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Abstract

Random matrix models provide a phenomenological description of a vast variety of physical

phenomena. Prominent examples include the eigenvalue statistics of quantum (chaotic) systems,

which are characterized by the spectral form factor (SFF). Here, we calculate the SFF of unitary

matrix ensembles of infinite order with the weight function satisfying the assumptions of Szegö’s

limit theorem. We then consider a parameter-dependent critical ensemble which has intermedi-

ate statistics characteristic of ergodic-to-nonergodic transitions such as the Anderson localization

transition. This same ensemble is the matrix model of UpNq Chern-Simons theory on S3, and

the SFF of this ensemble is proportional to the HOMFLY invariant of p2n, 2q-torus links with one

component in the fundamental and one in the antifundamental representation. This is one example

of a large class of ensembles with intermediate statistics arising from topological field and string

theories. Indeed, the absence of a local order parameter suggests that it is natural to characterize

ergodic-to-nonergodic transitions using topological tools, such as we have done here.
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1 Introduction

1.1 Random Matrix Theory in disordered and complex systems: brief
overview

The idea of Wigner [1] to describe complex physical systems by treating its Hamiltonian matrix as
random has found since then a wide variety of applications. One of the main interests and challenges
of modern theoretical physics to which random matrix theory has been very successfully applied is the
description of interacting many-particle systems subject to a certain degree of randomness. Physically,
this randomness is often caused by a true physical disorder, originating for instance from irregularities
in a crystal lattice or by the presence of impurities. One can also have auxiliary phenomenological
randomness representing the fact that the interactions in the system are too complicated to be described
in microscopic detail, which is the case, for instance, for heavy nuclei. Further, quantum noise induced
when a system is in contact with an external bath is a source of a temporal randomness. Random
matrix theory (RMT) allows one to deal with such problems on a phenomenological level. This theory
cannot answer questions about the microscopic details of a system, but it focuses instead on universal
relations and scaling properties of relevant quantities. Indeed, one of the main results of RMT is the
existence of universality classes (see [2] for survey), in which the symmetry of the system determines
the class and, consequently, the statistical properties of the energy spectrum.

RMT models disordered and/or complicated Hamiltonians as matrices with random elements dis-
tributed according to a certain probability. Certain general physical symmetries (like time-reversal
symmetry) provide restrictions on how the matrix elements are correlated. This leads to a different
classes of random matrices [3], see the classic book by Mehta [4] and a contemporary overview of RMT
by Forrester [5]. Here, we will consider ensembles of Hermitian or unitary matrices, in particular,
their eigenvalue statistics. A prominent RME is the GUE, which is an ensemble of Hermitian random
matrices H with Gaussian weight function. This entails that its eigenvalues are distributed according
to a UpNq-invariant Gaussian probability distribution P pHq „ expr´αTrV pHqs, where V pHq “ H2

and α is a real positive parameter. Other classes correspond to ensembles of real symmetric matrices,
with the probability measure being invariant under orthogonal transformations, or self-dual Hermitian
matrices with probability distribution invariant under symplectic transformations, known as GOE and
GSE, respectively [4]. Another notable generalization is the notion of circular Random matrix En-
semble (RME), where the eigenvalues are distributed across the complex unit circle instead of the real
line. The circular analogues of GOE, GUE, and GSE are known as COE, CUE, and CSE, respectively.
We will only be considering unitary ensembes here. Further, although many properties are common to
the Gaussian and circular ensembles, certain objects are easier to calculate in the circular case, which
is why these ensembles are the focus of this paper.

For typical systems, which obey a so-called Eigenstate Thermalization Hypothesis (see [6], [7] for
a recent review), almost every energy level contains “seeds" of thermal behavior (even for isolated
systems) leading to the chaotic nature of the RMT statistics. Therefore, quantum states belonging
to this type are called ergodic. In disordered systems, the delocalized or chaotic phase is described
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by Wigner-Dyson statistics, in which case the level spacing distribution is given by ppsq „ sβeaβs
2

,
where s is the difference between consecutive energy levels, β “ 1, 2, 4 for the unitary, orthogonal and
symplectic cases respectively and aβ is a constant. As the strength of randomness increases, there can
occur a transition to the situation where states of a system are localized in some basis. This could be
a basis of states relevant for the description of localization in real space (Anderson localization) or in
the Hilbert space (many-body localization). Deep inside a localized phase, the behavior of the system
is nonergodic and the RMT level’s statistics follows a Poisson distribution, ppsq „ e´s. This type
of statistics is usually found in quantum integrable systems, where a sufficient number of conserved
charges significantly constrains the dynamics.

1.2 Intermediate statistics and corresponding RMT approaches

Quantum systems whose classical counterparts are somewhere in between ordered and chaotic have
spectral statistics that exhibit a mixture of Wigner-Dyson and Poissonian features, which we will
refer to as intermediate statistics. An important example of such a system is given by disordered
conductors, where increasing the disorder strength leads to greater deviation from Wigner-Dyson
universality. At the point of transition between extended and localized regimes the wave functions
are multifractal [8], which entails that intersecting the wave function at various amplitudes gives
a set of varying fractal dimensions depending on the amplitude. A natural question occurs: is it
possible to unveil some universality, perhaps based on RMT, for the ergodic-to-nonergodic transition
itself for a broad range of systems? Some works in the literature hint at this possibility. There were
several proposals in this directions [9], [10], [11], [12], [13], [14], [15], [16]. Since Anderson transition
occurs in real space, the RME symmetry should be broken in some way: this is a general feature
required for the RMT to describe the transition. One obvious class of RMT’s should therefore has a
manifestly broken symmetry. A notable example of these theories are the banded, non-invariant RMT’s
[8]. The probability distribution P pHq „ expp´

ř

i,j |Hij |
2{Aijq is defined by the variance matrix

Aij „ r1 ` pi ´ jq2{B2s´1, which is clearly non-invariant with respect to the unitary transformations
of the form H Ñ UHU :. It was explicitly demonstrated that this ensembles describes an intermediate
statistics and the multifractal wave functions [17].

However, one can also have intermediate statistics in ensembles where the symmetry is not explic-
itly broken, i.e. for which the measure is invariant with respect to the transformations from the
corresponding group. We focus on these ensembles here. Generically speaking, one can classify en-
sembles according to the asymptotic behaviour of the confining potential. Let us consider a power-law
asymptotic scaling, V phq „ |h|α for |h| " 1 . If the exponent α satisfies α ą 1, we talk about steep
confinement. When on the other hand α ă 1, we deal with a weakly confined Random Matrix Ensem-
ble. A particular weakly confined RME may be obtained from the generic one by a limiting procedure.
Consider a potential of the form Vαphq “ γ´1h´2p|h|α´1q2 for large |h|. In the limit αÑ 0 at fixed h,
we find the following confining potential

V pHq “
1

γ
log2 H, |H| " 1 , (1)
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which shall be called log-Gaussian critical RME (or a log2-RME) [18]. It was realized that several
classes of invariant RMT’s, such as (1) exhibit intermediate statistics in terms of eigenvalues and
multifractal behavior in terms of statistics of its eigenfunctions. Remarkably, both the spectral statistics
and eigenvector multifractality at the mobility edge were found to match the matrix ensemble prediction
at the exact same value of q [19]. This behavior is somehow reminiscent of the spontaneous symmetry
breaking conjectured in [19], [20].

The intermediate RME exists in a ‘circular’ guise, i.e. where the matrices under consideration are
unitary instead of Hermitian, so that its eigenvalues lie on the complex unit circle. In this case, the
potential is given by

V pxq “ log

«

8
ź

j“1

p1` qj´1{2xqp1` qj´1{2z´1q

ff

, (2)

which, upon exponentiating, is proportional to the third Jacobi theta function. Again, due to the fact
that certain expressions are more tractable in the circular case, we focus on this representation.

1.3 Connection to topological field and string theories

The intermediate RME described above was also found in a completely different context, namely,
as a matrix model of UpNq Chern-Simons theory S3 [21]. Chern-Simons is a topological theory,
indeed, Witten famously showed that its Wilson line expectation values are given by knot- and link
invariants [22]. We suspect that it is not a coincidence that the matrix model of a topological theory
has intermediate statistics characteristics of ergodic-to-nonergodic transitions. Indeed, the absence of
a natural local order parameter in ergodic-to-nonergodic transitions suggest that it is natural to use
topological tools for its characterization.

There is, in fact, a relation between strongly Anderson-localized systems and noninteracting topological
states [23]. One of the most notable features of topological states of matter is the existence of propa-
gating edge states, which are robust with respect to the application of arbitrarily strong perturbations
at the boundary that break translational symmetry (e.g. disorder). The existence of extended, gapless
degrees of freedom in strongly random fermionic systems is unusual, because of the phenomenon of
Anderson localization. Thus, the degrees of freedom at the boundary of topological insulators (super-
conductors) must be of a very special kind, in that they entirely evade the phenomenon of Anderson
localization. The problem of classifying all noninteracting topological insulators in d spatial bulk di-
mensions is equivalent to a classification problem of Anderson localization at the pd´ 1q-dimensional
boundary. Therefore a 10-fold classification scheme of noninteracting topological insulators [24] is
equivalent to the Altland-Zirnbauer classification of (noninteracting) Anderson insulators [25]. This
correspondence however does not describe transition from ergodic to nonergodic phases. This begs the
question: can the nonergodic phases and ergodic-to-nonergodic phase transitions be generally related
to certain interacting topological states of matter?
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Indeed, UpNq Chern-Simons theory is such an interacting topological system which describes ergodic-
to-nonergodic transitions. We conjecture that it is representative of a broader correspondence, and
that the appropriate tools for the description of ergodic-to-nonergodic transitions are available in the
topological part of the string theory. This provides a potential new bridge (apart from AdS/CMT
duality) between string theory and quantum many-body theory, from which a fruitful exchange of
ideas can arise. This is the main motivation of the present work.

To further substantiate our conjecture, we note that close inspection of matrix model potentials which
appeared in the context of topological strings (see e.g. [26], [27], [28]) shows that all of them belong
to the class of weak confinement potentials, as far as the authors are aware. As described above, weak
confinement is a signature of intermediate statistics. On the other hand, it appears that many, if
not all, of the known intermediate invariant one-matrix models that appeared in the condensed matter
literature and which exhibit a multifractal spectrum are described by some of the variants of topological
string theory. In the simplest case of the Chern-Simons matrix model, the connection to string theory
arises from the finding due to Witten [29] that a UpNq Chern-Simons theory on S3 describes open
topological strings on the co-tangent space T˚S3, in the presence of N D-branes wrapping S3. Later,
Gopakumar and Vafa [30], [31] found that these models correspond to closed topological strings on
other spaces, called conifolds. This correspondence was named geometrical transition between a so-
called A and B models and is one of the manifestations of the gauge-gravity duality (see [32] for an
extensive review). In the N Ñ 8 limit, which we focus on here, UpNq Chern-Simons theory on S3

undergoes a so-called crystal melting transition [33], which is related to topological strings on certain
Calabi-Yau manifolds [34]. We conjecture that matrix models with a similar origin in topological string
theory, such as those of UpNq Chern-Simons theories on general lens spaces or or ABJM theory, also
exhibit intermediate statistics.

1.4 Summary of main results

To clarify the connection between intermediate RME and topological string theory, we calculate the
asymptotic SFF for the Chern-Simons matrix model. The SFF is one of the central objects in RMT,
it has clear features which differentiate between ergodic and nonergodic behaviors. While our original
motivation was the intermediate Chern-Simons matrix model mentioned above, the techniques we apply
have far broader applicability. In particular, they can be applied to any matrix model with unitary
matrices of infinite order and weight function satisfying the assumptions of Szegö’s limit theorem [35].
For this reason, we treat both the general and the specific cases, so that certain sections may be
skipped depending on the particular interests of the reader.

• Spectral Form Factor

To calculate the SFF, we express it as a sum over weighted unitary integrals with the in-
sertion of Schur polynomials. These integrals take the form of certain Toeplitz minors [36],
[37], [38], [39]. We assume we can write the weight function as fpzq “ Epx; zqEpx; z´1q or
fpzq “ Hpx; zqHpx; z´1q, where Epx; zq pHpx; zqq is the generating function of elementary (ho-
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mogeneous) symmetric polynomials defined in terms of a set of variables x “ px1, x2, . . . q. We
find that the SFF is then given by

1

N

@

|trUn|2
D

“

#

N´1
“

n` pnpxq
2
‰

, n{N ď 1 ,

1 , n{N ě 1 .
(3)

where pnpxq are power sum polynomials in terms of x. SFF’s are typically characterized by
what has been termed a dip-ramp-plateau shape, see e.g. [40], [41], [42], [43]. We find that the
dip arises from the disconnected SFF, i.e. xtrUny2 “ pnpxq

2. The factor n which saturates at
n{N “ 1 gives the ramp and plateau; this contribution arises from the connected SFF.

• Trace identities

As an auxiliary result to the calculation of the SFF, it is easy to show that, for m,n P Z`,

@

trUmtrU´n
D

“ mδmn ` xtrUmy
@

trU´n
D

. (4)

Further, for a partition λ satisfying λ1 ` λ
t
1 ´ 1 ă n for some n P Z`, we have,

@

trλUtrU´n
D

“ xtrλUy
@

trU´n
D

. (5)

Consider instead the case where λ satisfies λ1 ` λt1 ´ 1 ă n, and define m :“ λ1 ` λt1 ´ 1 ´ n.
Then, if m ď λ1 ´ λ2 and m ď λt1 ´ λ

t
2, (5) holds as well.

• Dualities

It is easy to see that, upon replacing Epx; zq byHpx; zq, we find exactly the same SFF. Indeed, for
any set of variables x for which ppnpxqq2 gives the same value for all n, fpzq “ Epx; zqEpx; z´1q

and f “ Hpx; zqHpx; z´1q gives the same SFF. We suspect that this is an example of a larger
class of dualities between various intermediate RME’s.

• Application to Chern-Simons RME

We apply these results to the matrix model with weight function given by the third Jacobi theta
function,

fpzq “
ÿ

nPZ

qn
2
{2zn “ pq; qq8

8
ź

k“1

p1` qk´1{2zqp1` qk´1{2z´1q , 0 ă |q| ă 1 . (6)

This is the matrix model described above, which was introduced in [13] as a phenomenological
model of intermediate statistics, and in [44] as a matrix model of UpNq Chern-Simons theory on
S3. In the latter context, the SFF is given by a topological invariant, specifically, the HOMFLY
invariant [45], of p2n, 2q-torus links with one component in the fundamental and the other in the
antifundamental representation. As far as the authors are aware, these invariants have heretofore
not appeared in the literature. As for all matrix models considered here, the SFF is given by
a linear ramp which saturates at a plateau, plus a disconnected contribution. Since the SFF
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corresponds to a p2n, 2q-torus link, it follows that the disconnected contribution is the product of
two pn, 1q-torus knots. Calculating the invariant of an pn, 1q-torus knots for general N , we find
that it is given by the qn-deformation of N , which simplifies even further upon implementing the
limit N Ñ8. We thus find the following expression for the SFF

1

N

@

|trUn|2
D

“

#

N´1
“

n` pq´n{2 ´ qn{2q´2
‰

, n{N ď 1 ,

1 , n{N ě 1 .
(7)

We plot this below for q “ 0.9k, k “ 1, . . . , 9, where we add lines at x ` pqx ` q´x ´ 2q´1 for
continuous x as a guide to the eye. The trace identities in (4) and (5) of course apply to the
Chern-Simons matrix model as well, where the latter entails that one can ‘unlink’ an pn, 1q-torus
knot in the fundamental representation and an unknot in representation λ.

Figure 1: The SFF given in (104) plotted for n “ 1, 2, . . . , 20, with q “ 0, 9k , k “ 1 . . . , 9. The
continuous lines are added to guide the eye. For q farther from 0, the disconnected contribution
becomes larger, so that the dip is more pronounced and the SFF displays greater deviations from a
simple linear ramp. There are dashed lines which indicate kn = constant, in particular kn “ 1, . . . , 9.
From (91), it follows that lines with kn = constant lie at 45 degrees for any SFF calculated here, i.e.
any SFF given by (89). Note that these SFF’s saturate at a plateau at n{N “ 1, which is, of course,
not indicated in this plot.

1.5 Outline of the paper

This paper organized as follows. In section 2, we set up the general framework of random matrix
ensembles and introduce important objects, including the SFF. In section 3, we treat UpNq Chern-
Simons theory on S3 and its expression as a matrix model, after which we consider the expression of
knot and link invariants as matrix integrals. In section 4, we review the computation of such matrix
integrals using their expression in terms of Toeplitz minors. These Toeplitz minors, in turn, are given
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by symmetric polynomials in terms of variables determined by the weight function. We then express
the assumptions of Szegö’s theorem as requirements on these symmetric polynomials, in particular the
power sum polynomials. Further, we find in this section that, although the expression in this work are
generally valid for N Ñ8, in certain cases they are valid for finite N as well.

In section 5, we set out to compute the SFF using the techniques outlined in the previous sections.
Using fundamental relations in the theory of symmetric polynomials, we derive the results for general
weight function outlined in the previous subsection. The specific case of the SFF of the Chern-
Simons matrix model is worked out in section 5.2. We then consider the broader implications of these
calculations in the concluding remarks. In the appendices, the reader can find more details about
q-deformations and symmetric polynomials, with special attention given to Schur polynomials.

2 Random matrix theory

We will consider random matrix ensembles, which have partition functions in the form of a matrix
integral,

ż

dMP pMq . (8)

Here, P pMq is the probability density function associated to M . Consider first the case where the
matrices M are Hermitian, so that they can be diagonalized by a unitary transformation. Integrating
over UpNq leads to an eigenvalue expression of the form [4]

Z “ CN

ż N
ź

i“1

dxi
2π

fpxiq
ź

iăj

pxi ´ xjq
2 , (9)

where CN is some multiplicative constant and fpxq is called the weight function. Choosing

P pMq9 expp´αtrM2q , (10)

where α is some positive numerical constant, leads to the familiar Gaussian unitary ensemble (GUE)
with weight function fpxq “ expp´αx2q. This ensemble is characterized by fully extended eigenvectors
and strong eigenvalue repulsion, which we will collectively refer to as Wigner-Dyson statistics. It
was conjectured in the 1980’s [46], [47], [48] that the eigenvalues of quantum systems whose classical
counterpart is chaotic exhibit Wigner-Dyson statistics (after an unfolding procedure, which is to say, a
rescaling of the energies such that the average inter-energy spacing equals unity). This conjecture has
been so extensively corroborated that Wigner-Dyson statistics are nowadays seen almost as a definition
of quantum chaos.

We will also consider ensembles whose elements are themselves unitary matrices. Historically, the
first example of such an ensemble is the CUE introduced by Dyson [3], which is mentioned in the
introduction. Being unitary, the eigenvalues of these matrices are distributed across the complex unit
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circle. Such unitary ensembles have a partition function of the form

Z “ C̃N

ż N
ź

i“1

dφi
2π

fpφiq
ź

iăj

|e´iφi ´ e´iφj |2 (11)

where we denote the matrices under consideration by U . For fpxiq=constant, (11) reduces to Dyson’s
circular unitary ensemble (CUE). in the limit N Ñ 8, the CUE and GUE exhibit the same bulk
statistics after unfolding, i.e. the CUE also described systems whose classical counterpart is chaotic
[4], [49].

While the Wigner-Dyson ensembles described above provide excellent phenomenological descriptions of
quantum chaotic systems, they naturally fail to describe systems with intermediate spectral statistics.
An example of such a system consists of disordered electrons at the mobility edge of the Anderson
localization transition [50], [8]. Muttalib and collaborators introduced a family of random matrix
ensembles [13] depending on some parameter 0 ď q ď 1. This matrix ensemble appears in two guises,
analogous to GUE and CUE. In case the matrices under consideration are Hermitian, the weight
function is of the following “log-squared” form

fpxq 9 exp

ˆ

´
1

2gs
log2 x

˙

, |x| " 1 . (12)

In the expression above, we define q “: e´gs , where gs is the string coupling constant in the mani-
festation of Chern-Simons theory as a topological string theory on the cotangent space. The domain
of fpxq in (12) is the positive real line. In case the matrices we consider are themselves unitary, the
weight function is given by

fpeiφq “ Θ3pe
iφ; qq “

ÿ

n

qn
2
{2einφ . (13)

That is, the weight function is given by Jacobi’s third theta function, which is defined on the complex
unit circle.

2.1 Density of states and spectral form factor

An important object in random matrix theory is the density of states, given by

ρpφq “
1

N

N
ÿ

i“1

δpφ´ φiq “
1

2πN

N
ÿ

i“1

ÿ

nPZ

einpφ´φiq “
1

2πN

ÿ

nPZ

trUneinφ , (14)

where we used the fact that

trUn “
N
ÿ

i“1

e´inφi . (15)

The density of states, averaged over the matrix ensemble, gives the probability of finding an eigenvalue
at φ. From these level densities, we can construct the n-point density correlation functions for n “ 2, . . .

and various related quantities. An important example thereof which is often used to characterize the
eigenvalue statistics of various ensembles is the SFF, which is the Fourier transform of the two-point
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level density correlation function [4]. The two-point correlation function is given by,

xρpθqρpφqy “
1

N2

ÿ

k,lPZ

xtrUktrU lyeikθ`ilφ ´ 1 . (16)

The SFF is then defined as the expansion coefficients of einpθ´φq, n P Z`, rescaled by a factor N , [4],
[49],

Kpnq “
1

N
x|trUn|2y . (17)

The choice of normalization is made so that the CUE SFF saturates at unity. For future convenience,
we also define the connected part of the SFF

Kpnqc “ Kpnq ´
1

N
xtrUny2 ‘. (18)

For the CUE and GUE, the SFF is characterized by a linear ramp which saturates at n “ N . For
intermediate statistics, Kpnq displays deviations from this behavior, which can be seen in figure 1 and
which will be further detailed below.

3 Chern-Simons matrix model and knot/link invariants

3.1 Knot operator formalism

We review the construction of Chern-Simons partition functions and knot invariants using Heegaard
splitting [22] and knot operators [51]. Heegaard splitting provides a way to calculate the Chern-Simons
partition functions of certain three-manifolds, which we denote by M . We construct M by taking two
separate three-manifolds M1 and M2 which share a common boundary Σ, i.e. BM1 » Σ » BM2. M is
then constructed by acting on the common boundary Σ with some homeomorphism f and then gluing
M1 and M2 together, which we write as

M “M1

ď

f

M2 . (19)

In this construction, we take the boundaries of M1 and M2 to have opposite orientation, so that M
is a closed manifold. Writing the Hilbert space of Σ as HpΣq and its conjugate as H˚pΣq, performing
the path integral over M1 gives a state |ΨM1

y P HpΣq, whereas performing the path integral over M2

to find a state xΨM2
| in the conjugate Hilbert space H˚pΣq due to the fact that the boundaries of M1

and M2 have opposite orientation. The homeomorphism f induces a map Uf on HpΣq whose action
we denote by

Uf : HpΣq Ñ HpΣq . (20)

The partition function is then given by

ZpMq “ xΨM1
|Uf |ΨM2

y . (21)
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In a seminal paper [22], Witten found that HpΣq is given by the space of conformal blocks of the
corresponding Wess-Zumino-Novikov-Witten (WZNW) model on Σ at level k. In case there are no
marked points on Σ where Wilson lines are cut, i.e. if all Wilson lines can be embedded on Σ, HpΣq
is given by the characters of the WZNW model on Σ. We will be considering only the latter case.

A relatively simple example of a Heegaard splitting is given by the division of S3 into two three-balls
that share a boundary Σ “ S2. The only knot that can be embedded on S2 is the unknot, which is the
trivial example of an unknotted circle. We therefore do not consider this example any further. Let us
instead consider the case where M1 and M2 are given by solid tori S1 ˆD2 which share a boundary
torus BM1 “ S1 ˆ S1 “ BM2. The manifolds which can be constructed via such a Heegaard spltting
on a torus are known as lens spaces [52]. The simplest example of a lens space is found by taking f
to be the identity map. In this case, we glue the two copies of D2 along their boundaries to form S2,
so that the resulting space is given by S2ˆS1. We normalize the Chern-Simons partition function for
S2 ˆ S1 to unity. Let us consider an example where we act on T 2 with a nontrivial homeomorphism.
The group of homeomorphisms of T 2 is given by SLp2;Zq, which consists of matrices of the form

˜

a b

c d

¸

, ad´ bc “ 1 , a, b, c, d P Z . (22)

SLp2;Zq is generated by the modular S and T -transformations. Representing the 1-cycles of the torus

by basis vectors

˜

1

0

¸

and

˜

0

1

¸

, the S and T -transformations can be written as

S “

˜

0 ´1

1 0

¸

, T “

˜

1 1

0 1

¸

. (23)

That is, S interchanges the 1-cycles and reverses the orientation of the torus, while T cuts open the
torus along a 1-cycles to form a cylinder, twists one end of the cylinder by 2π, and glues the two
ends of the cylinder back together. Consider the case where we glue two solid tori M1,2 along their
boundaries after acting with an S-transformation. Since S-transformations exchange the 1-cycles on
the torus, the contractible cycle of M1 is glued to the non-contractible cycle of M2 and vice versa. We
thus find a closed three-manifold with no non-contractible cycles which, from the Poincaré conjecture,
is homeomorphic to S3.

The construction of torus knots is analogous to the construction of lens spaces in the sense that, if
we insert a Wilson line corresponding to an unknot on the boundary torus, we can act with arbitrary
SLp2;Zq transformation on the torus which turns the unknot into a non-trivial torus knot. Let us
denote the torus knot operators, to be defined more precisely below, by Wpp,qq

λ , where λ labels the
irreducible representation of the Wilson line and p and q are integers which count the winding of
the knot around non-contractible and contractible cycle of the torus, respectively. Note that p and
q are coprime for torus knots, whereas for p and q not coprime we would get a torus link, which is
a generalization of a torus knot with more than one component (i.e. more than one knotted piece of
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string). The number of components of a torus link equals the greatest common divisor of p and q.
From the definition of the S and T -transformations, it is clear that they act on torus knot as follows

S´1Wpp,qqS “Wpq,´pq ,

T´1Wpp,qqT “Wpp,q`pq .

For example, if we insert an unknot around the non-contractible cycle of the torus and act n times
with the T -transformation, we get a knot which still winds around the non-contractible cycle once but
which now also winds around the contractible cycle n times. Note that this is topologically still an
unknot; the additional winding around the contractible cycle only gives rise to a multiplicative framing
factor. Similar knots will play an important role in the comparison with random matrix theory, to be
outlined below.

It is easy to see that modular transformations map the set of torus knots into itself, as these transfor-
mations do not change the number of components. Indeed, for any pair of coprime integers pp, qq, one
can easily see that pp, q ` pq are also coprime, so that the number of components is unchanged under
modular transformations. Further, due to Bézout’s lemma [53], there is an SLp2;Zq-transformation
corresponding to any pair of coprime integers, so that we can construct any torus knot by acting on
an unknot with an SLp2;Zq-transformation.

Figure 2: Two examples of p2n, 2q-torus links. The Hopf link, on the left, is the p2, 2q-torus link. On
the right, we have the p4, 2q-torus link.

The explicit form for the knot operators mentioned above was found by Labastida, Llatas, and Ramallo
[51], using the relation to WZNW-models previously found by Witten [22]. Let us summarize the
salient points of the knot operator formalism. As mentioned above, HpΣq is given by the conformal
blocks of the corresponding WZNW-model on Σ with group G at level k. In the case of Σ “ T 2

without marked points, which we will be considering henceforth, HpΣq consists of the characters of
integrable representations of the corresponding WZNW-model. We denote the set of fundamental
weights by tviu and Weyl vector by ρ “

ř

i vi. A representation with highest weight Λ is integrable if
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p :“ ρ` Λ “
ř

i pivi is in the fundamental Weyl chamber, that is,

ÿ

i

pi ă k ` y , pi ą 0 , @ i , (24)

where y is the dual Coxeter number of G, which equals N for G “ UpNq and N ´ 1 for G “ SUpNq.
Remember that an irrep with highest weight Λ “

ř

i Λivi corresponds to a Young tableau where the
length of the ith row is given by

Λi ` Λi`1 ` ¨ ¨ ¨ ` ΛI , (25)

where I equals N in the case of UpNq and N ´ 1 in the case of SUpNq. See appendix 8.2 or e.g.
section 13.3.2 of [54] for more background information on partitions and their role in representation
theory. From now on we will take G “ UpNq so that y “ N . We will denote ket states corresponding
to p by |py, which can be chosen in such a way that they form an orthonormal basis. The vacuum
state, that is, the state without any Wilson line inserted, is given by |ρy “: |0y . If we act with a knot
operator corresponding to an unknot in representation corresponding to Λ, the result is [51]

Wp1,0q
Λ |ρy “ |ρ` Λy “ |py . (26)

The only further ingredient we need are the explicit expressions for the Hilbert space operators induced
by the modular transformations. We simply state these here, further details may be found in [51]

Tpp1 “ δp,p1e
2πiphp´c{24q ,

Spp1 “
iNpN´1q{2

NN{2

ˆ

N

k `N

˙

N´1
2 ÿ

wPW

εpwq exp

ˆ

´2πip ¨ wpp1q

k `N

˙

. (27)

In the above expressions, W is the Weyl group, εpwq is the signature of Weyl reflection w, c is the
central charge of the WZNW-model, and hp is the conformal weigth of the primary field corresponding
to p, which is given by

hp “
p2 ´ ρ2

2pk ` yq
. (28)

3.2 Chern-Simons matrix model

Let us consider how the matrix model description of Chern-Simons theory arises. As explained above,
S3 can be constructed via a Heegaard splitting along a torus on which we act with an S-transformation.
We thus find that the Chern-Simons partition function on S3 is given by

ZpS3q “ x0|S|0y “ S00 . (29)

We plug in the expression for S00 from equation (27) and use Weyl’s denominator formula,

ÿ

wPW

εpwqewppq “
ź

αą0

2 sinhpα{2q , (30)
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where α are the positive roots of UpNq. Expressing the roots of UpNq in terms of Dynkin coordinates
xi, we find

ZpS3q “
e´

gs
12NpN

2
´1q

N !

ż

dxi
2π

N
ź

i“1

e´x
2
i {2gs

ź

iăj

ˆ

2 sinh
xi ´ xj

2

˙2

. (31)

Lastly, we define a new set of variables yi :“ eNgs`xi , in which the partition function is given by [44]

ZpS3q “
e´p7N

3gs{12`N2gs{2´Ngs{24q

N !

ż 8

0

N
ź

i“1

dyi
2π

ź

iăj

pyi ´ yjq
2 exp

˜

´
1

2gs

ÿ

i

log2
py1q

¸

. (32)

Alternatively, we can use the following expression

qn
2
{2 “

ż 2π

0

dφ

2π
Θ3pe

iφ; qqeinφ (33)

where we repeat the definition of the third Jacobi Theta function

Θ3pe
iφ; qq “

ÿ

nPZ

qn
2
{2einφ . (34)

This gives

ÿ

wPW

εpwqq
1
2 pwpρq´ρq

2

“
1

|W |
ÿ

w,w1PW

εpwqεpw1qq
1
2 pwpρq´wpρ

1
qq

2

“
1

|W |

ż N
ź

i“1

dφi
2π

Θ3pe
iφi ; qq

ÿ

w,w1PW

εpwqεpw1qqipwpρq´wpρ
1
q¨θ , (35)

where we added another summation over the Weyl group in the first equality and applied (33) in the
second. Lastly, the Weyl group W is isomorphic to the symmetric group SN so that |W | “ N !. Using
the Weyl denominator formula again leads to [34][55].

Z “
1

N !

ż 2π

0

N
ź

i“1

dφi
2π

Θ3pe
iφj ; qq

ź

jăk

|eiφj ´ eiφk |2 . (36)

Note that (32) and (36) correspond precisely to the matrix ensemble introduced by [13], given in
(12) and (13), respectively. Further, using the Jacobi triple product formula, Θ3 can be written as a
specialization of Epx; zq, the generating function of the elementary symmetric polynomials. We can
also replace Epx; zq by Hpx; zq at the cost of transposing all representations involved in the calculation,
this amounts to replacing Θ3pz; qq by 1

Θ3p´z;qq
. Since the SFF is invariant under transposition of all

representations (see e.g. (78)), the calculation of the SFF done below is also valid for the case where the
weight function of of the form 1

Θ3
. Indeed, the above argument applies to any specialization i.e. to any

choice of variables xi. We will therefore use Epx; zq and Hpx; zq interchangeably in the computations
below.
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3.3 Computing torus knot and link invariants in the Chern-Simons matrix
model

We now consider knot and link invariants and their computation in the Chern-Simons matrix model.
First, we treat the multiplication properties of knot operators. If we take WK

λ to be a knot operator
corresponding to a knot K in representation λ, we can write

WK
λ WK

µ “
ÿ

ν

Nν
λµWK

ν . (37)

The coefficients Nν
λµ in (37) are the fusion coefficients of the WZNW-model. When both k and N

are much larger than any of the representations under consideration, NR
R1R2

are given by Littlewood-
Richardson coefficients. This allows us to construct the invariants of torus links. We label a torus link
by P,Q P Z, where the number of components is given by S “ gcdpP,Qq and the representations are
labelled by j P t1, . . . , Su. These links are given by [51], [56], [57]

S
ź

j“1

WP {S,Q{S
λj

“
ÿ

µ

Nµ
λ1,...,λS

WP {S,Q{S
µ , (38)

where Nµ
λ1,...,λS

are generalized Littlewood-Richardson coefficients appearing in the product of repre-
sentations λ1 b ¨ ¨ ¨ b λS .

We now outline the computation of torus knot and link invariants using the matrix model for UpNq
Chern-Simons on S3. The simplest knot, the unknot, is given by the ensemble average of the matrix
trace in the corresponding representation [58]. That is,

Wλ :“
A

Wp1,0q
λ

E

“ xtrλUy . (39)

If we diagonalize a matrix U to give diagpd1, d2, . . . , dN q, it is well known that

trλU “ sλpd1, d2, . . . , dN q “ sλpdq , (40)

where sλpdq is the Schur polynomial corresponding to representation λ in terms of variables di . The
reader can consult appendix 8.3 or the book by Macdonald [59] or Stanley [60] for more information
on Schur polynomials. In the remainder of this work, we will often write traces without specified
representations, in which case the trace is understood to be in the fundamental representation.

In general, we can assign an orientation to a knot or component of a link, which corresponds to a
continuous non-zero tangent vector along K. When we project a knot or link into the plane, we can
assign a sign ` or ´ to each crossing, as in figure 3.

16



Figure 3: After projecting a knot or link in the plane, crossings are given a sign in the way indicated
above.

We denote by λ the representation conjugate to λ. We then have [21]

trλU´1 “ trλU . (41)

in the language of knot theory, taking trλU to trλU´1 corresponds to inverting the orientation of the
component carrying representation λ. Of course, for the unknot, this does not matter, as reverting the
orientation can be compensated by a simple parity transformation. The same is true for the Hopf link,
as overcrossings can be freely changed into undercrossings. To convince oneself of this point, one can
assign an orientation to both components of the Hopf link in figure 2, and rotate one component along
an axis parallel to the projection plane whilst keeping the other component fixed. For more complicated
knots or links, such as the p4, 2q-torus link on the right hand side of figure 2, overcrossings can no longer
be turned into undercrossings and inverting the orientation of one component will generally lead to a
different expectation value.

Let us consider more complicated objects involving integer powers of U . Generally, any product of
traces of any GLpN,Cq matrix U ,

Sα “ ptrUqα1ptrU2qα2 . . . ptrUsqαs , αi P Z
` , (42)

can be expanded in characters of GLpN,Cq, denoted by χλpUq, with characters of the symmetric group
Sl as expansion coefficients, where l “

ř

i αi [61]. If U P UpNq, the characters are given by Schur
polynomials, see appendix 8.3 for more background. We then have

trUα1trUα2 . . . trUαk “
ÿ

R

χRpCp~kqqtrRU , (43)

where
ř

R is a sum over all Young tableaux with total number of boxes equal to l, and χRpCp~kqq is
the character of the symmetric group Sl in representation R evaluated at the conjugacy class of Sl
given by cycle lengths α1, α2, . . . , αk. Despite its concise notation, (77) is generally rather difficult to
compute due to the sum over partitions of l. However, in certain cases the above expression can be
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calculated. Taking U P UpNq with eigenvalues di and choosing α1 “ n and αi “ 0 for i ‰ 1, we find
[61]

trUn “
ÿ

i

dni “
ÿ

λ

χλpnqsλpUq “
n´1
ÿ

r“0

p´1qrspn´r,1rqpUq , (44)

where we used the fact that characters of the symmetric group satisfy

χλpnq “

$

&

%

p´1qr , if λ “ pn´ r, 1rq ,

0 , otherwise .
(45)

In words, (44) states that trUn is given by the sum over hook-shaped irreps with n boxes, which appear
with alternating signs. One may recognize from (44) that this is the expression of the nth power sum
polynomial in terms of Schur polynomials. For n “ 4, one can express (44) in terms of Young diagrams
as follows.

- + -

One can show [58], [62], [63] that xtrUny gives the invariant of an pn, 1q-torus knot [64], which differs
from any pn,mq-torus knot only by a framing factor. Equation (44) gives an expansion of of trUn in
terms of Schur polynomials. Explicit expressions for its expectation value can be found in section 5.2.
As noted above, an pn, 1q-torus knot is topologically equivalent to an unknot and differs only due to
framing [58]. However, terms of the form xtrUntrU´ny, such as appear in the SFF, give p2n, 2q-torus
links, which are not topologically trivial for any n P Zzt0u.

4 Matrix integrals and Toeplitz minors

We review the computation of the unitary group integral over Schur polynomials using a method
outlined in [38] and [39], which in turn draw from results derived by Bump and Diaconis [36], Tracy
and Widom [37], among others. We start from an absolutely integrable function on the unit circle in
C,

fpeiθq “
ÿ

kPZ

dke
ikθ . (46)

We will specifically be considering the case where dk “ d´k, so that fpeiθq is real-valued. We further
require that fpeiθq satisfies the assumptions of Szegö’s theorem. That is, we write fpeiθq as

fpeiθq “ exp

˜

ÿ

kPZ

cke
ikθ

¸

, (47)
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and demand that
ÿ

kPZ

|ck| ă 8 ,
ÿ

kPZ

|k||ck|2 ă 8 . (48)

From the Fourier coefficients of f , we construct a Toeplitz matrix, which is a matrix that is constant
along its diagonals,

T pfq “ pdj´kqj,kě1 . (49)

We denote by TN pfq the N by N principal submatrix of T pfq, i.e. the matrix obtained from T pfq by
taking its first N rows and columns and neglecting the remainder. We will see that various matrix
integrals with weight function f can be expressed as minors of TN pfq, that is, as determinants of
matrices obtained from TN pfq by removing a (necessarily equal) number of rows and columns. For a
unitary matrix U with eigenvalues eiθ1 , eiθ2 , . . . , we write,

f̃pUq “
N
ź

k“1

fpeiθkq . (50)

We employ Weyl’s integral formula [65] to express the integral of f̃pUq over UpNq with respect to the
de Haar measure as

ż

f̃pUqdU “
1

N !

ż 2π

0

ź

jăk

|eiθj ´ eiθk |2
N
ź

k“1

fpeiθkq
dθk
2π

, (51)

where the angles satisfy 0 ď θk ă 2π. The expression for the Vandermonde determinant in (132)
allows us to use an identity due to Andreiéf, sometimes referred to as Heine or Gram identity [66].
Take gj and hj , j P t1, 2, . . . , Nu, to be two sequences of integrable functions on some measure space
with measure µ, then

1

N !

ż

detpgjpxkqq
N
j,k“1 detphjpxkq

N
j,k“1

N
ź

k“1

dµpxkq “ det

ˆ
ż

gjpxqhjpxqdµpxq

˙N

j,k“1

. (52)

Choosing gjpe´iθq “ eipN´jqθ “ hjpe
iθq and dµpeiθq “ fpeiθq dθ2π , we find

ż

f̃pUqdU “ detpdj´kq
N
j,k“1 , (53)

where dk are again the Fourier coefficients of f ,

dk “
1

2π

ż 2π

0

fpeiθqeikθdθ . (54)

Now let λ “ pλ1, . . . , λmq and µ “ pµ1, . . . , µnq be partitions of |λ| “
ř`pλq
i λi and |µ| “

ř`pµq
j µj ,

respectively. Here, λi, µj P Z` and `p.q is the length of the partition. Ordering as λi ě λi`1 and
similarly for µj , these partitions label Young tableaux in the standard way. One then obtains a Toeplitz
minor Tλ,µN pfq via the following procedure:
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• We start from TN`κpfq, where κ “ maxtλ1, µ1u

• If λ1 ´ µ1 ą 0, we remove the first λ1 ´ µ1 colums from TN`κpfq, otherwise we remove µ1 ´ λ1

rows.

• We then keep the first row and remove the next λ1´λ2 rows, after which we again keep the first
row and remove the next λ2 ´ λ3 rows and so on and so forth.

• We repeat the third step where we replace λi by µi and where we remove columns instead of
rows

Note that the second step ensures that the resulting matrix Tλ,µN pfq is of order N . We write sλpUq “
sλpe

iθ1 , eiθ2 , . . . q, where sλ are Schur polynomials, which we review in appendix 8.3. The determinant
of Tλ,µN pfq can then be expressed as [36], [67]

Dλ,µ
N pfq :“ detTλ,µN pfq “

ż

UpNq

sλpU
´1sqsµpUqf̃pUqdU

“
1

N !p2πqN

ż 2π

0

sλpe
´iθ1 , . . . , e´iθN qsµpe

iθ1 , . . . , eiθN q
N
ź

j“1

fpeiθj q
ź

1ďjăkďN

|eiθj ´ eiθk |2dθj ,

“ det
`

dj´λj´k`µk
˘N

j,k“1
. (55)

One can recognize the pattern of striking rows and columns involved in the construction of Tλ,µN pfq,
as the index j is shifted to j ´ λj and k to k´ µk. One can easily verify that, for two functions of the
form

apeiθq “
ÿ

kď0

ake
ikθ , bpeiθq “

ÿ

kě0

bke
ikθ , (56)

the associated Toeplitz matrix satisfies

T pabq “ T paqT pbq . (57)

Let us therefore write fpeiθq as follows

fpeiθq “ Hpx; eiθqHpy; e´iθq , (58)

where Hpx; zq is the generating function of the homogeneous symmetric polynomials hk given in (123)
and where we assume that hkpxq and hkpyq are square-summable, i.e.

ÿ

k

hk ă 8 . (59)

Gessel [68] showed that, for f as in (58),

DN pfq “
ÿ

`pνqďN

sνpxqsνpyq , (60)
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where one should note that the sum runs over all partitions ν with at most N rows. Here, we only
consider the case where y “ x P R, but the expressions here easily generalize to x ‰ y and x, y P C,
subject to the assumptions of Szegö’s theorem. Equation (60) can then be generalized as [38], [39]

ż

sλpU
´1qsµpUqf̃pUqdU “

ÿ

`pνqďN

sν{λpxqsν{µpxq . (61)

In the above expressions, we can replaceHpx; zq by Epx; zq if we simultaneously transpose all partitions.
Let us therefore consider the Jacobi triple product expansion of the third theta function

ÿ

nPZ

qn
2
{2einθ “ pq; qq8

8
ź

j“1

p1` qk´1{2eiθqp1` qk´1{2e´iθq

“ pq; qq8Epx; eiθqEpx; e´iθq , (62)

where we define x “ pq1{2, q3{2, . . . q in the last line. Then, fpeiθq “
a

pq; qq8 Epx; eiθqEpx; e´iθq is the
weight function of the Chern-Simons matrix model. This example is treated extensively in [39], more
details and proofs can be found there. Using (53) with dk “ qk

2
{2, we see that the partition function

is given by

ZN “

ż

f̃pUqdU “ detpqpj´kq
2
{2qNj,k“1 “ q

řN
j“1 j

2

detpq´jkqNj,k“1 “

N´1
ź

j“1

p1´ qjqN´j , (63)

which is a well-known result.

4.1 Infinite N

Let us now take the limit N Ñ8. From (61) and the fact that [Chapter I.5, example 26 in [59]]

ÿ

ν

sν{µpyqsν{λpxq “
ÿ

ν

sλ{νpyqsµ{νpxq
ÿ

κ

sκpyqsκpxq , (64)

where the sums run over all partitions, we have [38], [39]

Wλµ :“

ş

sλpU
´1qsµpUqf̃pUqdU
ş

f̃pUqdU
“
ÿ

ν

sλ{νpxqsµ{νpxq . (65)

Taking (65) with µ “ H, we see that calculating the matrix integral of a single trace in some rep-
resentation (55) is given by the following procedure. The evaluation of the integral amounts to re-
placing the eigenvalues of the Schur polynomials by the variables xi in fpzq “ Epx; zqEpx; z´1q or
fpzq “ Hpx; zqHpx; z´1q. For fpeiθq equal to Θ3pe

iθq in (62), Wλµ gives the HOMFLY invariant of
the Hopf link [38], [39]. We see that is is given by the following expression,

Wλµ “
ÿ

ν

spλ{νqtpq
1{2, q3{2, . . . qspµ{νqtpq

1{2, q3{2, . . . q , (66)
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where one should note that the representations are transposed due to the fact that Θ3pe
iθq is expressed

in terms of Epx; zq rather than Hpx; zq.

Let us now consider what the assumptions of Szego’s theorem imply for a function of the form fpzq “

Epx; zqEpx; z´1q or fpzq “ Hpx; zqHpx; z´1q. Let us consider first the case fpzq “ Epx; zqEpx; z´1q.
We repeat the top line of (123),

Epx; zq “
8
ÿ

k“0

ekpxqz
k “

8
ź

k“1

p1` xkzq “ exp

«

8
ÿ

k“1

p´1qk`1 pkpxq

k
zk

ff

, (67)

so that

fpzq “ exp

˜

8
ÿ

k“1

p´1qk`1 pkpxq

k
pzk ` z´kq

ff

. (68)

Therefore,

ck “ p´1qk`1 pkpxq

k
“ c´k , k ‰ 0 , (69)

and (48) is written as
8
ÿ

k“1

|pkpxq|
k

ă 8 ,
8
ÿ

k“1

|pkpxq|2

k
ă 8 , (70)

where we ignore an irrelevant factor 2. We see that

lim
kÑ8

|pkpxq|Ñ 0 , (71)

as
ř8

k“1
|pkpxq|
k diverges otherwise. If we take xj to be real-valued, as we do in the explicit examples

considered here, equation (71) requires that xj ă 1. The right requirement in (70) is strictly weaker
than the left, so it does give rise to any additional restrictions. In the above expressions, if we replace
Epx; zq by Hpx; zq, we have,

ck “
pkpxq

k
“ c´k , k ‰ 0 , (72)

so that the assumptions of Szegö’s theorem are given by (71) as well.

4.2 Finite N

Although the expressions given above were derived forN Ñ8, some of them can, in fact, be generalized
to finite N in case the number of distinct non-zero variables xj is smaller than N . From equations
(60), (61), and (64), we see that, for finite N and fpzq “ Hpx; zqHpx; z´1q,

ş

sλpUqsµpU
´1qf̃pUqdU

ş

f̃pUqdU
“

ř

κpsκpxqq
2

ř

`pρqďN psρpxqq
2

ÿ

ν

sλ{νpxqsµ{νpxq ´

ř

`pνqąN sν{λpxqsν{µpxq
ř

`pρqďN psρpxqq
2

. (73)
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Let us denote the number of non-zero variables by imax, i.e. xi ‰ 0 for i ď imax and xi “ 0 for i ą imax.
In that case, sκpxq “ 0 for `pκq ą imax, see equation (136), so that

ř

κpsκpxqq
2

ř

`pρqďN psρpxqq
2
“ 1 . (74)

Indeed, in case N ´ `pλq ą imax and N ´ `pµq ą imax, we can apply (136) again to find

ÿ

`pνqąN

sν{λpxqsν{µpxq “ 0 . (75)

From this we conclude that, for N ´ |λ| ą imax and N ´ |µ| ą imax, we have

ş

sλpUqsµpU
´1qf̃pUqdU

ş

f̃pUqdU
“
ÿ

ν

sλ{νpxqsµ{νpxq , (76)

i.e. the asymptotic expression (65) still holds in this case. Again, the above expressions still hold if
we replace Hpx; zq by Epx; zq and all representations by their transposes.

5 Spectral form factor

Although the main focus of this paper is the SFF of the UpNq Chern-Simons matrix model, many
of the techniques applied to this particular case can be applied to any function fpzq satisfying the
assumptions of Szegö’s theorem [38], [39]. We will first keep the treatment general before considering
the case fpzq “ Θ3pzq.

5.1 The spectral form factor for general weight function

We repeat for convenience [63], [69]

trUn “
ÿ

λ

χλpnqsλpUq “
n´1
ÿ

r“0

p´1qrspn´r,1rqpUq , (77)

where we take n P Z`. It is clear that this also holds when we replace U with U´1. Indeed, the
expressions given below generalize to all integers if we replace n by |n| in the expressions below. The
SFF is given by

NKpnq “
1

ZN

ż

dUf̃pUq
n´1
ÿ

r,s“0

p´1qr`sspn´r,1rqpU
´1qspn´s,1sqpUq , (78)

where we remind the reader that pn´ r, 1rq is a representation corresponding to a hook-shaped Young
tableau with n ´ r boxes in the first row and r further rows with a single box. Writing fpeiθq “

23



Hpx; eiθqHpx; e´iθq, we use (65) to find

NKpnq “
ÿ

ν

n´1
ÿ

r,s“0

p´1qr`sspn´r,1rq{νpxqspn´s,1sq{νpxq , n P Zzt0u . (79)

The first sum on the right hand side runs over all representations ν satisfying ν Ď pn ´ r, 1rq as well
as ν Ď pn ´ s, 1sq, so that ν “ pa, 1bq with a ď n ´ r, n ´ s and b ď r, s. e remind the reader that
(79) also holds when we replace Hpx; zq by Epx; zq due to the fact that the SFF is invariant under
transposition of the representations pn ´ r, 1rq and pn ´ s, 1sq. There are three types of skew Schur
polymomials sλ{µ which appear in (79):

1. If ν “ λ, the skew Schur polynomial sλ{ν “ sλ{λ “ 1.

2. If ν is the empty partition ν “ H, sλ{ν “ sλ i.e. the skew Schur polynomials reduces to the
usual (non-skew) Schur polynomial.

3. Then there is the case of two non-empty hook-shaped diagrams λ “ pn ´ r, 1rq and ν “ pa, 1bq
with n´ r ą a and r ą b and ν non-empty, so that λ{ν consists of a row of n´ r´a boxes and a
column of r´ b boxes. It is clear from equation (130) that the skew Schur polynomial factorizes
as

sλ{µ “ spn´r´aqsp1r´bq “ hn´r´aer´b . (80)

This can be made more clear using Young diagrams. Taking n “ 6, r “ 2 and a “ 2, b “ 1,
equation (80) is given by the following, where one should keep in mind that the contributions
corresponding to the two disconnected young diagrams are multiplied

/ =

From the first point listed above, we see that there are n terms in (79) with for which λ “ µ “ ν “

pn´ r, 1rq. These terms give the following contribution

n´1
ÿ

r“0

sHpU
´1qsHpUq

loooooooomoooooooon

“1

“ n . (81)

Perhaps surprisingly, we see from the above expression that terms satisfying λ “ µ “ ν always
reproduce the linear ramp of the CUE spectral form factor for n ď N (see e.g. (5.14.14) in [49]). It is
well known that, for the CUE SFF, the linear ramp saturates at a plateau for n ě N [4], [49]. Here, too,
the linear ramp gives way to a plateau, which comes about as follows. Remember that sλpxq vanishes if
the longest column in λ contains more boxes than the number of non-zero variables in the set x (136).
We saw that we get a contribution equal to unity for every term for which pn´ r, 1rq “ ν “ pn´ s, 1sq

for 0 ď r ď Minpn ´ 1, N ´ 1q. However, there are only N such reps, as spa,1bqpxq “ 0 if b ě N .
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From this, we conclude that the contributions coming from λ “ ν “ µ exactly reproduce the ramp
and plateau.

Let us now consider those terms from which deviations from the linear ramp may arise. If ν is the
empty set, as in point 2, we recover the disconnected part of the SFF, which is given by the square of

n´1
ÿ

r“0

p´1qrspn´r,1rqpxq “ xtrUny . (82)

The remaining terms, coming from point 3, is given by the square of

n´1
ÿ

r“0

ÿ

ν‰H
ν‰pn´r,1rq

p´1qrspn´r,1rq{νpxq (83)

At first sight, this may seem like a rather rather complicated expression. Let us factor the expression
in (83) into two separate sums over r and s and consider one such sum for a fixed choice of ν “ p1q.
Remembering that spn´r,1rq{p1q “ hn´r´1er and using equation (2.6’) of [59], we find for a single such
sum,

n´1
ÿ

r“0

p´1qrspn´r,1rq{p1q “
n´1
ÿ

r“0

p´1qrhn´r´1er “ 0 . (84)

Taking n “ 4, the above identity can be expressed in terms of Young diagrams as follows.

- + - = 0

The identity
řn´1
r“0 p´1qrhn´r´1er “ 0 can be seen from Hpx; tqEpx;´tq “ 1, see equation (123).

Equation (84) can then be found by checking every order of t in Hpx; tqEpx;´tq. One can see from
these considerations that any term corresponding to a single choice of ν in (83) is equal to zero. The
contribution for general ν “ pa, 1bq Ă pn´ r, 1rq with ν ‰ H and ν ‰ pn´ r, 1rq is given by

n´a
ÿ

r“b

p´1qrhn´r´aer´b “
n´b´a
ÿ

r“0

p´1qrhn´b´a´rer “ 0 . (85)

In short, the contribution arising from ν ‰ H, pn´ r, 1rq is equal to zero.

We now compute the explicit expression for the disconnected SFF. Applying (66) with µ “ H, we
have,

xtrUny “ pnpxq “
ÿ

i

xni . (86)

The functions pnpxq are the power-sum polynomials, mentioned in appendix 8.2. The fact that we
get power-sum polynomials should not be surprising due to the statements below equations (44) and
(65). Namely, trUn is the nth power sum polynomial in the eigenvalues of U , and the evaluation of the
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matrix integral of a single matrix trace amounts to replacing the eigenvalues by the variables xi, which
immediately leads to (86). Below equation (70), we show that the assumptions of Szegö’s theorem
require

lim
kÑ8

pkpxq “ 0 , (87)

so that the disconnected part of the SFF goes to zero. Hence, we see that the plateau of the SFF is
exact, that is

lim
nÑ8

Kpnq “ 1 . (88)

We thus find,

Kpnq “

#

1
N

“

n` pnpxq
2
‰

, n{N ď 1 ,

1 , n{N ě 1 .
(89)

This is the main result of the present work.

Let us now give some basic expressions for the SFF itself. From the form of (89), we can give an
expression for the behaviour of the SFF upon rescaling xi. The linear ramp remains unaffected by
rescaling as it is independent of choice of variables xi. Further, since xtrUny “

řn´1
r“0 p´1qrspn´r,1rqpxq

is a sum of polynomials of degree n in xi, we have upon rescaling as xj ÞÑ Axj , where A is some
number,

pnpAxq “ Anpnpxq . (90)

Further, we take xj ÞÑ pxjq
k with k P Z`, we have, writing xk “ pxk1 , xk2 , . . . q,

pnpx
kq “ pknpxq . (91)

This naturally generalizes to k P R if we take the label n of pnpxq to be a general real number. We
plot an example of an SFF in figure 1. In the figure, we indicate lines with kn “constant, which lie at
45 degrees. Although this SFF was computed for a specific choice of weight function, it follows from
equation (91) that lines of constant kn always lie at 45 degrees. The linear ramp then corresponds to
knÑ8.

For a finite number of variables, the calculation of the SFF from (89) is rather straightforward. In case
we have a very large number of non-zero variables, pnpxq is generally rather hard to calculate, except
for certain known examples. Let us take xk “ 1{pk ` 1q2. Using the well-known product expansion of
the hyperbolic sine as sinhpπtq “ πt

ś

kě1

´

1` t2

k2

¯

, we have

fpzq “
8
ź

k“1

ˆ

1`
z

pk ` 1q2

˙ˆ

1`
z´1

pk ` 1q2

˙

“
sinhpπz1{2q sinhpπz´1{2q

π2p2` z ` z´1q
. (92)

Further, we have,

pnpxq “
8
ÿ

k“1

1

pk ` 1q2n
“ ζp2nq ´ 1 , (93)
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where ζpsq is the Riemann zeta function. The SFF for weight function (92) is therefore given by

NKpnq “

#

n` pζp2nq ´ 1q
2

, n ď N ,

N , n ě N .
(94)

5.1.1 General trace identities

We now consider some expectation values of trUn with some more general objects. For example we can
conclude from the arguments leading to (89) that the connected part of xtrUntrU´ky, for k, n P Z`,
is given by

xtrUntrU´kyc “
k´1
ÿ

s“0

n´1
ÿ

r“0

ÿ

ν‰H

p´1qr`sspk´s,1sq{νspn´r,1rq{ν “ nδnk . (95)

In particular, let us take k ă n. In that case, any ν P pk ´ s, 1sq for all s P t0, . . . , k ´ 1u necessarily
satisfies |ν| ď k ă n, so that pn´ r, 1rq{ν ‰ H for any partition pn´ r, 1rq, r P t0, . . . , n´ 1u. Using
(85), the result is again zero. Note that equation (95) can easily be found for the CUE case by using
bosonization [70][71]. More generally, let us consider expectation values of the form

@

trU´ntrλU
D

c
“

ÿ

ν‰H

n´1
ÿ

r“0

p´1qrspn´r,1rq{ν sλ{ν . (96)

Since fixing any ν Ď pn´ r, 1rq in (96) with ν ‰ pn´ r, 1rq gives zero upon summing over r, we only
get a nonzero answer for terms for which ν “ pn´ 1, 1rq Ď λ. That is,

@

trU´ntrλU
D

c
“

minpn´1,λt1`1q
ÿ

r“minp0,n´λ1q

p´1qrsλ{pn´r,1rq , (97)

where the boundaries on the sum arise from the fact that we only sum over those representations
pn ´ r, 1rq which satisfy pn ´ r, 1rq Ď λ. Equation (97) greatly simplifies certain calculations. For
example, consider pn´r, 1rq Ę λ @ r P t0, . . . , n´1u. Another way to write this is that λ1`λ

t
1´1 ă n.

We then have,
@

trU´ntrλU
D

c
“ 0 . (98)

Let us represent λ in Frobenius notation as λ “ pa1, . . . , ak|b1, . . . , bkq with ai and bj non-negative
integers satisfying a1 ą ¨ ¨ ¨ ą ak and b1 ą ¨ ¨ ¨ ą bk. In this case, a1 ` b1 ` 1 gives the number of
boxes in the upper left hook of λ, or, equivalently, the hook-length of the top left box in λ, labelled
by x “ p1, 1q in the notation of appendix 8.3. In this notation, (98) states that xtrU´ntrλUyc “ 0 if
a1`b1`1 ă n. For the specific case of the Chern-Simons matrix model this identity has an interesting
interpretation which we comment on in section 5.2.

We can find similar identities for certain representations λ with a1`b1`1 ą n. Definem :“ a1`b1`1´n

and consider λ “ pa|bq “ pa1, . . . , ak|b1, . . . bkq satisfying m ď a1 ´ a2 ´ 1 and m ď b1 ´ b2 ´ 1, or,
equivalently, m ď λ1 ´ λ2 and m ď λt1 ´ λt2, respectively. Let us take µ “ pa2, . . . , ak|b2, . . . , bkq,
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which is constructed from λ by removing the first row and column. For any rep pn´ r, 1rq satisfying
pn´ r, 1rq Ď λ, we then have

λ{pn´ r, 1rq “ pa1 ` 1, 1b1q{pn´ r, 1rq ˆ µ “ pa1 ` 1´ n` rq ˆ p1b1´rq ˆ µ . (99)

That is, λ{pn´ r, 1rq factorizes as the skew partition of two hook shapes times the partition obtained
from λ by deleting the top-left hook. In terms of Young diagrams, an example is given by the following.

/ =

Since pa1 ` 1, 1b1q{pn´ r, 1rq is a product of a row and a column, we can again use (84) to find

@

trU´ntrλU
D

c
“

b1
ÿ

r“n´a1´1

p´1qrsλ{pn´r,1rq

“ p´1qn´a1´1sµ

m
ÿ

k“0

p´1qkhm´kek “ 0 . (100)

5.2 The SFF of the Chern-Simons matrix model

As noted before, the SFF of the Chern-Simons matrix model corresponds to a p2n, 2q-torus link with
one component in the fundamental and the other in the antifundamental representation. Whereas
expressions for link invariants of the form xtrUn1trUn2 . . . y with ni ě 2 have appeared in the literature
[69], [72], [73], expressions with powers of mixed signature, to the best of the authors’ knowledge, have
not. The expressions presented in the previous section allow us to calculate precisely those objects.
In particular, the SFF, is again given by (89). We can easily calculate the non-trivial part of the
SFF, xtrUny2, for |q| ă 1, by using the expression in terms of power-sum polynomials. However,
it is instructive to see how this arises from the functional form of this object as a function of N ,
before taking N Ñ8. This is particularly useful in knot theory, as the expression for general N may
allows one to distinguish various knots and links which may have the same invariant when one ignores
the dependence on N . Let us apply (138) to the hook-shaped representation pa, 1bq, which gives the
following expression for general N

spa,1bqpxi “ qi´1q “ q
1
2 bpb`1q rN ` a´ 1s!

rN ´ b´ 1s!ra´ 1s!rbs!ra` bs
. (101)
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We now use (77) and (66) to calculate xtrUny, which, for the lowest values of n, is given by

xtrUy “ q1{2 1´ qN

1´ q
“ q1{2rN sq ,

@

trU2
D

“
qp1´ q2N q

1´ q2
“ qrN sq2 ,

@

trU3
D

“
q3{2p1´ q3N q

1´ q3
“ q3{2rN sq3 . (102)

One can see a simple pattern emerge in (102). Indeed, using (77) and taking into account the comments
made below (65), we see that

xtrUny “ pnpxj “ qj´1{2q “ qn{2
N
ÿ

j“1

qnpj´1q “ qn{2
1´ qnN

1´ qn
“ qn{2rN sqn . (103)

That is, the asymptotic pn, 1q-torus knot invariant is given by the qn-deformation of N times a factor
qn{2. As far as the authors are aware, this statement has heretofore not appeared in the literature.

As mentioned above, as well as in appendix 8.3, the limit N Ñ 8 simplifies these expressions even
further. Upon this simplification, the final expression for the SFF is then given by

NKpnq “

$

&

%

n` pqn ` q´n ´ 2q´1 , n ď N ,

N , n ě N .
(104)

The SFF is plotted in 1 for n “ 1, . . . , 20, with q “ 0, 9k, k “ 1, . . . , 9.

5.2.1 General identities for the Chern-Simons matrix model

The identities we derived in 5.1.1 apply to the Chern-Simons matrix model as well, in which case they
have an interpretation in terms of knot and link invariants. For example, take (98), which says that,
for λ satisfying pn´ 1, 1rq Ę pn´ r, 1rq @r P t1, . . . , n´ 1u,

@

trU´ntrλU
D

c
“ 0 ñ

@

trU´ntrλU
D

“
@

trU´n
D

xtrλUy . (105)

In terms of knot and link invariants, the above expression entails that expectation value of the product
of an pn, 1q-torus link with an unknot in representation λ with opposite orientation equals the product
of their expectation values.

Another trace identity derived in 5.1.1 is equation (105). This equation expresses the fact that a
Wilson line in the (anti)fundamental rep winding n times around a article in rep some λ will give a
vanishing connected expectation value if the λ1´ λ

t
1´ 1´ n ď λ1´ λ2 and λ1´ λ

t
1´ 1´ n ď λt1´ λ

t
2.

Further, it is worth emphasizing that, using (97), one can calculate pretty much any object of the form

@

trU´ntrλU
D

, (106)
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as all the objects appearing on the right hand side of the above expression are skew Schur polynomials
with variables xi “ qi´1{2, to which we can apply the q-hook length formula in equation (138).

6 Overview and Conclusions

Here, we put forward a conjecture that many, if not all, examples of invariant one-matrix models which
exhibit intermediate statistics are given by matrix models of topological field or string theories. We
explicitly support this conjecture by the example of the matrix model introduced in [13], which is the
matrix model of UpNq Chern-Simons model on S3. The latter model is directly related to A and B
topological string models via the Gopakumar-Vafa duality.

To calculate the SFF of the Chern-Simons matrix model, we consider general infinite order unitary
matrix models with weight functions satisfying the assumptions of Szegö’s theorem. We find that
the SFF’s for these models have a surprisingly concise form, with the connected SFF giving rise to
the linear ramp and plateau, while the disconnected part gives rise to a dip. Moreover, from the
assumptions of Szegö’s theorem, it follows that the dip had to go to zero, so that the plateau is exact.
Further, we derive certain identities on expectation values of products of traces, as well as the behavior
of the SFF under certain changes of the weight function.

We then apply these general results to the matrix model for UpNq Chern-Simons theory for S3,
studied by Muttalib and collaborators for its intermediate statistics. The SFF of this model is a
topological (link) invariant. In particular, it is given by the HOMFLY invariant p2n, 2q-torus links
with one component in the fundamental and the other in the antifundamental representation, an
explicit expression of which, to the best of the authors knowledge, did not appear in the literature
before. It displays the hallmark characteristics of intermediate statistics, with a dip that becomes more
pronounced as we move further away from the CUE limit, q Ñ 0. One can identify various matrix
models which have the same SFF, an immediate example of which is given by replacing Epx; zq by
Hpx; zq.

The present work provides the tools to shed more light on the connections between topological field
theories and intermediate statistics; we believe that the matrix models which arise in topological
string theory are natural tools for describing ergodic-to-nonergodic phase transitions. Indeed, this
paper provides a first example of what we suspect to be a broader connection between intermediate
statistics and topology.
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8 Appendices

8.1 q-Numbers

We review some basic facts and useful relations involving q-numbers, which are so-called q-deformations
of more familiar (generally complex) numbers. We will only be considering q-deformation of positive
integers here, which are defined as

rnsq “ p1` q ` ¨ ¨ ¨ ` q
n´1q “

1´ qn

1´ q
, n P Z` . (107)

Other definitions of rnsq, such as q´n{2´qn{2

q´1{2´q1{2
, also appear in the literature. Their common feature is

that
lim
qÑ1´

rnsq “ n . (108)

Note that, for k,m, n P Z` satisfying m
n “ k, we have

rmsq
rnsq

“ rksqn ,
rr ¨ms

rr ¨ ns
“ rksqnr (109)

for example,
r8sq
r2sq

“
1` q ` ¨ ¨ ¨ ` q7

1` q
“ 1` q2 ` q4 ` q6 “ r4sq2 . (110)

We will write rnsq as rns henceforth and only specify the deformation parameter in case it is different
from q. q-Factorials and q-binomials are defined as follows. For n, k P Z`

rN s! “ p1` qqp1` q ` q2q . . . p1` q ` ¨ ¨ ¨ ` qN´1q ,

«

N

k

ff

“
rN s!

rN ´ ks!rks!
. (111)

We then introduce the q-Pochhammer symbol, which is defined as

pa; qqk “ p1´ aqp1´ aqq . . . p1´ aq
k´1q . (112)

Note that
pa; qqn “

pa; qq8
paqn; qq8

. (113)

Note also that
rns! “

pq; qqn
p1´ qqn

, (114)

from which follows
«

N

k

ff

“
pq; qqN

pq; qqN´kpq; qqk
“
p1´ qN qp1´ qN´1q . . . p1´ qN´r`1q

p1´ qqp1´ q2q . . . p1´ qkq
. (115)
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We see from this expression that, for q ă 1, we have

lim
NÑ8

«

N

k

ff

“
1

pq; qqk
, (116)

q-Pochhammer symbols can be generalized as follows

pa1, a2, . . . , am; qqn “
m
ź

j“1

paj ; qqn . (117)

These are rather versatile objects. For example, Jacobi’s third theta function can be expressed through
the Jacobi triple product as

ÿ

nPZ

qn
2
{2zn “ pq,´q1{2z,´q1{2{z; qq8 , 0 ă |q| ă 1 . (118)

Note that that the definition in (118) has qn
2
{2 rather than qn

2

as expansion coefficients, following the
convention of e.g. [34]. This is the origin of the differences with the expressions appearing e.g. in [69],
which are related to the expressions given here by taking q Ñ q2.

8.2 Symmetric polynomials

We review here some basic aspects of symmetric polynomials in the set of variables x “ px1, x2, . . . q.
The elementary symmetric polynomials are then defined as

ekpxq “
ÿ

i1ă¨¨¨ăik

xi1 . . . xik . (119)

Some examples include

e0 “ 1 ,

e1px1q “ x1 ,

e1px1, x2q “ x1 ` x2 ,

e2px1, x2q “ x1x2 .

Closely related are the complete homogeneous symmetric polynomials, defined as

hkpxq “
ÿ

i1ď¨¨¨ďik

xi1 . . . xik , (120)
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which contains all monomials of degree j. Note the difference in the summation bounds between (119)
and (120). Some examples of these include

h0 “ 1 ,

h1px1q “ x1 ,

h1px1, x2q “ x1 ` x2 ,

h2px1, x2q “ x2
1 ` x

2
2 ` x1x2 .

Another example is the set of power-sum symmetric polynomials,

pkpxq “ xk1 ` x
k
2 ` . . . . (121)

Note that if a matrix U has di as its eigenvalues, traces of moments of U are given by power-sum
symmetric polynomials, that is,

trUk “ pkpdq . (122)

Defining z “ eiθ as in (46), we have the following relations between the above polynomials [59]

Epx; zq “
8
ÿ

k“0

ekpxqz
k “

8
ź

k“1

p1` xkzq “ exp

«

8
ÿ

k“1

p´1qk`1

k
pkpxqz

k

ff

,

Hpx; zq “
8
ÿ

k“0

hkpxqz
k “

8
ź

k“1

1

1´ xkz
“ exp

«

8
ÿ

k“1

1

k
pkpxqz

k

ff

. (123)

Consider the example where xi “ qi´1, so that (see [59] I.2 examples 3 and 4)

Eptq “
N´1
ź

i“0

p1` qitq “
N
ÿ

k“0

qkpk´1q{2

«

N

k

ff

tk . (124)

Similarly,

Hptq “
N´1
ź

i“0

p1´ qitq´1 “

N
ÿ

k“0

«

N ` k ´ 1

k

ff

tk , (125)

so that

ek “ qkpk´1q{2

«

N

k

ff

, hk “

«

N ` k ´ 1

k

ff

. (126)

Here, ek is only defined for k ď N . From (116), we see that, for q ă 1 and N Ñ8,

ek “
qkpk´1q{2

pq; qqk
, hk “

1

pq; qqk
. (127)
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8.3 Schur polynomials

A somewhat less straightforward type of symmetric polynomial is the Schur polynomial, which reduces
to some of the above examples in certain cases. Schur polynomials play an important role as characters
of irreducible representations, often referred to as irreps, of general linear groups and subgroups thereof.
Irreps can be conveniently classified by partitions, and we use these terms interchangably in this work.
We denote partitions as λ “ pλ1, λ2, . . . , λ`q, which are sequences of non-negative integers ordered as
λ1 ě λ2 ě . . . Typically, partitions are taken to have a finite number of elements, that is, only a
finite number of λi are non-zero, but we will impose no such restriction. The weight of a partition
(not to be confused with the highest weight of the corresponding irrep) is given by the sum of its
terms |λ| “

ř

i λi and its length `pλq is the largest value of i for which λi ‰ 0. A semistandard Young
tableau (SSYT) corresponding to λ is then given by positive integers Ti,j satisfying 1 ď i ď `pλq and
1 ď j ď λi. These integers are required to increase weakly along every row and increase strongly along
every column, i.e. Ti,j ě Ti,j`1 and Ti,j ą Ti`1,j for all i, j. Label by αi the number of times that the
number i appears in the SSYT. We then define

xT “ xα1
1 xα2

2 . . . . (128)

The Schur polynomial sλpxq is given by [60].

sλpxq “
ÿ

T

xT , (129)

where the sum runs over all SSYT’s corresponding to λ i.e. all possible ways to inscribe the diagram
corresponding to λ with positive integers that increase weakly along rows and strictly along columns.
We give an example of an SSYT corresponding to a Young diagram λ “ p3, 2q. From (131) one can
see that the contribution of the SSYT below would be given by x2

1x2x
2
3.

1 1 3

2 3

We can see from the above definition that

sp1nq “ en , spnq “ hn , (130)

i.e. the Schur polynomial of a column or row of n boxes is given by a degree n elementary or ho-
mogeneous symmetric polynomial, respectively. Schur polynomials have a natural generalization to
so-called skew Schur polynomials. In this case we have two diagrams λ and µ such that µ Ď λ i.e.
µi ď λi, @ i. We denote by λ{µ the complement of µ in the diagram corresponding to λ. Define a
semistandard skew Young tableau corresponding to λ{µ similar to the above, namely, as an array of
positive integers Tij satisfying 1 ď i ď `pλq and µi ď j ď λi which increase weakly along rows and
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strictly along columns. We then define the skew Schur polynomial corresponding to λ{µ as

sλ{µ “
ÿ

T

xT , (131)

where the sum again runs over all SSYT’s corresponding to λ{µ. Note that if µ is the empty partition,
i.e. µi “ 0, @i, we have sλ{µ “ sλ, and if λ “ µ, sµ{µ “ 1. Let us consider λ “ p3, 2q and µ “ p1q.
Below, we give an SSYT corresponding to the skew partition λ{µ, which would contribute x2

1x2x3 to
the skew Schur polynomial.

1 3

1 2

Skew Schur polynomials can also be expressed in determinantal form. Using a matrix of the form
M “ px

pN´kq
j qNj,k“1, we have the following expression for the Vandermonde determinant

detpx
pN´kq
j qNj,k“1 “

ź

1ďjăkďN

pxj ´ xkq . (132)

We then have

sλpUq “ sλpxjq “
det

´

xN´k`λkj

¯N

j,k“1

det
`

xN´kj

˘N

j,k“1

. (133)

The (skew) Schur polynomials can be expressed in terms of elementary symmetric polynomials ekpxq
or complete homogeneous symmetric polynomials hkpxq via the following determinantal expressions,
known as the Jacobi-Trudi identities,

spµ{λq “ detphµj´λk´j`kq
`pλq
j,k“1 “ detpeµtj´λtk´j`kq

λ1

j,k“1 “ Dλ,µ
N pHpx; zqq ,

spµ{λqt “ detpeµj´λk´j`kq
`pλq
j,k“1 “ detphµtj´λtk´j`kq

λ1

j,k“1 “ Dλ,µ
N pEpx; zqq . (134)

where the partition λt is obtained from λ by transposing the corresponding Young tableau and where
H refers to the empty partition. The objects on the right hand side of (134) are explained in section
4. Schur polynomials satisfy various useful identities, including the so-called Cauchy identity and its
dual,

ÿ

λ

sλpxqsλpyq “
8
ź

i,j“1

1

1´ xiyj
,

ÿ

λ

sλpxqsλtpyq “
8
ź

i,j“1

1´ xiyj . (135)

Other useful identities for our purposes are the following, which can be found in Chapter I.5 of [59],

sλ{µpx1, . . . , xnq “ 0 unless 0 ď λti ´ µ
t
i ď n for all i ě 1 . (136)

Note that an example of (136) is given by the fact that ekpx1, . . . , xN q “ 0 for k ą N . We consider
some Schur polynomials which are treated in I.3 examples 1-4 of [59]. Schur polynomials with all
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variables equal to 1 give the hook-length formula for the dimension of the representation, that is

sλp1, . . . , 1q “
ź

xPλ

N ` cpxq

hpxq
“: dimpλq , (137)

where cpxq “ j ´ i for x “ pi, jq P λ is the content of x P λ, hpi, jq “ λi ` λtj ´ i ´ j ` 1 is its
hook-length, and npλq “

ř

ipi´1qλi. If, instead, we choose variables as xi “ qi´1, we get the following
q-deformation of the dimension of λ

sλpxi “ qi´1q “ qnpλq
ź

xPλ

rN ` cpxqs

rhpxqs
“: qnpλq dimqpλq . (138)

The quantity dimqpλq is known as the quantum dimension, or q-dimension. It is given by the hook
length formula (137) where numbers are replaced by q-numbers. If we consider knots and links as
consisting of the world lines of anyons carrying some representations λ, . . . , dimqpλq gives the dimension
of the Hilbert space of λ [74]. Note that (109) implies that irreps with the same dimension can have
different quantum dimensions. This is why Chern-Simons theory with 0 ă q ă 1 can distinguish
between certain (un)knots which give identical results in the limit q Ñ 1 or q Ñ 0.

In fact, the above expression simplifies even further. In particular, one can easily see that, for |q| ă 1

and N Ñ8, quantum dimensions for reps with finite column lengths depend only on the hook lengths.
This is because qN´k “ 0 for k finite, so that, for λ such that cpxq is finite for all x P λ,

ź

xPλ

rN ` cpxqs

rhpxqs
“

1

p1´ qq|λ|

ź

xPλ

1

rhpxqs
. (139)

In fact, since the Jacobi triple product expansion is only valid in case 0 ă |q| ă 1 and we take N Ñ8

here, we see that the numerical values of the Schur polynomials considered here only depend on the
hook-lengths of their components. Of course, one can still use the full functional form involving terms
of the form qN to in the context of knot theory, as these functional forms can allow one to distinguish
between knots or links which have the same hook-lengths. For example, the quantum dimensions of
p2q and p12q are different when taking into account their dependence on N . On the other hand, these
quantum dimensions are identical when we take into account the fact that qN “ 0 for |q| ă 1 and
N Ñ 8. Lastly, one should note that, since the hook-lengths are invariant under transposition, the
quantum dimensions involved are invariant under transposition as well.
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