gen-

eral SPT cocycle can be written in terms of these parameters,

leading to the desired expression for the full defect F -symbol,

which we distinguish as Fmag (this terminology will be of use

in the next section):
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fSPT(g1,g2,g3) = e2πik1(z12+φw(r1,r2))z3+(φk1+k6)(z1w(r2,r3)+φ(φk1+k6)λ(r1,r2,r3)) (D35)

=⇒ F
0g10g20g3
mag = exp

(

−2πi
(v ⋆ v

2
+ k1

)

z1z23 +

(
v ⋆ (φv +m)

2
+ (φk1 + k6)

)

z1w(r2, r3)

+

(
(φv +m) ⋆ v

2
+ (φk1)

)

w(r1, r2)z3 +
(m ⋆m

2
+ φ(φk1 + k6)

)

λ(r1, r2, r3)

)

× F
0g10g20g3
~Λ

(D36)

5. G = U(1)⋋φ [Z2 ⋊ ZM ]

Let h be the generator of point group rotations. We will

abuse the notation for point group elements slightly, as fol-

lows: the quantities hi written in line should be understood

as integers mod M , corresponding to rotations by the angle

2πhi/M , while in an expression such as hr or 1−hk

r, h is un-

derstood as the 2×2matrix generator of point group rotations,

and thus the symbol 1 in 1−hk

r denotes the identity 2× 2 ma-

trix. In this section we will also denote gi = (zi, ri, hi) for

better readability.

In Appendix H 4 we derive

H2(G,A) ∼= A2 × (A/MA)× (KM ⊗A). (D37)

This classification is independent of the flux φ. There we

also show that a general cocycle representative of H2(G,A)

is given by

w((z1, r1, h1), (z2, r2, h2))

= vz1+z2+φw(r1,
h1r2)−[z1+z2+φw(r1,

h1r2)]

×mw(r1,
h1r2)

× t
((1−h)−1(1−h1)r2)

x
x × t

((1−h)−1(1−h1)r2)
y

y

× s
h1+h2−[h1+h2]M

M (D38)

The four distinct contributions are each associated to anyons.

We have already seen three of them in previous sections: the

vison v, the anyon per unit cell m, and the anyon s associated

to the insertion of M elementary disclinations. Note that in

the presence of rotation symmetry, the term w(r1, r2) is re-

placed by w(r1,
h1 r2) in order for the function w to satisfy

the 2-cocycle condition for U(1) ⋋φ [Z2 ⋊ ZM ]. The fourth

contribution, which is given by a pair of anyons tx, ty , de-

scribes a form of mixed fractionalization of translational and

rotational symmetry.

We can also write down the full solution to the defect ob-

struction and hence the defect F -symbols. In doing so, we

must remember the subtlety that arose while handling the ob-

struction equation for magnetic translation symmetry. This re-

quires us to add an additional term in order to split the obstruc-

tion term into products such as v ⋆ v, v ⋆ s and so on. Define

zij = zi+zj−[zi+zj+w(ri,
hirj)], hij = hi+hj−[hi+hj ]

and ~Θij =
(1−h)−1(1−hi)rj. Then, the final result is
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F 0g10g20g3 = F̃
0g10g20g3
mag × e−2πiα(g1,g2,g3) × F

0g10g20g3
~Λ

,

α(g1,g2,g3) =

(
q ⋆ ti
2

+ k4,i

)

· (z1~Θ23 + φw(r1,
h1 r2)r3) +

(
q ⋆ ti
2

)

· (~Θ12z3 + φr1w(r2,
h2 r3))

+

(
q ⋆ s

2M
+
k2
M

)

(z1h23 + φw(r1,
h1 r2)h3) +

(q ⋆ s

2M

)

(h12z3 + φh1w(r2,
h2 r3))

+

(
m ⋆ s

2M
+
k7
M

)

h1w(r2,
h2 r3) +

(m ⋆ s

2M

)

w(r1,
h1 r2)h3

+

(
s ⋆ ti
2M

+
k5,i
M

)

· h1~Θ23 +

(
s ⋆ ti
2M

)

· ~Θ12h3

+

(
s ⋆ s

2M2
+

k3
M2

)

h1h23

+ (1−h)−1
(

~t · ~Θ12

)

⋆
(
~t · r3

)
+ (m+ φv) ⋆

(
~t · r1

) (
w(r2,

h2 r3)
)
+ (m+ φv) ⋆ (m+ φv)λ(g1,g2,g3). (D39)

(See Appendix D 4 for the definition ofF
0g10g20g3
~Λ

.) The sym-

bol F̃mag is the same as Fmag, with one modification: all occur-

rences of the function w(ri, rj) are replaced by w(ri,
hirj).

The integers k1 through k7 parametrize G-SPT phases, and

hence shifting the values of ki while keeping all the other data

fixed will change the defect class. Notice that the last line

contains three expressions that are not associated to any SPT

parameters. These expressions are needed in order to solve the

obstruction equation. They describe quantized responses that

are completely fixed by the symmetry fractionalization class,

and are therefore not associated to SPT states. The first term

is related to the quantized torsional response Πij , the second

is related to the momentum per unit cell ~νp, and the third is

related to the response coefficient α for which we do not have

any meaningful physical interpretation. These coefficients

can be read off from an effective action written using crys-

talline gauge fields (see Appendix I 2). However, we have not

been able to find gauge invariant quantities in the G-crossed

BTC that return these coefficients exactly. We can only find

an expression which gives MΠij mod 1 as opposed to Πij
mod 1, while we have not found a gauge-invariant expression

which returns ~νp.

Appendix E: Specific invariants for fractional symmetry

quantum numbers and fractionally quantized responses

In this section, we will examine each of the symmetry

groups studied in the paper and derive invariants for the

corresponding symmetry fractionalization and defect classes.

The G-crossed identities used in deriving these invariants are

proved in Appendix B 4 and B 5. To evaluate these formu-

las for a particular choice of SET parameters, we will use the

G-crossed solutions stated in Appendix D, in which partic-

ular gauge choices are made for the G-crossed data. How-

ever, since the solutions are not completely general, we will

independently verify that the invariants completely character-

ize the SET, using G-crossed identities.

1. G = U(1)

The invariant for the U(1) symmetry fractionalization class

gives the fractional charge Qa of an arbitrary anyon a. First

we prove that it is a gauge-invariant quantity. Fix an integer

n and consider a group element g = e2πi/n. Pick an Abelian

defect 0g. We can always choose n so that (0g)
n = v, where v

is the fixed anyon which completely determines the symmetry

fractionalization class. Informally, this is because the inser-

tion of n copies of 2π/n flux is equivalent to the insertion of

a 2π flux, which induces the unique anyon v. Formally we

argue as follows. Using the fusion rule for defects, we have

the identity

v = 0ng =

n−1∏

j=0

w(g,gj). (E1)

If we choose a different defect as 0g, we must modify the 2-

cocycle w by a 2-coboundary dχ for some χ : U(1) → A,

and the above equation will send v → v × χ(g)n. Therefore,

nmust be chosen such that χ(g)n is always trivial. Since A =
∏r
i=1 Zni , this happens when n is a common multiple of each

ni. Therefore it suffices to choose n = p := lcm(n1, . . . , nr).
Alternatively, we can demand that the braiding data of 0g are

continuously connected to that of the identity particle as g →
0. This requirement canonically determines 0g.

Now consider the gauge-invariant quantity

Fa(g1 = g, . . . ,gp = g) =
(
R0g,aRa,0g

)p
p−1
∏

k=0

ηa(g,g
j)

(E2)

where a is an anyon, possibly non-Abelian. In Appendix B 4

it is shown that

(
R0g,aRa,0g

)n
p−1
∏

j=0

ηa(g,g
j) =Mv,a. (E3)
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The quantity Mv,a obtained using this formula is manifestly

gauge-invariant; for our choice of p, the anyon v is also in-

variant under arbitrary relabelings of the defects. We define

Mv,a = e2πiQa , where Qa is the U(1) charge of a.

We can obtain the same result by plugging in the solu-

tion discussed in Appendix D 1. With this solution, R0g,a =
Ra,0g = 1, and ηa(g,g

j) = 1 for 0 ≤ j < p − 1, while

ηa(g,g
p−1) = Mv,a. So the direct evaluation is consistent

with the general result.

In order to measure the defect class, we have the following

gauge-invariant quantity:

In(0g) := θn0g

n−1∏

j=0

η0g(g,g
j), (E4)

where g = e2πi/n, and n is arbitrary. The particular solution

gives that θ0g = 1 and η0g(g,g
j) = 1

F 0g0
j
g0g

. Using this we

compute

In(0g) =

n−1∏

j=0

1

F 0g0
j
g0g

(E5)

= e2πi(
v⋆v
2 +k1) 1

n×
∑

j(
1
n+ j

n− [j+1]n
n ) (E6)

= eiπ(v⋆v+2k1)
1
n (E7)

This gives the value of k1 modulo n; we can choose different

values of n to fix k1. Note that v ⋆ v + 2k1 = σ̄H . Therefore

when k1 is changed by +1, σ̄H is changed by +2. This is

consistent with the general formula for the defect response,

Eq. (83), which showed that In(0g)
2n = Mv,v. Eq. (83) is

derived in Appendix B 5.

The quantity In(0g) is manifestly gauge-invariant. We can

also make this quantity invariant under relabelings by fixing

0g canonically: we demand that R0g,a, Ra,0g → 1 as g → 0.

For n sufficiently large, the defect 0g is thus defined canoni-

cally, so In(0g) is an absolute SET invariant.

We note that in our choice of gauge the defect F -symbols

F 0g0h0k are directly related to the effective response theory

obtained by integrating out the internal gauge fields describ-

ing the topological order. In fact, evaluating the response

theory σ̄H

2π A ∪ dA on a 3-simplex of a triangulation [0123]
with a flat configuration of the U(1) gauge field A, such that

A01 = g, A12 = h, and A23 = k, gives precisely the value of

F 0g0h0k stated in Eq. (D11). A similar relationship can be ob-

served between the response theory and the defect F -symbols

in later sections.

2. G = U(1) ⋋ E2

For SET phases with continuous magnetic translation and

spatial rotation symmetry, all the SET invariants can be ex-

tracted by using the subset of the data in which the translation

group elements are set to zero. The two anyons v and s giving

the symmetry fractionalization class are determined by using

the formula for a single U(1) symmetry, in the following way.

With the usual notation, we first set g = (e2πi/p,0, 1) and

evaluate Fa(g1 = g, . . . ,gp = g) = Mv,a. This allows us

to determine the vison v, as we showed above. Then we set

h = (1,0, e2πi/p) and evaluate Fa(g1 = h, . . . ,gp = h) =
Ms,a, and thus obtain s. It is emphasized that this result de-

fines the fractional charge and topological spin of a even when

a is non-Abelian.

The defect F -symbols, which are useful for evaluating the

defect invariants, were calculated explicitly in Appendix D 2.

The SPT coefficient k1 corresponding to IQH states is found

by setting their SO(2) components to zero and evaluating

In(0g) for g = (e2πi/n,0, 1). This calculation gives

In(0g) = e2πi(
v⋆v
2 +k1) 1

n , (E8)

in agreement with the general identities from Appendix B 5.

Similarly, the parameter k3, which corresponds to SPT states

associated to the SO(2) plane rotation symmetry, is deter-

mined by setting h = (1,0, e2πi/n), and computing

In(0h) = e2πi(
s⋆s
2 +k3) 1

n . (E9)

Therefore we can obtain k1 and k3 once we know v and

s. It remains to find the mixed defect invariant (i.e. the

shift) parametrized by k2. To that end, we consider k =
(e2πi/n,0, e2πi/n),g = (e2πi/n,0, 1),h = (1,0, e2πi/n) and

evaluate

In(0k)

In(0g)In(0h)
=

n−1∏

j=0

F 0h0
j
h
0hF 0g0

j
g0g

F 0k0
j
k
0k

(E10)

= e2πi(v⋆s+k2)
1
n×

∑

j(
1
n+ j

n− [j+1]n
n ) (E11)

= e2πi(v⋆s+k2)
1
n (E12)

This result is consistent with the general derivation of mixed

defect invariants discussed in Appendix B 5. The lhs is a prod-

uct of three gauge-invariant quantities, and gives k2 once v
and s are known, upon choosing different values of n.

In the above analysis we have omitted the invariant for the

filling per magnetic unit cell ν, which is not an independent

invariant (its fractional part is constrained to equal that of σ̄H ).

The derivation of the invariant for the filling, and the proof of

this constraint, are discussed in Appendix F 1.

3. G = ZM

The calculations for G = ZM closely resemble those per-

formed above for G = U(1). The invariant for the symmetry

fractionalization class is obtained with the same identity used

for U(1) symmetry, with the ZM generator here denoted as

h = e2πi/M :

e2πiLa := Fa(g1 = h, . . . ,gM = h)

=
(
R0h,aRa,0h

)M
M−1∏

j=1

ηa(h,h
j) =Ms,a. (E13)
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Here the anyon s is defined as s = 0Mh . Knowing the value of

Ms,a as a function of a allows us to determine s, and hence the

symmetry fractionalization class. However, we must keep in

mind the fact that the same symmetry fractionalization class

can be described by diferent values of s. If we choose a differ-

ent h-defect, namely s′h instead of 0h, the above identity will

instead measure the anyon given by (s′h)
M = s× s′M . How-

ever, as we saw from group cohomology calculations as well

as physical arguments, this anyon is associated to the same

symmetry fractionalization class.

To distinguish the M defect classes, we use the formula

IM (0h) = θM0h

M−1∏

j=0

η0h(h,h
j) (E14)

When evaluated against the G-crossed solution in Appendix

D 3, which is parametrized by the anyon s and the integer k3 ∈
ZM , the formula returns the value

IM (0h) = e2πi
s⋆s+2k3

2M := eiπℓs/M . (E15)

However, different values of k3 mod M may corespond to

the same SET phase. This is because the above formula de-

pends on a choice of 0h, and returns different values upon

relabeling the defects; under such relabelings, solutions cor-

responding to different values of k3 become interchangeable.

Therefore, properly counting the number of SET phases with

ZM symmetry becomes a nontrivial exercise. The origin of

the redundancy, as well as a general counting strategy, are dis-

cussed in detail in Appendix G 1.

4. G = U(1) ⋋φ Z2

For a system with discrete magnetic translation symme-

try, the invariant giving the vison v is obtained by setting

all translations to zero and using the standard formula for

U(1) symmetry fractionalization. Let us now discuss the

invariant which measures the anyon m per unit cell. The

desired formula can be obtained by considering the follow-

ing sequence of symmetry operations applied to the anyon a:

g1 = (1,x);g2 = (1,y);g3 = (1,−x);g4 = (1,−y). The

effect of the symmetry operations is to take a around a unit

cell, and in doing so also around an overall φ flux; this latter

contribution must be cancelled away. Using the results of Ap-

pendix B 4, we see that this is done using the gauge-invariant

quantity

Fa(g1,g2,g3,g4) =

(
4∏

i=1

Ra,0giR0gi ,a

)

Ra,0g4g3g2g1R0g4g3g2g1 ,a
ηa(g4,g1g2g3)ηa(g3,g1g2)ηa(g2,g1). (E16)

Using the notation of Appendix D 4, we can explicitly

evaluate this in the gauge where Ra,0giR0gi ,a = 1, and

w(g1,g2) = vz12+
φ
2 r1×r2 × m

1
2 r1×r2 . A direct calculation

then gives the anyon induced by the above symmetry opera-

tions:

(w(g2,g1)w(g3,g1g2)w(g4,g1g2g3)) (E17)

= (v
φ
2 −φ

2 ×m
1
2 )× (v

φ
2 −φ

2 ×m
1
2 )× (v0 ×m0) (E18)

= m (E19)

As a result, we obtain the relation Fa(g1,g2,g3,g4) =
Ma,m. Notice that the individual terms in parentheses on

the middle line of the above computation are not well-defined

anyons. This is because we are working in symmetric gauge.

We can do the same calculation in Landau gauge and ob-

tain the same answer, with each w factor well-defined. How-

ever, the above invariant gives the same answer for any gauge

choice. Moreover, from the computation of H2(G,A) (Ap-

pendix H 3), we see that different choices of m are all phys-

ically distinct, and therefore m will remain invariant under

defect relabelings.

Next we study the invariants characterizing the defect class.

The U(1) SPT index k1 is determined by setting all the ri to

zero and choosing an element g = (e2πi/n,0). The invariant

In(0g) then gives the value of k1 mod n, as we have seen

previously.

We also have an invariant which measures the filling ν per

magnetic unit cell. From the cohomology calculations in Ap-

pendix H 3, we find that each q×1 magnetic unit cell encloses

the anyon

b(r1, r2) = w(r1, r2)w(r2, r1) = vp ×mq. (E20)

Consider the quantity

η0g(r2, r1)

η0g(r1, r2)
(E21)

This quantity is manifestly invariant under both vertex basis

and symmetry action gauge transformations when r1 and r2
commute, i.e. if we consider a magnetic unit cell instead of

the standard one. In the general discusion of Appendix B 5,

we prove that when g = (ei2π/n,0),

(
η0g(r2, r1)

η0g(r1, r2)

)n

=
ηv(r2, r1)

ηv(r1, r2)
=Mv,b(r2,r1). (E22)

Note that when r1 and r2 span a q × 1 magnetic unit cell,

Mv,b(r2,r1) = e2πiv⋆(v
p×mq) = e2πiν , where ν is the filling
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per magnetic unit cell. Therefore the above invariant measures

ν/n mod 1. To verify this explicitly, we use the solution in

Appendix D 4 and write, for those specific gauge choices,

η0g(r2, r1)

η0g(r1, r2)
=
F 0r10g0r2

F 0r20g0r1

F 0g0r20r1

F 0g0r10r2

F 0r20r10g

F 0r10r20g
(E23)

Evaluating the F - symbols, we finally obtain

η0g(r2, r1)

η0g(r1, r2)
= e2πi((v⋆v+2k1)

1
n (φq−[φq])+(v⋆m+k6)

1
n q)

= e2πi(pσ̄H+q(v⋆m+k6))
1
n = e2πiν

1
n , (E24)

where we have identified ν
n = pσ̄H+q(v⋆m+k6)

n mod 1. With

this result, we can verify a stronger form of the filling LSM

relation than the one stated in Eq. (139), in terms of the G-

crossed data. The usual LSM relation and its stronger coun-

terpart are discussed using G-crossed identities separately in

Appendix F 2.

5. G = U(1)⋋φ [Z2 ⋊ ZM ]

First we make the following remark regarding notation. Let

h be the generator of point group rotations. We will abuse

the notation for rotation point group elements slightly, as fol-

lows: the quantities hi written in line should be understood

as integers mod M , corresponding to rotations by the angle

2πhi/M , while in an expression such as hr or 1−hr, h is un-

derstood as the 2×2matrix generator of point group rotations,

and thus the symbol 1 in 1−hr denotes the identity 2 × 2 ma-

trix.

a. Symmetry fractionalization invariants

We have previously discussed invariant formulas to mea-

sure the symmetry fractionalization anyons v, s and m. The

same formulas hold in the present case, once we set the

translation components of the group elements involved to

zero. Below we will discuss how to measure the anyons tx, ty
separately for M = 2, 3, 4.

M = 2: Using the formulas for group cohomology given

in Appendix H 4, we see that this symmetry fractionalization

is classified by (Z2 × Z2) ⊗ A, corresponding to a pair of

anyons (tx, ty) modulo the equivalence relation (tx, ty) ∼
(tx × a2, ty × b2), where a, b ∈ A. We define g = (1, r, eiπ).

Thus g2 = (e2πi
1
2 r×−r,0, 1) = (1,0, 1). Now using the ex-

plicit symmetry fractionalization cocycle given in Appendix

H 4, the anyon induced is given by

w(g,g) = v0 ×m0 × s1 × (~t ·
1−h
1−h r) = s× (~t · r). (E25)

Hence the invariant Fa(g,g) will measure Ma,s×(~t·r).

We can remove the contribution from s by defining k =

(1,0, eiπ) and using the identity

Fa(g,g)

Fa(k,k)
=
Ma,s×~t·r

Ma,s
=Ma,~t·r. (E26)

Finally, we examine how a relabeling of defects

changes the anyon measured by the above symme-

try operation. A relabeling 0g → 0gχ(g) takes

w(g,g) → w(g,g)(χ(g))2. Similarly, a relabeling

0k → 0kχ(k) takes w(k,k) → w(k,k)(χ(k))2 . Therefore

the anyon measured by
Fa(g,g)
Fa(k,k)

transforms under a relabeling

as ~t · r → ~t · r(χ(g))2χ(k)
2
. Since the function χ is

arbitrary, the redundancies in the above invariant reproduce

the equivalence relation on (tx, ty) obtained using group

cohomology.

M = 3: The symmetry fractionalization is classified by

Z3⊗A, corresponding to a pair of anyons (tx, ty) modulo the

equivalence relation (tx, ty) ∼ (tx×a×b, ty×b
2×a), where

a, b ∈ A. (This is equivalent to saying that txt2y is defined

modulo anyons of the form a3.) Define g = (1,x, ei2π/3) and

k = (1,y, ei2π/3). Three successive operations of g are asso-

ciated to a combination of different anyons. The translations

cover an area

A =
1

2
(r× hr+ (r+ hr)× h2

r) =
1

2
r× hr+ 0 (E27)

where we have used the fact that for any r, 1+h+h2

r = 0.

Therefore an evaluation of Fa(g,g,g) will have a contribu-

tion from the anyon per unit cell, which is given bymA. There

will also be a contribution vα, where α is the integer part of

φA and is associated to the total number of flux quanta con-

tained in the area A. The desired anyon can be extracted by

plugging in the form of the general symmetry fractionalization

cocycle from Eq. (D38) into the expression below:

w(g,g)×w(g,g2)×w(k,k) ×w(k,k2)

= (vα ×mA × ~t · x× s0)× (v0 ×m0 × ~t · 1+hx× s1)

× (vα ×mA × ~t · y × s0)−1 × (v0 ×m0 × ~t · 1+hy × s1)−1

(E28)

= ~t · 2+h(x − y) = txt2y (E29)

Note, in particular, that the contributions proportional to the

area vanish from the final expression. This implies that

Fa(g,g,g)

Fa(k,k,k)
=Ma,txt2y

. (E30)

Here we used h =

(
0 1
−1 −1

)

. A relabeling will shift the

observed anyon by the amount χ(g))3χ(k)3, and therefore,

since χ is arbitrary, the above identity measures txt2y modulo

anyons of the form a3. This exactly reproduces the equiva-

lence relation from group cohomology.
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M = 4: Here the computations closely resemble those per-

formed for M = 2. The symmetry fractionalization is classi-

fied byZ2⊗A, corresponding to a pair of anyons (tx, ty) mod-

ulo the equivalence relation (tx, ty) ∼ (tx×a×b, ty×a×b),
where a, b ∈ A. Define g = (1, r, eiπ). Thus g2 =

(e2πi
1
2 r×−r,0, 1) = (1,0, 1). Then we compute

w(g,g) = v0 ×m0 × s1 × (~t ·
1−h2

1−h r) = s× (~t · 1+hr).
(E31)

With the definition h =

(
0 1
−1 0

)

, we have 1+hr = (r1 +

r2, r2 − r1)
T . Therefore the anyon measured is s× tr1+r2x ×

tr2−r1y . Repeating the arguments forM = 2, we can eliminate

the contribution from s and obtain

Fa(g,g)

Fa(k,k)
=M

a,t
r1+r2
x ×t

r2−r1
y

=Ma,(txty)r2×(txty)r1

(E32)

where k = (1,0, eiπ).
Under a relabeling of defects, the anyon (txty)

r2 ×(txty)
r1

gets shifted by (χ(g))2χ(k)
2
, which is an anyon of the form

a2. Therefore the symmetry fractionalization is specified by

txty (or txty) up to anyons a2, a ∈ A. This reproduces the

group cohomology equivalence relation stated above.

M = 6: In this case there is no nontrivial symmetry frac-

tionalization class. It is important to note that this does not

mean that tx and ty will always be trivial when measured us-

ing G-crossed identities. However, every value of tx and ty
can be shifted to the trivial value (0, 0) through an appropriate

relabeling of defects. Therefore there are no invariants asso-

ciated to symmetry fractionalization in this case.

b. Defect invariants

Next we study the invariants giving the physical response

properties, and whose integer parts parametrize the defect

class. In our discussion of magnetic translation symmetry we

have already seen how to isolate the integer coefficients k1 and

k6. The remaining invariants are discussed below. Note that

the fractional charge/angular momentum/crystal momentum

of a defect as determined by these invariants is well-defined

only up to the charge/angular momentum/crystal momentum

of an anyon. This is because we can always attach an anyon to

an elementary discrete symmetry defect such as a dislocation

or a disclination by adjusting the local energetics of the under-

lying Hamiltonian, without changing the topological phase to

which the system belongs. The remaining invariants can be

described as follows.

Discrete shift : The coefficient S = q ⋆ s+ k2 is a discrete

analog of the shift. The term with S assigns the fractional

U(1) charge S

M to elementary 2π/M disclinations and to cor-

ners of angle 2π/M . To find the corresponding G-crossed

invariant, we use the prescription for mixed defect invariants

discussed in Appendix B 5. Namely, we set all translations

to zero and take g = (e2πi/M ,0, 1),h = (1,0, e2πi/M ), and

then evaluate

IM (0gh)

IM (0g)IM (0h)
= e

2πi
M S. (E33)

The three factors in the lhs are manifestly invariant under ver-

tex basis and symmetry action gauge transformations. The de-

nominator terms cancel out the pure U(1) and ZM -SPT terms

arising in the numerator, leaving only the desired mixed term.

We have not yet accounted for how the rhs transforms under

relabelings of the defects: we will do this in Appendix G 2,

where we discuss how to obtain the full SET classification for

G = U(1)⋋φ [Z
2⋊ZM ] after accounting for such relabelings.

Angular momentum of an elementary disclination: The

quantity ℓs
2M = s⋆s+2k3

2M mod 1 measures the angular mo-

mentum of an elementary disclination (up to a contribution

from the chiral central charge), where k3 is the ’strong’ ro-

tation SPT index. It is calculated via the usual formula

eiπℓs/M := IM (0h), where h = (1,0, e2πi/M ).
Quantized electric polarization: This quantity defines an

electric polarization given by ~Pc × ẑ, which is quantized by

the rotational symmetry of the lattice. From the response the-

ory (Appendix I 2), we obtain Pc,i =
(1−h)−1

(q ⋆ ti + k4,i).
We will describe the formulas for each M separately below.

M = 2: In this case, define g = (eiπ , r, e2πi/2) and k =
(1, r, e2πi/2); they satisfy g2 = k2 = 0. We use the general

symmetry fractionalization cocycle in Appendix D 5 to write

w(g,g) = v × s× ~t · r

w(k,k) = s× ~t · r (E34)

Using this and the ribbon property of anyons, we can deduce

that

(
I2(0g)

I2(0k)

)2

=
θv×s×~t·r
θs×~t·r

= θv ×Mv,s×~t·r. (E35)

Crucially, the rhs has a factor of Mv,~t·r, which is associated

to the anyonic contribution to the polarization. Therefore we

expect that the invariant itself measures the anyonic contri-

bution as well as the desired SPT contribution to the polar-

ization, along with other responses that need to be subtracted

away. Indeed, a direct evaluation using theG-crossed solution

in Appendix D 5 gives

I2(0g)

I2(0k)
= eiπ

σ̄H
2 × e2πi

S

2 × e2πi
~Pc·r (E36)

The explicit calculation therefore agrees with the above

general identity. Knowing σ̄H and S, we can extract ~Pc. The

four defect classes form the group Z2 × Z2 and can be distin-

guished by taking r = x,y.

M = 3: Here we have three defect classes. We define g,k
so that g3 = k3 = 0. Now the first component e2πiz depends

on φ, and must satisfy 3z + φ
2 r ×

hr = 0 mod 1. Assum-

ing r = x or y, we obtain 3z + φ = 0. Hence we choose
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g = (e2πi
2−φ
3 , r, e2πi/3) and k = (e2πi

1−φ
3 , r, e2πi/3). We

now use the explicit forms of the symmetry fractionalization

cocycles to calculate

w(g,g) ×w(g,g2)

= (v1 × s0 ×m1/2 × ~t · r)× (v1 × s1 ×m1/2 × ~t · 1+hr)

= v2 × s×m× ~t · 2+hr, (E37)

w(k,k) ×w(k,k2)

= (v0 × s0 ×m1/2 × ~t · r)× (v1 × s1 ×m1/2 × ~t · 1+hr)

= v × s×m× ~t · 2+hr. (E38)

From this we see that

(
I3(0g)

I3(0k)

)3

= θv ×Mv,v×s×m×~t·2+hr. (E39)

Now a direct evaluation using the G-crossed solution gives

I3(0g)

I3(0k)
= eiπσ̄H × e2πi

S

3 × e2πi
ν
3 × e2πi

1
3
~Pc·

2+hr, (E40)

in agreement with the expected result. After subtracting

the contributions from σ̄H , S and ν, this invariant gives us

the components of 1
3
~Pc ·

2+hr mod 1; i.e. the values of
1
3 (2Pc,x+Pc,y) and 1

3 (−Pc,x+Pc,y) modulo 1. The defect

classes differ from each other by shifting the above quantities

by ±1/3. Therefore the above identity can indeed distinguish

all the defect classes.

We observe that the filling ν appears in Eq. (E40), but

not in Eq. (E36). This is related to the fact that the anyons

measured in Eqs. (E37),(E38) receive a contribution from m,

while those measured in Eq. (E34) do not. The simplification

observed in Eq. (E36) occurs for order 2 rotations, and will

also be seen in Eq. (E41) below.

M = 4: Now there are two defect classes. Define g =
(eiπ, r, e2πi/2) and k = (1, r, e2πi/2); they satisfy g2 = k2 =
0. Then we use similar reasoning as above to evaluate

I2(0g)

I2(0k)
= eiπ

σ̄H
2 × e2πi

S

2 × e2πi
1
2
~Pc·

1+hr (E41)

After subtracting the contributions from σ̄H and S, this in-

variant gives us the components of 1
2
~Pc ·

1+hr; i.e. the values

of 1
2 (Pc,x ± Pc,y), instead of Pc,i directly. However, the

two defect classes differ by a shift of 1
2 (Pc,x±Pc,y) by 1/2.

Therefore, in the above expression, the two defect classes will

give values that differ by a sign, so we can indeed distinguish

them.

Angular momentum polarization: The quantity ~Ps de-

fines a fractional angular momentum polarization, analogous

to the charge polarization studied above. From the response

theory we obtained Ps,i =
(1−h)−1

(s ⋆ ti + k5,i). The corre-

sponding invariant is extracted in a similar manner to ~Pc. The

diferent cases are worked out separately below:

M = 2: Take g = (1, r, eiπ); thus g2 = 0. Also define

k = (1,0, eiπ). Now we can evaluate

w(g,g) = s× ~t · r

w(k,k) = s (E42)

which implies that

(
I2(0g)

I2(0k)

)2

= θ~t·r ×Ms,~t·r. (E43)

Crucially, there is a contribution from Ms,~t·r, which is asso-

ciated to the anyonic contribution to ~Ps. Using the explicit

solution in Appendix D 5, we verify that

I2(0g)

I2(0k)
= e2πi

~Ps·r

2 × e
iπ
2 (~t·r)⋆((~t·r)). (E44)

Note that we now have to subtract the contribution

e
iπ
2 (~t·r)⋆((~t·r)), related to the quantized torsional response, in

order to isolate the desired invariant. We will have to subtract

similar contributions for M = 3, 4 as well.

M = 3: Take g = (e2πiz ,x, ei2π/3), where z is chosen so

that g3 = 0. Also define k = (e2πiz,y, ei2π/3). Here x,y
are elementary translations. We find that

w(g,g)×w(g,g2) = v × s×m× ~t · 2+hx

w(k,k) ×w(k,k2) = v × s×m× ~t · 2+hy, (E45)

which implies that

(
I3(0g)

I3(0k)

)3

= θ~t·2+h(x−y)×Ms,v×s×m×~t·2+h(x−y). (E46)

In agreement with this, we can perform an explicit computa-

tion and see that

I3(0g)

I3(0k)
= e2πi

1
3
~Ps·

2+h(x−y) × e2πi
S

3 × e
πi
3 (tx⋆ty+ty⋆tx+ty⋆ty)

× e2πiz
~Pc·

2+h(x−y) (E47)

Having determined the charge polarization and the shift, we

can extract the angular momentum polarization as well.

M = 4: Take g = (1, r, eiπ); thus g2 = 0. Also define

k = (1,0, eiπ). Now we can evaluate

I2(0g)

I2(0k)
= e2πi

~Ps·
1+hr

2 × e
πi
2 (~t·r)⋆(~t·1+hr). (E48)

The invariants for the two defect classes will now differ from

each other by a sign.

Quantized linear and angular momentum per magnetic

unit cell: We expect from group cohomology, and from the

defectF -symbols calculated in Eq. (D39), that there are quan-

tized responses associated to a fractional linear and angular
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momentum per unit cell. However, we have not been able to

find G-crossed invariants for these responses. This problem

will be left for future work.

In the expression for the defect F -symbols, Eq. (D39), we

observe that there are terms which are not associated to any

parameters of the defect class, but instead are completely de-

termined by the symmetry fractionalization data. These terms

correspond to additional quantized responses, and have invari-

ants of their own; however, their values are fixed by the sym-

metry fractionalization class. They also appear in the effective

response theory associated to the SET phase once the internal

gauge fields have been integrated out. We discuss one such

response below:

Quantized torsional response Πij : This invariant is asso-

ciated to the components of the crystal momentum associated

to a dislocation, through the relation pi =
∑

j Πijbj , where b

is the dislocation Burgers vector.

We will state the formula in the simpler case where v =
m = 0. In the most general case, this formula will have sev-

eral additional contributions from other responses, and so we

will need to carefully isolate Πij from the additional contri-

butions. We will not perform the general calculation here.

Consider the four defects

d1 = 0(1,0,e2πi/M); d
M
1 = s

d2 = 0(1,r′,e2πi/M ); d
M
2 = s× ~t ·M(1−h)−1

r′

d3 = 0(1,r,e2πi/M ); d
M
3 = s× ~t · M(1−h)−1

r

d4 = 0(1,r+r′,e2πi/M ); d
M
4 = s× ~t ·M(1−h)−1

(r+ r′)

(E49)

Using the ribbon property for anyons, we can show that

(
IM (d4)IM (d1)

IM (d2)IM (d3)

)M

=
θs×~t·M(1−h)−1 (r+r′)θs

θs×~t·M(1−h)−1
r
θs×~t·M(1−h)−1

r′

=M~t·M(1−h)−1
r,~t·M(1−h)−1

r′
(E50)

Using the field theory formalism we had obtained Πij =

((1−h)
−1~t)i ⋆ (

(1−h)−1~t)j as the coefficient of the response

term
Πij

2π Ri ∪ dRj . Consistent with this, we define

e2πiMrT Πr′ :=
IM (d4)IM (d1)

IM (d2)IM (d3)
. (E51)

Note that this formula only gives the value of MΠij
mod 1. It is not fully clear whether this is the finest possible

characterization of the torsional response, or if a more precise

formula exists.

Appendix F: Generalized LSM constraints from filling

1. Continuum FQH systems

It is possible to extract all the SET invariants for G =
U(1) ⋋ E2 using only the G-crossed defect data which are

restricted to the U(1) × SO(2) subgroup of G. This sim-

plified picture, in which the translations are ignored, misses

one important feature, namely the filling per magnetic unit

cell ν, which is well-defined only in the presence of trans-

lation symmetry. It is well known that the Hall conductiv-

ity and filling are in fact equal in continuum quantum Hall

systems. However, past proofs of this relationship have usu-

ally relied on Galilean invariance. In the following, we show

that the relationship ν = σ̄H mod 1 can be proved using G-

crossed invariants associated to the magnetic translation sym-

metry alone. We will first give a heuristic argument to moti-

vate the relation, and then give a more rigorous argument in

terms of G-crossed invariants.

The heuristic argument is as follows (these arguments have

been made previously in Ref [23], and a simplified proof of

the same relation which also uses rotational symmetry has

been discussed in Ref. [61]). Suppose we divide the con-

tinuum into magnetic unit cells defined by the vectors x and

y. In units of the flux quantum, the group multiplication law

for magnetic translations is

(1, Tx)(1, Tx)(1, T
−1
x )(1, T−1

x ) = (e2πi,0) (F1)

This implies that performing a sequence of translations around

a magnetic unit cell is equivalent to performing a U(1) sym-

metry operation which inserts a 2π flux. Now the consequence

of U(1) symmetry fractionalization is that a 2π-flux is always

associated to a vison v. Therefore, taking an anyon around a

magnetic unit cell results in braiding with the vison associated

to the enclosed 2π-flux. Next, we note that the fractionalU(1)
charge per unit cell (i.e. the fractional filling) is obtained by

adiabatically transporting a 2π-flux around a unit cell, giving

a braiding phase e2πiν . Therefore, the same phase e2πiν can

be interpreted as the braiding phase of the vison associated to

the original 2π-flux with the vison associated to the 2π flux

within the unit cell. This leads to the following relation:

e2πiν =Mv,v (F2)

Finally we can use standard arguments to see how the rhs

relates to the Hall conductivity. First, given an anyon a, its

charge Qa is simply the phase obtained by braiding a 2π-flux

around a: e2πiQa =Mv,a. Therefore e2πiν = e2πiQv , i.e. the

fractional part of the filling equals the charge of the vison. But

the Hall conductivity is defined as the charge introduced into

a region by the addition of 2π-flux into that region. Therefore

we can conclude that

ν ≡ Qv ≡ σ̄H mod 1. (F3)

Now we rigorously derive Eq. (F2) usingG-crossed invari-

ants. We will set all the rotation group elements to zero and

write a magnetic translation as (e2πiz , r). First we recall that

the Hall conductivity is related to Mv,v due to the properties

of the corresponding G-crossed invariant, as summarized by

the relationMv,v = e2πiσ̄H = I2n
n (0g), with g = (e2πi/n,0).

Here 0g is an elementary U(1) flux satisfying 0ng = v.

Now we develop another invariant which is also equal to

Mv,v, and which we identify with the filling. Define g =

(e2πi/n, 0). Assume that x,y are magnetic translations. We
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can use the symmetry fractionalization cocycle and the fusion

rules to see that

0x × 0y = 0y × 0x ×w(x,y) ×w(y,x) (F4)

= 0y × 0x × v (F5)

This means that translations which circumscribe a magnetic

unit cell also enclose aU(1) flux quantum, which is associated

to the anyon b(x,y) = w(x,y)×w(y,x) = v. Now consider

the quantity

η0g(x,y)

η0g(y,x)
. (F6)

Since x and y commute, the numerator and the denomina-

tor transform in the same way under symmetry action gauge

transformations (see Appendix B), while η symbols are auto-

matically invariant under vertex basis gauge transformations.

Therefore this expression is gauge-invariant. It can be thought

of as the total projective phase associated to transporting a g-

defect around a magnetic unit cell. The nth power of this

invariant therefore corresponds to the total projective phase

associated to transporting a U(1) flux quantum around a mag-

netic unit cell, i.e. it defines the filling per magnetic unit cell.

Indeed, our main result is that

e2πiν :=

(
η0g(x,y)

η0g(y,x)

)n

=Mv,b(x,y) =Mv,v, (F7)

which proves that the fractional part of the filling equals σ̄H .

This is a special case of the general result derived in Ap-

pendix B 5. Using the known identity Mv,v = e2πiσ̄H , we

conclude that ν = σ̄H mod 1. In the cases where we can

write down explicit solutions to the G-crossed equations, we

can actually verify the stronger result that ν/n = σ̄H/n
mod 1 for an integer n which can be made arbitrarily large.

This implies that ν = σ̄H . We use the particular solution

given in Appendix D 2 to evaluate the G-crossed invariants

associated to ν/n and σ̄H/n, and verify that they equal each

other. Note that this particular solution was written assuming

the anyon F symbols can all be set to 1. The steps are given

below:

eiπσ̄H/n := θn0g

n−1∏

j=1

η0g(g,g
j) ,g = (e2πi/n,0, 1) (F8)

= 1n
n−1∏

j=1

1

F 0g0gj 0g
(F9)

=

n−1∏

j=1

ei2π
v⋆v+2k1

2n (1/n+j/n−[j+1]/n) (F10)

= ei2π
v⋆v+2k1

2n (F11)

and, with |x× y| = l2B ,

e2πiν/n :=
η0g(x,y)

η0g(y,x)
,g = (e2πi/n,0, 1) (F12)

=
F 0x0g0yF 0g0y0xF 0y0x0g

F 0x0y0gF 0y0g0xF 0g0x0y
(F13)

=
1× eπi

v⋆v+2k1
2n × eπi

v⋆v+2k1
2n

e−πi
v⋆v+2k1

2n × 1× e−πi
v⋆v+2k1

2n

(F14)

= e2πi
v⋆v+2k1

n . (F15)

This strongly suggests that there is a proof of ν = σ̄H which

is completely algebraic and independent of any particular so-

lution; however, we have not been able to find such a proof.

We leave this issue for future study.

2. Lattice FQH systems

For lattice systems (with or without point group rotation

symmetry), there is an additional possibility of an anyonm in

each unit cell due to symmetry fractionalization. Consider a

flux φ = p/q per unit cell. Assume that a magnetic unit cell is

spanned by the vectors r1, r2. Then, we have the relation

0r1 × 0r2 = 0r2 × 0r1 ×w(r1, r2)×w(r2, r1) (F16)

= 0r1 × 0r2 × b(r1, r2). (F17)

Noting that the most general symmetry fractionalization co-

cycle for magnetic translation symmetry (see Appendix D 4)

can be written as

w(r1, r2) = v
φ
2 r1×r2 ×m

1
2 r1×r2 , (F18)

we can use r1 × r2 = q and obtain that

b(r1, r2) = (vp/2 ×mq/2)(v−p/2 ×m−q/2)−1 (F19)

= vp ×mq. (F20)

This result for b also holds in the presence of rotation sym-

metry. (Note that when we work in symmetric gauge, it is

necessary to fully simplify the expression for b(r1, r2) in or-

der to have a meaningful result. In an integer-valued gauge

such as the Landau gauge, the expressions for w(r1, r2) will

also be meaningful. However, both gauge choices result in the

same value of b(r1, r2).)
Now, setting g = (e2πi/n,0), we define the filling per mag-

netic unit cell ν through the following invariant:

e2πiν/n :=
η0g(r1, r2)

η0g(r2, r1)
. (F21)

With this definition, ν/q is the usual filling per unit cell.

The general result proved in Appendix B 5 now shows that
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e2πiν =

(
η0g(r1, r2)

η0g(r2, r1)

)n

=Mv,mq×vp (F22)

=Mv,mq × e2πipσ̄H (F23)

From this we can conclude that

ν = qv ⋆ m+ pσ̄H mod 1. (F24)

This result is consistent with that of Ref. [23], and is in fact

a Lieb-Schultz-Mattis (LSM) constraint. For systems where

a particular solution is available we can verify the stronger

claim that

ν/q = (v ⋆ m+ k6) + φσ̄H . (F25)

Here k6 refers to the number of integerU(1) charges placed in

each unit cell (i.e. it is the index for the filling SPT associated

to magnetic translation symmetry). To verify this explicitly,

we use the solution in Appendix D 4 and write, assuming g =
(ei2π/n,0),

η0g(r2, r1)

η0g(r1, r2)
=
F 0χ10z0χ2

F 0χ20z0χ1

F 0z0χ20χ1

F 0z0χ10χ2

F 0χ20χ10z

F 0χ10χ20z
(F26)

From the F - symbols, we obtain

η0g(r2, r1)

η0g(r1, r2)
= e2πi((v⋆v+2k1)z(φq−[φq])+(v⋆m+k6)zq)

= e2πi(pσ̄H+q(v⋆m+k6))z =: e2πiν
1
n , (F27)

Thus we have ν/n = q/n((v⋆m+k6)+φσ̄H ) for an arbitrary

integer n. This is possible only if we have ν/q = (v ⋆ m +
k6) + φσ̄H , as claimed.

Appendix G: Incorporating relabelings in the SET classification

1. G = ZM

Let h be the generator of the group ZM ; let gi = e2πihi/M

be generic group elements. In the analysis of SET phases with

ZM symmetry the following complication arises: there is gen-

erally no unique way to specify which defect is referred to as

0h. For anyons s′ such that s′M is the trivial particle, we

can replace 0h → s′h; this implies that 0gi
→ s′hi

gi
. Upon

such a relabeling, the symmetry fractionalization cocycle de-

fined by 0g1
0g2

0g1g2
= w(g1,g2) will be changed only by

the amount s′h1+h2−[h1+h2]M , which is trivial. For this rea-

son, the anyon s = 0Mh associated to flux insertion will also

remain unchanged under this relabeling. This becomes im-

portant because in general, IM (0h) 6= IM (s′h), as we show

below.

a. Calculation of change in defect invariant due to relabelings

Before we describe our strategy to handle relabeling equiv-

alences, we prove the following result: given two defects 0h

and ah such that 0Mh = aMh = s, we have

IM (ah)

IM (0h)
=Ms,a × (Ra,a)M . (G1)

Proof: Let h be the generator of the group ZM . First note that

for Abelian anyons, we can combine the heptagon equations

in the following way (see Appendix B, Eq. (B6)):

Uk(ag1
, bg2

)

ηck(g1,g2)
=
RacRcaRbcRcb

Rab,cRc,ab
. (G2)

Here the group element subscripts associated to ag1
, bg2

, ck
are not written explicitly, for clarity of presentation. Using

this we can write

ηah(h,h
j)

Uh(0h, 0
j
h)

=
R0j+1

h
,ahRah,0

j+1
h

R0h,ahRah,0hR0j
h
,ahRah,0

j
h

(G3)

and
η0h(h,h

j)

Uh(0h, 0
j
h)

=
R0j+1

h
,0hR0h,0

j+1
h

R0h,0hR0h,0hR0j
h
,0hR0h,0

j
h

(G4)

=⇒

M−1∏

j=0

ηah(h,h
j)

η0h(h,h
j)

=
Rs,ahRah,s

Rs,0hR0h,s

(
R0h,0hR0h,0h

R0h,ahRah,0h

)M

.

(G5)

We wish to replace the mixed braiding terms Rah,0hR0h,ah

by terms that depend only on ah and 0h separately. To that

end, we use Eq.(B6) again to write

Uh(0h, a0) =
R0h,0hR0h,0hRa0,0hR0h,a0

Rah,0hR0h,ah
(G6)

and the G-crossed ribbon property to write

Ra0,0hR0h,a0 =
Rah,ah

Ra0,a0R0h,0h
Uh(0h, a0) (G7)

These two equations are combined to give

Rah,0hR0h,ah =
R0h,0hRah,ah

Ra0,a0
(G8)

which implies that

M−1∏

j=0

ηah(h,h
j)

η0h(h,h
j)

=
Rs,ahRah,s

Rs,0hR0h,s

(
R0h,0hRa0,a0

Rah,ah

)M

(G9)

=⇒

(Rah,ah)M
n−1∏

j=0

ηah(h,h
j)

(R0h,0h)
M
M−1∏

j=0

η0h(h,h
j)

=
Rs,ahRah,s

Rs,0hR0h,s
(Ra0,a0)M

(G10)

=Ma,s (R
a,a)

M
, (G11)

as desired.
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b. Classification strategy

Our main assertion is that two G-crossed solutions in dif-

ferent defect classes are physically equivalent if and only if

the gauge-invariant quantities describing those classes are in-

terchanged by some relabeling that preserves the function

w(g1,g2). In particular, we do not need to know the ex-

plicit set of gauge transformations linking the G-crossed data

in these two solutions. Moreover, since the defect invariant is

written purely in terms of Abelian defects, we only consider

relabelings of Abelian defects: allowed relabelings involv-

ing the non-Abelian defect sector will only introduce equiv-

alences between defect classes that can anyway be described

purely within the Abelian sector.

This assertion is justified by the following argument. In the

specific gauge choice of Appendix B 3, the G-crossed BTC

data can be determined entirely from the UMTC data and the

symmetry fractionalization cocycle w(g1,g2). Therefore in

this gauge, any relabeling that relates different defect classes

but also fixes the other G-crossed data must leave w(g1,g2)
invariant. Conversely, if two defect classes in H3(ZM , U(1))
can be related by such a relabeling, those defect classes must

be physically equivalent since all the data are invariant except

for the change in the defect parameter.

First, we show that a relabeling preserves the function

w(g1,g2) if and only if it is of the form 0h → s′h, with

s′M = 0. If a general relabeling is given by w(g1,g2) →
w(g1,g2)dχ(g1,g2), then we must have dχ = 0, i.e. χ
is an element of H1(ZM ,A) ∼= {s′ ∈ A|s′M = 0}. Al-

lowed functions χ(gi) are of the form χ(gi) = s′hi , where

gi = e2πihi/M . The cohomology group H1(ZM ,A) can be

computed using the general result Eq. (J9) stated in Appendix

J.

Motivated by these results we state again our strategy: we

consider a solution corresponding to some fixed symmetry

fractionalization class [w] ∈ H2(ZM ,A) and a defect class

with parameter k ∈ ZM . We will only consider the sub-

set of relabelings that takes 0h → s′h where s′M = 0.

As argued above, this set accounts for all possible redun-

dancies in k. Then we evaluate IM (s′h) for all defects

s′h = 0h × s′ such that s′M = 0. From the computation

carried out previously, the set of quantities thus obtained is

{IM (0h)×Ms′,sθ
M
s′ |s

′M = 0}. It is this complete set which

characterizes the SET.

It is however cumbersome to evaluate the defect invariant

for a potentially large number of defects s′h. To make the anal-

ysis simpler, we would like to find a single gauge-invariant

quantity which is independent of the specific choice of s′h,

and is therefore an absolute invariant. This can be obtained as

follows. Consider the smallest power P such that the phases

(IM (s′h))
P are all equal, thereby collapsing the set of invari-

ants onto a single phase modulo 2π. By construction, this

quantity is gauge-invariant and also invariant under relabel-

ings.

Moreover, we now claim that this invariant also gives dif-

ferent values for physically inequivalent defect classes, i.e.

the process of taking P th powers does not lose any infor-

mation. We show below that the set of phase differences

{Ms,s′(R
s′,s′)M |s′M = 0} forms a cyclic group of order P ,

where the integer P depends sensitively on the structure of A
and also on the anyon s. Due to this cyclic group structure,

two defect classes can have the same value of (IM (0h))
P if

and only if there is a relabeling which relates them, thus com-

pleting our argument, which applies to both Abelian and non-

Abelian topological orders.

The invariant (IM (0h))
P determines a set of defect classes

which form a torsor over ZM/(M,P ). To see this, note that for

some fixed 0h, the distinct defect invariants will take values of

the form IPM (0h)×e
2πikP/M for 0 ≤ k ≤M−1. The factors

e2πikP/M generate a group PZM ∼= ZM/(M,P ). Note that

because the physically equivalent defect classes are associated

to a cyclic subgroup of ZM , the invariants corresponding to

two physically distinct defect classes will never collapse onto

each other when we take their P th powers.

Finally, we prove the assertion regarding the cyclic group

structure of the defect invariants related by relabelings. Sup-

pose A is the group of Abelian anyons, with Rab[a+b] =

eiπ~a
TK−1~b. Here we assume a nondegenerate, symmetric r×r

K matrix with even integers along the diagonal. (As discussed

in Appendix D, the Abelian anyons in a general non-Abelian

bosonic topological order, where A may not be modular, can

still be described by the K matrix associated to the UMTC

Z(A), which contains A.) We will show that the set of phase

differences {M~s,~s′(θ~s′)
M , ~s′M = 0} forms a cyclic group of

order P , and determine P explicitly. The calculation below is

fully consistent with analogous calculations for Abelian topo-

logical orders using crystalline gauge fields, as outlined in Ref

[15].

Define the vectors

Ki = (Ki1, . . . ,Kir)
T = K · (0, 0, . . . , 1, . . . , 0)T (G12)

(the 1 is in the ith position). Ki can be written as K · ei
where [ei]j = δij . The anyon represented by ~Λ, where

Λi =
∑

j Kijnj , is considered trivial for every nj ∈ Z. We

define a fundamental domain consisting of all integer vectors

lying within the convex region formed by the vectorsKi. The

R symbols are only defined for anyons whose representative

vectors lie in this region.

The first step in the computation is to find the anyons s′ for

which s′M is trivial. Let the generators ofA = Zn1×· · ·×Znr

be given by the vectors ~ai, which we assume lie in the funda-

mental domain. The~ai each satisfy the conditionni~ai = K~wi
for some integer vectors ~wi. The orderM elements of the Zni

factor are given by the vectors kini

di
~ai, where di = (M,ni)

and 0 ≤ ki < di. A general form of the relabeling anyon ~s′ is

then ~s′ =
∑

i
niki
di
~ai −K~Λi = K

(
∑

i
ki ~wi

di
− ~Λi

)

. Here the

integer vector ~Λ is chosen so that ~s′ lies within the fundamen-

tal domain.

Upon relabeling with this ~s′, the value of the invariant

IM (0h) changes by the amount
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M~s,~s′θ
M
~s′ = exp



2πi~sT

(
∑

i

ki
di
~wi − ~Λi

)

+ 2πi
M

2

(
∑

i

ki
di
~wi − ~Λi

)T

K




∑

j

kj
dj
~wj − ~Λj







 (G13)

= exp



2πi
∑

i

ki
di
~sT ~wi + 2πi

∑

i,j

Mkikj
2didj

~wTi K~wj



 (G14)

= exp



2πi
∑

i

ki
di
~sT ~wi + 2πi

∑

i

Mk2i
2d2i

~wTi K~wi + 2πi
∑

i<j

Mkikj
di

~wTi
nj ~aj
dj



 (G15)

In the first line, all terms containing ~Λi drop out because they

contribute an overall integer to the exponent. Going from

the second line to the third, we used the symmetry property

Kij = Kji as well as the fact that Kii is even. The third

term on the last line now vanishes because di divides M and

dj divides nj , so the overall contribution from this term is a

sum of integers. As a result, only the first two terms can give

nontrivial contributions.

From the definition of ~wi, we see that di is a factor of both

M and K · ~wi; therefore each summand of the second term is

either an integer or a half integer. Therefore the above expres-

sion becomes

exp

(

2πi
∑

i

ki

(
~s

di
+
~ci
2

))T

~wi ,~ci =
M

d2i
K · ~wi

(G16)

Note that~ci is an integer vector, so the term with ~ci contributes

an integer or a half-integer to the phase difference. This allows

us to replace the coefficient k2i of ~ci/2 with ki, since the two

expressions give the same value modulo 1. Importantly, the

phase differences form a subgroup of ZM upon varying the

ki from 0 to di − 1: this can be seen by setting ki = di and

observing that the phase difference is 1. The order of this

subgroup is 2di
(2di,(2~si+~cidi)·~wi)

. This implies that the subgroup

formed by all possible linear combinations of ni is of order

P = lcm

(
2d1

(2d1, (2~s1 + ~c1d1) · ~w1)
, . . . ,

2dr
(2dr, (2~sr + ~crdr) · ~wr)

)

. (G17)

Finally, as we argued previously, the physically distinct de-

fect classes form a torsor over ZM/(M,P ). This classification

does not depend on the particular basis in which the K matrix

and the vectors ~wi are defined.

c. Example: ZN Laughlin anyons with Z2 symmetry

We now discuss some specific examples illustrating the

ideas developed above. Consider a 1/N Laughlin system with

ZN anyons denoted by ψk, k = 0, 1, . . . , N − 1, where N
is even. Let G = Z2, with h being the nontrivial Z2 ele-

ment. Since N is even, there are precisely two fractional-

ization classes, correpsonding to the even/odd parity of the

spin vector s = ψq . The defect classes are parametrized by

k ∈ Z2. Suppose the system realizes the nontrivial symmetry

fractionalization class, so that q is odd. Consider a defect 0h
such that 02h = ψq . There is preciswely one other defect with

this property, namely s′h = 0h × ψN/2. If we demand that 0h
is the defect that has trivial braiding with all anyons, we can

directly use the defect F -symbols from the particular solution

in Appendix D 3 to calculate

IM (0h) = e
2πi

(

q2

4N + k
2

)

(G18)

where k ∈ {0, 1} denotes the defect class. Similarly, we can

use the solution with s′h to obtain

IM (s′h) = IM (0h)×Mψq,ψN/2 × (Rψ
q,ψq

)2 (G19)

= e
2πi

(

q2

4N +N/2+q+k
2

)

(G20)

Therefore the set of phase differences between the two invari-

ants is {1, e2πi
N+2q

4 }. Note that these two elements always

form a group, because the second element is always ±1. Now

fix q odd and suppose N is a multiple of 4. Then N/2 + 1 is

odd, so the second term in the expression for IM (s′h) is equal

to k + 1 modulo 2. Therefore a solution with a defect class

k is equivalent, after the above relabeling, to a solution with

defect class k + 1. This means that the two defect classes are

physically the same. The conclusion is different when N is
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even, but not a multiple of 4. In that case, N/2+ 1 is even, so

the second term in the exponent of IM (s′h) remains k modulo

2, implying that the defect classes k and k + 1 are distinct.

These results are in agreement with edge CS theory calcula-

tions in Ref. [99] and also with calulations using crystalline

gauge fields outlined in Ref. [15].

An absolute SET invariant for the general case is given by

IM (0g)
P where P is the smallest integer such that P × (N +

2q)/4 is an integer. This implies that P = 4/(4, N + 2q).
The classification is given by ZM/(M,P ) = Z(4,N+2q)/2. For

q odd, this gives Z1 whenN = 4k, and Z2 whenN = 4k+2.

This can also be seen from the general formula we derived

above, Eq. (G17), if we plug in K = N,w = 1, s = q,M =
2 and d = 2. In that case we also have c = MN/d2 = N/2.

We thus obtain

P =
2d

(2d, 2q +N)
=

4

(4, 2q +N)
. (G21)

Therefore we have arrived at the same result in two ways:

first by a direct calculation using the defect F -symbols, and

then by a special case of the general formula derived above.

The two derivations agree with each other.

d. Example: Z2 gauge theory with Z2 symmetry

Next we discuss another example where the generalK ma-

trix classification result can be immediately applied. Con-

sider a Z2 gauge theory with toric code topological order (i.e.

A = Z2 × Z2) with G = Z2. We assume K =

(
0 2
2 0

)

,

where the anyons are denoted as I = (0, 0), e = (1, 0),m =
(0, 1), ψ = (1, 1). The symmetry fractionalization class is an

element of the group Z2 × Z2 and is given by the spin vector

~s = (s1, s2). There are two defect classes for each symmetry

fractionalization class. Here we have d1 = d2 = 2; we also

have ~w1 = e, ~w2 = m, and ~ci =
M
d2i
K~wi = (0, 0) for i = 1, 2.

From the above formula we then obtain

P = lcm

(
4

(4, 2s1)
,

4

(4, 2s2)

)

(G22)

If either s1 or s2 is zero, we get P = 1, therefore the defect

classes are distinct. This happens when v = I, e,m. When

s1 = s2 = 1, i.e. when s = ψ, we have P = 2, so the two

defect classes are equivalent in this case. It is instructive to

compare this treatment with the one given in Ref. [16] (Sec.

X, Example I). There, the G-crossed solutions are written in

a different choice of gauge, and an explicit gauge transforma-

tion is written down to relate the two equivalent defect classes

when s = ψ.

As mentioned previously, all these results can be general-

ized to non-Abelian topological orders, using the fact that the

Abelian anyons in A can still be described by a bosonic K-

matrix associated to Z(A). The results for some well-known

topological orders describing FQH states are summarized in

Table VI in the main text.

2. G = U(1) ⋋φ [Z2 ⋊ ZM ]

In this section we wish to perform the same analysis as

above, after accounting for the full symmetry of the magnetic

space group. We saw that in order to preserve the form of the

G-crossed data without carrying out additional gauge trans-

formations, we must choose relabelings χ : G→ A that leave

the symmetry fractionalization cocycle w(g1,g2) invariant,

i.e. dχ = 0. Such relabelings must therefore be described by

elements of H1(G,A).
The group H1(U(1) ⋋φ [Z2 ⋊ ZM ],A) has three con-

tributions. The first comes from the group H1(U(1),A),
and describes relabelings of U(1) symmetry defects. Let

g = (e2πiz ,0, 1). However, if we demand that the functions

χ(g) classified by this group are continuous in some neigh-

bourhood around g = 0, then we can show that χ must be

the zero homomorphism. This assumption amounts to canon-

ically defining the defect 0g, as we assumed in our analysis

of U(1) symmetry. The canonical choice is made by defining

0g as the unique defect such that Ra,0g and R0g,a are con-

tinuously connected to the identity as a function of g. We

conclude that there are no nontrivial relabelings associated to

the U(1) component of the defects.

Another contribution to H1(G,A) comes from the group

H1(ZM ,A), corresponding to the relabeling function

χ(g) = s′h (G23)

where g = (e2πiz , r, e2πih/M ) and s′M = 0. Such functions

formed the basis for our analysis of relabelings for G = ZM ,

and must also be considered here.

There is now a third contribution, coming from the group

H0(ZM ,H
1(Z2,A)), i.e. elements of H1(Z2,A) that are in-

variant under rotations. A general element of H1(Z2,A) is

given by the function χ(r) = ~t′ · r. Such a function is rota-

tionally invariant if χ(r) = χ(hr) for each r, i.e. if ~t′ · 1−hr
is the trivial anyon for each r. These three contributions com-

pletely determine H1(G,A). Therefore the most general re-

labeling function that leaves the symmetry fractionalization

cocycle invariant is

χ(g) = s′h × ~t′ · r (G24)

where s′M = 0 = ~t′ · 1−hr for each r. The same result

was obtained using crystalline gauge theory arguments in Ref.

[15].

Our strategy is now the following. First we write down

the full set of invariants characterizing a defect class. Then,

we calculate how these coefficients get transformed under all

possible relabelingsχ(g). We will find that the physically dis-

tinct defect classes are related by a subgroup of H3(G,U(1)),
for each symmetry fractionalization class.

We use the formulas for the invariants given in Table VII

and derived in Appendix E. Under the relabelingχ(g) = s′h×
~t′ · r, the different defect invariants transform as follows:

1. The invariant for S is calculated using

ei2π
S

M =
IM (0gh)

IM (0g)IM (0h)
, (G25)
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with 0Mg = v, 0Mh = s, 0Mgh = v × s. Thus after a

relabeling, this invariant transforms as

ei2π
S

M →
Mv×s,s′

Ms,s′
ei2π

S

M

=⇒ k2 → k2 +Mv ⋆ s′. (G26)

2. The invariant for ℓs is calculated using eiπℓs/M =
IM (0h), with 0Mh = s. Thus after a relabeling, it trans-

forms as

e
i2πℓs
2M →Ms,s′θ

M
s′ e

i2πℓs
2M

=⇒ k3 → k3 +M(s ⋆ s′ +
M

2
s′ ⋆ s′). (G27)

3. The invariant for ~Pc is calculated for M = 2 using

e2πi
~Pc·r =

I2(0g)I2(0h)

I2(0k)I2(0l)
, (G28)

with 02g = v×s×~t·r, 02h = s, 02k = v×s, 02l = s×~t·r.

After a relabeling, this invariant transforms as

e2πi
~Pc·r →

Mv×s×~t·r,s′×~t′·rMs,s′

Mv×s,s′Ms×~t·r,s′×~t′·r

e2πi
~Pc·r

=Mv,~t′·re
2πi ~Pc·r

=⇒ ~k4 · r → ~k4 · r+ 2v ⋆ (~t′ · r). (G29)

The θ factors from the relabeling transformation cancel

out and do not contribute to the change in ~k4. The above

relation holds for each r. We can repeat the calculation

for M = 3, 4 and find the following general result:

~k4 · r → ~k4 · r+ v ⋆ (~t′ · 1−hr). (G30)

4. The invariant for ~Ps is calculated for M = 2 using

e2πi
~Ps·r =

I2(0g)

θ
1/2
~t·r

I2(0h)
, (G31)

with 02g = s × ~t · r, 02h = s. We will only analyze

the transformation behaviour of the I2 factors in this

expression, because the transformation of the additional

θ~t·r factor is accounted for by a change in the quantized

torsional response. We find that

e2πi
~Ps·r →

Ms×~t·r,s′×~t′·r

Ms,s′

θ2
s′×~tt·r

θ2s′
e2πi

~Ps·r

=Ms,~t′·rMs′,~t·rM
2
s′,~t′·r

e2πi
~Ps·r

=⇒ ~k5 · r → ~k5 · r+ 2s ⋆ (~t′ · r) + 2s′ ⋆ ~t · r+ 4s′ ⋆ ~t′ · r.
(G32)

The last line is obtained by observing that the SPT con-

tribution to ~Ps is ~k5/2. We can perform a similar com-

putation forM = 3, 4, and obtain the following general

transformation rule:

~k5 · r → ~k5 · r+ s ⋆ (~t′ · 1−hr)

+Ms′ ⋆ ~t · r+Ms′ ⋆ ~t′ · 1−hr. (G33)

The above equivalences for k2, k3, ~k4, ~k5 can all be de-

duced directly from the corresponding G-crossed invariants.

Although we do not have an invariant for the angular momen-

tum per unit cell, from an analogous relabeling exercise in the

response theory for Abelian topological orders we expect that

the SPT index k7 transforms as follows:

k7 → k7 +Mm ⋆ a (G34)

However, we will not include k7 in our relabeling calcula-

tions henceforth, since we do not have a G-crossed invariant

with which to verify this. Instead of working with the full

torsion subgroup of H3(G,U(1)) while performing the cal-

culation, we will assume that k7 is fixed and work with the

torsion subgroup of H3(G,U(1))/ZM . Therefore this calcu-

lation will be incomplete: a full analysis within theG-crossed

theory which includes the transformation of k7 will be possi-

ble only after we identify the invariant for k7.

To summarize, under the above relabeling, several of the

coefficients ki get transformed as ki → ki +Ma ⋆ b for dif-

ferent anyons a, b. We can use the constraints on s′,~t′ to show

that the quantities Ma ⋆ b are indeed integers.

When we have several parameters that transform under re-

labelings, we cannot obtain absolute SET invariants by taking

powers of the invariants for the defect class, because we will

lose information in doing so. However, we can still obtain a

count of SETs: the results for some common topological or-

ders are summarized in Table IV in the main text, assuming

that k1, k6 and k7 are fixed. We note that when we special-

ize to Abelian topological orders, the above relabeling analy-

sis can be reproduced exactly using crystalline gauge theory

[15], by relabeling the internal gauge fields associated to the

topological order.

Appendix H: Calculation of cohomology groups and symmetry

cocycles

A detailed calculation of symmetry cocycles for the groups

G = U(1) and G = ZM can be found in Ref. [15].

Here we will discuss how to compute the cohomology groups

H2(G,A) and H3(G,U(1)) and to obtain representative co-

cycles forG = U(1)⋋Gspace, withGspace = R2, R2⋊SO(2),
Z2, and Z2 ⋊ ZM .

We will use several technical results from group cohomol-

ogy theory: these are reviewed in Appendix J. Throughout this

section, Hn refers to group cohomology with Borel (measur-

able) cochains. The measurability assumption is required to

pass from the group cohomology of G to the cohomology of

its classifying space BG when G is continuous, as we will

explain.

1. Generalities

Before discussing specific examples, we describe the gen-

eral strategy that we will use. In each of the examples below,
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we will first compute the groupsH2(G,Z) and H4(G,Z), and

obtain a set of representative cocycles for these groups.

The computation of H2(G,A) follows from H2(G,Z)
from an application of the universal coefficient theorem.

Moreover, it is straightforward to use the results for H2(G,Z)
to obtain representative cocycles for H2(G,A), as will be

clear from the examples.

To understand the relation between H3(G,U(1)) and

H4(G,Z), we will show that for the G we consider in this

paper, we can define an injective map

σ : H4(G,Z) → H3(G,U(1)). (H1)

This map will allow us to obtain all relevant representative

cocycles of H3(G,U(1)) in terms of those of H4(G,Z).
Furthermore, we will show that the injectivity of σ implies

that

H4(G,Z) ∼= H3(G,U(1))/continuous part. (H2)

This explains why H4(G,Z) is more directly relevant for clas-

sifying SETs than H3(G,U(1)), at least for theGwe consider

in this paper.

Finally, we will explain why, with a mild assumption on

the applicability of spectral sequences, we can show that

Hn(G,R) = 0 for n ≥ 3 for the G we consider in this paper.

This allows us to establish an equivalence

H4(G,Z) ∼= H3(G,U(1)) (H3)

for the G considered in this paper.

a. Obtaining cocycles of H3(G,U(1)) from those of H4(G,Z)

Here we will explain the map σ referred to in Eq. H1.

From the long exact sequence associated to the group ex-

tension 1 → U(1) → R → Z → 1 (Theorem J.4), we have

the piece

→ H3(G,R)
exp
−−→ H3(G,U(1))

d
−→ H4(G,Z) → H4(G,R) →

(H4)

The map denoted as “exp” takes a cochain f3 ∈ C3(G,R)
to a cochain f⋆3 = f3 mod 1 (or, in multiplicative notation,

f⋆3 = e2πif3 ); the usual coboundary map denoted as “d” takes

f⋆3 = f3 mod 1 to the cochain w4 = df3 ∈ C4(G,Z). Note

that this requires a choice of lift from f⋆3 to f3; changing the

lift f3 → f3 + n for n ∈ C3(G,Z) takes w4 → w4 + dn,

which keeps the cohomology class of w4 invariant, so that d
is well-defined for cohomology.

Now the map σ is defined as follows. Given a representa-

tive 4-cocycle w4 ∈ Z4(G,Z), we search for a real-valued

3-cochain f3 ∈ C3(G,R) that satisfies df3 = w4. The fact

that w4 is a 4-cocyle then follows because dw4 = d2f3 = 0.

Then we set

σ(w4) = f⋆3 = f3 mod 1. (H5)

The fact that σ is well-defined for every element in H4(G,Z),
which may not be true for general G, will be verified on a

case-by-case basis for the G we consider in this paper.

We can see that σ maps non-trivial 4-cocycles to non-

trivial 3-cocycles. Consider w4 to be a non-trivial 4-cocyle.

We now argue that f⋆3 := σ(w4) will be non-trivial in

H3(G,U(1)). Suppose the contrary, i.e. f⋆3 = df⋆2 for some

f⋆2 ∈ C2(G,U(1)). We also have f3 = f⋆3 + n where

n ∈ C3(G,Z). Thusw4 = df3 = df⋆3 + dn = d(df⋆2 )+ dn =
dn. Then w4 itself would be trivial, which is a contradic-

tion. Since σ maps non-trivial 4-cocycles to non-trivial 3-

cocycles, it follows that it is an injective map from H4(G,Z)
to H3(G,U(1)).

Finally, we note that σ is a right inverse of the map d :
H3(G,U(1)) → H4(G,Z). It is easily verified that, given

any element w4 ∈ Z4(G,Z),

dσ(w4) = w4 + dn, (H6)

therefore d ◦ σ is the identity map on H4(G,Z). On the other

hand, σ◦d is not necessarily the identity map onH3(G,U(1)),
because ker d may be non-trivial in principle.

Since we have found that σ is an injective map in the ex-

amples that we have discussed, and that d ◦ σ is the identity, it

follows that d : H3(G,U(1)) → H4(G,Z) must be a surjec-

tive map.

b. H4(G,Z) = H3(G,U(1))/continuous part when d is

surjective

For finite or compact Lie groups G, one can show that

H4(G,Z) ∼= H3(G,U(1)). In general, however, this is not

the case and H4(G,Z), H3(G,U(1)) are simply part of a

long exact sequence associated with the short exact sequence

1 → Z → R → U(1) → 1. This raises the important question

of which of these groups actually gives the right SET classi-

fication when they do not coincide. Below we will show that,

at least when d : H4(G,Z) → H3(G,U(1)) is a surjective

map, we find that H4(G,Z) ∼= H3(G,U(1))/Gc, where Gc
classifies a continuous family of topological terms. Therefore

H4(G,Z) naturally removes the continuous part associated

with H3(G,U(1)), as must be done to classify topological

phases of matter.

To show this, consider the long exact sequence in Eq. (H4).

We assume d is surjective; as we discussed above, this is the

case for the G that we considered in this paper, because the

map σ defined above can be shown to be well-defined and

injective for the G that we consider.

Now for any homomorphism f : A → B we have

A/ ker f ∼= im f . In our case, with f = d, we have

H3(G,U(1))/ ker d ∼= im d ∼= H4(G,Z). From exactness,

we also have ker d ∼= im(exp). The subgroupGc := im(exp)
is in fact continuous, as we now argue.

The argument is in two parts: (i) the group H3(G,R) is

a continuous group, such that every element of H3(G,R) is

part of a continuous family, and (ii) the exponential map is

continuous. To see (i), we observe that if f ∈ C3(G,R) is a

cocycle, i.e. df = 0, so is αf , for any α ∈ R: this is because

the coboundary operation d is linear. Moreover, f and αf are

in the same cohomology class if and only if (1−α)f = dg for

some g ∈ C2(G,R). But by linearity, this is possible for α 6=
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1 only if f is itself a coboundary. Hence every cohomology

class in H3(G,R) is associated to a continuous family.

Since the exponential map is continuous, the group im(exp)
is also continuous, as claimed. Note that these arguments de-

pend on the assumption that the map d is surjective so that

im d ∼= H4(G,Z); this assumption is verified in our exam-

ples but may not hold in general. If this is not the case,

H3(G,U(1)) need not contain H4(G,Z) as a subgroup. It

would be interesting to find examples, or to rule out, such a

situation for physically relevant groupsG.

c. H3(G,U(1)) ∼= H4(G,Z) in our examples

In our examples, it is possible to directly show using the

Lyndon-Hochschild-Serre spectral sequence that for all the

groups G considered in this paper,

Hn(G,R) ∼= 0 for n ≥ 3. (H7)

This implies that d : H3(G,U(1)) → H4(G,Z) is both injec-

tive and surjective, and hence H3(G,U(1)) ∼= H4(G,Z) for

all the examples considered in this work.

The calculation of Eq. H7 has some subtleties, as the

LHS spectral sequence needs to be applied to continuous

groups with continuous coefficients. However many tech-

niques in algebraic topology, including the LHS spectral se-

quence, implicitly assume the discrete topology on the coeffi-

cients. While versions of the LHS sequence for continuous co-

homology (cohomology with continuous cochains) have been

derived [37], we are not aware of a rigorous formulation in-

volving measurable (Borel) or piece-wise continuous coho-

mology.

2. G = U(1) ⋋ E2

In this section we will compute the cohomology of the

group G = U(1)⋋ E2, which is the symmetry group of con-

tinuum FQH systems, as derived in Appendix A.

The group U(1)⋋ E2 can be written as a central extension

of the Euclidean group E2 = R2 ⋊ SO(2) by U(1) according

to the short exact sequence

1 → U(1) → G = U(1)⋋ E2 → E2 → 1

Then from Theorem K.1 there is a first quadrant cohomologi-

cal spectral sequence which gives the cohomology:

Ep,q2 = Hp(E2;Hq(U(1),M)) =⇒ Hp+q(U(1)⋋ E2,M),
(H8)

whereM is a U(1)⋋E2-module (see Appendix K for a review

of spectral sequences). Here we will compute the cohomology

groups H2(U(1) ⋋ E2,A) and H4(U(1) ⋋ E2,Z), where H
denotes cohomology with measurable cochains. The main re-

sult of this section is that these cohomology groups give the

same classification that we would obtain upon replacingG by

the group U(1)× SO(2).

a. Calculation of Hn(U(1) ⋋ E2,Z)

To compute Hn(U(1) ⋋ E2,Z), we first note that

Hn(U(1) ⋋ E2,Z) ∼= Hn
top(B(U(1) ⋋ E2),Z), where Htop

denotes the singular cohomology of the classifying space

BG (Theorem J.1). Note that the assumption of measurable

cochains arises here, in applying Theorem J.1.

Now, using Theorem J.7, we see that the cohomology of

G ∼= U(1) ⋋ E2 is the same as that of its maximal compact

subgroup K ∼= U(1)× SO(2) (to prevent confusion, we dis-

tinguish the continuous U(1) rotation group from the U(1)
charge conservation group by denoting the former as SO(2)).
In addition, we have the standard result that BU(1) = CP∞.

Therefore,

BG = B (U(1)× SO(2)) = CP∞ × CP∞. (H9)

To summarize, we have

Hn(U(1)⋋ E2,Z) ∼= Hn
top(B(U(1)⋋ E2),Z)

∼= Hn
top(CP

∞ × CP∞,Z). (H10)

Now using the result

Hn
top(CP

∞,Z) =

{

0 n odd

Z n even

we can apply the decomposition derived from the Künneth

formula and the Universal Coefficient Theorem, as stated in

Theorem J.6, to obtain

Hn(U(1)⋋ E2,Z) ∼= Hn
top(CP

∞ × CP∞,Z)

=

{

0, n odd

Zn/2+1, n even
(H11)

b. Calculation of H2(U(1) ⋋ E2,A) and H3(U(1) ⋋ E2, U(1))

From the Universal Coefficient Theorem (Theorem J.5), we

have

H2(U(1)⋋ E2,A)

= H2(U(1)⋋ E2,Z)⊗A (H12)

= Z2 ⊗A = A×A. (H13)

We also have

H4(U(1)⋋ E2,Z) ∼= Z3. (H14)

As argued in Appendix H 1, in order to obtain all possi-

ble quantized topological terms associated with H3(G,U(1)),
we will only need to determine the cocycle representa-

tives of a subgroup of H3(G,U(1)) which is isomorphic to

H4(G,Z) ∼= Z3, and this will be done below.

We can also go further and demonstrate that

Hn(U(1)⋋ E2, U(1)) ∼= Hn+1(U(1)⋋ E2,Z) (H15)
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by showing that Hn(U(1)⋋E2,R) ∼= Hn+1(U(1)⋋E2,R) ∼=
0, although we will not present the calculation here. As dis-

cussed in Appendix H 1 c this calculation requires applying

the LHS spectral sequence to measurable cochains with con-

tinuous groups and continuous coefficients, for which we are

not aware of a mathematical theorem.

c. Explicit cocycle representatives for H2(U(1)⋋ E2,A)

Let us first consider the group of magnetic translations

alone. To obtain a representative 2-cocycle of the group

U(1)⋋R2, we note that the inclusion mapU(1) −֒→ U(1)⋋R2

induces a map between group cohomology classes H2(U(1)⋋

R2,A)
res
→ H2(U(1),A). This map is called the restric-

tion map, which means that a representative cocycle [ω′] ∈
H2(U(1) ⋋ R2,A) should be reduced to a cocycle [ω] ∈
H2(U(1),A) when we evaluate the function only within the

domain of the subgroup U(1). When considering symmetry

fractionalization in the groupU(1), a representative 2-cocycle

is given by w(e2πiz1 , e2πiz2) = vz1+z2−[z1+z2], where v is the

vison [15].

From the group multiplication law, the cocycle associated

to the central extension is w(r1, r2) = r1×r2
2l2B

. It can indeed

be verified that the following symmetry fractionalization co-

cycle, which depends on w(r1, r2), satisfies the group multi-

plication law for U(1) ⋋ R2 and also takes the correct form

when restricted to the U(1) subgroup:

w((e2πiz1 , r1), (e
2πiz2 , r2)) = v

z1+z2+
r1×r2

2l2
B

−[z1+z2+
r1×r2

2l2
B

]

(H16)

If we now include SO(2) rotations, the most general 2-

cocycle representatives for the group H2(U(1) ⋋ [R2 ⋊
SO(2)],A) can now be written as follows:

w(g1,g2) = v
z1+z2+

r1×
h1 r2

2l2
B

−[z1+z2+
r1×

h1 r2

2l2
B

]

× sh1+h2−[h1+h2]. (H17)

Here we have set gi = (e2πizi , ri, e
2πihi). The contribu-

tion from SO(2) symmetry appears as an independent fac-

tor; the only change in the exponent of v appears in the term
r1×

h1r2
2l2B

, where the group element h1 explicitly appears. This

is necessary in order to satisfy the cocycle condition for the

full symmetry group with rotations. For Abelian topological

phases, the anyon s corresponds to the spin vector. The anyons

v, s uniquely determine the symmetry fractionalization class,

which is therefore an element of A×A, in agreement with the

calculation of H2(U(1)⋋ E2,A).

d. Explicit cocycle representatives for H3(U(1)⋋ E2, U(1))

Next we determine a set of SPT cocycle representa-

tives associated to the group H3(U(1) ⋋ E2, U(1)). Here

we will write the SPT cocycles as functions of the form

f(g1,g2,g3) mod 1. This cocycle will then contribute a

phase e2πif(g1,g2,g3) to the defect F -symbol F 0g10g20g3 .

Moreover, the function df(g1,g2,g3,g4) can be seen to be a

representative cocycle of H4(U(1) ⋋ E2,Z). Indeed, we can

find representatives f such that the corresponding functions

df generate the full H4(U(1)⋋ E2,Z) classification.

These cocycles should reduce to the following known forms

when restricted to the subgroup U(1)× SO(2):

fres(g1,g2,g3) = k1z1(z2 + z3 − [z2 + z3])

+ k2h1(z2 + z3 − [z2 + z3]) + k3h1(h2 + h3 − [h2 + h3])
(H18)

where ki ∈ Z. Define the integer Fij = zi + zj +
ri×

hirj
2l2B

−

[zi + zj +
ri×

hirj
2l2B

]. Also define the integer hij = hi + hj −

[hi + hj ]. Consider the following functions:

f(g1,g2,g3) = k1(z1F23 +
r1 ×

h1r2

2l2B
z3 + λ(g1,g2,g3))

+ k2h1F23 + k3h1h23. (H19)

Here we have chosen the function λ so that

dλ(g1,g2,g3,g4) = r1×
h1r2

2l2B

r3×
h3r4

2l2B
. Observe that

when we restrict to the subgroup U(1) × SO(2), f ≡ fres.

Moreover, we now show that df = 0, i.e. f satisfies the

cocycle condition for U(1) ⋋ E2, when ki ∈ Z. Using the

properties satisfied by λ, a direct computation gives

df(g1,g2,g3,g4) = k1F12F34 + k2h12F34 + k3h12h34

= 0 mod 1, (H20)

implying that these functions are indeed nontrivial cocycles in

H3(U(1)⋋ E2, U(1)). In fact, the function df written above,

with parameters k1, k2, k3, is the most general cocycle repre-

sentative that can be written for H4(U(1)⋋E2,Z). Therefore,

by varying the parameters ki, we obtain a Z3 classification of

SPTs.

3. G = U(1) ⋋φ Z2

The group of magnetic translations is a central extension of

the discrete translation group Z2 by U(1). For a derivation

of the group multiplication law, and a discussion of certain

ambiguities in it which are related to different gauge choices

for the vector potential, see Appendix A 1.

a. Calculation of H2(U(1) ⋋φ Z2,A) and

H3(U(1)⋋φ Z2, U(1))

Since G is not a direct product, but a central extension

of the translation group Z2 by U(1), we cannot immedi-

ately apply the Künneth decomposition to evaluate the group
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H2(U(1)⋋φZ
2,A) of symmetry fractionalization classes. To

evaluate this group cohomology it is appropriate to use the

Lyndon-Hochschild-Serre spectral sequence (LHSS). An in-

troduction to the LHSS is given in Appendix K. It will be con-

venient to first compute the cohomology with Z coefficients.

We can then use Theorem J.5 to obtain H2(U(1) ⋋φ Z2,A).
Furthermore, the arguments from Appendix H 1 show that we

only need a subgroup of H3(U(1) ⋋φ Z2, U(1)) isomorphic

to H4(U(1)⋋φ Z
2,Z), along with the corresponding cocycle

representatives.

The spectral sequence for the cohomology Hn(G,Z) has

the following nonzero terms in its E2-page:

4 Z Z2 Z 0 0

3 0 0 0 0 0

2 Z Z2 Z 0 0

1 0 0 0 0 0

0 Z Z2 Z 0 0

0 1 2 3 4 p

q

It is clear that the spectral sequence stabilizes at the E2-

page; moreover, there is no extension problem for H2(G,Z),
because the only group extension of Z by Z is Z2. As dis-

cussed in Appendix K, the physical implication of this state-

ment is that each cohomology class Hp(Z2,Hq(U(1),Z)) on

the diagonal p + q = 2 of this page contributes a separate

factor to the group H2(G,A), and furthermore, there are no

symmetry localization anomalies. We obtain the desired clas-

sification by an application of the Universal Coefficient The-

orem, Theorem J.5, and the properties of Tor, discussed in

Appendix J 1:

H2(G,A) = H2(G,Z)⊗A⊕ Tor(H3(G,Z),A)

= (Z2 ⊗A)⊕ Tor(Z2,A)

= (A×A)⊕ Z1 (H21)

Therefore we have a group A×A of fractionalization classes,

irrespective of the value of flux per unit cell. To further inter-

pret this answer, we use the spectral sequence decomposition

to write

H2(U(1)⋋φ Z
2,A)

∼= H0(Z2,H2(U(1),A))×H2(Z2,H0(U(1),A)) (H22)

Now H0(G,A) ∼= A whenever the symmetry does not per-

mute anyons. Therefore we can interpret the two A factors

as coming from fractionalization classes in H2(U(1),A) and

H2(Z2,A) repectively.

Next we compute H3(U(1) ⋋φ Z2, U(1)). By inspecting

the E2-page above, we see that

H4(G,Z) ∼= Z× Z. (H23)

We can similarly decompose the Z factors as follows:

H4(U(1)⋋φ Z
2,Z)

∼= H4(U(1),Z)×H2(Z2,H2(U(1),Z))

∼= H3(U(1), U(1))×H2(Z2,H1(U(1), U(1)))

∼= H3(U(1)⋋φ Z
2, U(1)). (H24)

b. Explicit cocycle representatives for H2(U(1)⋋φ Z2,A)

The first piece in the decomposition of H2(U(1)⋋φZ
2,A)

is familiar: it describes U(1) symmetry fractionalization, in

which there is a unique vison v that is associated to 2π flux

insertion. The corresponding symmetry property is the frac-

tional charge of an anyon a, which is given by e2πiQa =
Mv,a. However there is a technical subtlety: the pure

U(1) symmetry fractionalization cocycle w(e2πiz1 , e2πiz2) =
vz1+z2−[z1+z2] does not satisfy the 2-cocycle condition for

the group U(1) ⋋φ Z2. In fact, the group multiplication law,

which mixes translations with the U(1) group variables, en-

sures that choosing w((e2πiz1 , r1)(e
2πiz2 , r2)) as a function

of the z variables alone is impossible. Therefore this sym-

metry fractionalization cocycle has some dependence on the

translation variables as well. Indeed, it can be checked that a

slight modification of the cocycle in Eq. (D7) gives us a valid

cocycle of U(1)⋋φ Z
2 valued in A:

w(g1,g2) = vz1+z2+φw(r1,r2)−[z1+z2+φw(r1,r2)] (H25)

Here the functionw satisfiesw(r1, r2)−w(r2, r1) = r1×r2.

These cocycles are all nontrivial. To see that they are in-

deed cocycles, it suffices to show that the exponent of v sat-

isfies the 2-cocycle condition for H2(U(1) ⋋φ Z2,Z). First

note that the exponent is indeed an integer-valued function

of g1,g2, since it is of the form x − [x] where x = z1 +
z2 + φw(r1, r2). Next, observe that the coboundary operator

applied to the z-independent function φw(r1, r2) gives zero.

Moreover, the remaining terms can be collectively written as

P (g1) + P (g2) − P (g1g2), where P is the projection map:

P ((e2πiz , r)) = z. The coboundary operator applied to any

function of this form also gives zero. Hence the sum of the

two parts is an integer-valued 2-cocycle. Since this expres-

sion reduces to the familiar U(1) cocycle when we restrict to

the U(1) subgroup, it cannot be expressed as a coboundary,

i.e. it is a representative of a nontrivial cohomology class.

The above symmetry fractionalization cocycles depend on

the value of φ. This corresponds to the physical fact that trans-

lations around a single unit cell enclose a φ flux; and the in-

sertion of 2π flux via any combination of U(1) or Z2 opera-

tions induces a vison v. However, the classification of sym-

metry fractionalization only depends on the number of distinct

choices for v, and is therefore flux-independent.
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The second symmetry fractionalization factor correspond-

ing to H2(Z2,A) arises as a result of the discrete translation

symmetry. Since the group multiplication does not introduce

z terms into the r component, the corresponding cocycles are

independent of the z variables:

w(g1,g2)) = mw(r1,r2) (H26)

for some m ∈ A. This notation assumes that w is an inte-

ger valued cocycle, i.e. it is expressed in the Landau gauge

or some other integer-valued gauge. However, we can use

any other gauge to calculate symmetry fractionalization in-

variants, as long as we ultimately measure gauge-invariant

combinations of w. This symmetry fractionalization class is

associated to the presence of an anyon m in each unit cell

of the lattice. When φ = 0, this anyon can be measured by

the gauge-invariant quantity associated to elementary transla-

tions, b(x,y) = w(x,y)w(y,x) = m.

The most general cocycle describing symmetry fractional-

ization is therefore

w(g1,g2) = vz1+z2+φw(r1,r2)−[z1+z2+φw(r1,r2)]×mw(r1,r2)

(H27)

There is also a gauge-invariant expression formwhen the flux

is a nonzero rational number φ = p/q, with p and q coprime.

Define magnetic translations r1, r2 spanning a magnetic unit

cell, for example a cell of size 1 × q. Then, we can directly

compute

b(r1, r2) = w(r1, r2)w(r2, r1) = vφq−[φq] ×mq

= vp ×mq (H28)

This is intuitively understood as follows: the magnetic trans-

lations cover q unit cells, each of which is pierced by a flux

p/q mod 1. Therefore they surround q copies of m, as well

as inducing the anyon vp associated to p U(1) flux quanta

which are contained within each magnetic unit cell. This is

the quantity that will be measured by the relevant G-crossed

invariants. Note that the gauge-invariant combination is not

m alone, but vp ×mq . This quantity is directly associated to

the filling per magnetic unit cell ν, as we have calculated in

Appendix F 2.

c. Explicit cocycle representatives for H3(U(1)⋋φ Z2, U(1))

Finally, we compute a set of representative cocycles for

H3(U(1) ⋋φ Z2, U(1)) ∼= Z × Z. (Here we will write the

SPT cocycles as functions of the form f(g1,g2,g3) mod 1.

This cocycle will then contribute a phase e2πif(g1,g2,g3) to the

defect F -symbol F 0g10g20g3 .)

The spectral sequence decomposition of H3(U(1) ⋋φ

Z2, U(1)) shows that one factor of Z is associated to the U(1)
symmetry alone, i.e. to bosonic IQH states, while the other

Z factor is associated to a mixed SPT of U(1) and Z2 sym-

metry. Cocycles corresponding to the first factor must reduce

to the functions f(e2πiz1 , e2πiz2 , e2πiz3) = k1z1(z2 + z3 −
[z2+z3]) mod 1 when all translations are set to zero. Define

F (g1,g2) = z1+ z2+φw(r1, r2)− [z1+ z2+φw(r1, r2)]).
Consider the function fIQH such that

dfIQH(g1,g2,g3,g4) = k1F (g1,g2)F (g3,g4) = 0 mod 1.
(H29)

When k1 ∈ Z, this function satisfies the cocycle condition

df = 0, since F is integer-valued. An explicit form for fIQH

is

fIQH(g1,g2,g3)

= k1(z1F (g2,g3) + φw(r1, r2)z3 + φ2λ(r1, r2, r3))
(H30)

where dλ(r1, r2, r3, r4) = w(r1, r2)w(r3, r4). A possible

choice for λ is

λ(r1, r2, r3)

= x1y1(x2y3 − x3y2)− x1y
2
2x3 − x21y2y3 − 2x1x2y2y3.

(H31)

However, we will not need to know this explicit form in sub-

sequent calculations. Since fIQH restricts to the known expres-

sion for nontrivial cocycle representatives ofH3(U(1), U(1)),
it is indeed a nontrivial cocycle.

In a similar way, the mixed SPT cocycles fmixed, represent-

ing ’atomic insulators’ with integer filling k6 per unit cell, can

be obtained by imposing the condition

dfmixed(g1,g2,g3,g4) = k6F (g1,g2)w(r3, r4) = 0 mod 1.
(H32)

An explicit form of fmixed is then given by

fmixed(g1,g2,g3) = k6(z1w(r2, r3) + φλ(r1, r2, r3)).
(H33)

As observed previously, the functions df represent elements

of H4(G,Z).

4. G = U(1) ⋋φ [Z2 ⋊ ZM ]

Here the space group Gspace is a semidirect product of the

point group ZM by Z2. The full symmetry group is then a

central extension of Gspace by U(1). The group multiplication

law is

(e2πiz1 , r1, e
2πih1/M )(e2πiz2 , r2, e

2πih2/M )

= (e2πi(z1+z2+w(r1,
h1r2)), r1 +h1 r2, e

2πi[h1+h2]M/M )
(H34)

In the group multiplication law we will now specifically

assume that w(r1, r2) =
1
2r1 × r2, so that the function w is

invariant under equal rotations of r1, r2.

Let h be the generator of point group rotations. We will

abuse the notation for rotation point group elements slightly,

as follows: the quantities hi written in line should be under-

stood as integers mod M , corresponding to rotations by the
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angle 2πhi/M , while in an expression such as hr or 1−hr,

h is understood as the 2 × 2 matrix generator of point group

rotations, and thus the symbol 1 in 1−hr denotes the identity

2× 2 matrix.

We can form the E2-page of the LHSS for Hn(G,Z) cor-

responding to the short exact sequence

1 → U(1) → G = U(1)⋋φ[Z
2⋊ZM ] → Gspace → 1 (H35)

where Gspace
∼= Z2 ⋊ ZM is the space group, whose coho-

mology groups have been computed numerically as well as

analytically [15, 30]. See Appendix K for a review of spectral

sequences. The E2-page of the spectral sequence is

4 H0(Gspace,Z) 0 H2(Gspace,Z) 0 H4(Gspace,Z) 0

3 0 0 0 0 0 0

2 H0(Gspace,Z) 0 H2(Gspace,Z) 0 H4(Gspace,Z) 0

1 0 0 0 0 0 0

0 H0(Gspace,Z) 0 H2(Gspace,Z) 0 H4(Gspace,Z) 0

0 1 2 3 4 p

q

We can make several immediate observations: first, the spec-

tral sequence stabilizes at the E2-page, because all differen-

tials are zero. Moreover, the cohomology of G vanishes in

odd degree. The fact that H4(G,U(1)) ∼= H5(G,Z) is trivial

means that there are no anomalies. Therefore we are assured

of a consistent set of solutions to the G-crossed equations.

a. Calculation of H2(U(1)⋋φ [Z2 ⋊ ZM ],A)

Let us first determine H2(G,A). When Gspace acts trivially

on the coefficients we have H0(Gspace,Z) ∼= Z, so H2(G,Z)
is an extension of Z by H2(Gspace,Z). There is only one pos-

sible extension, namely Z×H2(Gspace,Z): this is because any

group extension of Z by a groupN must be the direct product

extension Z×N . To determine the group of fractionalization

classes we use the fact that H3(G,Z) is trivial, along with

Theorem J.5:

H2(G,A) ∼= (H2(G,Z)⊗A)⊕ Tor(H3(G,Z),A) (H36)

∼= (Z×H2(Gspace,Z))⊗A (H37)

∼= A× (H2(Gspace,Z)⊗A) (H38)

In turn, we can use the spectral sequence for the semidirect

product extension defining Gspace along with numerical com-

putations to obtain (see Ref. [15])

H2(Gspace,Z) ∼= Z× ZM ×KM , (H39)

and consequently,

H2(G,A) ∼= A× (H2(Gspace,Z)⊗A) (H40)

∼= A×A× (A/MA)× (KM ⊗A). (H41)

ThusH2(G,A) splits into four separate factors. WhenA =
∏

i Zni , we have, from the definition of ⊗ andKM (Appendix

J),

A/MA ∼=
∏

i

Z(ni,M) (H42)

K2 ⊗A ∼=
∏

i

Z2
(ni,2)

(H43)

K3 ⊗A ∼=
∏

i

Z(ni,3) (H44)

K4 ⊗A ∼=
∏

i

Z(ni,2) (H45)

K6 ⊗A ∼= Z1. (H46)

b. Explicit cocycle representatives of H2(U(1)⋋φ [Z2 ⋊ZM ],A)

The cocycle representatives for symmetry fractionalization

can be found as follows. Denote a general group element as a

triple g = (z, r, h) where z ∈ R/Z, r ∈ Z2 and h ∈ Z/MZ.

(For notational convenience, in this section we represent the

groups U(1) and ZM as R/Z and Z/MZ respectively.) First

we will write down cocycle representatives f for H2(U(1)⋋φ
[Z2 ⋊ ZM ],Z) satisfying the condition

f((z1, r1, h1), (z2, r2, h2)) + f((z1 + z2 + φw(r1,
h1r2), r1 + h1r2, h1h2), (z3, r3, h3))

= f((z1, r1, h1), (z2 + z3 + φw(r2,
h2r3), r2 + h2r3, h2h3)) + f((z2, r2, h2), (z3, r3, h3)). (H47)

Let us consider the first term on the E2-page. Now a set of

representative cocycles of H2(U(1),Z) is given by

gn(z1, z2) = n(z1 + z2 − [z1 + z2]). (H48)

Here we have assumed that the U(1) group element is given

by [z] = z mod 1 where z is a lift of the group element to R.

However, these functions do not satisfy Eq. (H47), since they

do not properly account for the mixing of z and r variables as
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a result of the central extension. Instead, it can be verified that

the following function satisfies Eq. (H47):

f2(g1,g2)

= nv(z1 + z2 + φw(r1,
h1 r2)− [z1 + z2 + φw(r1,

h1 r2)])
(H49)

This function is an integer-valued cocycle when nv ∈ Z,

being of the form nv(a − [a]), where a = z1 + z2 +
φw(r1,

h1 r2). Moreover, it cannot be written as an integer

coboundary as it reduces to the nontrivial cocycle gn(z1, z2)
when restricted to the U(1) subgroup of G. We will see

that this function is associated to the cohomology class of

H2(U(1)⋋φ [Z2 ⋊ ZM ],A) corresponding to the anyon v.

Next, consider the term H2(Gspace,H
0(U(1), Z)) ∼=

H2(Gspace,Z). In Ref [15] it was shown that a general co-

cycle corresponding to this term takes the form

f2(g1,g2) =
ns
M

(h1 + h2 − [h1 + h2]M ) + ~nt ·
1−h1
1−h r2 + nmw(r1,

h1 r2) (H50)

Note that there are multiple gauge choices for w correspond-

ing to the same group multiplication law. For the above rep-

resentation to be well-defined, w must be integral: this con-

strains the allowed gauge choices. However, if we always

compute invariants in terms of the gauge-invariant quantity

w(r1, r2)− w(r2, r1) = r1 × r2, after setting h1 = h2 = 0,

we can formally make non-integral gauge choices while do-

ing these computations. This function is also a nontrivial 2-

cocycle representative of H2(U(1) ⋋φ [Z2 ⋊ ZM ],Z). The

coefficient ns ∈ Z is associated to the anyon s; it is trivial if

ns ∈ MZ. It contributes a factor of ZM to H2(G,Z). The

coefficient ~nt ∈ Z2 is associated to the anyons ~t; it is trivial if

~nt ∈
1−hZ2. It contributes a factor of KM , which is defined

as the group Z2/(1−h)Z2. The coefficient nm ∈ Z is associ-

ated to the anyon m and is trivial if nm = 0. It contributes a

factor of Z.

From the above discussion, a general symmetry fractional-

ization cocycle is given by

w((z1, r1, h1), (z2, r2, h2))

= vz1+z2+φw(r1,
h1r2)−[z1+z2+φw(r1,

h1r2)]

×mw(r1,
h1r2)

× t

( 1−h1
1−h r2

)

x
x × t

( 1−h1
1−h r2

)

y
y

× s
h1+h2−[h1+h2]M

M . (H51)

Here, a cocycle representative of H2(G,Z) which takes

the form naf(g1,g2) yields a cocycle representative of

H2(G,A) by defining w(g1,g2) = af(g1,g2). Thus there

are four independent anyons associated to symmetry fraction-

alization.

c. Calculation of H3(U(1) ⋋φ [Z2 ⋊ ZM ], U(1))

For G = U(1)⋋φ [Z
2 ⋊ZM ], we can explicitly check that

H3(G,U(1)) ∼= H4(G,Z). However, in this case, we find

that even the computation with Z coefficients is not direct.

In the spectral sequence with Z coefficients that we intro-

duced above, there are three terms contributing to H4(G,Z).

The first is a Z factor given by H0(Gspace,Z) ∼= Z, corre-

sponding to bosonic IQH states. The second term, given by

H2(Gspace,H
2(U(1),Z)) corresponds to mixed SPT phases

of U(1) andGspace. The third term H4(Gspace,Z) corresponds

to pure space group SPT phases. It is not clear, however, that

the group H4(G,Z) is a direct product of these three terms

when there is nonzero flux. Specifically, we have to complete

the following sequence of group extensions:

1 → H4(Gspace,Z) → K → H2(Gspace,H
2(U(1),Z)) → 1

1 → K → H4(U(1)⋋φ [Z
2 ⋊ ZM ],Z) → Z → 1. (H52)

Now the only possible extension of Z byK on the second line

is the group Z×K . However,K can in principle be a nontriv-

ial extension of the middle term H2(Gspace,H
2(U(1),Z)) by

H4(Gspace,Z). In other words, the middle term may not enter

the classification as a subgroup. The physical meaning of this

statement is the following. Suppose there is an SPT associated

to the middle term which is classified on the E2-page by the

factor Zq . Then, stacking q identical SPTs of this type is not

guaranteed to give the trivial SPT. Instead, we might obtain

a nontrivial SPT classified by H4(Gspace,Z). This possibil-

ity is referred to as a nontrivial spectral sequence extension

problem.

The correct group structure can in principle be determined

abstractly by computing the differentials in the spectral se-

quence. Below we will use the more direct approach of writ-

ing down a set of nontrivial cocycles of G = U(1) ⋋φ [Z2 ⋊
ZM ] corresponding to the three groups described above, and

showing that the group structure of the cocycles is indeed a

direct product of the three terms, implying that the extension

problem is trivial in this case.

After the calculations done below, the classification of SPTs

is found to be

H4(G,Z) ∼= Z×H2(Gspace,Z)×H4(Gspace,Z)

∼= Z× (Z×KM × ZM )× (Z2
M ×KM )

∼= Z2 × Z3
M ×K2

M . (H53)
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d. Explicit cocycle representatives of

H3(U(1)⋋φ [Z2 ⋊ ZM ], U(1))

In this section we represent a generic group element as

gi = (zi, r, hi) where z ∈ R/Z, r ∈ Z2, hi ∈ Z/MZ. We

will write down cocycle reperesentatives of H3(G,U(1)) as

f(g1,g2,g3) mod 1 where f is real-valued modulo integers

(and hence, in order to satisfy the cocycle condition, df is re-

quired to be integer-valued). This cocycle will then contribute

a phase e2πif(g1,g2,g3) to the defect F -symbol F 0g10g20g3 .

Moreover, in each case the function df(g1,g2,g3,g4) repre-

sents an element of H4(U(1)⋋φ [Z
2 ⋊ ZM ],Z).

Let us consider the first term of the spectral sequence de-

composition, which classifies the IQH states that are invari-

ant under space group symmetry transformations. From the

spectral sequence, we see that these states are classified by

the group Z, and are not affected by the group extension prob-

lem. The usual cocycle representatives ofH3(U(1), U(1)) are

given by gIQH mod 1, where gIQH(z1, z2, z3) = k1z1(z2 +
z3 − [z2 + z3]). They satisfy

dgIQH(z1, z2, z3, z4)

= k1(z1 + z2 − [z1 + z2])(z3 + z4 − [z3 + z4])

≡ 0 mod 1. (H54)

The last expression is a cup product of two cocycle rep-

resentatives of H2(U(1),Z). However the functions gIQH

do not directly satisfy the 3-cocycle condition for the group

G = U(1)⋋φ [Z
2 ⋊ ZM ] when φ 6= 0.

To identify the correct expressions, we follow the reasoning

used in previous sections, and look for functions fIQH such

that dfIQH is a cup product of two cocycle representatives of

H2(G,Z). Such functions exist, and can be written as

fIQH(g1,g2,g3) = k1
(
z1(z2 + z3 + φw(r2,

h2 r3)− [z2 + z3 + φw(r2,
h2 r3)]) + φw(r1,

h1 r2)z3 + φ2λ(g1,g2,g3)
)
.

(H55)

Here the function λ satisfies dλ(g1,g2,g3,g4) =
w(r1,

h1 r2)w(r3,
h3 r4). The precise form of λ depends on

the gauge choice for the function w, but such λ always exists.

Now it can be verified directly that

dfIQH(g1,g2,g3,g4)

= k1(z1 + z2 + φw(r1,
h1 r2)− [z1 + z2 + φw(r1,

h1 r2)])

× (z3 + z4 + φw(r3,
h3 r4)− [z3 + z4 + φw(r3,

h3 r4)])

= 0 mod 1, (H56)

thus it is indeed a product of two cocycle representatives of

H2(G,Z). Hence for k1 ∈ Z, fIQH is a U(1)-valued 3-cocycle

of G, which reduces to the correct form gIQH when restricted

to the U(1) subgroup of G. In fact, the functions dfIQH repre-

sent the Z factor in H4(G,Z) which is associated to bosonic

IQH states.

Next, we consider the term H2(Gspace,H
1(U(1), U(1))) ∼=

H2(Gspace,Z). This term classifies mixed SPTs of U(1)
and space group symmetry. In the case φ = 0, cocy-

cle representatives of this group are given by a cup prod-

uct of a cocycle representative of H2(Gspace,Z), which was

described above, and a representative of the class that gen-

erates H1(U(1), U(1)). They can thus be written as gmixed

mod 1, where gmixed(g1,g2,g3) = z1f2(g2,g3) for some

f2(g2,g3) ∈ Z2(Gspace,Z). Moreover, they satisfy

dgmixed(g1,g2,g3,g4) = (z1 + z2 − [z1 + z2])f2(g3,g4)

= 0 mod 1. (H57)

In the case φ 6= 0, we use similar reasoning as above to

identify functions fmixed which satisfy

dfmixed(g1,g2,g3,g4) = ((z1 + z2 + φw(r1,
h1 r2)− [z1 + z2 + φw(r1,

h1 r2)]))f2(g3,g4). (H58)

In going from dgmixed to dfmixed, we have replaced the rep-

resentative cocycle of H2(U(1),Z) by its lift to the group

H2(G,Z) after accounting for the extra φ-dependent term,

but retained the function f2. The three pieces contribut-

ing to H2(Gspace,H
1(U(1), U(1))) can each be analyzed in

this way, and the functions dfmixed are nontrivial elements of

H4(G,Z). Using the general expression for f2 we obtained in

the previous section, the modified expressions can finally be

written together as follows:
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fmixed(g1,g2,g3) = k6(z1w(r2,
h2 r3) + φλ(g1,g2,g3))

+ ~k4 · (z1 + z2 + φw(r1,
h1 r2)− [z1 + z2 + φw(r1,

h1 r2)])
(1−h)−1

r3

+ k2(z1 + z2 + φw(r1,
h1 r2)− [z1 + z2 + φw(r1,

h1 r2)])
h3
M

mod 1 (H59)

We now discuss each line separately. Define (z1 + z2 +
φw(r1,

h1 r2)− [z1 + z2 + φw(r1,
h1 r2)]) = F12. The coef-

ficient k6 in the first line can be any integer. If the function on

the first line is written as k6f3,1(g1,g2,g3), then we observe

that

df3,1(g1,g2,g3,g4) = F12w(r3,
h3 r4). (H60)

This function is integer-valued; in fact, it is a generating ele-

ment of one of the Z factors in H4(G,Z). Hence if k6 is also

integer-valued, the function k6f3,1(g1,g2,g3) mod 1 is a 3-

cocycle. Moreover, a nonzero value of k6 is always nontrivial,

and hence the classification of distinct cocycle representatives

is given by choosing k6 ∈ Z.

If the function on the second line is written as ~k4 ·
~f3,2(g1,g2,g3), then we observe that

d~f3,2(g1,g2,g3,g4) = F12

1−h3
1−h r4. (H61)

This function is integer-valued; therefore ~k4 ·
~f3,2(g1,g2,g3) mod 1 is a 3-cocycle whenever ~k4 is

integer-valued. On the other hand, if ~k4 is an integer multiple

of the matrix (1 − h), we can see that ~k4 · ~f3,2(g1,g2,g3)
is an integer-valued function; hence these values of k4 are

trivial. The distinct choices of ~k4 are hence classified by the

groupKM .

Finally, if the function on the third line is written as

k2f3,3(g1,g2,g3), then we observe that

df3,3(g1,g2,g3,g4) = k2F12
h3 + h4 − [h3 + h4]M

M
.

(H62)

For k2 ∈ Z, the 3-cocycle condition is satisfied. Moreover,

if k2 is a multiple of M , the cocycle is in fact equal to the

integer-valued function

Mf3,3(g1,g2,g3) = F12h3 ≡ 0 mod 1. (H63)

Thus the cocycles on the third line fall into a ZM classifica-

tion. Since the three terms are independent, they together give

a Z × KM × ZM classification. Importantly, we can verify

that these cocycles are well-defined and form a group for each

term separately up to the addition of coboundaries: this im-

plies that the term H2(Gspace,H
1(U(1), U(1))) indeed enters

the classification as a separate piece, and not as part of a group

extension.

Finally, we look at the pure space group cocycles which

represent elements of the group H3(Gspace, U(1)). We can

copy the results from Ref. [15] to obtain

fspace(g1,g2,g3) =
k7
M
w(r1,

h1 r2)h3

+ ~k5 ·
1−h1
1−h r2

h3
M

+
k3
M2

h1(h2 + h3 − [h2 + h3]M ) mod 1 (H64)

These functions can be verified as cocycles in Z3(G,U(1))
without requiring any modification. We can see that choosing

k7 ∈ MZ, ~k5 ∈ 1−hZ2, or k3 ∈ MZ implies that the as-

sociated cocycle is integer-valued and hence trivial. Thus we

obtain H3(Gspace, U(1)) ∼= Z2
M×KM . Combining the results

for the three terms on the E2-page, we obtain Eq. (H53).

Appendix I: Derivation of effective actions

The symmetry cocycles derived in Appendix H are useful

not only to construct explicit solutions to the G-crossed con-

sistency equations, but also to construct topological field theo-

ries involving flat background gauge fields. Since the allowed

topological terms are intimately related to the above symme-

try fractionalization and SPT cocycles, we will see that their
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derivation below essentially follows that of the group cocycles

explained previously. Since the continuum FQH theory can be

studied entirely in terms of the usual vector potential and the

SO(2) spin connection [7–9], and the continuum translation

symmetry does not introduce any qualitatively new phenom-

ena, we will only discuss the derivation of effective actions for

lattice FQH systems.

1. G = U(1)⋋φ Z2

We will work in the usual simplicial formulation described

in Ref. [15]. First assume φ = 0, in which case G =
U(1)×Z2 and hence the U(1) and Z2 gauge fields are defined

independently. In this case we have the following effective ac-

tion for Abelian topological orders [15]:

Lfrac =
qI
2π
aI ∪ dA+

mI

2π
aI ∪ AXY (I1)

LSPT =
k1
2π
A ∪ dA+

k6
2π
A ∪ AXY (I2)

Here we have defined the area element AXY in terms of the

translation gauge field ~R = (X,Y ) as follows: AXY =
1
4π (X ∪ Y − Y ∪X).

We will now treat the general case in which φ 6= 0. A gauge

field for magnetic translation symmetry is a pair (A, ~R) of

gauge fields (corresponding to the U(1) and Z2 components

respectively) obeying the multiplication law

(Aij , ~Rij)(Akl, ~Rkl) = (Aij+Akl+φw(~Rij , ~Rkl), ~Rij+ ~Rkl)
(I3)

(see Appendix A for the definition of w). For a flat gauge field

(A, ~R), the group multiplication implies that on a 2-simplex

[012], ~R remains flat while we have A02 = A01 + A12 +

φw(~R01, ~R12) mod 2π. Therefore it is not dA, but the mod-

ified flux F [012] = dA[012]+φw(~R01, ~R12), which is trivial

when evaluated on 2-simplices. In symmetric gauge, we in

fact havew(~R01, ~R12) =
φ
2
~R01× ~R12 = φAXY [012]. There-

fore we can write F = dA + φAXY . We will work in the

symmetric gauge for the rest of this discussion; however, the

same physical results will be obtained in any gauge.

In order to have an action which is retriangulation-invariant,

it is necessary to couple the internal gauge fields to the flux F
instead of dA. For the same reason, we need to modify the

SPT action as well. Specifically, we replace k1
2πA ∪ dA by a

term δL such that dδL = k1
2πF ∪ F , which is always trivial

when F ∈ 2πZ. It can be verified that δL = k1
2π (A ∪ dA +

2φA∪AXY +φ2d−1(AXY ∪AXY )). The precise form of the

term formally written as φ2d−1(AXY ∪AXY ) is not important

for our discussion, however such a term always exists.

In terms of the original fields A and ~R, the correct effective

action for φ 6= 0 is finally

Lfrac =
qI
2π
aI ∪ F +

mI

2π
aI ∪AXY =

qI
2π
aI ∪ dA+

mI + φqI
2π

aI ∪ AXY (I4)

LSPT =
k1
2π
A ∪ dA+

k6 + 2φk1
2π

A ∪ AXY +
k1φ

2

2π
d−1(AXY ∪ AXY ) (I5)

The Hall conductivity σH appears as the coefficient σH

2 A∪
dA in the response theory obtained by integrating out the

gauge fields aI : it equals ~qTK−1~q+2k1, as expected. The fill-

ing per unit cell is the coefficient of A∪AXY in the response

theory; it equals ~qTK−1(φ~q + ~m) + (k6 + 2φk1). In fact,

the response theory coefficients obtained in this way satisfy

the LSM constraint Eq. (139), as we prove using G-crossed

identities in Appendix F 2. In fact, the above results suggest a

stronger result than the one proved in Eq.(139); however, this

stronger result has not as yet been verified in full generality

within the G-crossed theory (see Appendix F 2).

2. G = U(1) ⋋φ [Z2 ⋊ ZM ]

In this case the gauge field is given by a triple B =

(A, ~R,C) where A ∈ R/2πZ, 1
2π
~R ∈ Z2, and C ∈ 2π

M Z.

The three components transform according to the group mul-

tiplication law forU(1) ⋋φ [Z2 ⋊ ZM ]. For the special case

φ = 0 we quote from Ref [15] the following effective action:

Lfrac =
1

2π
aI ∪ (qIdA+ sIdC + ~tI · d

~
�R+mIAXY )

LSPT =
k1
2π
A ∪ dA+

k2
2π
A ∪ dC +

k3
2π
C ∪ dC +

1

2π
A ∪ (~k4 · d

~
�R) +

1

2π
C ∪ (~k5 · d

~
�R) +

(
k6
2π
A+

k7
2π
C

)

∪ AXY . (I6)

When φ 6= 0, we need to add certain terms to L such that the condition dL ∈ 2πZ holds on any 4-simplex. If
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we consider Lfrac, this means that the coefficient mI of the

area flux term a ∪ AXY is modified as mI → mI + φqI .

The terms in LSPT also have to be modified. The over-

all principle is that the appropriate flux which is valued in

2πZ for a flat gauge field configuration is no longer dA, but

F = dA + φAXY (assuming symmetric gauge while writing

down the group multiplication law of magnetic translations).

Therefore a term such as k1
2πA ∪ dA is replaced by a term L1

such that dL1 = k1
2πF ∪ F , which is indeed valued in 2πZ,

implying that L1 is retriangulation-invariant and hence a valid

topological action. Similarly, a term such as k2
2πdA ∪ C is re-

placed by a term L2 such that dL2 = k2
2πF ∪ C. One can

check that we must have L2 = k2
2π (dA ∪ C + φAXY ∪ C).

(Formally, we are merely replacing 3-cocycle representatives

of the group H3(U(1)×Gspace, U(1)), corresponding to zero

flux, with those from H3(G,U(1)), corresponding to nonzero

flux.) After suitably modifying the necessary terms, we obtain

the following action:

Lfrac =
1

2π
aI ∪ (qIdA+ sIdC + ~tI · d

~
�R+ (mI + φqI)AXY )

LSPT =
k1
2π
A ∪ dA+

k2
2π
A ∪ dC +

k3
2π
C ∪ dC +

1

2π
A ∪ (~k4 · d

~
�R) +

1

2π
C ∪ (~k5 · d

~
�R) +

(
k6 + 2φk1

2π
A+

k7 + φk2
2π

C

)

∪ AXY

+
φ2k1
2π

d−1(AXY ∪ AXY ) +
1

2π
AXY ∪ (φ~k4 ·

~
�R) (I7)

It can be verified that these actions give precisely the

group cocycles written in Appendix H 4 when integrated on

3-simplices.

Appendix J: Group cohomology theorems and formulas

1. Definition of Tensor, Tor and Ext

In this section, we will define some mathematical opera-

tions that are necessary for the cohomology calculations in

this paper. The first two operations − ⊗ − and Tor(−,−)
will be used in the context of the Universal Coefficient Theo-

rem discussed below. The last operation Ext(−,−) is used to

classify extensions of Abelian groups. These definitions are

taken from Ch.7, Ref. [104].

1. Tensor Product −⊗−
The tensor product ⊗ of two Abelian groups G and H
(specifically, the tensor product over the ring Z) is a

binary operation that gives an Abelian group as output,

written as G⊗H . It satisfies the following properties:

G1 ⊗G2
∼= G2 ⊗G1

(
∏

i

Gi)⊗ (
∏

j

Hj) ∼=
∏

i,j

Gi ⊗Hj

G⊗ Z ∼= Z⊗G ∼= G

Zm ⊗ Zn ∼= Zd, d = gcd(m,n)

Here
∏

denotes a direct product of groups, and ∼= an

isomorphism of groups. The above properties define the

tensor product for any finitely generated Abelian group.

2. Torsion Product Tor(−,−)
The torsion product of two Abelian groups G and H
(specifically, the degree 1 torsion product over the ring

Z), is a binary operation that gives an Abelian group as

output, written as Tor(G,H). It satisfies the following

properties:

Tor(G,H) ∼= Tor(H,G)

Tor(
∏

i

Gi,
∏

j

Hj) ∼=
∏

i,j

Tor(Gi, Hj)

Tor(G,Z) ∼= Tor(Z, G) ∼= Z1 = 0

Tor(Zm,Zn) ∼= Zd, d = gcd(m,n)

Once again, these properties define Tor(−,−) for all

finitely generated Abelian groups.

3. Ext functor Ext(−,−)
The Ext functor Ext(−,−) takes two Abelian groups

G and H as arguments and outputs an Abelian group

denoted as Ext(G,H). It satisfies the following prop-

erties:

Ext(
∏

i

Gi,
∏

j

Hj) ∼=
∏

i,j

Ext(Gi, Hj)

Ext(Z, G) ∼= Z1
∼= Ext(Zm,R) = 0

Ext(Zm,Z) ∼= Zm

Ext(Zm,Zn) ∼= Zd, d = gcd(m,n)

Here
∏

denotes a direct product of groups, and ∼= an

isomorphism of groups. The above properties com-

pletely determine the Abelian group Ext(G,H) for any

two finitely generated Abelian groups, G and H . How-

ever, we will not call it a product since it is not symmet-

ric if we exchange G and H . As the notation suggests,

the functor has the useful interpretation of classifying

inequivalent group extensions of two Abelian groupsG
andH described by the following short exact sequence:

1 → H → K → G→ 1.



77

If Ext(G,H) = 0, then the only possible extension is

the trivial extension with K ∼= G×H .

2. Useful results in group cohomology

In this section we state several theorems that are useful for

the explicit cohomology calculations done in this work. A

comprehensive development can be found, for example, in

Refs. [105, 106], while a relatively detailed development di-

rected at physicists is available in Ref. [103].

In order to perform computations, it is crucial to first spec-

ify the particular cohomology theory being used. For finite

groups, different cohomology theories generally agree. How-

ever, for continuous and/or noncompact groups, such as those

being studied in this paper, the choice of cohomology theory

strongly influences the obtained classification of topological

phases. We will mostly be concerned with two different coho-

mology theories. The first, denoted as Hn(G,M), where M
is someG-module, is cohomology with measurable (or Borel)

cochains. It has been conjectured [103] that this cohomology

theory is the right choice for classifying the quantized topo-

logical terms that characterize SPT phases. A second coho-

mology theory, widely used in computations, is the singular

cohomology of the classifying space BG of G, denoted as

Hn
top(BG,M).
To perform calculations, it is useful to clarify the relation-

ship between H(G) andHtop(BG), and also to understand the

relationship between cohomology groups with different coef-

ficients, particularly U(1) and Z. To that end, we state the

following theorems:

Theorem J.1 For M discrete and G finite-dimensional, lo-

cally compact, σ-compact, (see page 522 of [37])

Hn(G,M) ∼= Hn
top(BG,M).

Remark. In particular, we have Hn(G,Z) ∼=
Hn

top(BG,Z) for n ≥ 0. In various simple cases, we

can look up the cohomology of the desired classifying

space in the standard mathematical literature and thus obtain

Hn(G,M): see Appendix J 3 below for examples.

We also have the following important result which relates

the measurable cohomology of compact Lie groups with U(1)
and Z coefficients:

Theorem J.2 Let G be a compact Lie group. For n > 0, we

have (see Remark IV.16, part 3 in [107])

Hn(G,U(1)) ∼= Hn+1(G,Z).

The next result shows how to compute the cohomology of

a cyclic group, under very general assumptions. Let Cm be

generated by the element h, and assume that its group coho-

mology is calculated with coefficients in the arbitrary Abelian

group M . Assume that G has an action on M given by

ρ : G → Aut(M); in our notation, the result of g acting

on a ∈M is denoted as ga = ρg(a). We define

MG = {a ∈M |ρg(a) = a, ∀g ∈ G},

which is the subgroup ofM invariant underG action. We also

define the operatorsD = h−1, andN = 1+h+ · · ·+hm−1.

With this we define

DM = {Da| a ∈M} (J1)

NM = {Na| a ∈M} (J2)

NM = {a ∈M |Na = 0}. (J3)

DM has the interpretation of the image ofD; NM has the in-

terpretation of the image ofN ; and NM has the interpretation

of the elements in M annihilated by the operator N .

With these definitions, we have the following theorem (see

Theorem 9.27 of [106]):

Theorem J.3 (Cyclic groups) The cohomology groups of

G = Cm are, for n ≥ 1,

H0(G,M) ∼=MG

H2n−1(G,M) ∼= NM/DM

H2n(G,M) ∼=MG/NM (J4)

Several examples involving this theorem are worked out in

Appendix J 3.

Along with results for computing the cohomology of simple

classifying spaces, Theorem J.3 is the only tool we will use to

perform direct computations. The rest of the theorems in this

section will give us indirect ways to extend our results to more

complicated groups and to more general coefficient modules.

Theorem J.4 (Long-Exact Sequence) Consider a short ex-

act sequence of three G-modules

1 →M1 →M2 →M3 → 1

Then there is a long-exact sequence

1 →H0(G,M1) → H0(G,M2) → H0(G,M3) →

H1(G,M1) → H1(G,M2) → H1(G,M3) →

H2(G,M1) → H2(G,M2) → H2(G,M3) →

· · ·

Hn(G,M1) → Hn(G,M2) → Hn(G,M3) → · · ·
(J5)

Although we have stated it for cohomology with measur-

able cochains, the above long exact sequence is very general

and applies to any cohomology theory. A common applica-

tion of this result is to compare the groups Hn(G,U(1)) and

Hn+1(G,Z), whereH is some cohomology theory, by taking

M1 = U(1),M2 = R,M3 = Z.

Once we know the group cohomology with one coefficient

group, the group cohomology in another coefficient group is

not arbitrary. In particular, the cohomology with Z coeffi-

cients allows us to obtain the cohomology with arbitrary co-

efficients.

Theorem J.5 (Universal Coefficient Theorem) For a group

G, the group cohomology with Z coefficents determines the

group cohomology with discrete M coefficients as follows, M
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being a discrete Abelian group with trivial G action (see page

246, Theorem 5.5.10 in Ref. [108] or Theorem 7.6 in Ref.

[104]):

Hn(G,M) ∼= (Hn(G,Z)⊗M)⊕ Tor(Hn+1(G,Z),M).

Our primary use of this theorem will be in computing coho-

mology with A coefficients, where A is a group of Abelian

anyons. Note that this theorem holds only when M has the

discrete topology, and therefore there may be subtleties in ap-

plying the UCT when M is continuous. Also note that there

is no general UCT when G acts nontrivially on M .

Theorem J.6 (Künneth decomposition) When M is a G1 ×
G2 module (with a possibly non-trivial action of G1 × G2),

the cohomology groups of the direct product group G1 × G2

can be decomposed as follows:

Hn(G1 ×G2,M) ∼=

n⊕

p=0

Hp(G1;H
n−p(G2,M))

Remark. This decomposition is often referred to as the

Künneth formula in the condensed matter physics literature,

and also uses the Universal Coefficient Theorem (see eg. Ap-

pendix E, Ref. [109] for a derivation). A note on terminol-

ogy: the Künneth formula which is standard in the mathemat-

ical literature can be found in Ref. [103]. Since the version

stated above is not referred to as the ’Künneth formula’ in the

mathematical literature, we use the terminology ’Künneth de-

composition’ for this result. Note that in the statement of this

theorem, there is a seemingly unequal treatment of G1 and

G2. However, one can use the Universal Coefficient Theo-

rem a second time to show that if we reverse the roles of G1

and G2 in the rhs, we will arrive at the same result. For more

complicated group extensions, we have to resort to spectral

sequences, which we will introduce in Appendix K.

The next result relates to the cohomology of noncompact

topological groups, and will be useful in deriving the coho-

mology (with discrete coefficients) of the group G = U(1)⋋
E2 (Appendix H 2). Specifically, on Page 522 of Ref. [37]

it is stated that when the group G is a connected noncompact

Lie group, and K is a maximal compact subgroup of G, then

BG = BK . Therefore, by using Theorem J.1, we can state

the following result:

Theorem J.7 (Cohomology of noncompact Lie groups)

When the group G is a connected, locally compact, σ-

compact (but not necessarily compact) Lie group, M is

discrete, and K is a maximal compact subgroup of G, then

we have the equalities

Hn(G,M) ∼= Hn
top(BG,M) ∼= Hn

top(BK,M) ∼= Hn(K,M).

Thus under some mild assumptions on G (which are sat-

isfied for the Euclidean group), the measurable cohomology

of G with discrete coefficients is equal to that of its maximal

compact subgroupK .

3. Explicit computations

Computations with classifying spaces The computations

below, which explicitly use the classifying space BG, can be

regarded as an application of Theorem J.1.

1. Hn(Z2,Z):

The classifying space BZ2 = RP∞ is the infinite-

dimensional projective space, which is a infinite-

dimensional sphere S∞ with antipodal points being

identified. Therefore, using Theorem J.1, we know that

Hn(Z2,Z) ∼= Hn(RP∞,Z) =







Z n = 0

0 n ∈ odd

Z2 n ∈ even

2. Hn(Z,Z):

The classifying space BZ = S1 is a circle. Therefore,

Hn(Z,Z) ∼= Hn(S1,Z) =

{

Z n = 0, 1

0 n ≥ 2.

3. Hn(Zm,Z):

The classifying space satisfies B(G1 ×G2) = BG1 ×
BG2, where the first product is the direct product of

groups, while the second product is a product of topo-

logical spaces. Therefore, BZm = S1 × · · · × S1

︸ ︷︷ ︸

m times

=

Tm is an n-dimensional torus. We thus have, by using

the Künneth decomposition,

Hn(Zm,Z) ∼= Hn(Tm,Z) =

{

Z(
m
n) 0 ≤ n ≤ m

0 n > m
(J6)

where
(
m
n

)
= m!

n!(m−n)! .

Now from the Universal Coefficient Theorem (Theorem

(J.5)) and Eq. (J6), we have

Hn(Z2,M) ∼= (Hn(Z2,Z)⊗M)⊕ Tor(Hn+1(Z2,Z),M)

(J7)

∼=







M n = 0

M2 n = 1

M n = 2

0 n > 2

. (J8)

In fact, M can be chosen arbitrarily (discrete or continuous)

in the above result.

Computations for cyclic groups These computations are a

direct application of Theorem J.3.

1. Trivial symmetry action: G = Zm, and M = Zk .

Here we assume that m is arbitrary. In this case we

have MG = M ; moreover D = 0 and N is just mul-

tiplication by m. Therefore DM = Z1. Now NM is
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the group of all multiples of m modulo k. This group is

generated by d = (m, k); there are k/d such numbers

forming the group NM = Zk/d. Conversely, Na = 0
if da ≡ 0 mod k; there are k/d such numbers forming

the group NM = Zd. The theorem then gives

H0(Zm,Zk) ∼= Zk (J9)

H2n−1(Zm,Zk) = Zd/Z1
∼= Zd (J10)

H2n(Zm,Zk) = Zk/Zk/d ∼= Zd (J11)

2. Point group rotation symmetry: G = Zm, M = Z × Z
and ρ is a point group rotation action.

Here we assume that the group Zm corresponds to

a point group rotation symmetry, implying m ∈
{2, 3, 4, 6}. The 2 × 2 matrix generator of point group

rotations is denoted as h. The final result, derived below

for n ≥ 0, is

H2n+1
ρ (Zm,Z

2) =
Z2

(1− h)Z2
:= KM (J12)

H2n
ρ (Zm,Z

2) = 0. (J13)

We obtain K2
∼= Z2

2,K3
∼= Z3,K4

∼= Z2,K6
∼= Z1.

(We also define K1
∼= Z1.)

In this case, each element of M is given by a two-

dimensional vector of integers, and each element of

G is a 2 × 2 matrix. The only fixed point of rota-

tions is the identity, MG = Z1. Furthermore, we have

0 = hm−1 = (h−1)(1+h+· · ·+hm−1) = (h−1)N ;

since h 6= 1 we have N = 0. This immediately means

that NM = Z1 and NM = M = Z2. The form of

DM =
{
(1 − h)a, a ∈ Z2

}
depends on the value of

m, which determines the matrix for h. Notice that Eq.

(J4) already guarantees that the cohomology groups of

G vanish in even degree, while in odd degree they are

equal to H1
ρ(G,M) ∼= Z2/DZ2, which we now eval-

uate for different point groups. Note that in the main

text we used this result to define KM := H1
ρ(G,M) =

Z
2

1−hZ2 .

(a) m = 2: h = −I2×2 and D is multiplication by

2, so DZ2 = 2Z × 2Z and H1
ρ(G,M) ∼= Z2 ×

Z2. Representatives of this cohomology group

are given by elements (s, t) ∈ Z2 and are distin-

guished by the parity of s and t.

(b) m = 3: A possible representation for h is h =
(

0 1
−1 −1

)

. Therefore if a = (s, t), Da =

(s − t, s + 2t). Notice that the two components

ofDa necessarily differ by a multiple of 3. There-

foreDZ2 consists of all possible pairs (s, t) which

differ by a multiple of 3; from this we get that

Z2/DZ2 ∼= Z3, and representatives of this group

are given by pairs (s, t) distinguished by the value

of s− t mod 3.

(c) m = 4: We set h =

(
0 1
−1 0

)

, so that if a = (s, t)

then Da = (s− t, s+ t). Following the argument

for m = 3, we see that in this case, Z2/DZ2 ∼=
Z2, with representatives given by (s, t) and distin-

guished by s− t mod 2.

(d) m = 6: In this case, h =

(
0 1
−1 1

)

, and for

a = (s, t) we have Da = (s − t, s). But this

means that DM ∼= Z2, because there is no parity

constraint. Hence Z2/DZ2 ∼= Z1, and there are

no nontrivial elements in H1
ρ(G,M).

Appendix K: Review of spectral sequences

Consider a groupG defined by the extension

1 → N → G→ Q→ 1. (K1)

Here, N is a normal subgroup of G and Q = G/N . In the

simplest example whereG = Q×N , we can use the Künneth

decomposition (Theorem J.6) to determine the cohomology of

G in terms of the cohomology ofN andQ. However, for more

general group extensions, we have to resort to another method

to compute its group cohomology. This method is known as

the Lyndon-Hochschild-Serre spectral sequence (LHSS), and

can be thought of as a generalization of the Künneth decom-

position. Here we will present an informal treatment directed

towards physicists. For a more detailed discussion, the reader

is referred to Refs [110–112].

We wish to compute the group cohomology Hn(G,M)
with coefficients in the module M . The spectral sequence

technique starts with listing all the cohomology groups

Hp(Q;Hq(N,M)) for p, q ≥ 0 as a table. The table thus

formed is given in Fig. 2. Formally, it is called the E2-page,

and we use the notation Ep,q2 = Hp(Q;Hq(N,M)) to label

each entry in the table. We allow the groups Q and N to

act nontrivially on M ; we also allow Q to act nontrivially on

N . These two actions induce some action of Q on the groups

Hq(N,M); in examples we will explicitly specify this action

if it is nontrivial. We also assign the trivial group 0 to all en-

tries with p < 0 or q < 0 and thus extend the page to all

possible integral values of p and q. Such a construction de-

fines a ’first quadrant cohomological spectral sequence’ since

the nontrivial entries only appear in the first quadrant.

Notice that the E2 page has some resemblance to the

Künneth decomposition, since every element of the diagonal

p + q = n is a direct summand of the Künneth decomposi-

tion for the cohomology in degree n. However, this page only

gives a first approximation to the cohomology of G. Suc-

cessively better approximations are obtained by considering

maps between the entries called differentials.

The differential dp,q2 is a group homomorphism dp,q2 :

Ep,q2 → Ep+2,q−1
2 , i.e., the domain is the E2 element shar-

ing the same label indices, and the target is two steps to the

right and one below, as shown in Fig. 2. Note that for the

differentials dp,q2 whose domain is the trivial group 0, the dif-

ferential has to be the zero map since this is the only possible

homomorphism. Analogous to differentials (coboundary op-

erators) in a cochain complex, we have dp+2,q−1
2 ◦ dp,q2 = 0
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4 H0(Q,H4(N,M)) H1(Q,H4(N,M)) H2(Q,H4(N,M)) H3(Q,H4(N,M))

3 H0(Q,H3(N,M)) H1(Q,H3(N,M)) H2(Q,H3(N,M)) H3(Q,H3(N,M))

2 H0(Q,H2(N,M)) H1(Q,H2(N,M)) H2(Q,H2(N,M)) H3(Q,H2(N,M))

1 H0(Q,H1(N,M)) H1(Q,H1(N,M)) H2(Q,H1(N,M)) H3(Q,H1(N,M))

0 H0(Q,H0(N,M)) H1(Q,H0(N,M)) H2(Q,H0(N,M)) H3(Q,H0(N,M))

0 1 2 3
p

q

FIG. 2. The E2 page of the LHSS. Here we only draw the first quadrant: the other three quadrants are trivial. The domain and range of the

differentials d2 are indicated through directed arrows.

for any two consecutive differentials, which we abbreviate as

d2 ◦d2 = 0. With this differential property and theE2 page in

mind, we can take the cohomology ker dp,q2 /im dp−2,q+1
2 and

list a table for the result, which we call the E3 page, defined

as follows:

Ep,q3 =
ker dp,q2

im dp−2,q+1
2

. (K2)

Notice that we automatically have Ep,q3 = 0 when p < 0 or

q < 0 by virtue of the zero maps incoming or outgoing from

the first quadrant of Ep,q2 .

Now the E3-page is equipped with differentials dp,q3 :

Ep,q3 → Ep+3,q−2
2 . These maps in turn satisfy dp+3,q−2

3 ◦
dp,q3 = 0, or succinctly, d3 ◦ d3 = 0. With the d3 dif-

ferentials, we can obtain the E4 page by defining Ep,q4 =

ker dp,q3 /im dp−3,q+2
3 . We can iterate this procedure to obtain

the Er+1 page from the Er page, for r ≥ 2, by taking

Ep,qr+1 =
ker dp,qr

im dp−r,q+r−1
r

, (K3)

from the differentials dp,qr equipped with the property

dp+r,q−r+1
r ◦ dp,qr = 0.

For any given (p, q), we have Ep,qr = Ep,qr+1 = Ep,qr+2 = · · ·
when r > max{p, q + 1} since the incoming and outgoing

differentials are zero maps. We denote this stable value as

Ep,q∞ and collectively refer to these values for different (p, q)
as the E∞ page. If it happens that starting at r = s, all the

differentials are zeros for any page r ≥ s, then we say the

spectral sequence collapses or stabilizes on the the Es page,

and Es ≡ E∞.

The E∞ page forms an approximation of Hn(G,M) in

the following sense. There is a finite decreasing filtration of

Hn(G,M) by Abelian groups:

1 = An ⊆ An−1 ⊆ An−2 ⊆ . . . A1 ⊆ A0 = Hn(G,M)
(K4)

along with a set of short exact sequences for the Ai:

1 → A1 → Hn(G,M) → E0,n
∞ → 1

1 → A2 → A1 → E1,n−1
∞ → 1

. . .

1 → An−1 → An−2 → En−1,1
∞ → 1

1 = An → An−1 → En,0∞ → 1. (K5)

In other words, for each p, the group Ep,n−p∞
∼=

Ap/Ap−1 is a quotient group obtained from the normal se-

ries A1, A2, . . . , An, and Hn(G,M) is the result of carrying

out the indicated sequence of group extensions. In principle,

if we are able to reconstruct An−2 from An−1 = En,0∞ and

En−1,1
∞ , and then reconstruct An−3, An−4· · · , all the way to

A0 = Hn(G,M), then we have solved our problem. This

procedure is illustrated in Fig. 3.

We use the notation Ep,q2 =⇒ Hp+q(G,M) to denote

the fact that Hp+q(G,M) is obtained from Ep,q2 as described

above. We can now summarize the above series of steps as a

single theorem:

Theorem K.1 (Lyndon-Hochschild-Serre spectral sequence)

Consider a group extension

1 → N → G→ Q→ 1

and let M be a G-module. Then there is a first quadrant co-

homological spectral sequence

Ep,q2 = Hp(Q;Hq(N,M)) =⇒ Hp+q(G,M). (K6)

The coefficientsM can be arbitrary, andQmay have a non-

trivial action on N . Both Q and N may also have a nontrivial

action on M .

Let us consider a simple example, G = N × Q, for which

we already know that the Künneth decomposition should ap-

ply. First, the E2 page has precisely the elements occur-

ring as direct summands in the Künneth decomposition. If

there were any nonzero differential on any page r ≥ 2, the

size of the Abelian group Hn(G,M) will be smaller than
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⋮

⋯

∞ page

p

q

E4,0∞

�3,1∞

�2,2∞

�1,3∞

�0,4∞

A4

A3

A2

A1

A0

FIG. 3. We can use the E∞ page to retrieve the information of

H4(G,M). The group A4 is E4,0
∞ . The group A3 is E3,1

∞ extended

by A4. The group A2 is E2,2
∞ extended by A3. The group A1 is

E1,3
∞ extended by A2. Finally, the group A0 = H4(G,M) is E0,4

∞

extended by A1.

that of the group obtained by using the Künneth decompo-

sition. Therefore, all the differentials are trivial. That is, the

spectral sequence collapses on the E2 page. In addition, all

the short exact sequences in Eq. (K5) should split, so that

A0 = Hn(G,M) will be a simple direct sum of the terms

Ep,n−p∞ = Ep,n−p2 = Hp(Q,Hn−p(N,M)), for 0 ≤ p ≤ n.

Note that for a group extension which is not a direct prod-

uct, the differentials d2 can be nontrivial. Taking the coho-

mology of d2 and passing to the E3-page will in general re-

duce the size of the group corresponding to each entry of the

E2 page. In this sense, the Künneth decomposition gives an

upper bound on the size of Hn(G,M). The effect of higher

differentials is similar to that of d2: they allow us to eliminate

more terms which do not ultimately contribute to Hn(G,M).
Thus subsequent pages yield successively better approxima-

tions of Hn(G,M).
Using the LHSS in practice requires determining the pre-

cise form of the differentials, which is a non-trivial problem.

In addition, the extensions in Eq. K5 do not have to split, and

generally we do not know the explicit maps in the short exact

sequences: this is referred to as the extension problem in the

spectral sequence literature.

In certain cases there may be some helpful simplications.

For example, if Ek,n−k∞ = Z, then Ak = Z⊕ Ak+1, because

Z is a free module: it can only be extended byAk+1 as a direct

sum. Also, a number of the E∞ terms may vanish.
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