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Passive states, i.e., those states from which no work can be extracted via unitary operations, play an impor-
tant role in the foundations and applications of quantum thermodynamics. They generalize the familiar Gibbs
thermal states, which are the sole passive states being stable under tensor product. Here, we introduce a partial
order on the set of passive states that captures the idea of a passive state being virtually cooler than another one.
This partial order, which we build by defining the notion of relative passivity, offers a fine-grained compari-
son between passive states based on virtual temperatures (just like thermal states are compared based on their
temperatures). We then characterize the quantum operations that are closed on the set of virtually cooler states
with respect to some fixed input and output passive states. Viewing the activity, i.e., nonpassivity, of a state as
a resource, our main result is then a necessary and sufficient condition on the transformation of a class of pure
active states under these relative passivity-preserving operations. This condition gives a quantum thermodynam-
ical meaning to the majorization relation on the set of nonincreasing vectors due to Hoffman. The maximum
extractable work under relative passivity-preserving operations is then shown to be equal to the ergotropy of
these pure active states. Finally, we are able to fully characterize passivity-preserving operations in the simpler
case of qubit systems, and hence to derive a state interconversion condition under passivity-preserving qubit
operations. The prospect of this work is a general resource-theoretical framework for the extractable work via
quantum operations going beyond thermal operations.

I. INTRODUCTION

A major focus in the area of thermodynamics is work ex-
traction. The laws of thermodynamics, which are expressed as
a set of phenomenological rules, govern the transformations of
states leading to work extraction (see e.g. [1]). Traditionally,
these laws are given for macroscopic systems in equilibrium
at the so-called thermodynamic limit; therefore, they are in-
adequate to deal with the thermodynamics of systems at nano
scale. However, with the recent technological developments
and quest for miniaturization [2–11], the need for developing
a microscopic version of thermodynamics, where quantum ef-
fects play a crucial role, becomes pertinent. Recently, a great
deal of effort has been put to understand and possibly deduce
thermodynamical laws that take quantum effects into account,
which has led to the research area known as quantum thermo-
dynamics [12–27].

Since thermodynamics is, fundamentally speaking, a theory
of state transformations, the resource-theoretic framework of-
fers a natural ground for the development of quantum thermo-
dynamics. For example, in Refs. [12, 13], the Gibbs (ther-
mal) state at a fixed temperature is considered as free and
thermal operations are considered as free operations, giving
rise to a resource theory of thermal operations. Under these
restrictions, the laws of state transformations have been de-
scribed, and the necessary and sufficient conditions for the
transformation of energy-diagonal states under thermal oper-
ations have been expressed as a thermo-majorization condi-
tion [14]. These transformations are based on a bath system
in a fixed thermal state, which acts as catalyst.
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The importance of work extraction cannot be overempha-
sized in quantum thermodynamics and therefore the charac-
terization of quantum states based on their thermodynamical
merits is very important in itself. It is clear from the defini-
tion of the passive states that no work can be extracted from
them via cyclic unitary operations [28]. However, there are
various thermodynamical contexts where one is interested in
work extraction and state transformations of a quantum sys-
tem interacting with its environment, which may be inaccessi-
ble to an observer in general and deviate from a thermal bath.
A pertinent question is to determine general conditions under
which state transformations can take place for the extraction
of work from an individual system. In this work, we take a
resource-theoretic approach to deal with the thermodynamics
of a single quantum system interacting with a nonthermal en-
vironment. In this context, it seems natural to consider the op-
erations which cannot create activity (i.e., nonpassivity) start-
ing from a passive state as the useless or free operations that
govern the thermodynamics of state transformations.

Given a single quantum system, two different thermal states
of the system can be compared and distinguished based on
their temperatures. However, such a notion of comparison
is absent for passive states, which hinders the treatment of
passive-environment maps going beyond thermal maps. As a
starting point, we thus introduce here a partial order on the
set of passive states that allows for comparison based on their
thermodynamic merits. This partial order is a stochastic or-
der that is connected to the concept of “virtual temperature”
of a quantum system [29]. Given a quantum system in state
ρ =

∑
i pi |i〉〈i|, the inverse virtual temperatures βi,j are de-

fined for each pair of probabilities (pi, pj) by the relation
(Ej − Ei)βi,j = ln(pi/pj), where Ei and Ej are the en-
ergy eigenvalues corresponding to the energy eigenstates |i〉
and |j〉 of the Hamiltonian of the system. If all βi,j are the
same, then the state is necessarily a thermal state. The partial
order that we define on the set of passive states is naturally
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expressed in terms of virtual temperatures and therefore, we
suggestively refer to it as “being virtually cooler than”. A pas-
sive state ρ is said to be virtually cooler than another passive
state σ, denoted as ρ �vc σ, if all virtual temperatures of ρ are
lower than those of σ. The partial order ρ �vc σ imposes very
stringent conditions on ρ and σ: it means that ρ is passive rel-
ative to σ. In fact, ρ �vc σ also implies ρ � σ, where � is a
preorder called majorization. Moreover, the energy of ρ is al-
ways lesser than that of σ. In another thermodynamic context,
we show that if the passive states ρ and σ are used for refriger-
ation of an external qubit system, then a virtually cooler state
performs this task better, that is, the use of ρ renders the tem-
perature of the external qubit system lower compared to the
case when one uses σ.

After characterizing the convex set of virtually cooler states
than a given passive state, we then consider the class of quan-
tum operations that preserve this partial order. We call such
operations as relative passivity-preserving operations and de-
note them as RPPOs. These operations are necessarily inco-
herent operation, i.e., operations that map the set of diagonal
states into itself in a fixed reference basis (here, the energy
eigenbasis). We then consider the question of state transfor-
mations under strictly incoherent RPPOs. In particular, for
a specific class of pure active states, we show that the rela-
tion we name Hoffman majorization provides a necessary and
sufficient condition for state interconversion. Hoffman ma-
jorization is a partial order defined on the set of nonincreasing
vectors [30], and we thus uncover here its quantum thermody-
namical meaning.

As a consequence of this condition, we also show that
the maximal work extraction from a given class of pure ac-
tive states, which is equal to ergotropy, is achievable with
strictly incoherent RPPOs. To elucidate the general construc-
tive proof of our result, we provide the construction of a
strictly incoherent RPPO underlying the desired state trans-
formation for a simple qutrit system. Interestingly, for trans-
formations of pure qubit states under strictly incoherent RP-
POs, the necessary and sufficient condition based on Hoffman
majorization remains true also simply for passivity-preserving
operations. The latter operations, which we denote as PPOs,
are those that map the set of passive states into itself.

Further, we discuss passivity-preserving operations in gen-
eral and characterize them completely in the case of qubit
systems by explicitly providing their Kraus operators. Con-
sidering again work extraction, we show that the ergotropy
is simply achievable via passivity-preserving operations for a
given class of pure active qubit states. Moreover, as an ex-
ample of passivity-preserving operations, we introduce what
we call activity-breaking operations (ABOs) in analogy with
entanglement-breaking operations. ABOs are defined as the
operations that map any input state into the set of passive
states. We show that any activity-breaking operation can be
written as some measure and prepare channel.

Finally, coming back to a resource-theoretical framework
for extractable work, we introduce several monotones on the
set of active pure states, which are nonincreasing under RP-
POs. These should be useful to better understand the nature
of the resource consisting in not being “virtually cooler than”

in a thermodynamical scenario.

The rest of the paper is organized as follows. In Sec. II,
we introduce the classical preliminaries, in particular the con-
cept of Hoffman majorization which induces a partial order
on the set of nonincreasing probability vectors. In Sec. III,
we turn to quantum thermodynamics and recall the set of pas-
sive states (extending the nonincreasing vectors) together with
the notion of passivity-preserving quantum operations and in-
coherent (and strictly incoherent) quantum operations, which
are necessary for the rest to follow. We also characterize the
passivity preserving – and, conversely, the activity breaking
– quantum operations in terms of their Kraus decomposition.
In Sec. IV, we define relative passivity, namely the condi-
tion that a state is passive relative to another passive state.
This leads us to define the notion of a “virtually cooler” quan-
tum state and explore its thermodynamical consequences. We
then introduce the notion of relative passivity-preserving op-
erations (RPPOs) and illustrate it with an example. In Sec.
V, we come back to our central question, namely the thermo-
dynamics of work extraction. We provide the necessary and
sufficient condition for the transformation of a specific class
of active pure states under RPPOs, which makes the connec-
tion with Hoffman majorization and gives it a thermodynami-
cal meaning. We conclude in Sec. VI with further discussion
on the ramification of the concepts introduced here. In Ap-
pendix A, we provide more details on the main theorems at
the heart of Hoffman majorization and prove another equiva-
lent characterization of Hoffman majorization in terms of se-
quence of passive t-transforms. In Appendix B, we focus on
passivity-preserving operations for qubit systems, exploiting
the fact that these are both incoherent and strictly incoher-
ent at the same time. This enables us to explicitly character-
ize the form of qubit passivity-preserving operations in terms
of Kraus operators. In Appendix C, we construct an explicit
RPPO suitable for pure state transformations in the case of
a qutrit system, which is instructive to understand RPPOs in
general. Then, in Appendix D, we explore the thermodynam-
ical implication of the relative passivity condition, namely the
refrigeration by using a passive state that is virtually cooler
than another passive state. Finally, in Appendix E, we briefly
touch upon the problem of defining the notion of extractable
work under quantum channels beyond the thermal case and
provide an example of work extraction under a RPPO for a
qubit system.

II. CLASSICAL PRELIMINARIES

We start by introducing the notion of majorization over
the set of nonincreasing probability vectors, which we name
Hoffman majorization. Our main result, which we present in
Section V, relies on an extension of Hoffman majorization to
quantum passive states and finds a natural application to quan-
tum thermodynamics (see Theorems 4 and 5).
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A. Nonincreasing vectors and Hoffman matrices

A probability vector ~p = (p0, · · · , pd−1)T , where pi ∈ R+

and
∑d−1
i=0 pi = 1, is said to be a nonincreasing vector if it is

such that pi ≤ pj , ∀i > j. The set of nonincreasing proba-
bility vectors of dimension d, denoted as S(d), is a convex set
whose extreme points are given by d vectors

~ek =
1

k + 1
(

k+1︷ ︸︸ ︷
1, · · · , 1,

d−k−1︷ ︸︸ ︷
0, · · · , 0)T , (1)

with k = 0, · · · , d−1. A simple proof of this statement can be
found as Lemma 1 in Ref. [31]. In the rest of the paper, we de-
note nonincreasing probability vectors as passive vectors and
the set S(d) as the set of passive vectors. The reason for this
nomenclature is the close connection between the nonincreas-
ing vectors and the passive states (see Section III).

Hoffman matrices.– We say that a d×dmatrixR is a Hoffman
matrix if, for all 0 ≤ i, j ≤ d − 1, it satisfies the following
conditions [30]:

(a) R0,d−1 ≥ 0 ; (b)

d−1∑
j=0

Ri,j = 1 ; (c) Ri,j = Rj,i ;

(d) Ri,j +Ri−1,j+1 ≥ Ri−1,j +Ri,j+1, ∀ i ≤ j.

Conditions (a) to (d) imply, in particular, that Hoffman ma-
trices are doubly-stochastic matrices that are symmetric and
map the set S(d) of passive vectors into itself. Let us denote
the set of d×d Hoffman matrices byR(d). In the simple case
of d = 2, the set of Hoffman matrices R(2) reduces to the
so-called t-transforms with a constraint, that is,

R =

(
t 1− t

1− t t

)
, with t ≥ 1/2. (2)

Explicit construction.– Before exposing the role of Hoffman
matrices in relation with majorization, let us provide an ex-
plicit construction. Let P(d) denote the set of all 2d−1 parti-
tions of the set {0, · · · , d−1} such that each part of a partition
consists of consecutive integers. For example,

P(1) = {(0)};
P(2) = {(0, 1), (01)};
P(3) = {(0, 1, 2), (01, 2), (0, 12), (012)}.

Let us label any such partition in P(d) as τ = (τ1, · · · , τk),
where τt is a specific part and k is the number of parts within
partition τ . For example, in the case d = 3, the partition
τ = (0, 12) consists of k = 2 parts, namely τ = (τ1, τ2) with
τ1 = 0 and τ2 = 12. For each partition τ ∈ P(d), we define
the symmetric doubly-stochastic matrix Mτ by the rule

Mτ
i,j =

{
1
|τt| if i, j ∈ τt, t ∈ [1, k]

0 otherwise.
(3)

where τt can be any of the k parts within partition τ and |τt|
is the size of part τt. We denote the set of the above 2d−1

matrices byMP(d) since each partition τ ∈ P(d) corresponds
to a matrix Mτ ∈ MP(d). A generic element of MP(d) is
thus

Mτ = ⊕kt=1

I|τt|

|τt|
,

where I|τt| is a |τt| × |τt| matrix with all entries equal to one.
For example, in the case of d = 3, the four partitions and
associated matrices are given by

τ = (0, 1, 2) Mτ =

1 0 0
0 1 0
0 0 1

 ;

τ = (01, 2) Mτ =
1

2

1 1 0
1 1 0
0 0 2

 ;

τ = (0, 12) Mτ =
1

2

2 0 0
0 1 1
0 1 1

 ;

τ = (012) Mτ =
1

3

1 1 1
1 1 1
1 1 1

 .

The following theorem, due to Hoffman [30], gives a meaning
to this construction.

Theorem 1 ([30]) The set R(d) of d × d Hoffman matrices
coincides with the convex hull ofMP(d).

In other words, any Hoffman matrix R can be constructed as
a convex mixture of individual Mτ matrices. The action of
an individual matrix Mτ on a passive vector ~p yields another
passive vector ~p ′ such that

~p ′ = Mτ ~p = ⊕kt=1 pt,

where

pt =

∑
i∈τt pi

|τt|
(

|τt|︷ ︸︸ ︷
1, · · · , 1 )T .

Since each matrixMτ ∈MP(d) maps the set S(d) into itself,
the same is true for any Hoffman matrixR ∈ R(d). The proof
of Theorem 1 is explained in Appendix A for completeness.

B. Hoffman majorization

Before defining Hoffman majorization, let us first recall the
regular majorization relation between two vectors.

Majorization.– For x, y ∈ Rd+, let x↓ and y↓ be the corre-
sponding vectors with components arranged in nonincreasing
order. Then, we say that x is majorized by y, denoted by
x ≺ y, if and only if

k∑
i=0

x↓i ≤
k∑
i=0

y↓i , ∀k = 0, · · · , d− 2, and (4)

d−1∑
i=0

x↓i =

d−1∑
i=0

y↓i . (5)
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Note that Eq. (5) is automatically verified when x and y are
probability vectors, which is the case of interest here. The
relation x ≺ y is equivalent to relation y � x, meaning that y
majorizes x. A key result of majorization theory is that x ≺ y
if and only if there exists a doubly-stochastic matrix D such
that x = Dy. The restriction of the above vectors x and y
to the set S(d) of passive vectors gives rise to what we call
Hoffman majorization. This is the content of the following
theorem.

Theorem 2 ([30]) For passive vectors x, y ∈ S(d), x is
Hoffman-majorized by y, denoted as x ≺h y [i.e., x and y
satisfy Eqs. (4) and (5) without the need for prior rearrange-
ment], if and only if there exists a Hoffman matrix R ∈ R(d)
such that x = Ry.

By definition, for x, y ∈ S(d), the relation x ≺h y im-
plies the relation x ≺ y and vice-versa (they are equivalent
relations over the set of passive vectors) [32]. However, the
relation ≺ is invariant under permutations while the relation
≺h is not, which is why the Hoffman matrix R involved in re-
lation ≺h obeys additional constraints beyond being doubly-
stochastic. Furthermore, we note that Hoffman majorization
≺h is a partial order relation as it satisfies the antisymme-
try property [33], while majorization is only a preorder which
does not satisfy the antisymmetry property.

Remark 1 The existence of a Hoffman matrix R for relation
x ≺h y to hold is a nontrivial consequence of the restriction
to passive vectors x and y. The fact that the doubly-stochastic
matrix R is symmetric may come as a surprise, but it can be
made intuitive by appealing to the geometry of the set Cy of
vectors x ∈ S(d) satisfying x ≺h y for a fixed y ∈ S(d). It
was shown in Ref. [30] that the set Cy is actually a polyhedron
and that the extremal points of this polyhedron are of the form
Mτy, where Mτ ∈ MP(d). In fact, this is the main idea
behind one of the proofs of Theorem 2 presented in Ref. [30]
(see Appendix A for a simple proof of Theorem 2).

Remark 2 According to Theorem 2, for two passive vectors
~p and ~q, we have ~p ≺h ~q if and only if there exists a Hoff-
man matrix R such that ~p = R~q. As mentioned earlier, for
two dimensional case (d = 2), every Hoffman matrix is a t-
transform with constraint, i.e.,

R =

(
t t̄
t̄ t

)
, (6)

where t̄ = 1 − t and 1/2 ≤ t ≤ 1. Thus, the condition
for Hoffman majorization for two-dimensional vectors simply
boils down to the existence of such a t-transform, which we
call a passive t-transform. The extension to higher dimen-
sions (d > 2) is discussed in Appendix A, where we connect
Hoffman majorization to the existence of a decomposition into
passive t-transforms, see Theorem 7. This also leads us to the
consider the existence of a doubly-stochastic matrix connect-
ing ~p and ~q that is not necessarily symmetric (hence, it is not
a Hoffman matrix R) and maps the set S(d) into itself.

III. PASSIVE STATES AND PASSIVITY-PRESERVING
QUANTUM OPERATIONS

Let us move to the quantum scenario and introduce the set
of passive states (extending the passive vectors) together with
the notion of passivity-preserving quantum operations. We
will also discuss active states (i.e., nonpassive states) as well
as what we call activity-breaking quantum operations.

A. Passive states

Consider a separable Hilbert space HS associated with a
finite-dimensional quantum system S with Hamiltonian ĤS .
Let {|i〉} with 0 ≤ i ≤ d− 1 be the energy eigenbasis, which
forms an orthonormal basis ofHS , and let us denote as Ei the
energy eigenvalue corresponding to |i〉. We have

ĤS =

d−1∑
i=0

Ei |i〉〈i| , (7)

where by convention Ei ≤ Ej if i ≤ j. A state ρS of the
system S is passive if and only if its average energy cannot be
lowered by unitary operations [8, 9], i.e.,

Tr{ĤS ρS} ≤ Tr{ĤS US [ρS ]} (8)

for all unitary operations US [·] := US(·)U†S , where US is a
unitary operator. Further, it was shown in Refs. [8, 9] that a
state ρS of the system S with Hamiltonian ĤS is passive if
and only if it can be expressed in the following form

ρS =

d−1∑
i=0

p↓i |i〉〈i| , (9)

where {p↓i } ∈ S(d) denotes a nonincreasing probability dis-
tribution, i.e., p↓i ≤ p↓j , ∀i > j. It is evident that any
passive state ρS commutes with the Hamiltonian ĤS , i.e.,
[ρS , ĤS ] = 0, hence all passive states are incoherent states
if one fixes the energy eigenbasis as the reference basis. (In-
coherent states are those states that admit a diagonal density
operator in a fixed reference basis). Moreover, the set of pas-
sive states is a convex set and the d extremal points of this set
are given by {σk}d−1

k=0, where

σk =
1

k + 1

k∑
i=0

|i〉〈i| . (10)

Let us denote respectively by D(S) and P(S) the set of all
states and the set of all passive states of system S. The concept
of passive states, which was introduced to derive and justify
statistical physics starting from certain physical assumptions
on quantum states and operations [8, 9], has played a major
role in the development of quantum thermodynamics and has
been applied to several contexts [34–40]. In particular, passive
states can be viewed as a natural generalization of thermal
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states ρ(β) = Z−1e−βĤs , with Z =
∑d−1
k=0 e

−βEk , where
the negative exponential ensures the nonincreasing probability
distribution. The set of all thermal states of system S (for all
β ≥ 0) will be denoted as B(S) in the following.

In the context of quantum thermodynamics, a major theme
is to obtain the maximal amount of work that can be extracted
using some quantum operations (see, e.g., Refs. [12, 24, 34]).
In particular, the maximal extractable work from a system in
state ρ under unitary transformations, denoted as U , is given
by

WUmax(ρ) := max
US

Tr{ĤS (ρ− US [ρ])}.

The above expression is also called the ergotropy of the state
ρ [34] and is of course zero for a passive state. For an arbitrary
state ρ =

∑d−1
i=0 qi |qi〉〈qi|, with qi ≤ qj , ∀i > j, the ergotropy

is thus given by [34]

WUmax(ρ) =

d−1∑
i,k=0

qiEk
(
| 〈qi|k〉 |2 − δi,k

)
. (11)

Note that unitary transformations leave the entropy of the sys-
tem unchanged, thereby making the change in energy of the
system a reasonable quantifier for the extractable work. How-
ever, if a quantum operation changes the entropy of the sys-
tem, the difference in energy before and after the operation
does not remain a valid quantifier for the extractable work
(e.g., see Appendix E for a discussion).

Following the concept of passive states, which are useless
for work extraction under unitary operations, it is natural to
consider quantum operations that are useless for work extrac-
tion. In particular, we now consider the class of quantum op-
erations that preserve the set P(S) of passive states.

B. Passivity-preserving operations (PPO)

In general, a quantum operation or quantum channel
NS→S′ : D(S) → D(S′) is a completely positive, trace-
preserving map that acts on the input system S and yields the
output system S′. A quantum channel NS→S′ is said to be
passivity-preserving if its output is passive whenever its in-
put is passive, i.e., N (ρS) ∈ P(S′),∀ρS ∈ P(S). Thus,
since passivity-preserving operations (PPO) cannot create an
active (i.e., nonpassive) state starting from a passive state, they
cannot be used to create ergotropy : if NS→S′ is a PPO and
ρS ∈P(S) then WUmax (NS→S′(ρS)) = 0.

As already mentioned, passive states are incoherent states
with respect to the energy eigenbasis. As a result, the concept
of passivity-preserving operations is related with the concept
of incoherent-preserving operations (i.e., channels that map
incoherent states to incoherent states). From now on, we will
refer to incoherent-preserving operations simply as incoherent
operations for brevity [41]. Further, we will define as strictly
incoherent operations the incoherent operations that admit a
strictly incoherent Kraus decomposition (i.e., such that all in-
dividual Kraus operators also map incoherent states to inco-
herent states [42]). For more details on the resource theory of
coherence see, e.g., Refs. [43–48].

The following proposition is a structural statement about
the passivity-preserving operations.

Proposition 1 All passivity-preserving operations are inco-
herent operations.

Proof. Let us consider that NS→S′ is a passivity-preserving
operation. Then, for all extremal passive states σk, the output
γk = NS→S′(σk) is a passive state for 0 ≤ k ≤ d − 1. In
particular,

(k + 1)γk − kγk−1 = NS→S′ ((k + 1)σk − kσk−1)

= NS→S′ (|k〉〈k|) .

Since, NS→S′ is a quantum channel, NS→S′ (|k〉〈k|) ∈
D(S′), hence [(k + 1)γk − kγk−1] ∈ D(S′). Further, γk
and γk−1 are diagonal states in energy basis, which implies
thatNS→S′ (|k〉〈k|) is diagonal in energy basis for all k. Thus
we conclude that all passivity-preserving operations map di-
agonal states to diagonal states in energy basis.

Remark 3 The converse of the above proposition does not
hold. For example, a permutation of energy eigenstates is an
example of incoherent operation, however, it is not a passivity-
preserving operation.

Passivity-preserving operations exhibit the following useful
properties.

(P1) Convexity: The set of passivity-preserving channels
is convex in the sense that if NS→S′ and N ′S→S′ are two
passivity-preserving channels, then pNS→S′+(1−p)N ′S→S′
with 0 ≤ p ≤ 1 is also a passivity-preserving channel.

(P2) Composability: The composition of passivity-preserving
channels is again a passivity-preserving channel, that is, if
NS1→S2 and N ′S2→S3

are two passivity-preserving channels,
thenNS2→S3 ◦N ′S1→S2

is also a passivity-preserving channel.

Remark 4 In the special case of two-dimensional (qubit) in-
put and output systems S and S′, the set of incoherent oper-
ations and the set of strictly incoherent operations are known
to coincide [49]. Hence, all qubit passivity-preserving op-
erations are not only incoherent operations but also strictly
incoherent operations (all Kraus operators are incoherent).

This property can be used to provide an explicit charac-
terization of qubit passivity-preserving operations in terms of
five (incoherent) Kraus operators, as shown in Appendix B. It
is also noted in this Appendix that qubit passivity-preserving
operations enjoy another nice physical property, in terms of a
Stinespring dilation comprising an energy-preserving unitary
operation and a passive environment.

Now consider the case where the input and output systems
S and S′ have the same (arbitrary) dimension. By restrict-
ing to strictly incoherent passivity-preserving operations from
pure states to pure states (with some restriction on the states),
it appears that such operations can be explicitly characterized
in terms of incoherent Kraus operators as follows.
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Proposition 2 If a strictly incoherent passivity-preserving op-
eration is used to transform a pure state into another pure
state (with the restriction that each energy level in both states
has nonzero amplitude and both states have the same dimen-
sion), then it is sufficient to consider Kraus operators that
contain one and only one nonzero element in each row and
column.

Proof. If an operation Φ := {Kµ} transforms a pure state |ψ〉
into another pure state |φ〉 such that both states have nonzero
amplitudes for each energy level, i.e., |ψ〉 =

∑d−1
i=0 αi |i〉 and

|φ〉 =
∑d−1
i=0 βi |i〉 with αi, βi > 0, ∀i, and

∑d−1
i=0 |αi|2 =∑d−1

i=0 |βi|2 = 1, then, Φ(|ψ〉〈ψ|) = |φ〉〈φ| implies that the
Kraus operators {Kµ} satisfy

Kµ |ψ〉 = cµ |φ〉 , ∀µ. (12)

Here, cµ are proportionality constants such that
∑
µ |cµ|2 = 1.

Since each component of |φ〉 in energy basis is nonzero, any
Kµ which has a zero row cannot contribute to the state trans-
formation owing to Eq. (12). Therefore every Kraus operator
that contributes to this pure state transformation must have all
its rows containing at least one nonzero entry. Also, since we
consider a strictly incoherent operation, each Kraus operator
can have at most one nonzero entry in each column. These
two constrains together imply that each Kraus operator must
have one and only one nonzero entry in each row and column.

Finally, to complete this section, let us define active states
(in particular, a class of pure active states which will play a
central role in our main theorem in Sec. V) as well as the
notion of activity-breaking operations.

C. Active states

A state ρ ∈ D(S) is said to be an active state if it is not
passive. By definition, unitary operations may decrease the
energy of any active state and, therefore, active states can be
thought of as a source of usable energy, e.g., a charged quan-
tum battery. All pure states except the ground state of S are,
by definition, active states. Among all pure states, there is a
particular set D of pure states which we will use, namely, the
set of states of the form

|ψ〉 =

d−1∑
i=0

e−i θi
√
pi |i〉 ,

where {pi} ∈ S(d), that is pi ≤ pj , ∀i > j, and p0 ∈ (0, 1).
For example, a pure state of the form

|ψ〉 =

d−1∑
i=0

√
e−βEi

Z
|i〉

lies in the set D, where Z = Tr[e−βĤS ] and β ≥ 0. In the
simplest case of qubits, the pure states in the set D lie on the
surface of upper half of the Bloch sphere. Thus, although it
may seem very constrained, the set D contains a significant
part of all nontrivial pure quantum states.

D. Activity-breaking operations (ABO)

We define a special class of passivity-preserving opera-
tions that are interesting from a resource-theoretic viewpoint,
namely the activity-breaking operations. Naturally, a quan-
tum channel NS→S′ is called activity-breaking if the output
state of the channel is always passive for any input state, i.e.,
N (ρS) ∈P(S′) for all ρS ∈ D(S). This is a straightforward
analog to the notions of entanglement-breaking or coherence-
breaking channels. The following theorem gives a complete
characterization of activity-breaking channels.

Theorem 3 A quantum channel NS→S′ , where the Hamilto-
nian of system S′ is denoted as HS′ =

∑d−1
k=0E

′
k |E′k〉〈E′k|

and dim(HS′) = dim(HS), is activity-breaking if and only if
it admits the following form

N (ρS) =

d−1∑
k=0

Tr{ρSΓk} |E′k〉〈E′k|S′ , (13)

where the operators {Γk}d−1
k=0 form a positive-operator-valued

measure (POVM), i.e.,
∑d−1
k=0 Γk = 1S and Γk ≥ 0, ∀k, sat-

isfying Γk ≤ Γk′ ∀k > k′.

Proof. To prove the “if” statement of the above theorem,
we employ the fact that activity-breaking channels have to
be coherence-breaking [50]. Let us assume that the channel
NS→S′ is activity-breaking. Since it is then a special case
of a coherence-breaking channel, the channel NS→S′ can be
expressed as [50, Theorem 2]

N (ρS) =

d−1∑
k=0

Tr{ρSΓk} |E′k〉〈E′k|S′ , (14)

such that
∑
k Γk = 1S and Γk ≥ 0 for all k ∈ {0, · · · , d −

1}. Additionally, imposing that N (ρS) ∈ P(S′) since the
channel is activity-breaking implies that for all k > k′

Tr[ρSΓk] ≤ Tr[ρSΓk′ ]. (15)

This inequality holds for all input states ρS only if Γk′−Γk ≥
0. This condition necessarily requires supp(Γk) ⊆ supp(Γk′)
as Γk ≥ 0.

To prove the converse, we assume that N (ρS) is given
by Eq. (13) and notice that

∑d−1
k=0 Tr{ΓkρS} |E′k〉〈E′k|S′ ∈

P(S′) regardless of ρS ∈ D(S) as soon as the POVM {Γk}
satisfies Γk ≤ Γk′ , ∀k > k′. This concludes the proof of the
theorem.

As a direct consequence of the above theorem, we have fol-
lowing corollary.

Corollary 1 An athermality-breaking channel N , i.e., a
channel which outputs a thermal state for any input state, has
the following form:

N (ρS) =

d−1∑
k=0

Tr{ΓkρS} |E′k〉〈E′k|S′ , (16)

where {Γk}k is a POVM such that ∀0 ≤ k ≤ d − 1 : Γk =
e−βE

′
k

Z 1S with Z =
∑d−1
k=0 e

−βE′k .
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IV. RELATIVE PASSIVE STATES AND RELATIVE
PASSIVITY-PRESERVING QUANTUM OPERATIONS

In order to prepare the grounds for our main result in
Sec. V, let us now introduce a partial order relation between
passive states, as well as the notion of quantum operations that
preserves it. This partial order, which we call relative passiv-
ity, provides us with a way of comparing two passive states
which is analogous to the comparison between thermal states
in terms of temperature. Consider again a quantum system S
with a Hamiltonian given by Eq. (7) and consider the set of
thermal states, namely B(S) := {ρ(β) := Z−1

β e−βĤs}β≥0.
The set B(S) is endowed with a natural order : for two states
ρ(β) and ρ(β′) in B(S), ρ(β) is said to be cooler than ρ(β′)
if β ≥ β′. [Rigorously, we should say that ρ(β) is not hotter
than ρ(β′).] Extending on this, we can define a new partial
order on the set of passive states P(S).

A. Relative passive states

Definition 1 A state ρ is said to be passive relative to some
passive state σ if and only if

(
σ−1/2ρ σ−1/2

)
/Tr[ρ σ−1] is a

passive state.

The definition above has the following consequence.

Proposition 3 Any state ρ that is passive relative to some pas-
sive state σ, is itself necessarily a passive state.

Proof. Since σ is a passive state, we can write σ =∑d−1
i=0 pi |i〉〈i| with pi ≥ pi+1 for all 0 ≤ i ≤ d − 2. Let

ρ =
∑d−1
i,j=0 ρij |i〉 〈j| be an arbitrary state. Then,

σ−1/2ρ σ−1/2 =

d−1∑
i,j=0

p
−1/2
i ρij p

−1/2
j |i〉〈j| . (17)

Since
(
σ−1/2ρ σ−1/2

)
/Tr[ρ σ−1] is required to be passive,

we have ρij = riδij and ri/pi ≥ ri+1/pi+1, for all 0 ≤
i ≤ d − 2. This implies ri ≥ ri+1 as pi ≥ pi+1 for all
0 ≤ i ≤ d− 2; therefore, ρ is a passive state.

From the above proposition, it is clear that if a passive state
ρ :=ρ(~r) is passive relative to another passive state σ :=σ(~p),
then we have the condition

ri/rj ≥ pi/pj ≥ 1, ∀i < j. (18)

Intuitively, ρ(~r) is “more passive” than σ(~p) in the sense that
the components of ~r decay faster than those of ~p (see Fig. 1).
Here, we use the convention that a/0 = ∞ whenever a 6= 0.
We note that if some pi is zero, then we have pj = 0 for
all j > i since the state σ is passive. This implies that the
corresponding ri’s must vanish as well for ρ to be a passive
state relative to σ.

Furthermore, the notion of relative passivity on the set of
passive states is in close connection with the notion of “being
cooler than” on the set of thermal states (see Fig. 1). To see

E0

E1

Ei

Ei+1

Ed−1

E0

E1

Ei

Ei+1

Ed−1

N0

N1

Ni

Ni+1

N0

N1

Ni

Ni+1

0 = Nd−1

Ñ0

Ñ1

Ñi

Ñi+1

≥

≥

Ñ0

Ñ1

Ñi

Ñi+1

Ñd−1

ρ(~r) σ(~p)�vc

FIG. 1. Schematic of the notion of virtually cooler passive states.
In the schematic, {Ei}d−1

i=0 is the set of energy eigenvalues of the
Hamiltonian of the system. Ni and Ñi are populations in energy
eigenstates |i〉 corresponding to the passive states ρ(~r) and σ(~p),
respectively. Now, if ri

ri+1
:= Ni

Ni+1
≥ Ñi

Ñi+1
:= pi

pi+1
for all

i = 0, · · · , d − 2, we say that ρ(~r) is a virtually cooler state than
σ(~p), i.e., ρ(~r) �vc σ(~p).

this, let us use the concept of virtual temperatures [29, 35,
51]. Consider a passive state ρ(~r) =

∑d−1
i=0 ri |i〉〈i| ∈ P(S)

with ri ≥ ri+1 for all 0 ≤ i ≤ d − 2. We can define
(
d
2

)
virtual (inverse) temperatures βi,j for all pairs of probabilities
appearing in ρ(~r) as follows,

βi,j := (Ej − Ei)−1 ln

(
ri
rj

)
, ∀i < j, (19)

where βi,j ≥ 0 as the state ρ(~r) is passive. Similarly, for
another passive state σ(~p) =

∑d−1
i=0 pi |i〉〈i| ∈ P(S) with

pi ≥ pi+1 for all 0 ≤ i ≤ d−2, we define the virtual (inverse)
temperatures β′i,j as

β′i,j := (Ej − Ei)−1 ln

(
pi
pj

)
, ∀i < j. (20)

where β′i,j ≥ 0. Now, expressing the condition that ρ(~r) is
passive relative to σ(~p) is equivalent to

βi,j ≥ β′i,j ≥ 0, ∀i < j. (21)

We can interpret this condition by saying that ρ(~r) is virtually
cooler than σ(~p), in the sense that all

(
d
2

)
virtual temperatures

β−1
i,j of ρ(~r) are lower than those of σ(~p) (see Fig. 1). Thus the

partial order relation induced by relative passivity expresses
the physical condition of “being virtually cooler than” on the
set of passive states, and we denote it by

ρ(~r) �vc σ(~p). (22)

In the special case of thermal states, all virtual temperatures
coincide and the condition ρ(~r) �vc σ(~p) boils down to the
condition that ρ(~r) is cooler than σ(~p). It is easy to see that
the relation �vc is a partial order, i.e., (1) ρ(~r) �vc ρ(~r)
(reflexivity). (2) ρ(~r) �vc σ(~p) and σ(~p) �vc η(~s) im-
ply ρ(~r) �vc η(~s) (transitivity). (3) If ρ(~r) �vc σ(~p) and
σ(~p) �vc ρ(~r), then ρ(~r) = σ(~p) (antisymmetry). We also
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note that the relation �vc enables a comparison between pas-
sive states but is inadequate to compare a passive state with
some nonpassive state. As a side remark, let us mention that
the relation �vc appears in mathematical statistics under the
name of “likelihood ratio order” and has numerous applica-
tions including the field of statistical inference, economy and
optimal scheduling problems [52].

We note that the notion of being virtually cooler �vc can
be connected to Hoffman majorization �h, which allows us
in particular to compare the energy of the two states.

Proposition 4 Consider any two passive states ρ(~r) and σ(~p).
If ρ(~r) �vc σ(~p), then ~r �h ~p and E(ρ(~r)) ≤ E(σ(~p)),
where E(ρ) := Tr[ρĤS ] denotes energy of the state ρ.

Proof. From the partial order ρ(~r) �vc σ(~p), if we choose k
such that 0 ≤ k ≤ d− 1, we have∑k

i=0 ri
rl

≥
∑k
i=0 pi
pl

, ∀ (k + 1) ≤ l ≤ (d− 1).

Inverting the above inequality and summing over l, we get∑d−1
l=k+1 rl∑k
i=0 ri

≤
∑d−1
l=k+1 pl∑k
i=0 pi

.

By adding one on both sides, using that
∑d−1
i=0 ri =∑d−1

i=0 pi = 1, and again inverting the inequality, we obtain

k∑
i=0

ri ≥
k∑
i=0

pi, ∀ 0 ≤ k ≤ d− 1.

The above inequality implies that ~r �h ~p. Now

E(σ(~p))− E(ρ(~r)) =

d−1∑
i=0

Ei(pi − ri)

=

d−1∑
k=0

(Ek − Ek+1)

k∑
i=0

(pi − ri)

≥ 0,

with the convention Ed = 0. The last inequality follows from
the majorization condition and the fact that Ek ≤ Ek+1 for
all 0 ≤ k ≤ d − 2. The term with k = d − 1 vanishes as the
vectors ~r and ~p are normalized. This concludes the proof of
the proposition.

It is intuitive to see that a virtually cooler state (compared
to a reference state) necessarily has a lower energy (compared
to this reference state). Also, since ρ(~r) �vc σ(~p) implies
~r �h ~p, not only the energy function is a monotone but also
all Schur-concave functions are monotones. Further, the no-
tion of virtually cooler states can be given a thermodynami-
cal interpretation based on the setup used to demonstrate the
working of a quantum refrigerator [29, 35, 53]. As we prove
in Appendix D, a virtually cooler passive state can indeed be
used to cool an external system to a further extent than the
passive state it is compared to.

Note that the converse of Proposition 4 does not hold in
general, except for qubits. For example, in a qutrit case,
~r = (0.8, 0.18, 0.02)T and ~p = (0.75, 0.15, 0.1)T are two de-
creasing vectors such that ~r �h ~p while ρ(~r) is not virtually
cooler than σ(~p).

Finally, let us mention the following two states which are
of special importance with respect to the partial order �vc re-
lation: (1) the ground state, which is virtually cooler than any
other passive state, and (2) the maximally mixed state, with
respect to which every other passive state is virtually cooler.
In particular, we have the following proposition.

Proposition 5 The set of virtually cooler states with respect
to some fixed passive state σ(~p) =

∑d−1
i=0 pi |i〉〈i| is a convex

set. Moreover, the set of virtually cooler states with respect to
the maximally mixed state is equal to the set of passive states.

Proof. Let ρ(~r) =
∑d−1
i=0 ri |i〉〈i| and ρ(~s) =

∑d−1
i=0 si |i〉〈i|

be two virtually cooler states than σ(~p). To show that the set
of all virtually cooler states than σ(~p) is a convex set, it is
sufficient to show that t ρ(~r) + t̄ ρ(~s) �vc σ(~p), where 0 ≤
t ≤ 1 and t̄ = 1− t. We have

t ρ(~r) + t̄ ρ(~s) =

d−1∑
i=0

(t ri + t̄ si) |i〉〈i| .

and

(t ri + t̄ si)

pi
≥ (t ri+1 + t̄ si+1)

pi+1

since ρ(~r) �vc σ(~p) and ρ(~s) �vc σ(~p). This concludes the
proof of the first part.

For the second part, notice that all the extremal states of
the set of passive states of a qudit system (including the max-
imally mixed state) are virtually cooler than the maximally
mixed state. So, from the convexity of the set of the virtu-
ally cooler states, it follows that all passive states are virtually
cooler than the maximally mixed state. This concludes the
proof of the second part of the proposition.

We will see in Sec. V that the notion of relative passivity
and virtually cooler states plays a critical role in the transfor-
mation of active states under incoherent operations. Before
turning to this result, we need to define the notion of quantum
operations that preserve relative passivity (in analogy with the
quantum operations that preserve passivity).

B. Relative passivity-preserving operations

A relative passivity-preserving operation (RPPO) is a quan-
tum channel that is defined with respect to two fixed passive
states. Given two fixed passive states σ(~p) and σ(~q), a quan-
tum channel defines a RPPO if it maps all passive states that
are virtually cooler than σ(~p) into passive states that are vir-
tually cooler than σ(~q). In other words, for all states ρ(~r)
such that ρ(~r) �vc σ(~p), a quantum channel Λ is a RPPO if
Λ(ρ(~r)) �vc σ(~q). Let us denote the set of all RPPOs with
respect to passive states σ(~p) and σ(~q) by Lp,q (see Fig. 2).
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By definition, the set Lp,q of RPPOs preserve the partial order
(on the set of passive states) of being virtually cooler than the
reference passive state σ(~p) at input and σ(~q) at output.

σ(~p)

P(S)

σ(~q)

P(S)

Lp,q : Tp → Tq

Tp

Tq

FIG. 2. A schematic for RPPOs. In the schematic, P(S) is the set
of all passive states. σ(~p) and σ(~q) are two fixed passive states. Tp

is the set of all passive states that are virtually cooler than σ(~p) and
Tq is the set of all passive states that are virtually cooler than σ(~q).
That is, Tp := {ρ ∈ P(S) : ρ �vc σ(~p)} and Tq := {ρ ∈ P(S) :
ρ �vc σ(~q)}. Then Lp,q denotes RPPOs and is the set of all quantum
channels from the set Tp into the set Tq .

Choosing the passive states σ(~p) and σ(~q) as being the
maximally mixed state I/d in the set of operations Lp,q is of
particular relevance as we have following proposition.

Proposition 6 For the choice σ(~p) = σ(~q) = I/d, the set
Lp,q is equal to the set of passivity-preserving operations.

Proof. The proof of the above proposition follows from
Proposition 5 (the passivity condition is equivalent to being
virtually cooler than the maximally mixed state) and from the
definition of RPPO.

Thus, with this choice of σ(~p) and σ(~q), the RPPOs are
equivalent to PPOs. For other choices, however, RPPOs are
not necessarily passivity-preserving operations, except in their
action on the ground state of the system. Indeed, it is clear
that the ground state is virtually cooler than any passive state
σ(~p), therefore, under the set Lp,q , the ground state is always
mapped onto a state that is virtually cooler than the passive
state σ(~q), hence it is passive. Thus, if the input state is the
ground state, then the output state of any RPPO is always pas-
sive.

In the following, we show that the RPPOs are incoherent
operations, that is, they preserve incoherent states (diagonal
states in a reference basis which is the energy eigenbasis).

Proposition 7 For any choice of passive states σ(~p) and σ(~q),
any relative passivity-preserving operation Λ ∈ Lp,q is an
incoherent operation.

Proof. We have already seen that for Λ ∈ Lp,q , Λ(|0〉〈0|) is an
incoherent state. We prove the proposition by induction. Let
us assume that Λ(|i〉〈i|) is incoherent for i = 0, · · · , d − 2.
Then following two cases arise.
Case 1: The state σ(~p) is such that pd−1 = 0. In this case all
the states ρ(~r) that are virtually cooler than σ(~p) must have
rd−1 = 0. Therefore we can effectively consider the transfor-
mations on the (d−1) dimensional Hilbert space and by the in-
ductive assumption Λ(|i〉〈i|) is incoherent for i = 0, · · · , d−2,

the operation Λ is incoherent.
Case 2: The state σ(~p) is such that pd−1 6= 0. Let us consider
a state ρ(~r) such that ri = pi for 1 ≤ i ≤ (d−2), r0 = p0 + ε
and rd−1 = pd−1 − ε with ε > 0. Thus ρ(~r) �vc σ(~p). By
definition, Λ(ρ(~r)) is a passive, therefore, incoherent state.
Then,

Λ(ρ(~r))− Λ(σ(~p))

= ε [Λ(|0〉〈0|)− Λ(|d− 1〉〈d− 1|)] .
Since Λ(|0〉〈0|) and LHS of above equation both are incoher-
ent, we get that Λ(|d− 1〉〈d− 1|) is also incoherent, i.e., di-
agonal in the energy eigenbasis. This concludes the proof of
the proposition.

Let us now present an instructive example of a RPPO for
the qutrit case. Let us choose σ(~p) = diag(p0, p1, p2) and
σ(~q) = diag(q0, q1, q2), where p0 ≥ p1 ≥ p2 > 0, q0 ≥
q1 ≥ q2 > 0, and

∑2
i=0 pi =

∑2
i=0 qi = 1. Further, choose

p0 = p1 = (q0 + q1)/2 and p2 = q2, so that ~p ≺h ~q. Then,
the quantum channel Λ that is defined with Kraus operators
K1 and K2,

K1 =


√

q0
2p0

0 0

0
√

q1
2p1

0

0 0
√

q2
2p2

 ,

K2 =


0

√
q0
2p1

0√
q1
2p0

0 0

0 0
√

q2
2p2

 ,

is RPPO with respect to passive states σ(~p) and σ(~q), as we
show in the following. That the map Λ is trace preserving
follows from the relation between ~p and ~q, namely

2∑
i=1

K†iKi =
q0 + q1

2p0
|0〉〈0|+ q0 + q1

2p1
|1〉〈1|+ q2

p2
|2〉〈2|

= 11.

The action of such a map on a passive state ρ(~r) =

diag(r0, r1, r2) with r0 ≥ r1 ≥ r2 > 0 and
∑2
i=0 ri = 1,

is given by

Λ(ρ(~r)) =

2∑
i=1

Kiρ(~r)K†i

=

(
r0

2p0
+

r1

2p1

)
(q0 |0〉〈0|+ q1 |1〉〈1|) +

r2

p2
q2 |2〉〈2|

:= s0 |0〉〈0|+ s1 |1〉〈1|+ s2 |2〉〈2| .
Using above equation, we can writes0/q0

s1/q1

s2/q2

 =
1

2

1 1 0
1 1 0
0 0 2


︸ ︷︷ ︸

R

r0/p0

r1/p1

r2/p2

 .

Since we recognize that R is a Hoffman matrix, the above
equation implies that if ρ(~r) �vc σ(~p) then Λ(ρ(~r)) �vc
σ(~q), so the quantum channel Λ is a RPPO.
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C. Hierarchy of various quantum operations

It is instructive to compare the various sets of quantum op-
erations considered so far, namely, the passivity-preserving
operations (PPO), the relative passivity-preserving operations
(RPPO), and incoherent operations (those that preserve inco-
herent states in the energy eigenbasis). First, note that for an
arbitrary choice of the passive states σ(~p) and σ(~q), RPPOs
only preserve the passivity of virtually cooler states than σ(~p)
since these are mapped onto virtually cooler states than σ(~q),
which are themselves passive. This means that RPPOs are
not passivity preserving, in general. Similarly, all PPOs are
not RPPOs for some choice of passive states σ(~p) and σ(~q).
Thus Lp,q 6⊂ PPO and PPO 6⊂ Lp,q , where PPO denotes
here the set of passivity-preserving operations. Similar rela-
tionships hold if we consider strictly incoherent RPPOs and
strictly incoherent PPOs. In contrast, we know that both PPO
and RPPO sets are necessarily inside the set of incoherent op-
erations. We refer to Fig. 3 for more details of these relation-
ships as a schematic diagram.

FIG. 3. In above schematic diagram, RPPO is the set of relative
passivity preserving operations for two fixed passive state σ(~p) and
σ(~q), PPO is the set of passivity preserving operations, and IO is the
set of incoherent operations. If we choose σ(~p) and σ(~q) both to be
equal to the maximally mixed state, then RPPO is equal to PPO.

V. TRANSFORMATION OF PURE ACTIVE STATES
UNDER RELATIVE PASSIVITY-PRESERVING

QUANTUM OPERATIONS

Building on the notions of relative passive states and rel-
ative passivity-preserving operations (RPPOs), we are now
ready to consider the problem of pure active state transfor-
mations under the set Lp,q of RPPOs. Our central result is to
find the necessary and sufficient condition for such a transfor-
mation to exist, based on Hoffman majorization.

A. System of arbitrary dimension

Let us consider the set D of pure states that have the form
|ψ〉 =

∑d
i=1

√
pi e

iθi |i〉 with {θi} ∈ R and {pi} ∈ S(d),
that is pi ≤ pj for all i > j, and p0 ∈ (0, 1). The set D is a
subset of the class of active states, and we note that each state
in D can be associated with a passive state σ(~p) having the

same population of energy eigenstates. In the following, we
provide a necessary and sufficient condition for the transfor-
mation between a pair of pure states in D under RPPO relative
to their respective passive distributions.

Theorem 4 An active state |ψ〉 ∈ D can be transformed
to another active state |φ〉 ∈ D under a strictly incoherent
RPPO with respect to σ(~p) and σ(~q) if and only if ~p ≺h ~q,
where |ψ〉 =

∑d−1
i=0

√
pie

iθi |i〉, |φ〉 =
∑d−1
i=0

√
qie

iνi |i〉, and
~p and ~q are passive vectors.

Proof. Before we begin our proof, let us remark that for
the purpose of state transformations under RPPOs, the states
|ψ〉 =

∑d−1
i=0

√
pi |i〉 and |ψ′〉 =

∑d−1
i=0

√
pie

iθi |i〉 are equiv-
alent as |ψ′〉 = diag(eiθ0 , · · · , eiθd−1) |ψ〉, where U(~θ) :=
diag(eiθ0 , · · · , eiθd−1) is a unitary operator corresponding to
RPPO. Unitary operation U~θ(·) := U(~θ)(·)U†(~θ) is such that
Λ ◦ U~θ,U~θ ◦ Λ ∈ Lp,q for all Λ ∈ Lp,q . So, without loss of
generality, we can drop all the phases from |ψ〉 and |φ〉 in the
above theorem.

More formally, we can say that active states
∣∣∣ψ(~θ)

〉
∈ D

in the set
{∣∣∣ψ(~θ)

〉}
~θ

form an equivalence class if they can
be transformed to one another by an energy-preserving uni-
tary operation U ∈ Lp,p (note here that the input and output
reference probabilities are equal to ~p). For example, |ψ〉 =∑d−1
i=0

√
pi |i〉 and |ψ′〉 =

∑d−1
i=0

√
pie

iθi |i〉 belong to the
same equivalence class as |ψ′〉 = diag(eiθ0 , · · · , eiθd−1) |ψ〉,
where diag(eiθ0 , · · · , eiθd−1) is unitary operator correspond-
ing to unitary RPPO in Lp,p.

Proof of “if” part.– We will prove the theorem using math-
ematical induction. Let us start with dimH = d = 2. If
p1 = 0, the Hoffman majorization implies that q1 = 0. There-
fore |ψ〉 = |φ〉 = |0〉 and the transformation is trivial via the
identity operation. Let us assume that p1 6= 0. Now, since(
p0

p1

)
≺h
(
q0

q1

)
, there exists a Hoffman matrix R such that

(
p0

p1

)
= R

(
q0

q1

)
, (23)

where R =

(
a ā
ā a

)
with 1/2 ≤ a ≤ 1 and ā = 1 − a.

It is easy to check that the operation Φp defined via Kraus
operators L1 and L2 (represented in energy eigenbasis)

L1 =

√a q0p0 0

0
√
a q1p1

 ; L2 =

 0
√
ā q0p1√

ā q1p0 0

 (24)

maps |ψ〉 to |φ〉. We need to show that this map Φp is a RPPO.
We have

Φp(|0〉〈0|) =
1

p0
(R0,0q0 |0〉〈0|+R0,1q1 |1〉〈1|) (25)

Φp(|1〉〈1|) =
1

p1
(R1,0q0 |0〉〈0|+R1,1q1 |1〉〈1|) . (26)
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Now, let us consider an input state ρ(~r) = r0 |0〉〈0|+ r1 |1〉〈1|
that is virtually cooler than the passive state σ(~p) = p0 |0〉〈0|+
p1 |1〉〈1| associated with |ψ〉. Then, the corresponding output
state reads

ρ(~s) := Φp(ρ(~r)) =

1∑
i=0

1∑
j=0

riRi,jqj
pi

|j〉〈j| .

implying that

sj
qj

=

1∑
i=0

riRi,j
pi

Since R is a (symmetric) Hoffman matrix, the condition
ρ(~r) �vc σ(~p) (i.e., r0/p0 ≥ r1/p1) implies the condition that
ρ(~s) �vc σ(~q) (i.e. s0/q0 ≥ s1/q1) where σ(~q) = q0 |0〉〈0|+
q1 |1〉〈1| is the passive state associated with |φ〉. Therefore Φp
maps the state ρ(~r), which is virtually cooler than σ(~p), to
a state ρ(~s), which is virtually cooler than σ(~q). Also, from
the form of Kraus operators, it is clear that Φp is a strictly
incoherent operation. Now, assuming that the theorem holds
true for dimH ≤ d− 1, we will prove that the theorem holds
true for dimH = d. Now, the two cases arise.

Case 1. Let there be a k (0 < k < d − 1) such that pk 6= 0
and pk+1 = · · · = pd−1 = 0. From Hoffman majorization,
it follows that qk+1 = · · · = qd−1 = 0. Now, let the vector
(p0, · · · , pk)T ≺h (q0, · · · , qk)T . Then, from the inductive
assumption, we know there exits a RPPO Φ′p on Dk (the set
of all k × k density matrices) specified by the Kraus opera-

tors {Lµ}, µ = 0, · · · , N − 1 such that
∑k−1
i=0

√
pi |i〉

Φ′p−−→∑k−1
i=0

√
qi |i〉. Let us consider Kµ = Lµ ⊕ 1√

N
Id−k, then

Φp(·) =
∑N−1
µ=0 Kµ · K†µ is a RPPO that transforms |ψ〉 to

|φ〉.

Case 2. When pd−1 6= 0. Since ~p ≺h ~q, from Theorem 2,
there exists a Hoffman matrix R ∈ R(d) such that ~p = R~q.
From Theorem 1, we know that R =

∑
τ∈P(d) ατM

τ , where
τ is a partition, ατ are probabilities and

∑
τ∈P(d) ατ = 1.

Each Mτ is a d × d matrix that corresponds to a partition
τ = (τ1, τ2, · · · τk) and can be written as Mτ = ⊕ki=1Mτi ,
whereMτi =

I|τi|
|τi| and |τi| is the cardinality of the part τi. Let

us partition the vectors ~p and ~q following the same partition
τ = (τ1, τ2, · · · τk), that is

~p = (~pτ1 , · · · , ~pτk) ; ~q = (~qτ1 , · · · , ~qτk) .

In this notation,

Mτ~q = (Mτ1 ⊕ · · · ⊕Mτk) (~qτ1 , · · · , ~qτk)

= (Mτ1~qτ1 , · · · ,Mτk~qτk)

:= (~rτ1 , · · · , ~rτk) = ~r τ .

Further, let us similarly divide the total Hilbert space as

H = ⊕ki=1Hτi , (27)

Now, let us build the following set of operators {Gτiai}, where,
for each i, the |τi| operators Gτiai act on subspace Hτi and are
labeled by ai ∈ {0, · · · , |τi| − 1}. These operators {Gτiai}
will be used to define Kraus operators. Letting µ1 = 0 and
µi =

∑i−1
l=1 |τl| for i > 1, we define

Gτiai =

|τi|−1∑
j=0

√
qµi+π

τi
ai

(j)

pµi+j

∣∣µi + πτiai(j)
〉
〈µi + j| , (28)

where {πτiai} are cyclic permutations of indices from the set
{0, · · · , |τi| − 1} and each permutation is labeled by ai. For
j = {0, · · · , |τi| − 1}, we thus have

Gτiai |µi + j〉 =

√
qµi+π

τi
ai

(j)

pµi+j

∣∣µi + πτiai(j)
〉
. (29)

Let us define

|ψ〉 =

k∑
i=1

|ψi〉 ; |φ〉 =

k∑
i=1

|φi〉 , (30)

where each |ψi〉 has disjoint support over |τi|-dimensional dis-
joint subspaces Hτi . The same is true for each |φi〉. Now, we
see that

Gτiai |ψ〉 = |φi〉 .

Next, we define a map Φp with Kraus operators

Gτ~a =

√
ατ
|τ |

k∑
i=1

Gτiai , (31)

where ~a = (a1, · · · , ak), ai ∈ {0, · · · , |τi| − 1}, |τ | =∏k
i=1 |τi| and each operator in above sum has disjoint support

on total Hilbert space. From the form of the Kraus operators,
it is clear that they map incoherent states to incoherent states,
therefore Φp constitutes a strictly incoherent operation. Now,
it is easy to see that

Gτ~a |ψ〉 =

√
ατ
|τ |

k∑
i=1

Gτiai |ψ〉 =

√
ατ
|τ |

k∑
i=1

|φi〉

=

√
ατ
|τ | |φ〉 ,

implying that

Φp(|ψ〉〈ψ|) =
∑
τ

∑
~a

Gτ~a |ψ〉〈ψ|Gτ†~a = |φ〉〈φ| . (32)

The complete positivity of above map is guaranteed as it
is presented in terms of Kraus operators. Now, we show
that it is also trace preserving. For this, we need to show
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τ

∑
~aG

τ†
~a G

τ
~a = Id. We have indeed

∑
τ

∑
~a

Gτ†~a G
τ
~a

=
∑
τ

∑
~a

ατ
|τ |

(
k∑
i=1

Gτi†ai

)(
k∑
l=1

Gτlal

)

=
∑
τ

ατ
|τ |
∑
~a

k∑
i=1

Gτi†ai G
τi
ai

=
∑
τ

ατ
|τ |

k∑
i=1

|τ |
|τi|

|τi|−1∑
ai=0

Gτi†ai G
τi
ai

=
∑
τ

ατ

k∑
i=1

1

|τi|

|τi|−1∑
j=0

∑
ai
qµi+π

τi
ai

(j)

pµi+j
|µi + j〉〈µi + j|

=
∑
τ

ατ

k∑
i=1

|τi|−1∑
j=0

(~rτi)j
(~pτi)j

|µi + j〉〈µi + j|

=
∑
τ

ατ

d−1∑
l=0

(~r τ )l
pl
|l〉〈l|

=

d−1∑
l=0

|l〉 〈l| = Id,

where we have used
∑
τ ατ~r

τ = ~p as well as the fact that
summing over all cyclic permutations {πτiai} from the set
{0, · · · , |τi| − 1} results in

|τi|−1∑
ai=0

qµi+π
τi
ai

(j) = |τi| (~rτi)j . (33)

Therefore the map Φp with Kraus operators {Gτ~a} forms a
completely positive trace-preserving map. The final step is to
prove that Φp is a RPPO with respect to the reference passive
state σ(~p) associated with |ψ〉 at the input and reference pas-
sive state σ(~q) associated with |φ〉 at the output. For a given τ

and for all |j〉 ∈ Hτi , i.e., |µi + j〉, from Eq. (29), we have∑
~a

Gτ~a |µi + j〉 〈µi + j|Gτ†~a

=
ατ
|τ |
∑
~a

(
k∑
l=1

Gτlal

)
|µi + j〉〈µi + j|

(
k∑

m=1

Gτm†am

)
=
ατ
|τ |
∑
~a

Gτiai |µi + j〉〈µi + j|Gτi†ai

=
ατ
|τ |
∑
~a

qµi+π
τi
ai

(j)

pµi+j

∣∣µi + πτiai(j)
〉〈
µi + πτiai(j)

∣∣
=
ατ
|τi|

|τi|−1∑
ai=0

qµi+π
τi
ai

(j)

pµi+j

∣∣µi + πτiai(j)
〉〈
µi + πτiai(j)

∣∣
=
ατ
|τi|

|τi|−1∑
l=0

qµi+l
pµi+j

|µi + l〉〈µi + l|

=
ατ

(~pτi)j

|τi|−1∑
l=0

(Mτi)j,l (~qτi)l |µi + l〉〈µi + l| .

Therefore, for an input state |i〉, we have

ΦP (|i〉〈i|) =
∑
τ

∑
~a

Gτ~a |i〉〈i|Gτ†~a

=
∑
τ

ατ
pi

d−1∑
j=0

(Mτ )i,j qj |j〉〈j|

=
1

pi

d−1∑
j=0

Ri,j qj |j〉〈j| ,

where we have used
∑
τ ατM

τ = R. Now, consider an arbi-
trary input passive state ρ(~r) =

∑d−1
i=0 ri |i〉〈i| that is virtually

cooler than the passive state σ(~p) =
∑d−1
i=0 pi |i〉〈i|. Then, at

the output, we have

ρ(~s) := ΦP
(
ρ(~r)

)
=

d−1∑
j=0

(
d−1∑
i=0

riRi,j
pi

)
qj |j〉〈j| .

From the above equation, we have

sj
qj

=

d−1∑
i=0

riRi,j
pi

.

Since R is a (symmetric) Hoffman matrix, it follows that

ri
pi
≥ ri+1

pi+1
⇒ si

qi
≥ si+1

qi+1
.

Thus the map Φp maps a passive state ρ(~r) that is virtually
cooler than σ(~p) onto a passive state ρ(~s) that is virtually
cooler than σ(~q). Hence, Φp is a RPPO. This concludes the
proof of the “if” part of the theorem.

Proof of “only if” part.– Let us assume that there exists a
strictly incoherent RPPO Φp such that |φ〉〈φ| = Φp(|ψ〉〈ψ|).
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Since it is a strictly incoherent operation, from Refs. [54, 55],
we conclude that ~p ≺ ~q. Given that ~p and ~q are passive vec-
tors, this in turn implies that ~p ≺h ~q and concludes the proof
of the theorem.

It must be noted that the RPPO Φp that we have constructed
in the proof satisfies Φp(σ(~p)) = σ(~q), in addition to the
requested property Φp(|ψ〉〈ψ|) = |φ〉〈φ|. This makes sense
since Φp is (strictly) incoherent and since σ(~p) is the incoher-
ent version of |ψ〉 and σ(~q) is the incoherent version of |φ〉.
Now, we describe some consequences of the above theorem.

Corollary 2 The state |ψ〉max = 1√
d

∑d−1
i=0 e

iθi |i〉 can be

transformed to any state |φ〉 =
∑d−1
i=0

√
qi e

iνi |i〉 ∈ D us-
ing strictly incoherent RPPOs defined with respect to vectors
~p = {d−1, · · · , d−1}T and ~q.

Proof. Since, the vector ~p = {d−1, · · · , d−1}T ≺h ~q for
any choice of ~q, the corollary follows from Theorem 4. Thus,
in the set D, |ψ〉max are the most active states. They can be
converted into any active state |φ〉 ∈ D. Since σ(~p) is the
maximally mixed state, the condition ρ(~r) �vc σ(~p) boils
down to the condition that ρ(~r) is passive. Hence, the RPPO
transforming |ψ〉max into |φ〉 is such that it transforms any
passive state into a state that is virtually cooler that σ(~q), i.e.,
the passive state associated to |φ〉.

Corollary 3 Any state |ψ〉 =
∑d−1
i=0

√
pi e

iγi |i〉 ∈ D can
be transformed to the ground state |0〉 using strictly inco-
herent RPPOs defined with respect to vectors ~p and ~q =
{1, 0, · · · , 0}T .

Proof. Noting that ~p ≺h ~q = {1, 0, · · · , 0}T for any vector
~p, the corollary follows from Theorem 4. In the set D, the
ground state |0〉 is the least active state; actually, it is the only
state in D that is passive. Since σ(~q) = |0〉〈0|, the condi-
tion ρ(~s) �vc σ(~q) at the output implies that ρ(~s) = |0〉〈0|
(remember that the ground state is virtually cooler than every
other state). Hence, the RPPO transforming |ψ〉 into |0〉 is
such that any input passive state that is virtually cooler than
σ(~p), i.e., the passive state associated to |ψ〉, must be con-
verted into the ground state |0〉.

B. Special case of qubit systems

Let us now examine the qubit case in more details. It is
known that for qubit systems, the set of strictly incoherent op-
erations and the set of incoherent operations coincide [49]. In
contrast, it is easy to see that for fixed qubit states σ(~p) 6= I/2
and σ(~q) 6= I/2, the set of RPPOs is not equal to the set of
PPOs. However, it turns out that pure qubit active state trans-
formations can be achieved with passivity-preserving opera-
tions (there is no need to consider relative passivity-preserving
operations). The following theorem proves this assertion.

Theorem 5 A qubit active state
∣∣∣ψ(~θ)

〉
∈ D can be trans-

formed to another qubit active state |φ(~ν)〉 ∈ D under a PPO

if and only if ~p ≺h ~q, where
∣∣∣ψ(~θ)

〉
=
∑1
i=0

√
pie

iθi |i〉,

|φ(~ν)〉 =
∑1
i=0

√
qie

iνi |i〉, ~p = {p0, p1} with p0 ≥ p1, and
~q = {q0, q1} with q0 ≥ q1.

Proof. Let us first notice that states
∣∣∣ψ(~θ)

〉
and |φ(~ν)〉

are equivalent to states |ψ〉 =
∑1
i=0

√
pi |i〉 and |φ〉 =∑1

i=0

√
qi |i〉, respectively. Therefore it suffices to prove

above theorem for states |ψ〉 and |φ〉.
We know that the passivity-preserving operations are inco-

herent operations and that incoherent operations are equiva-
lent to strictly incoherent operations for the qubit case. Then,
the existence of a passivity-preserving operation transforming
|ψ〉 to |φ〉 implies that ~p ≺h ~q based on Refs. [54, 55], which
concludes the “only if” part of the theorem.

For the “if part”, we need to construct a map that transforms
|ψ〉 to |φ〉 using the condition ~p ≺h ~q in the same way as we
constructed in the proof of Theorem 4. We apply this map on
the two extremal passive states for a qubit, namely

σp0 =

(
1 0
0 0

)
σp1 =

(
1
2 0
0 1

2

)
(34)

For the first extremal state, we have

Φp(σ
p
0) =

(aq0
p0

0

0 āq1
p0

)
. (35)

The above state is passive as a ≥ ā, q0 ≥ q1, and thus aq0 ≥
āq1. Similarly, for the second extremal state, we have

Φp(σ
p
1) =

(aq0
2p0

+ āq0
2p1

0

0 āq1
2p0

+ aq1
2p1

)
. (36)

To show that Φp(σ
p
1) is a passive state, let us consider

aq0

2p0
+
āq0

2p1
− āq1

2p0
− aq1

2p1
≥ q0

2p0
− q1

2p1

=
q0p1 − p0q1

2p0p1
≥ 0.

where the first inequality comes from p0 ≥ p1. In the second
inequality, we have used the fact that ~p ≺h ~q implies q0 ≥ p0

and q1 ≤ p1 . Since all passive states are convex mixtures
of σp0 and σp1 , this shows that the operation Φp is a passivity-
preserving operation.

C. Maximal extractable work from RPPOs

First, let us consider the case of pure active states from the
set D. For such states, we have following proposition.

Proposition 8 The maximal amount of work that can be ex-
tracted from any state |ψ〉 =

∑d−1
i=0

√
pi e

iγi |i〉 in the set D
using strictly incoherent RPPOs defined with respect to vec-
tors ~p and ~q = {1, 0, · · · , 0}T is equal to the ergotropy of the
state.
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Proof. Let us consider an arbitrary state |ψ〉 =∑d−1
i=0

√
pie

iθi |i〉 in D. From Corollary 3, we can trans-
form any state in D to the ground states |0〉 using RPPO with
σ(~p) =

∑d−1
i=0 pi |i〉〈i| and σ(~q) = |0〉〈0|. Now, since there is

no entropy change in this process, the maximal work that can
be extracted from |ψ〉 using RPPOs is given by

Wmax = Tr[Ĥ (|ψ〉〈ψ| − |0〉〈0|)]

=

d−1∑
i=0

piEi − E0.

The above equation tells us that Wmax is exactly equal to the
ergotropy of the states in D. See Eq. (11) for the definition of
the ergotropy. This concludes the proof.

The fact that we can bring |ψ〉 to the ground state |0〉 and
extract Wmax is trivial (it would be enough to use a unitary
mapping |ψ〉 to |0〉). But what is non trivial here is that there
exists a transformation bringing |ψ〉 to |0〉 and at the same time
this transformation also maps any passive state that is virtually
cooler than σ(~p) to |0〉〈0|. This follows from Corollary 3.

D. Monotones based on Hoffman majorization

We complete this Section by constructing some functions of
states which are monotone under RPPOs, based on the conse-
quences of Hoffman majorization. We have shown that, on
the set of states D, the Hoffman majorization provides nec-
essary and sufficient condition for state transformations under
RPPOs. This can be exploited to construct a family of mono-
tones that can only decrease under RPPOs. Let us recall a
result on Hoffman majorization, which is stated as following
theorem.

Theorem 6 [32] Let A be the set of all d× d real symmetric
matrices such that for all A = (aij) ∈ A , i = 0, · · · , d − 1

and k = 0, · · · , d − 2,
∑i
j=1(ak,j − ak+1,j) ≥ 0. Then,

xAxT ≤ yAyT for all A ∈ A if and only if x ≺h y.

Using above theorem, we have following proposition.

Proposition 9 For a qudit system with Hamiltonian Ĥ =∑d−1
i=0 Ei |i〉〈i| with E0 ≤ · · · ≤ Ed−1, the following func-

tions of the state |ψ〉 =
∑d−1
i=0

√
pie

iθi |i〉 ∈ D are monotones
under RPPOs.
(1) function Aα = E−α0 −∑d−1

i=0 p
2
iE
−α
i for α ∈ (0,∞);

(2) function Bα = e−αE0 −∑d−1
i=0 p

2
i e
−αEi for α ∈ (0,∞).

These functions can therefore be labeled as resource quanti-
fiers, while resource is being activity or nonpassivity.

Proof. Let |ψ〉 =
∑d−1
i=0

√
pie

iθi |i〉 and |φ〉 =∑d−1
i=0

√
qie

iγi |i〉. We know from Theorem 4 that if
Φp(|ψ〉〈ψ|) = |φ〉〈φ|, then ~p ≺h ~q. Now, from Theorem 6,
we know that for all A = (aij) ∈ A , i = 0, · · · , d − 1

and k = 0, · · · , d − 2 such that
∑i
j=0(ak,j − ak+1,j) ≥ 0,

~ψA~ψT ≤ ~φA~φT for all A ∈ A . For the particular choices

A = Ĥ−α and A = e−αĤ , we have
∑d−1
i=0 p

2
iE
−α
i ≤∑d−1

i=0 q
2
iE
−α
i and

∑d−1
i=0 p

2
i e
−αEi ≤∑d−1

i=0 q
2
i e
−αEi . Thus

Aα(Φp(|ψ〉〈ψ|)) = Aα(|φ〉〈φ|)

= E−α0 −
d−1∑
i=0

q2
iE
−α
i

≤ E−α0 −
d−1∑
i=0

p2
iE
−α
i

= Aα(|ψ〉〈ψ|).

Similarly, Bα(Φp(|ψ〉〈ψ|)) ≤ Bα(|ψ〉〈ψ|). This, shows that
the functions Aα and Bα are monotones under RPPOs on the
set D.

VI. CONCLUSION AND DISCUSSION

In this work, we have introduced a partial order on the set of
passive states which generalizes the natural ordering of ther-
mal states in terms of temperature. This provides us with a
way to differentiate between passive states based on their use-
fulness in a thermodynamical context and paves the way to
the notion of “virtually cooler” passive states, making a clear
connection with the notion of “virtual temperature” [29]. The
order relation of “being virtually cooler than” as we define it is
closely related to the likelihood ratio order appearing in statis-
tics [52] and can be interpreted as a relative passivity condi-
tion: a state that is passive relative to a given passive state
is also “virtually cooler than” this other state. We show that
this partial order is stronger than majorization, which is only
a preorder, in the sense that the partial order relation of “be-
ing virtually cooler than” implies a majorization relation. In
a thermodynamical context, we show that, if used as a refrig-
erator, a virtually cooler state (with respect to another state)
can cool down an external qubit system to a further extent as
compared with the cooling effected by this other state.

This leads us to analyze the class of quantum channels that
preserve this partial order relation of “being virtually cooler
than”. More specifically, given two fixed passive states ρ
and σ, we ask when does a quantum channel map a virtually
cooler state than ρ to a virtually cooler cooler state than σ?
We call such a channel a relative passivity-preserving chan-
nel or operation (RPPO) with respect to the two fixed passive
states ρ and σ. We show that RPPOs are necessarily inco-
herent operations, which cannot create quantum coherence in
the energy eigenbasis. We also compare RPPOs with the set
of passivity-preserving channels or operations (PPOs), which
are those quantum channels that output a passive state if the
input is a passive state. We show that PPOs and RPPOs are
in general two inequivalent notions. However, in case we de-
fine RPPOs by fixing both ρ and σ to be the maximally mixed
state, then the set of RPPOs is equivalent to the set of PPOs
(this is because passive states can be defined as the states that
are virtually cooler than the maximally mixed state).

We then turn to the question of what quantum states can be
converted into what other quantum states by a strictly inco-
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herent RPPO (i.e., having the extra property that all its Kraus
operators are incoherent). We show that for a special class D
of active pure states, the interconversion ability of a strictly
incoherent RPPO is equivalent to a particular partial order re-
lation which we call Hoffman majorization. In particular, a
pure state |ψ〉 =

∑
i

√
pie

iθi |i〉 ∈ D can be transformed to
another pure state |φ〉 =

∑
i

√
qie

iγi |i〉 ∈ D if and only if
~p ≺h ~q, where both ~p and ~q are passive vectors and ≺h stands
for Hoffman majorization. Here, the two passive states with
respect to which RPPOs are defined are σ(~p) =

∑
i pi |i〉〈i|

and σ(~q) =
∑
i qi |i〉〈i|. The proof of this result is construc-

tive and rather tedious. So, in order to make it more instruc-
tive, we further elaborate in Appendix C on the explicit con-
struction of a strictly incoherent RPPO implementing the de-
sired state transformation for a general qutrit case (d=3).

Just like the notion of PPOs comes with a resource theoret-
ical interpretation of the states that are not passive, it is natu-
ral from the definition of RPPOs to view the property of not
being virtually cooler than a given passive state as a distinct
resource. Accordingly, we introduce two families of resource
monotones based on Hoffman majorization, which are non-
increasing under RPPOs. It would be quite relevant to bet-
ter understand the nature of this particular resource, that is,
“not being virtually cooler than”, in a thermodynamical sce-
nario. Further, it is worth noting here that in the absence of
a heat bath, Hoffman majorization is a natural alternative for
thermo-majorization [12–14], which is meaningful only in the
presence of a heat bath.

Interestingly, things become easier for qubit state transfor-
mations (d=2) and we show that Hoffman majorization be-
comes a necessary and sufficient condition for state transfor-
mations under PPOs (it is not needed to consider RPPOs any
more). We then characterize the general passivity-preserving
operations, which are also incoherent operations, and provide
explicit forms of the Kraus-operators that comprise passivity-
preserving operations in the qubit case. However, the char-
acterization of passivity-preserving operations in arbitrary di-
mension is left open for future research. It would be very
interesting to see whether Hoffman majorization, which pre-
serves the nonincreasing nature of vectors, plays some partic-
ular role in the interconversion of pure d-dimensional states
under passivity-preserving operations as it does for qubits.

As a limiting case of passivity-preserving operations, we
also introduce the class of operations that always map any
state (passive or active) to a passive state, and denote such
operations as activity-breaking operations (ABOs). Interest-
ingly, we show that these operations admit a clean characteri-
zation in terms of measure-and-prepare channels.

Finally, let us stress that we expect the notion of virtually
cooler passive states introduced here to play an important role
in thermodynamical contexts, as illustrated in Appendix D
with the simple example of cooling an external qubit system
using energy-preserving swap operations and a passive state
for the refrigerator. It would actually be of great value to
uncover the full implications of the relation of “being virtu-
ally cooler than” in more general thermodynamical contexts.
In particular, considering the task of work extraction from a
single quantum system under some quantum channel, it will

be very interesting to see what are the consequences of using
a virtually cooler passive state as the machine state. Impor-
tantly, to answer this question, one will need a good definition
of extractable work under quantum channels (this is briefly
discussed in Appendix E). Unlike the case where unitaries are
used for work extraction, this cannot simply be equal to the
energy change of the system. The reason behind this is the fact
that quantum channels introduce noise and this noise should
be carefully separated from the energy change in order to de-
termine the useful work. This is very intriguing as there is
no notion of temperature or thermal bath in our scenario with
passive states, so the usual separation, which is obtained by
subtracting the entropy (times the temperature) from the in-
ternal energy, is simply not viable. In other words, this calls
for a new notion of free energy which would generalize the
usual free energy F = E − TS in situations where no ther-
mal bath at a given temperature is considered. A tempting
possibility would be to use the notion of virtual temperatures
instead, but we leave this question open in the present work.
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Appendix A: Hoffman majorization

In this Appendix, we first review the proofs of Theorems 1
and 2 at the core of the Hoffman majorization. The proofs in
Sections A 1 and A 2 are inspired from Ref. [30]. Then, we
propose in Section A 3 an alternative condition for express-
ing Hoffman majorization that is based on what we call pas-
sive t-transforms. We show that Hoffman majorization can
also be realized with asymmetric doubly-stochastic matrices
(products of passive t-transforms) and explore in particular
the cases of two and three dimensions. This analysis is also of
independent mathematical interest.

1. Proof of Theorem 1

From the structure of the setMP(d) it is clear that any ma-
trix Mτ ∈ MP(d) satisfies the conditions (a) to (d) listed in
Sec. II A, which are necessary to be a Hoffman matrix. This
follows by noting that for each partition τ = (τ1, τ2, · · · τk),
Mτ is a d × d matrix, written as Mτ = ⊕kt=1Mτt , where
Mτt =

I|τt|
|τt| , I|τt| is a |τt| × |τt| matrix of all ones and |τt|

is the cardinality of part τt. Now let R ∈ R(d) be a given
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Hoffman matrix. Our aim is to show that R can be written as
convex mixture of matrices Mτ ∈MP(d).

Step 1 (Relationships between matrix elements of R). We
will first establish some relations between matrix elements of
R and in particular, Ri,j ≥ 0 for all i, j.

1. Ri,j ≥ Ri,j+1 for i ≤ j. We prove this by induction.
This relation is trivially true for i = 0 following from
condition (d). Let us assume that the relation is true
for i = k, i.e., Rk,j ≥ Rk,j+1 for k + 1 ≤ j. Then
from condition (d) we have Rk+1,j +Rk,j+1 ≥ Rk,j +
Rk+1,j+1. Adding the two conditions, we getRk+1,j ≥
Rk+1,j+1. Thus the relation is true for i = k + 1. This
completes the induction.

2. Similarly, Ri,j ≥ Ri−1,j for 1 ≤ i ≤ j. The proof is
similar to the above relation.

3. Using the condition Ri,j = Rj,i, we have (i) Ri,j ≥
Ri+1,j for i ≥ j, and (ii) Ri,j ≥ Ri,j−1 for 1 ≤ j ≤ i.

4. Combining all the above three points and condition (a)
that R0,d−1 ≥ 0, we conclude that Ri,j ≥ 0 for all i, j.

Step 2 (Finding a partition based on step 1). We find a
relevant partition recursively. Let us consider i1 = max j
such thatR0,j > 0. If i1 < d−1, then there exists at least one
j > i1 such that Ri1+1,j > Ri1,j . If this is not the case then
from point 3 above we have Ri1+1,j ≤ Ri1,j for all j. Then
from the condition that 1 =

∑
j Ri1+1,j ≤

∑
j Ri1,j = 1

for all j, we have Ri1+1,j = Ri1,j . In particular, R0,i1+1 =
Ri1+1,0 = Ri1,0 = R0,i1 . This contradicts the definition of
i1. If i1 < d − 1, then let i2 = max j such that Ri1+1,j >
Ri1,j . Now if i2 < d− 1, then there exists at least one j > i2
such that Ri2+1,j > Ri2,j . The proof of this fact is similar
as the case for i1. Carrying out this procedure results in an
increasing sequence 0 ≤ i1 < · · · ik < d − 1. Now consider
a partition τ = (τ1, · · · , τk), where

τ1 = (1, · · · , i1);

τ2 = (i1 + 1, · · · , i2);

...
τk = (ik, · · · , d− 1).

Step 3 (If R satisfies the conditions in its definition as
equality then so does Mτ ):–If R0,d−1 = 0 then Mτ

0,d−1 = 0
as well as there is no sub-partition containing 0 and d − 1.
Now for i ≤ j let

Mτ
i,j +Mτ

i−1,j+1 > Mτ
i−1,j +Mτ

i,j+1.

Then there exists an index m < k and a partition τm+1 =
(im + 1, · · · im+1) such that i = im + 1 and j = im+1

and i, j ∈ τm+1. This means that Ri,j > Ri−1,j and
Ri,j+1 = Ri−1,j+1, which implies that Ri,j + Ri−1,j+1 >
Ri−1,j +Ri,j+1. By negation of this result, it is proved that if

Ri,j +Ri−1,j+1 = Ri−1,j +Ri,j+1 then Mτ
i,j +Mτ

i−1,j+1 =
Mτ
i−1,j +Mτ

i,j+1.

Step 4 (Constructing R from Mτ ):–If Mτ constructed
above is such that R = Mτ then we are done. Otherwise
from the construction of Mτ above, there exists a small con-
stant α > 0 such that S = (R − αMτ )/(1 − α) ∈ R(d).
Let α1 = maxα such that S ∈ R(d). Let R0 = R and
Mτ1

= Mτ , and R1 = S then

R0 = (1− α1)R1 + α1M
τ1

.

Note that R1 satisfies all the equalities in conditions (a) to
(d) that R0 satisfies. Moreover, there is at least one inequal-
ity that R0 satisfies as strict inequality but R1 satisfies as an
equality. Now decomposingR1 in similar way asR0 = R, we
obtain a sequence of matrices Rm and Mτm , and constants
0 < α1, · · · , αm < 1 such that

R0 = (1− α1)R1 + α1M
τ1

;

R1 = (1− α2)R2 + α2M
τ2

;

...

Rm−1 = (1− αm)Rm + αmM
τm .

Here, the number of inequalities in Rm satisfied as equalities
strictly increase with m. But since there are only finite such
inequalities there will exist an m such that Rm ∈ MP(d).
Thus R = R0 is the convex hull ofMP(d) [30].

2. Proof of Theorem 2

Let x, y ∈ S(d) be two passive vectors. The ‘if’ part of
theorem is trivial, i.e., if x = Ry and R ∈ R(d) then x ≺h y
is trivially true. We will prove the ‘only if’ part by induction.
Again, the proof presented here relies on Ref. [30]. For d = 1,
we have x ≺h y implies x = y and R is just 1.

Case 1:–Let
∑k−1
i=0 xi =

∑k−1
i=0 yi for k < d. Also, let x′ ∈

S(k) and x′′ ∈ S(d − k) be such that they coincide with
first k and last d − k terms of x, respectively. Define y′ and
y′′ similarly. By construction x′ ≺h y′ and x′′ ≺h y′′, then
by inductive assumption there exist Hoffman matrices R′ ∈
R(k) andR′′ ∈ R(d−k) such that x′ = R′y and x′′ = R′′y′′.
Then, x = Ry, where R = R′ ⊕ R′′. It is easy to see that
R ∈ R(d).

Case 2:–Let
∑k−1
i=0 xi <

∑k−1
i=0 yi for all k < d. Since x ∈

S(d), we have
∑d−1
i=0 xi ≤ dx1 or x1 ≥ 1/d

∑d−1
i=0 xi. Now

define z = R0y, where R0 = Id/d. Therefore we have

x1 ≥
1

d

d−1∑
i=0

xi =
1

d

d−1∑
i=0

yi = z0 = · · · = zd−1.

Now there exists a vector w = αz + (1 − α)y, where 0 <

α ≤ 1 such that
∑k−1
i=0 xi ≤

∑k−1
i=0 wi for 0 ≤ k ≤ d − 1
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and equality for k = d. Moreover, there is at least one k 6= d

such that
∑k−1
i=0 xi =

∑k−1
i=0 wi, then from case 1, there exists

R ∈ R(d) such that x = Rw, i.e.

x = R(αR0y + (1− α)y)

= (αR0 + (1− α)R) y.

Clearly αR0 + (1− α)R ∈ R(d), which completes the proof
the theorem.

3. Hoffman majorization and passive t-transforms

It is known that the usual majorization relation x ≺ y be-
tween two d-dimensional probability vectors x and y is equiv-
alent to the existence of a sequence T = (T1, · · · , Tl) of so-
called t-transforms such that x = T y := Tl ◦ · · · ◦ T1y [32].
A t-transform T is defined as a doubly stochastic matrix that
acts nontrivially only on two components of the probability
vector and the nontrivial 2× 2 block can be written as(

t t̄
t̄ t

)
with 0 ≤ t = 1 − t̄ ≤ 1. Interestingly, the existence of
a sequence of t-transforms is not specific to usual majoriza-
tion, and it can be shown to exist for other types of majoriza-
tion, such as p-majorization (see e.g. Chapter 14 of Ref.
[32] for definition). Further, the existence of a sequence of
t-transforms sometimes simplifies the mathematical analysis
[56] and it is uniquely suited to certain physical processes, see
e.g. Ref. [57]. Therefore it is natural to ask whether there also
exists a characterization of Hoffman majorization in terms of
a sequence of some special t-transforms. Theorem 7 answers
this question in the affirmative, building on the notion of pas-
sive t-transforms. We define a t-transform T as passive if, for
any 2 ≤ k ≤ d, it can be written as

T = Ik−2 ⊕
(
t t̄
t̄ t

)
⊕ Id−k, (A1)

where 1/2 ≤ t = 1 − t̄ ≤ 1. Here and below we denote the
k×k identity matrix by Ik. We stress that the two components
of the probability vector that are acted upon in Eq. (A1) must
be consecutive components, unlike for usual t-transforms. We
call T a passive t-transform because it maps the set of passive
vectors into itself. We do not use passive t-transforms in the
context of the current paper, but we believe that this question
is of independent interest for quantum thermodynamics deal-
ing with passive states (note that passive t-transforms are also
studied in economics under the name of ‘altruistic transfers’,
see e.g. Ref. [32]).

Theorem 7 Let x, y ∈ S(d) be two passive vectors. The Hoff-
man majorization relation x ≺h y holds if and only if there
exists a finite sequence T of passive t-transforms such that
x = T y.

Proof. We note first that for x, y ∈ S(d), the existence of
a finite sequence T = (T1, · · · , Tl) of passive t-transforms

such that x = T y is equivalent to the existence of a finite
sequence V =

(
s(1), · · · , s(l)

)
of vectors in S(d) such that

s(i) and s(i+1) differ in two components only, as in Eq. (A1),
and x = s(0) ≺h s(1) ≺h · · · ≺h s(l) ≺h s(l+1) = y for
some integer l. Then, the ‘if’ part of the theorem is trivial, i.e,
if there exists such a finite sequence V , then x ≺h y.

For the ‘only if’ part we will prove the theorem by induction
in the similar way as we proved Theorem 2. For d = 2, the
theorem is obvious, i.e., for x, y ∈ S(2), then x ≺h y implies
x = Ry, where R is a 2 × 2 Hoffman matrix which is also a
2× 2 passive t-transform

T =

(
t t̄
t̄ t

)
with t ≥ 1/2 and t̄ = 1 − t. Thus the theorem is satisfied.
Now two cases arise.

Case 1:–Let x ≺h y and
∑k−1
i=0 xi =

∑k−1
i=0 yi for k < d.

Also, let x′ ∈ S(k) and x′′ ∈ S(d − k) be such that they
coincide with first k and last d − k terms of x, respectively.
Define y′ and y′′ similarly. By construction x′ ≺h y′ and
x′′ ≺h y′′, then by inductive assumption there exist two se-
quences T1 = {u(1), · · · , u(l)} and T2 = {v(1), · · · , v(m)}
of vectors in S(k) and S(d − k), respectively, such that
x′ = u(0) ≺h u(1) ≺h · · · ≺h u(l) ≺h u(l+1) = y′ and x′′ =
v(0) ≺h v(1) ≺h · · · ≺h v(m) ≺h s(m+1) = y′′. Then these
two sequences can be composed using x = (T1y

′, T2y
′′) =

(Ik ⊕ T2)(T1 ⊕ Id−k)(y′, y′′) and the theorem is satisfied for
dimension d.

Case 2:–Let
∑k−1
i=0 xi <

∑k−1
i=0 yi for all k < d. Since, x0 <

y0, let us define w = aTy + āy, where T =

(
t t̄
t̄ t

)
⊕ Id−2,

1/2 ≤ t = 1−t̄ ≤ 1, and 0 < a = 1−ā ≤ 1, and let us choose
a such that x0 = w0 (see e.g. Example 1). Now, we can apply
case 1 to conclude that x and w satisfying x ≺h w satisfy the
theorem. Note that aT + āI itself a passive t-transform. Thus
the theorem is also true for w and y satisfying w ≺h y. Com-
bining x ≺h w and w ≺h y, we conclude that x ≺h y implies
existence of a finite sequence V =

(
s(1), · · · , s(l)

)
of vectors

in S(d) such that s(i) and s(i+1) differ in two components
only and x = s(0) ≺h s(1) ≺h · · · ≺h s(l) ≺h s(l+1) = y.
This concludes the proof of the theorem.

Example 1 (Construction of passive t-transforms) Let us
consider the two passive vectors x = (0.6, 0.2, 0.1, 0.1)T and
y = (0.65, 0.25, 0.05, 0.05)T such that

∑k−1
i=0 xi <

∑k−1
i=0 yi,

where 1 ≤ k < 4, hence x ≺h y. In the following, we show
that we can always find a sequence T of passive t-transforms

such that x = T y. Let S0 = 1
2

(
1 1
1 1

)
, S = S0 ⊕ I2,

0 < a ≤ 1, and define

w := aSy + (1− a) y =

−0.2 a+ 0.65
0.2 a+ 0.25

0.05
0.05

 .
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We can choose a = 1/4 such that x0 = w0 and in particular
we havew = (0.6, 0.3, 0.05, 0.05)T . Now, let S′ = 1⊕S0⊕1,
0 < b ≤ 1, and define

w′ := b S′w + (1− b)w =

 0.6
−0.125 b+ 0.3
0.125 b+ 0.05

0.05

 .

Now we choose b = 0.8 such that w′1 = x1 and in particular,
we have w′ = (0.6, 0.2, 0.15, 0.05)T . Further, let S′′ = I2 ⊕
S0, 0 < c ≤ 1, and define

w′′ := c S′′w′ + (1− c)w′ =

 0.6
0.2

−0.05 c+ 0.15
0.05 c+ 0.05

 .

Now, we choose c = 1 such that w′′2 = x2 and in particu-
lar, we have w′′ = (0.6, 0.2, 0.1, 0.1)T = x. Thus x can be
obtained from y by applying the sequence

T = S′′(0.8S′ + 0.2I4)(0.25S + 0.75I4).

of passive t-transforms. Note that the above decomposition is
not unique as we could, for example, have constructed another

sequence T by first applying S0 = 1⊕
(

0.5 0.5
0.5 0.5

)
⊕1 to y and

then following the above procedure starting from the highest
weight in y.

Interestingly, we see that a sequence of passive t-transforms
between vectors x, y ∈ S(d) satisfying x ≺h y results in a
doubly-stochastic matrix that is most often asymmetric, de-
spite the fact that Hoffman matrices are symmetric. This mo-
tivates us to define yet another equivalent condition for Hoff-
man majorization relying on what we call asymmetric Hoff-
man matrices, as exposed in the following Proposition.

Proposition 10 For two passive vectors x, y ∈ S(d), the con-
dition x ≺h y holds if and only if there exists a doubly-
stochastic matrixDah such that x = Dah y andDahξ ∈ S(d)
for all ξ ∈ S(d). We call Dah an asymmetric Hoffman ma-
trix (as it differs from the Hoffman matrixR) and define it as a
d×d doubly stochastic matrix that satisfies a list of conditions
as follows:

Dah =

 a00 · · · a0(d−1)

...
. . .

...
a(d−1)0 · · · a(d−1)(d−1)

 ,

where
∑d−1
i=0 aij = 1, ∀j ∈ {0, · · · , d− 1}, and

∑d−1
j=0 aij =

1, ∀i ∈ {0, · · · , d − 1}, is an asymmetric Hoffman matrix
provided it satisfies

j∑
i=0

a0i ≥
j∑
i=0

a1i ≥ · · · ≥
j∑
i=0

a(d−1)i, ∀ j ∈ {0, · · · , d− 1},

where equality holds for j = d− 1.

Proof. If there exists Dah such that x = Dah y, then x ≺h y
is obvious sinceDah is doubly-stochastic. The fact thatDah y
is a passive vector when x is a passive vector can be easily
checked by considering the action of Dah on an extremal pas-
sive vector |ej〉. We have

Dah |ej〉 =
1

j + 1

d−1∑
k,l=0

akl |k〉 〈l|
j∑
i=0

|i〉

=
1

j + 1

d−1∑
k,l=0

j∑
i=0

akl |k〉 δli

=
1

j + 1

d−1∑
k=0

j∑
i=0

aki |k〉 .

For the output vector to be passive for all j, we need that
(Dah |ej〉)k ≥ (Dah |ej〉)l for all k ≤ l which are the con-
ditions in Proposition 10. This completes the proof of the “if”
part of the proposition.

Now, in order to prove the “only if” part of the proposition,
we assume that x ≺h y. Then, from Theorem 7, we know
there is a sequence T = (T1, · · · , Tl) of passive t-transforms
such that x = T y, and we must check that that it yields an
asymmetric Hoffman matrix Dah, satisfying the conditions in
Proposition 10. Without loss of generality assume that the
doubly stochastic matrix corresponding to Tl is Dl = Id−2 ⊕(
t t̄
t̄ t

)
with 1/2 ≤ t = 1−t̄ ≤ 1 (see Example 1). Now, let us

assume inductively that the doubly stochastic matrix D(l−1)

corresponding to T ′ = Tl−1 ◦ · · · ◦ T1 satisfies the conditions
in Proposition 10. Note that D′ = DlD

(l−1) is such that
only last two rows of D′ are different from D(l−1). In fact,
D′d−2,i = tD

(l−1)
d−2,i+t̄D

(l−1)
d−1,i andD′d−1,i = t̄D

(l−1)
d−2,i+tD

(l−1)
d−1,i

for all i = 0, · · · , d− 1. It is easy to see that D′ also satisfies
the conditions in Proposition 10 and hence it is an asymmetric
Hoffman matrix. Thus x ≺h y implies the existence of an
asymmetric Hoffman matrix D′ such that x = D′y.

Let us illustrate Proposition 10 in some simple cases. In
the two-dimensional case, it is trivial to see that every passive
t−transform satisfies condition t ≥ t̄ since with t ≥ 1/2 and
t̄ = 1 − t. In the three-dimensional case, the composition
of passive t-transforms on S(3) is analyzed in the following
proposition.

Proposition 11 For three dimensional case, the ordered prod-
uct of two t-transforms is passive, i.e., it maps S(d) into S(d),
if and only if both the t-transforms are passive.

Proof. The two possible choices of ordered t-transforms are

T1 =

t t̄ 0
t̄ t 0
0 0 1

 ; T2 =

1 0 0
0 s s̄
0 s̄ s

 ,

where t̄ = 1− t and s̄ = 1− s. The possible composition of
ordered t−transforms are T12 = T1T2 and S21 = T2T1.
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Case 1: We have

T12 =

t st̄ s̄t̄
t̄ st s̄t
0 s̄ s

 .

Let us find the action of T12 on extremal passive vectors.

T12 |e0〉 =

tt̄
0

 ;T12 |e1〉 =
1

2

t+ st̄
t̄+ st
s̄

 ;T12 |e2〉 = |e2〉 .

For T12 |e0〉 to be passive, we need to have t ≥ t̄. For T12 |e1〉
to be passive, we need to have (t − t̄)s̄ ≥ 0 and s − s̄t ≥ 0.
The first inequality is always satisfied as t ≥ t̄ and the second
inequality is always satisfied when s ≥ s̄.

Case 2: We have

S21 =

 t t̄ 0
st̄ st s̄
s̄t̄ s̄t s

 .

Let us find the action of S21 on extremal passive vectors.

S21 |e0〉 =

 t
st̄
s̄t̄

 ;S21 |e1〉 =
1

2

1
s
s̄

 ;S21 |e2〉 = |e2〉 .

For S21 |e0〉 to be passive, we need to have t − st̄ ≥ 0 and
(s−s̄)t̄ ≥ 0, which implies t ≥ 1/2 and s ≥ 1/2. For S21 |e1〉
to be passive, we need to have (1−s) ≥ 0 and s− s̄ ≥ 0. The
first inequality is always satisfied and the second inequality is
always satisfied when s ≥ s̄. This concludes the proof of the
proposition.

Remark 5 As noted in Example 1, the construction of a se-
quence of passive t-transforms from the highest to the lowest
weight is not unique. This nonuniqueness is exemplified in
Proposition 11 since it may be possible to decompose a given
asymmetric Hoffman matrix as T12 or S21. To be complete, let
us note that it may also be the case that a given asymmetric
Hoffman matrix does not admit a decomposition in terms of
passive t-transforms. This is reminiscent of the fact that not
every doubly stochastic matrix can be written as a product of
t-transforms [32].

Appendix B: PPO for qubits

Since we have noted in Sec. III that, for qubits, passivity-
preserving operations are incoherent and moreover strictly
incoherent, we can explicitly characterize the form of qubit
passivity-preserving operations.

Remark 6 When the input and output systems S and S′ are
two-dimensional (qubit) systems, all passivity-preserving op-
erationsNS→S′ can be expressed in terms of five (incoherent)
Kraus operators with certain constraints.

It is shown in Ref. [58] that any strictly incoherent opera-
tion admits a Kraus decomposition with at most 5 incoherent
Kraus operators. A canonical choice for such 5 incoherent
Kraus operators is given by {Ki}5i=1, where

K1 =

(
a1 b1
0 0

)
, K2 =

(
0 0
a2 b2

)
, K3 =

(
a3 0
0 b3

)
,

K4 =

(
0 b4
a4 0

)
, K5 =

(
a5 0
0 0

)
. (B1)

Here ai can be chosen as real and bi ∈ C. Further,
∑5
i=1 a

2
i =

1 =
∑4
i=1 |bi|2 and a1b1 + a2b2 = 0. It is to be noted that

the above matrices are represented in the basis fixed to de-
fine incoherent operations. Here, let us fix this reference basis
to be the energy eigenbasis. For the incoherent Kraus opera-
tors to represent a passive operation, we must impose further
restrictions and demand that Φ(σp0) and Φ (σp1) are both pas-
sive states, where σp0 and σp1 are extremal qubit passive states.
These conditions are given by

a2
1 + a2

3 + a2
5 ≥ a2

2 + a2
4;

a2
1 + a2

3 + a2
5 + |b1|2 + |b4|2 ≥ a2

2 + a2
4 + |b2|2 + |b3|2.

The set of 5 incoherent Kraus operators together with above
constraints completely characterize qubit passivity-preserving
operations.

Now, we may also exhibit another special feature of qubit
passivity-preserving operations in terms of Stinespring dila-
tion.

Remark 7 When S is a qubit system, if a channel N is gen-
erated via

N (ρS) = TrE{USE(ρS ⊗ σE)}, (B2)

where USE is an arbitrary energy-preserving unitary opera-
tion and σE is a passive state of the environment, then N is a
passivity-preserving channel.

Proof. The Hamiltonian of an arbitrary qubit system S can
be taken without loss of generality to be ĤS = E |1〉 〈1|. An
arbitrary energy preserving unitary USE on the joint system
SE can be defined as follows

USE |00〉 = |00〉 ;
USE |01〉 = α |01〉+ β |10〉 ;
USE |10〉 = −β∗ |01〉+ α∗ |10〉 ;
USE |11〉 = |11〉 ,

where |α|2 + |β|2 = 1. Let σE = q |0〉〈0| + q̄ |1〉〈1| be a
passive state of the environment and 0 ≤ q̄ = 1− q ≤ q ≤ 1.
Now, we have

N (|0〉 〈0|) = TrE

{
USE(|0〉〈0| ⊗ σE)U†SE

}
= TrE {q |00〉〈00|

+q̄(α |01〉+ β |10〉)(α∗ 〈01|+ β∗ 〈10|)}
=
(
q + q̄|α|2

)
|0〉〈0|+ q̄|β|2 |1〉〈1| .
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Now, using q̄ ≤ q, we have q+q̄|α|2−q̄|β|2 ≥ q|α|2+q̄|α|2 ≥
0. Thus N (|0〉 〈0|) is a passive state. Similarly

N
(

1

2
(|0〉〈0|+ |1〉〈1|)

)
=

1

2
TrE {q |00〉〈00|+ q̄ |11〉〈11|

+q̄(α |01〉+ β |10〉)(α∗ 〈01|+ β∗ 〈10|)
+q(−β∗ |01〉+ α∗ |10〉)(−β 〈01|+ α 〈10|)}

=
1

2

(
q + q̄|α|2 + q|β|2

)
|0〉〈0|

+
1

2

(
q̄ + q̄|β|2 + q|α|2

)
|1〉〈1| .

Again the above state is a passive state because(
q + q̄|α|2 + q|β|2

)
−
(
q̄ + q̄|β|2 + q|α|2

)
= (q − q̄)(1− |α|2 + |β|2)

= 2(q − q̄)|β|2 ≥ 0.

Thus N is a passivity-preserving channel.

Note, however, that for more than two-dimensional sys-
tems, such a channel based on a energy-preserving unitary
operation and passive environment ceases to be necessarily
passivity-preserving. In the following we construct such a
channel for a qutrit system. Let us consider the system Hamil-
tonian to be ĤS = |1〉 〈1| + 2 |2〉〈2|. Also, consider an en-
ergy preserving unitary USE such that USE |ij〉 = |ij〉 for
all i, j = 0, 1, 2 except (i = 0, j = 2) and (i = 2, j = 0)
for which USE |ij〉 = |ji〉. Then, for any passive state
σE =

∑2
i=0 qi |i〉〈i| (q0 ≥ q1 ≥ q2 and

∑2
i=0 qi = 1) of

environment, we have

N (|0〉〈0|+ |1〉〈1|) = TrE

{
USE(|0〉〈0| ⊗ σE)U†SE

}
= TrE

{
1∑
i=0

qi |0i〉〈0i|+ q2 |20〉〈20|
}

= (q0 + q1) |0〉〈0|+ q2 |2〉〈2| .

The above is clearly not a passive state and hence N is not a
passivity-preserving channel.

Note that some particular classes of passivity-preserving
channels have been introduced in Refs. [59, 60] in the con-
text of continuous variable quantum systems, which has the
form as Eq. (B2), where USE→SE could be either energy
preserving or energy difference preserving Gaussian unitary
operation.

Appendix C: RPPO for qutrits

Here we show an example of qutrit case to illustrate the con-
struction of a desired RPPO for the pure state transformations
on D.

Example 2 A qutrit state |ψ〉 ∈ D can be transformed to an-
other state |φ〉 ∈ D under RPPOs if ~p ≺h ~q, where |ψ〉 =

∑2
i=0

√
pie

iθi |i〉, |φ〉 =
∑2
i=0

√
qie

iγi |i〉, ~p = {p0, p1, p2},
and ~q = {q0, q1, q2}.
Proof. Again, as argued in the main text, the phase factors in
the states |ψ〉 and |φ〉 can be ignored. Since ~p ≺h ~q, from The-
orems 1 and 2, we have ~p =

∑
τ∈P(3) ατM

τ~q =
∑4
i=1 ~ri,

where ~ri = ατ(i)Mτ(i)

~q. We have provided Mτ explicitly in
preliminary section (Sec. II). We have

~r1 = ατ(1)

q0

q1

q2

 .

Now, we define following Kraus operator

K0 =
√
ατ(1)


√

q0
p0

0 0

0
√

q1
p1

0

0 0
√

q2
p2


such that K0(|ψ〉〈ψ|)K†0 = ατ(1) |φ〉〈φ|. Further,

K†0K0 =

2∑
i=0

(~r1)i
pi
|i〉〈i| .

We also have

K0 |i〉〈i|K†0 = ατ(1)

qi
pi
|i〉〈i| .

Let us consider another vector ~r2 such that

~r2 = ατ(2)

(q0 + q1)/2
(q0 + q1)/2

q2

 .

Now, let us introduce following Kraus operators

K1 =
√
ατ(2)


√

q0
2p0

0 0

0
√

q1
2p1

0

0 0
√

q2
2p2

 ;

K2 =
√
ατ(2)


0

√
q0
2p1

0√
q1
2p0

0 0

0 0
√

q2
2p2

 .

Then, we have

2∑
i=1

Ki |ψ〉〈ψ|K†i = ατ(2) |φ〉〈φ| .

Further,

2∑
i=1

K†iKi =

2∑
i=0

(~r2)i
pi
|i〉〈i| .
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We also have

2∑
i=1

Ki |0〉〈0|K†i =
ατ(2)

2p0

1∑
i=0

qi |i〉〈i| ;

2∑
i=1

Ki |1〉〈1|K†i =
ατ(2)

2p1

1∑
i=0

qi |i〉〈i| ;

2∑
i=1

Ki |2〉〈2|K†i =
ατ(2)

p2
q2 |2〉〈2| .

Let us consider another vector ~r3 such that

~r3 = ατ(3)

 q0

(q1 + q2)/2
(q1 + q2)/2

 .

Let us define following Kraus operators

K3 =
√
ατ(3)


√

q0
2p0

0 0

0
√

q1
2p1

0

0 0
√

q2
2p2

 ;

K4 =
√
ατ(3)


√

q0
2p0

0 0

0 0
√

q1
2p2

0
√

q2
2p1

0


such that we have

4∑
i=3

Ki |ψ〉〈ψ|K†i = ατ(3) |φ〉〈φ| .

Further,

4∑
i=3

K†iKi =

2∑
i=0

(~r3)i
pi
|i〉〈i| .

We also have

4∑
i=3

Ki |0〉〈0|K†i =
ατ(3)

p0
q0 |0〉〈0| ;

4∑
i=3

Ki |1〉〈1|K†i =
ατ(3)

2p1

2∑
i=1

qi |i〉〈i| ;

4∑
i=3

Ki |2〉〈2|K†i =
ατ(3)

2p2

2∑
i=1

qi |i〉〈i| .

Let us consider another vector ~r4 such that

~r4 =
ατ(4)

3

1
1
1

 .

Let us define a map Φ4 with Kraus operators

K5 =
√
ατ(4)


√

q0
3p0

0 0

0
√

q1
3p1

0

0 0
√

q2
3p2

 ;

K6 =
√
ατ(4)


0

√
q0
3p1

0

0 0
√

q1
3p2√

q2
3p0

0 0

 ;

K7 =
√
ατ(4)


0 0

√
q0
3p2√

q1
3p0

0 0

0
√

q2
3p1

0

 .

K5 =
√
ατ(4)

2∑
i=0

√
qπ5(i)

3pi
|π5(i)〉〈i| ;

K6 =
√
ατ(4)

2∑
i=0

√
qπ6(i)

3pi
|π6(i)〉〈i| ;

K7 =
√
ατ(4)

2∑
i=0

√
qπ7(i)

3pi
|π7(i)〉〈i| ,

where π5(0) = 0, π5(1) = 1, π5(2) = 2; π6(0) = 2, π6(1) =
0, π6(2) = 1; π7(0) = 1, π7(1) = 2, π7(2) = 0. We have,

7∑
i=5

Ki |ψ〉〈ψ|K†i = ατ(4) |φ〉〈φ| .

Further,

7∑
i=5

K†iKi =

2∑
i=0

(~r4)i
pi
|i〉〈i| .

We also have

7∑
i=5

Ki |0〉〈0|K†i =
ατ(4)

3p0

2∑
i=0

qi |i〉〈i| ;

7∑
i=5

Ki |1〉〈1|K†i =
ατ(4)

3p1

2∑
i=0

qi |i〉〈i| ;

7∑
i=5

Ki |2〉〈2|K†i =
ατ(4)

3p2

2∑
i=0

qi |i〉〈i| .

Thus we see that
∑7
i=0Ki |ψ〉〈ψ|K†i = |φ〉〈φ|. Moreover,

7∑
i=0

K†iKi =


(
∑4
i=1 ~ri)0

p0
0 0

0
(
∑4
i=1 ~ri)1

p1
0

0 0
(
∑4
i=1 ~ri)2

p2


= I3.
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Furthermore,

Φp(|i〉〈i|) =

7∑
a=0

Ka |i〉〈i|K†a =
1

pi

2∑
j=0

qjRi,j |j〉〈j| .

Since the operation Φp has a similar structure as the one ap-
pearing in the Theorem 4, we conclude that Φp is a RPPO.
This finishes the proof of the example.

Appendix D: Thermodynamical interpretation of the relative
passivity relation

In this Appendix, we provide a thermodynamical interpre-
tation of the relative passivity relation (i.e., the fact that a
passive state is virtually cooler than another passive state)
in the context of a quantum refrigerator. Consider a passive
state ρ(~r). With above definitions, we can consider a virtual
qubit corresponding to levels (0, d − 1) and the correspond-
ing virtual temperature βv , defined via r0/rd−1 = eβvEv with
Ev = ∆Ed−1,0, is given by

βv =
1

Ev

d−2∑
i=0

βi,i+1∆Ei+1,i. (D1)

The virtual qubit can be characterized by two parameters,
namely, the normalization Pv := r0 + rd−1 and the bias
Bv := (r0 − rd−1)/Pv = tanh(βvEv/2). Thus Bv → 1
implies βv → ∞ or vanishing of the virtual temperature.
Now consider an external qubit, with a Hamiltonian Hext =
f0 |u0〉〈u0| + f1 |u1〉〈u1|, in a state ρext = u0 |u0〉〈u0| +
u1 |u1〉〈u1|, where (u0, u1) ≥ 0, u0 + u1 = 1, and the en-
ergy gap is equal to 0 ≤ f1 − f0 = Ev . The bias Bext of the
external qubit is given by u0 − u1 and normalization is one.
If we apply an energy conserving swap on the external qubit
and the virtual qubit, then the final bias of the external qubit
becomes Bfin = PvBv + (1 − Pv)Bext (see Ref. [53] for an
easy proof). The desired final bias is Bfin → 1 in case we
want to cool the external system.

A similar analysis can be done starting from another passive
state σ(~p) and in this case, the final bias of the external qubit
becomes B̄fin = P̄vB̄v+(1−P̄v)Bext, where P̄v = p0+pd−1

and B̄v = (p0 − pd−1)/P̄v are normalization and bias of the
new virtual qubit, respectively. In the following we will prove
that if ρ(~r) is virtually cooler than σ(~p), then βv ≥ β′v . It also
implies that ρ(~r) can cool the external qubit further than σ(~p).

Proposition 12 Consider a protocol where a virtual qubit of
either ρ(~r) or σ(~p) is used to cool the external qubit. If
ρ(~r) �vc σ(~p), then Bfin ≥ B̄fin, that is, we attain a larger
bias with the virtually cooler state ρ(~r). Denoting as F and
F̄ the energy of the final state of the external qubit when using
state ρ(~r) and σ(~p), respectively, then F ≤ F̄ .

Proof. To show the first part, consider

Bfin − B̄fin = (r0 − rd−1 − p0 + pd−1)

+ (−r0 − rd−1 + p0 + pd−1)Bext

= 2(r0 − p0)u1 + 2(pd−1 − rd−1)u0

≥ 0,

where in the last line we have used (u0, u1) ≥ 0 and the fact
that ~r �h ~p, which implies r0 ≥ p0 and rd−1 ≤ pd−1. This
completes the first part of the proposition.

For the second part, notice that the final state of the external
qubit in the two cases when the virtual qubit belongs to state
ρ(~r) and σ(~p) is given by, say τ and τ̄ , respectively, where

τ =
1 +Bfin

2
|u0〉〈u0|+

1−Bfin

2
|u1〉〈u1|

τ̄ =
1 + B̄fin

2
|u0〉〈u0|+

1− B̄fin

2
|u1〉〈u1|

so that

F − F̄ =
(Bfin − B̄fin)

2
(f0 − f1) ≤ 0,

where we used the first part of the proposition and the condi-
tion that f0− f1 = −Ev ≤ 0. This completes the proof of the
proposition.

Appendix E: Extractable work under a quantum channel

In quantum processes where no entropy change of states is
involved, the extractable work is defined as the decrease in the
energy of the system. However, if we consider maximal work
extraction from an arbitrary state using RPPOs, we need to de-
fine the notion of extractable work for quantum channels. Tra-
ditionally, to describe thermodynamic work one needs some
notion of temperature. For example, in the resource theory
of thermodynamics [12–14], one considers an external bath at
some fixed temperature and then let the system interact with it
via energy conserving unitaries. In such a situation the maxi-
mal extractable work can be expressed in terms of the differ-
ence between min-free energies of the system and the bath.
The min-free energy Fmin of a system in state ρ and in the
presence of bath at inverse temperature β is given by

Fmin(ρ) := Fβ +Dmin(ρ||ρβ), (E1)

where ρβ is the thermal state of the system at inverse temper-
ature β, Fβ = E(ρβ)− β−1S(ρβ) is usual free energy of the
thermal state ρβ , and Dmin is the min-relative entropy. The
min-relative entropy is defined as

Dmin(ρ||σ) := − ln Tr [Πρσ] , (E2)

where Πρ is the projector on the support of ρ.
Now, we know that for processes that do not allow for en-

tropy change, the extractable work can be defined even in the
absence of the notion of temperature or heat bath. Therefore
it seems plausible to look for a notion of extractable work for
the CPTP maps that do allow for entropy change, even in the
absence of a heat bath. One possible way is to consider the fol-
lowing state transformation. Let ρS be the state of the system
of interest and σA(~p) be a fixed passive state of some ancilla
system. Let us consider yet another system S′, namely a work
storage device in a state |e0〉S′ , where |e0〉 is the ground state
of the Hamiltonian of the work storage device with ground
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state energy being e0. Now, consider all the transformations
of the form

Λ(ρS ⊗ |e0〉〈e0|S′)
:= TrA

[
USS′A (ρS ⊗ |e0〉〈e0|S′ ⊗ σA(~p))U†SS′A

]
, (E3)

where USS′A is an energy preserving unitary on the total sys-
tem SS′A. Then, the extractable work from ρS under the pro-
cess Λ can be defined as the change in energy ek − e0 in the
transformation ρS ⊗ |e0〉〈e0|S′

Λ−→ ηS ⊗ |ek〉〈ek|S′ . Then, the
maximization should be performed over all energy preserving
unitaries USS′A and final state ηS of the system. Although
this procedure is very general, it defines extractable work for
CPTP maps that admit a dilation over energy preserving uni-
taries. The analysis of such a notion of extractable work is
beyond the scope of the current article. Nevertheless, it raises
interesting questions, e.g., can it be shown that all RPPOs ad-
mit such a dilation? As a starting point, we provide here a
qubit example of a RPPO that admits such a dilation and dis-
cuss work extraction under this operation.

Example 3 Following the notations in the main text, let us fix
two qubit passive states σ(~p) and σ(~q) such that p0 = aq0 +
āq1, where 1/2 ≥ ā = 1 − a. Let us consider a quantum
channel Φ with Kraus operators

L1 =

√
a
q0

p0
|0〉〈0|+

√
a
q1

p1
|1〉〈1| ;

L2 =

√
ā
q0

p1
|0〉〈1| ; L3 =

√
ā
q1

p0
|1〉〈0| .

It is easy to check that
∑3
i=1 L

†
iLi = I. Moreover, for

a passive state σ(~r) that is virtually cooler than σ(~p), i.e.,
σ(~r) �vc σ(~p), we have

σ(~s) := Φ(σ(~r))

= q0

(
a
r0

p0
+ ā

r1

p1

)
|0〉〈0|+ q1

(
ā
r0

p0
+ a

r1

p1

)
|1〉〈1| ,

or equivalently

(
s0/q0

s1/q1

)
=

(
a ā
ā a

)(
r0/p0

r1/p1

)
.

Thus, Φ ∈ Lp,q . The channel Φ can be realized using energy-
preserving unitary on the system and a qutrit ancilla as fol-
lows

Φ(ρS) = TrA

[
USA (ρS ⊗ |1〉〈1|A)U†SA

]
,

where USA is an energy-preserving unitary, HS = |1〉〈1| and
HA = |1〉〈1| + 2 |2〉〈2| are the Hamiltonians of the systems
S and ancilla A, respectively. In the following, we will omit
the system and ancilla labels for brevity. The unitary USA is
defined as

USA |00〉 = |00〉 ; USA |12〉 = |12〉 ;

USA |01〉 =

√
a
q0

p0
|01〉+

√
ā
q1

p0
|10〉 ;

USA |10〉 = −
√
ā
q1

p0
|01〉+

√
a
q0

p0
|10〉 ;

USA |02〉 =

√
a
q1

p1
|02〉 −

√
ā
q0

p1
|11〉 ;

USA |11〉 =

√
ā
q0

p1
|02〉+

√
a
q1

p1
|11〉 .

Let |ψ〉S = α |0〉+ β |1〉, where |α|2 + |β|2 = 1. Then,

USA |ψ, 1〉SA =α

(√
a
q0

p0
|01〉+

√
ā
q1

p0
|10〉

)
+ β

(√
ā
q0

p1
|02〉+

√
a
q1

p1
|11〉

)
.

Now we perform energy measurement on the ancilla, and
the probabilities that the ancilla is in state |0〉, |1〉, and
|2〉 are given by |α|2āq1/p0, |α|2aq0/p0 + |β|2aq1/p1, and
|β|2āq0/p1, respectively. Then on an average energy increase
of ancilla is given by

∆EA =
|α|2aq0

p0
+
|β|2aq1

p1
+ 2
|β|2āq0

p1
− 1

=
|α|2aq0

p0
+
|β|2āq0

p1
− |α|2

= −|α|
2āq1

p0
+
|β|2āq0

p1

=
āq0

p1
− |α|2ā

(
q1

p0
+
q0

p1

)
.

∆EA can be understood as the average work extracted by the
RPPO Φ ∈ Lp,q . In particular, if α = 0, then the average
extracted work from |1〉〈1| by Φ is given by āq0

p1
≥ 0.
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