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Anomalous metallic properties are often observed in the proximity of quantum critical points
(QCPs), with violation of the Fermi Liquid paradigm. We propose a scenario where, due to the
presence of a nearby QCP, dynamical fluctuations of the order parameter with finite correlation
length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface.
This scattering produces an anomalous metallic behavior, which is extended to the lowest tem-
peratures by an increase of the damping of the fluctuations. We phenomenologically identify one
single parameter ruling this increasing damping when the temperature decreases, accounting for
both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g.,
in high-temperature superconducting cuprates and some heavy-fermion metals.

— Introduction — Landau’s Fermi Liquid (FL) the-
ory is one of the most successful paradigms in condensed
matter physics and usually describes very well the promi-
nent properties of metals even in cases when the inter-
action is strong, like, e.g., in heavy-fermions metals or
in the normal (i.e., non superfluid) phase of 3He. How-
ever, in the last decades, a wealth of systems violating
the paradigmatic behavior has been discovered. In par-
ticular, it has been noticed that in several different ma-
terials, like heavy-fermions metals [1] and iron-based su-
perconductors [2], a non-FL behavior can occur in the
proximity of quantum critical points (QCPs), i.e., near
zero-temperature second-order phase transitions, where
the uniform metallic state is unstable towards some or-
dered state. It is worth mentioning that, apart from the
paradigmatic case of the one dimensional Luttinger liq-
uid, there are also theories for the violation of the FL be-
havior that do not rely on an underlying criticality [3, 4].
In some cases, like in high-temperature superconducting
cuprates (henceforth, cuprates), the ordered state may
be unaccomplished due to disorder, low dimensionality,
and/or competition with other phases, like superconduc-
tivity. Nevertheless, the non-FL behavior is observed also
in these cases of missed quantum criticality, showing that
a mere tendency to order and the presence of abundant
order parameter fluctuations (henceforth, fluctuations)
may be sufficient to create a non-FL state. The gen-
eral underlying idea is that the fluctuations are intrinsi-
cally dynamical, with a characteristic energy m becom-
ing smaller and smaller as the correlation length ξ grows
larger and larger, when the QCP is approached. In the
paradigmatic case of a gaussian QCP in a metal, with
a dynamical critical index z = 2, the propagator of the
fluctuations with wavevector q and frequency ω is [5]

D(q, ω) =
(
m+ ν̄|q− qc|2 − ω2/Ω− iγω

)−1
, (1)

where m = ν̄ξ−2 is the mass of the fluctuations, ν̄ is
typically an electron energy scale [we work with dimen-
sionless momenta, measured in reciprocal lattice units

(r.l.u.) 2π/a], qc is the critical wave vector, and Ω is a
frequency cutoff. A crucial role in the following will be
played by the imaginary term in the denominator, which
describes the Landau damping of the fluctuations, as they
decay in particle-hole pairs. The dimensionless parame-
ter γ is usually proportional to the electron density of
states, which sets a measure of the phase space available
for the decay of the fluctuations. Clearly, in the gaussian
case, for ω = 0 and q ≈ qc one obtains the standard
Ornstein-Zernike form of the static susceptibility. The
same behavior of the fluctuations can be obtained within
a time-dependent Landau-Ginzburg approach, where γ is
the coefficient of the time derivative and the decay rate
of the fluctuations is given by τ−1

q = (m+ ν̄|q−qc|2)/γ.

Approaching the QCP, ξ grows, m decreases and the
fluctuations become softer and softer, thereby mediating
a stronger and stronger interaction between the fermion
quasiparticles (henceforth, simply quasiparticles). In two
and three dimensions the interaction could be strong
enough to destroy the FL state [6]. For ordering at finite
wavevectors, though, there is a pitfall in this scheme [7]:
due to momentum conservation, this singular low-energy
scattering only occurs between quasiparticles near points
of the Fermi surface that are connected by qc (hot spots).
All other regions are essentially unaffected by this singu-
lar scattering and most of the quasiparticles keep their
standard FL properties. As a result, for instance in trans-
port, a standard FL behavior would occur, with a T 2 FL-
like resistivity [7]. Disorder may help to blur and enlarge
the hot regions [8], but it does not completely solve the
above difficulty. Of course, this limitation does not oc-
cur in cases where qc = 0 (like, e.g, near a ferromagnetic
[9], or a circulating-current [10], or a nematic [11] QCP),
or near a local QCP (i.e., when the singular behavior
persists locally for all q) [12–15]. However, the very fact
that similar non-FL behavior also occurs near QCPs with
finite qc calls for a revision of the above scheme search-
ing for a general and robust way to account for non-FL
phases irrespective of the ordering wave vector.
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The main goal of the present work is to describe an
alternative scenario for the non-FL behavior, based on
the idea that the decay rate of the fluctuations τ−1

q be-
comes very small not only at q ≈ qc, because of a di-
verging ξ, but rather at all q’s, because of a (nearly)
diverging γ, as T goes to zero at special values of the
control parameter as, e.g., doping in cuprates. We will
adopt a phenomenological approach and will not exhibit
a microscopic mechanism inducing this growth of dissipa-
tion. However, we will explicitly show that a finite ξ and
a large γ are generic sufficient conditions to obtain the
most prominent signatures of non-FL behavior: a linear-
in-temperature (T ) resistivity (even down to very low
temperature) and a (seemingly) diverging specific heat.
For the sake of concreteness, we will consider the paradig-
matic case of cuprates, where at some specific doping
both features are observed [16, 17], having in mind that
they also commonly occur in many other systems like,
e.g. heavy fermions [1]. This suggests that our proposal
might have a broad applicability.

— Dissipation-driven strange metal behavior — The
above scenario can be achieved on the basis of three sim-
ple and related ingredients: (a) The proximity to a QCP,
bringing the fluctuations to sufficiently low energy; (b)
Some quenching mechanism preventing the full develop-
ment of criticality so that the mass m and the other pa-
rameters of the dynamical fluctuations do not vary in a
significant way with temperature; (c) Some mechanism
driving an increase of the Landau damping parameter γ.
Indeed the non-FL behavior persists down to a temper-
ature scale TFL ∼ ω0 ≡ m/γ = ν̄/(ξ2γ) = τ−1

qc
when ξ is

finite and not particularly large. In cuprates, recent reso-
nant X-ray scattering (RXS) experiments [18] show that
conditions (a) and (b) hold: the occurrence of a tem-
perature dependent narrow peak due to charge density
waves testifies the proximity to a QCP (although hidden
and not fully attained due to the competition with the
superconducting phase). The concomitant occurrence of
a broad peak witnesses for the presence of dynamical
charge density fluctuations with rather short correlation
length and broad momentum distribution. These abun-
dant charge density fluctuations are available to isotropi-
cally scatter the quasiparticles over a broad range of mo-
menta and no clear distinction can be done between hot
and cold Fermi surface regions [19]. This was the first
explicit example that a quenched criticality with a fi-
nite ordering wave vector qc can still give rise to strong
but isotropic scattering, thereby bypassing the problem
that in standard hot spot models most electrons con-
tribute with a ∼ T 2 scattering rate to transport [7]. This
shows that conditions (a) and (b) are enough to account
for a linear-in-T resistivity above TFL. Condition (c)
becomes instead mandatory because an increasing γ is
needed to extend to lower temperatures the non-FL be-
havior, accounting for the persistence of the linear re-
sistivity observed down to a few kelvins, which is the
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FIG. 1. Sketch of the shift induced by an increasing damping
parameter γ = 1 → 30 on the fluctuation spectral function
ImD in the presence (a) and in the absence (b) of a Bose
thermal distribution; (c) sketch of the effect on the resistivity
induced by the decrease of the characteristic energy ω0 ≡ m/γ
of the fluctuations responsible for the quasiparticle scattering,
with the scattering rate given by the imaginary part of the
electron self-energy, computed at second order in the cou-
pling g between electron quasiparticles and fluctuations. The
orange dotted line represents the Planckian limit (linearity
down to T = 0), corresponding to a divergent γ.

so-called Planckian behavior [16], as well as a seemingly
diverging specific heat [17] (see below).

To address this issue, we investigate the effects of an
increasing γ on the fluctuations, that provide both a scat-
tering mechanism for resistivity and low-energy excita-
tions for the specific heat. We consider the spectral den-
sity of the fluctuations [20–23]

ImD(q, ω) =
γω(

m+ ν̄|q− qc|2 − ω2/Ω
)2

+ γ2ω2
,

which, for q = qc, is maximum at ω ≈ ω0 ≡ m/γ. For
large γ (whatever the reason), ω0 is much smaller than m
and sets the characteristic energy scale of the dynamical
fluctuations. As mentioned above, a large γ suppresses
the energy scales associated with τ−1

q at all q’s.
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FIG. 2. Resistivity calculations for a Nd-La2−xSrxCuO4

sample with x = 0.24 (black solid line) and for a Eu-
La2−xSrxCuO4 sample with 0.24 (black dashed line). The
symbols refer to the corresponding experimental data ex-
tracted from Ref. 17: black filled circles for Nd-La2−xSrxCuO4

and empty black squares for Eu-La2−xSrxCuO4. For the
fitting we used a quasiparticle-charge fluctuations coupling
and the elastic scattering rate due to quenched disorder
g2 = 0.0351 and Γ0 = 13.4 meV for Nd-La2−xSrxCuO4 and
g2 = 0.0398 and Γ0 = 12.3 meV for Eu-La2−xSrxCuO4.

Fig. 1 (a) and (b) display this shift to lower frequencies
of b(ω) ImD(ω) and ImD(ω) when γ increases [b(ω) =
(eω/T−1)−1 being the Bose function]. Panel (c) schemat-
ically shows the corresponding extension of the linear re-
sistivity down to lower and lower temperatures. Indeed,
although the collective fluctuations obey the Bose statis-
tics, at any temperature T > ω0 they acquire a semi-
classical character and their thermal Bose distribution
becomes linear in T , b(ω) ≈ T/ω. Notice that this is
the usual situation for phonons when T is above their
Debye temperature. The only difference here is that
a small/moderate m (due to the proximity to a QCP)
and the large γ conspire to render the Debye scale of
the fluctuations particularly small or even vanishing if γ
may diverge, while m stays finite. Notice also that the
integrated weight of the thermally excited fluctuations,∫
dω b(ω) ImD(ω), depends only very weakly on γ.

— Resistivity in cuprates — In Fig. 2 we report
our calculation and the experimental data for Nd-
La2−xSrxCuO4 samples with x = 0.22, 0.24 (data ex-
tracted from Ref. 17). We calculate the resistivity by
solving the Boltzmann equation, where the scattering
rate was obtained from the imaginary part of the electron
self-energy, computed at second order in the coupling g
between electron quasiparticles and charge density fluc-
tuations of the form given by Eq. (1).

This calculation follows closely the approach used in
Ref. 19 for the fermionic tight-binding dispersion, the cal-
culation of the electron scattering rate, and the solution

of the Boltzmann equation. Regarding the parameters of
the fluctuations, these were extracted from RXS experi-
ments on a NdBa2Cu3O7−y sample, consistently leading
to a deviation from linearity below TFL ≈ 100 K in agree-
ment with the resistivity data. Here, we consider the
case of Nd-La2−xSrxCuO4, where resistivity under strong
magnetic fields is linear down to T ≈ 5 K. Unfortunately,
although RXS experiments recently confirmed also for
these cuprates the presence of charge density fluctua-
tions with broad momentum distribution [24], detailed
data are not available to extract their parameters. This
is why we assume here that the parameters fitted from
RXS data in NdBa2Cu3O7−y are still reasonable esti-
mates for Nd-La2−xSrxCuO4 and we therefore use similar
values: m = 10 meV, ν̄ = 103 meV, Ω̄ = 30 meV. These
values correspond to a rather short coherence length of
few lattice spacings ξ−1 =

√
m/ν̄ ≈ 0.1 r.l.u.). We re-

iterate here that such a short coherence length of the
charge density fluctuations is a crucial feature to obtain
a nearly isotropic scattering over the Fermi surface, so
that all quasiparticles are nearly equally scattered and
their FL properties are uniformly spoiled. As far as the
dissipation parameter is concerned, we adopt here a phe-
nomenological form for the damping parameter

γ(p, T ) = [A/ [C + log (1 + T0/T )] +B|p− pc|]−1
. (2)

This form (with the parameters A, B, C, and T0 be-
ing adjusted by consistently fitting resistivity and spe-
cific heat data, see below), corresponds to the idea
of a damping which increases by decreasing the tem-
perature and is maximal at some critical doping pc.
The high-temperature limiting value is ruled by sub-
leading temperature dependences of the fitting param-
eters. Since these are not constrained when fitting the
low-temperature data, we do not address this issue in the
present work. Eq. (2) implies an anomalous-dissipative
QCP, with a diverging γ at T = 0 and p = pc. This lat-
ter assumption translates into the idea that the Planck-
ian behavior may extend down to T = 0, although this
may not be experimentally assessed. As schematized in
Fig. 1(c), an increasingly larger γ extends the linear resis-
tivity to lower and lower temperatures. By consistently
fitting the resistivity and specific heat data (see below)
we determine the parameters T0 = 200 K, pc = 0.235,
A = 0.12, B = 1.28, C = 3.4 for Nd-La2−xSrxCuO4, and
T0 = 120 K, pc = 0.232, A = 0.27, B = 5.97, C = 1.1
for Eu-La2−xSrxCuO4. We find that the linear resistivity
extends down to a few kelvins (black curves and data in
Fig. 2).

— Specific heat in cuprates — The phenomenological
assumption of a large γ, should be validated by investi-
gating its effect on other observables. In particular, since
we claim that the main physical effect of a large damping
is to shift the fluctuation spectral weight to lower ener-
gies, it is natural to expect a strong enhancement of the
low-temperature specific heat. This is precisely what has
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FIG. 3. Temperature dependence of the low-temperature specific heat per unit cell (u.c.) over temperature in Nd-La2−xSrxCuO4

samples with doping p = 0.24 (black solid line and circles), p = 0.22 (red solid line and diamonds), p = 0.20 (green solid line
and squares) in linear (a) and semilogarithmic (b) scales (the theoretical curves have been rescaled by an overall factor 6.9,
while keeping the relative weight at different doping and temperatures fixed). (c) Doping dependence of the low-temperature
CV /T in Nd-La2−xSrxCuO4 samples at different temperatures T = 0.5, 2.0, 10.0 K. Both experimental and theoretical data
are rescaled in order to have the maximum of the theoretical calculation at T = 0.5 K normalised to one. The experimental
data taken from Ref. 17 are represented by symbols, while the lines report our theoretical calculations.

been recently observed in other overdoped cuprates [17].
Here we subtract from the observed specific heat the con-
tribution of fermion quasiparticles. Despite the presence
of a van Hove singularity, disorder, interplane coupling
and electron-electron interactions smoothen this contri-
bution. Thus fermion quasiparticles cannot account for
the observed seemingly divergent specific heat.

We argue instead that an enhancement of the bo-
son contribution to the specific heat occurs if γ obeys
Eq. (2). We start from the contribution of damped
charge density fluctuations to free energy density fB =
T
V

∑
Ω`

∑
q log

[
D−1(q,Ω`)

]
, where D is the Matsubara

propagator obtained after standard analytical continua-
tion of Eq. (1), ω → iΩ` = 2πi`T . Hence, we obtain
the contribution of damped charge density fluctuations
to the internal energy density uB and to the specific heat

CBV =
∂uB
∂T

=
∂

∂T

[∫ ∞
0

dω ω b(ω) ρB(ω)

]
(3)

where

ρB(ω) =
γ

π2ν̄
log

(
1 +W 2

+

1 +W 2
−

)
+

+
4ω

π2ν̄γΩ
(arctanW+ − arctanW−) ,

with W− = m0

γω −
ω
γΩ

and W+ = W− + πν̄
γω , plays the role

of an effective spectral density. Fig. 3 shows that the en-
hancement of γ(T, p) leading to a Planckian behavior in
the low-T resistivity, also induces a peak in the specific
heat, due to the increase of low-energy boson degrees of
freedom. Noticeably, the relative weight (height) of CBV
at the various temperatures is well captured by our ap-
proach. In particular, this feature is mostly ruled by the
Bose distribution function in Eq. (3) and depends only lit-
tle on the specific expression of γ(T, p), provided enough
spectral density is brought to frequencies ω . T with
increasing γ. We also notice that the logarithmic tem-
perature dependence of γ mirrors in a nearly logarithmic
behavior of CV /T [see Fig. 3 (a)].

— Discussion — The above analysis shows that two
nontrivial features of the strange-metal behavior occur-
ring near QCPs can be attributed to, and accounted
for by, the damping parameter γ only. We still lack a
microscopic scheme to determine the doping and tem-
perature dependence of γ, and, within the scope of the
present work, we rely on the phenomenological expres-
sion of Eq. (2). Therefore also the T log(T0/T ) behavior
of the specific heat at pc is only phenomenologically cap-
tured by our theory. Nevertheless, we point out that our
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approach outlines a general paradigmatic change, shift-
ing the relevance from the divergence of the correlation
length ξ to the increase (possibly divergence) of dissipa-
tion. This is precisely what renders our scheme different
from the proposal of a local QCP put forward long ago
in Ref. 12. In this latter case the critical behavior of the
imaginary part (i.e., damping) of the self-energy of the
critical fluctuations, is sublinear iγ0ω

1−α, which some-
how rephrases our condition of an increasing damping at
low energy scales by taking i(γ0/ω)αω (i.e., γ ∼ γ0/ω

α),
because of a diverging ξ. From our Eq. (2) one can see
that the assumption that at p = pc the scaling index in T
for γ is zero, i.e., logarithmically divergent, suggest that
α→ 0 and the challenge is to obtain this result without
ξ →∞.

After momentum integration, a similar frequency de-
pendence characterises the singular dynamical interac-
tion between quasiparticles mediated by the critical col-
lective boson, in Ref. 25, where a complete analysis of
the complementary problem of the competition between
pairing and non-FL metal at a QCP is reported.

Of course, other, even more mundane, mechanisms
might boost the increase of γ. In cuprates, for instance,
pc occurs at or very near a van Hove singularity, which
enhances the density of states of fermions, thereby in-
creasing the Landau damping γ of the fluctuations. Also
the proximity to charge ordering might induce the re-
construction of the Fermi surface [26], thereby triggering
an enhanced damping of the charge density fluctuations.
All these are mechanisms worth being explored in the at-
tempt to shape a microscopic theory for a damping-ruled
violation of the FL behavior.
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