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In this work, we investigate the conductance and current correlations properties of a quantum topological
inteferometer consisting of a QD coupled to two Majorana Bound States (MBSs) confined at both ends of a
1D topological superconductor ring nanowire. We analyze the ring in its topological non trivial and trivial
phases to show that the tunneling conductance, shot noise and fano factor present unique characteristics
to distinguish the hallmark of MBSs. We reinforce our findings by taking advantage of the correspondence
between the quantum topological interferometer and a dot effectively coupled to a single Majorana state in
a straight topological superconductor wire configuration. We show that, besides the characteristic zero-bias
conductance e2/2h and the already known shot noise features, the Fano factor provides significant information
to distinguish the MBSs presence.

I. INTRODUCTION

A Majorana bound state (MBS), in condensed mat-
ter physics, is a zero-energy quasi-particle with the par-
ticularity of being its own antiparticle.1 These quasi-
particles, belongs to the family of anyons and there-
fore have a non-Abelian exchange statistics which makes
them very interesting objects for fault tolerant topologi-
cal quantum computation.2–7

MBSs take place in quantum systems with strong
spin-orbit coupling, superconductivity, and broken time-
reversal symmetry.4,5,8 The most promising platforms
to observe MBSs involve topological superconductors
realized in semiconductors, specifically, semiconductor
nanowires with a strong spin orbit coupling in proximity
to an s-wave superconductor and subject to a magnetic
field.4,5,8–10 The spin-orbit coupling affects dramatically
the way the electrons pair up in the superconductor,
resulting in a switch from s-wave superconductivity to
p-wave superconductivity, along with the magnetic field
which will drive the p-wave superconductor to a topologi-
cal phase transition. Theory predicts that the boundaries
of this topological superconductor — in this case the ends
of the nanowire — should host MBSs.11.

A criteria to detect Majorana modes consist on mea-
suring the zero-bias conductance peak (ZBCP) from tun-
neling electrons into the MBSs.12–17 Nevertheless, con-
firming such states require seeking for extra features
since other zero energy modes different than MBSs can
also lead to zero bias peaks, for instance, from An-
dreev bound states (ABSs), multi-band effects18, weak
antilocalization19 and the Kondo effect.20,21 Currently,
distinguishing MBSs from ABSs is one of the most crit-
ical challenges, which has lead to considerable theo-
retical proposals,21–28 mostly focused on quantum dots
coupled to topological superconductors (QD–MBSs con-
figurations). Indeed, evidence of their existence have
been shown by probing their transport conductance
spectrum,26,29,30 thermal conductance31,32, ac Josephson

effect33,34 and current noise correlations.23,30,35–40 Par-
ticularly, it has been proposed to combine tunneling con-
ductance and shot noise correlations measurements as a
complementary diagnosis method to distinguish real from
fake MBSs.36,41–43

In this letter, besides of studying the tunneling con-
ductance and shot noise correlations properties, we also
focus on seeking a distinguishable fano factor fingerprint
of a QD coupled to two MBSs confined at the ends of a
1D topological superconductor nanowire ring — denoted
here as QD–MBSs ring system. We underpin our findings
by analyzing the conditions that lead to a full correspon-
dence between our system of interest (QD–MBSs ring)
and a topological QD–MBSs wire system,29 as illustrated
in Figure 1. Finally, we argue that the fano factor jointly
with the reported results for ZBCP and shot noise, would
stand as a more robust diagnosis tool for distinguishing
the real MBSs from spurious-zero energy modes.

II. DESCRIPTION OF THE MODEL

We consider the setup shown in Fig. 1 (a) in which
a spinless quantum dot is coupled to two MBSs, γ1 and
γ2, located at the ends of a TSNW.44 The Hamiltonian
takes the form

H = HLeads +HDot +HMBS +HDM +HT (1)

Where, HLeads describes the left (L) and right (R) metal-
lic leads,

HLeads =
∑

k,α=L,R

εkαc
†
kαckα (2)

c†kα and ckα are the creation and annihilation operators
with energy εkα in the lead α = L,R. HDot is the Hamil-
tonian of the quantum dot,

HDot = εdd
†d (3)
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FIG. 1. Schematic setup of the QD-MBSs ring system. A
QD is coupled to two MBSs, γ1 and γ2, located at the ends
of a TSNW. Here, λ1 = |λ1|eiφ/4, λ2 = |λ2|e−iφ/4, where
|λ1| and |λ2| denote the QD-MBS coupling strength and φ =
Φ/Φ0 with Φ0 = h/2e is the phase factor resulting from the
threading magnetic flux. Two normal metallic leads L and
R are attached to the QD with coupling strength ΓL and
ΓR. As we will show the topological QD–MBSs ring system
(a) is equivalent to the topological QD–MBSs wire system
configuration in (b).

which describes a dot with an energy level εd, with d†

(d) being its creation (annihilation) operator. The term
HMBS in Eq.(1)

HMBS = iεMγ1γ2 (4)

describes the coupling between the two MBSs, γ1 and γ2,
with the overlap being εM . The term HDM denotes the
coupling between the QD and the MBSs

HDM =
(
λ∗1d
† − λ1d

)
γ1 + i

(
λ∗2d
† + λ2d

)
γ2 (5)

with the coupling parameters λ1 = |λ1|eiφ/4, λ2 =
|λ2|e−iφ/4, where |λ1| and |λ2| denote the respective cou-
pling strength and φ = Φ/Φ0 with Φ0 = h/2e is the
phase factor resulting from the threading magnetic flux.
The last term in Eq.(1)

HT =
∑
kα

(
tαc
†
kαd+ h.c

)
(6)

describes the tunneling coupling between the QD and the
lead α with strength tα.

The two MBSs γ1 and γ2 can be represented by their
equivalent Dirac fermion operators according to γ1 =(
f† + f

)
/
√

2 and γ2 = i
(
f† − f

)
/
√

2, which transforms
the terms HMBS and HDM in the Hamiltonian as follows,

HMBS = εM

(
f†f − 1

2

)
(7)

HDM =
1√
2

(λ∗1 − λ∗2) d†f† +
1√
2

(λ1 − λ2) fd (8)

+
1√
2

(λ∗1 + λ∗2) d†f +
1√
2

(λ1 + λ2) f†d

In general, the current from the lead α (α=L to α=R)

is given by Iα = e〈Ṅα〉 = ı̇ e~ 〈[H,Nα]〉, from which, we

can get45,

Îα (t) =
ie

~
∑
k

[
tα〈c†kα (t) d (t)〉 − t∗α〈d†(t)ckα(t)〉

]
(9)

We are concerned with fuctuations of the current away
from their average value. We thus introduce the oper-

ators δÎα (t) = Îα (t) − 〈Iα (t)〉 and define the spectral
density of shot noise by the Fourier transformation of
the current correlation46

Παα′ (t, t′) = 〈δÎα (t) δÎα′ (t′)〉+ 〈δÎα′ (t′) δÎα (t)〉 (10)

Substituting the current operator Eq.(9) into the cur-
rent correlation Eq.(10) and using the Wick’s theorem,
the correlation function can be expressed by the Green
functions of the system. Then, applying the Fourier
transformation over the times t and t′, and using the
relation Sαα′ (Ω) δ (Ω + Ω′) = 1

2πΠαα′ (Ω,Ω′), we obtain
the shot noise of self-correlation S = SLL (0) in the left
terminal as

S =− 2e2

h

∫
dε
[
Grd(ε)Σ

<
L (ε)Grd(ε)Σ

>
L (ε) (11)

+ Grd(ε)Σ
<
L (ε)G>d (ε) (ΣaL(ε)− ΣrL(ε))

+ G<d (ε) (ΣrL(ε)− ΣaL(ε))G>d (ε)ΣrL(ε)

+ (ΣrL(ε)− ΣaL(ε))G<d (ε)Σ>L (ε)Gad(ε)

+ G<d (ε) (ΣaL(ε)− ΣrL(ε))Grd(ε)Σ
>
L (ε)

+ G>d (ε)Σ<L (ε)Gad(ε) (ΣrL(ε)− ΣaL(ε))

+ G<d (ε) (ΣaL(ε)− ΣrL(ε))G>d (ε)ΣaL(ε)

+ Gad(ε)Σ<L (ε)Gad(ε)Σ>L (ε)

−
(
Σ<L (ε)G>d (ε) + Σ>L (ε)G<d (ε)

)]
where Gr,a,<,>d (ε) are the Green functions of the QD,

Σr,a,<,>L are the self-energies of the L lead and Σr,aL =
∓iΓL/2. Where, ΓL = 2πρLV

2
KL

is the line width func-
tion describing the coupling between the dot and the L
lead in the wide band approximation, with ρL being the
density of states in the leads.

After some mathematical calculations we found the re-
tarded Green function of the QD as follows47

Grd (ω) =

[
ω − εd + i

Γ

2
−A (ω)−B (ω)

]−1

, (12)

where A (ω) = K
(
|λ1|2 + |λ2|2 + 2εM

ω |λ1||λ2| cos φ2

)
and

B (ω) =
K2(|λ1|4+|λ2|4−2|λ1|2|λ2|2 cosφ)

(ω+εd+iΓ
2−A(ω))

, with K and Γ be-

ing defined as K = ω
ω2−ε2M

and Γ = ΓL + ΓR.

Substituting all Green functions and self-energies into
equation (11)
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S =
2e2

h

∫
dε
[
2|λ|4|K̃(ε)|2Γ2

L|Grd(ε)|2FLL(ε) (13)

+ (1 + C(ε))2T 2
N (ε) [FLL(ε) + FRR(ε)]

+ (1 + C(ε))TN (ε)

× {1− (1 + C(ε))TN (ε)} [FLR(ε) + FRL(ε)]
]

where,

C(ε) = |K̃(ε)|2
(
|λ1|4 + |λ2|4 − 2|λ1|2|λ2|2 cosφ

)
(14)

and TN = ΓLΓR|Gr(ε)|2 is the transmission. We also
define Fαβ(ε) = fα(ε) [1− fβ(ε)], with α and β being
L and R. fL(R) (ε) = f

(
ε− µL(R)

)
is the Fermi-Dirac

distribution with µL(R) the chemical potential for the
lead L(R). The first and the second term in equation
(13) represent the thermal noise which vanish at zero

temperature. Finally, we define TN = |λ|4|K̃(ε)|2TN (ε).
Then the shot noise in equation (13) can be written as,

S =
2e2

h

∫
dε [TN (ε) (1− TN (ε)) + TM (ε) (1− TM (ε)) (15)

− 2TN (ε)TM (ε)] (fL (ε) (1− fR (ε)) + fR (ε) (1− fL (ε)))

III. RESULTS

In what follows, we set εd = 0 and assume that the QD
is symmetrically coupled to the two MBSs, that is, |λ1| =
|λ2|. We also assume a symmetric dot-lead couplings
ΓL = ΓR. From this point on, Γ = ΓL + ΓR will be
considered as the energy unit and EF = 0. The shot
noise is given in units of S0 = 2e2/h.

In Figure 2 (a)-(d), we show the conductance (in units
of G0 = e2/h) as a function of the bias voltage eV/Γ and
the magnetic flux phase φ for several values of coupling
between MBSs, εM . We can observe how the conductance
changes periodically with the magnetic flux phase φ, with
the period being 2π when εM = 0 and 4π for εM 6= 0 .
The conductance as a function of eV/Γ for several values
of εM and for a few representatives values of φ is shown
in Figure 2 (e)-(f). In particular, when the magnetic flux
is 2n× 2π or (2n+ 1)× 2π only one Fano antiresonance
(which emerge due to a resonant path interfering with a
continuous path) whose minimal does fall to zero appear
around |eV | = εM (see Fig. 2 (e)). For the other values
of φ, two Fano antiresonances emerge approximately at
eV = ±εM whose minimum do not fall to zero (Fig. 2
(f), (g))47. Especially when the nanowire is in its topo-
logical phase (the one with Majorana zero modes at the
end of the nanowire), i.e., when φ = π, 3π, ... (2n+ 1)π,
the antiresonances, located around ±εM have an identi-
cal shape, but an opposite sign of the Fano parameter
(Fig. 2 (g))48. Regardless of the magnetic flux phase, as

εM increases, the Fano antiresonance are shifted toward
large values of |eV |. It is pertinent to mention here that
the topological transition is associated with a substan-
tial conductance variation. As is shown in Fig. 2 (a) for
εM = 0, where we observe a jump from G = 0 in the
trivial topological region to G = e2/2h in the nontrivial
topological region29, which allows distinguishing the two
different phases of the wire.

The results of shot noise calculated using Eq. (15) are
presented in Figure 3, where we show the shot noise (in
units of S0 = 2e2/h) as a function of bias voltage eV/Γ for
several values of εM/Γ and different values of magnetic
flux phase φ. We notice that in analogy with the con-
ductance (Fig. 2), when the magnetic flux changes, the
shot noise changes periodically with a period 4π. When
the coupling between Majorana fermions εM start to in-
crease, we can observe how small steps appear in the shot
noise. These small steps are positioned in the same value
of eV as the corresponding Fano antiresonances in the
conductance. As εM increases, the height of these steps
also increases, and they are shifted toward large |eV |.
Particularly, it is interesting to notice that when the ring
is in its topological phase, φ = π, (see Fig. 3 (c)) these
steps are not distinctly visible because the Fano antires-
onances in the conductance do not fall to zero. Besides,
the shot noise is symmetrical in the same way as the
conductance.

The calculation of shot noise and current allows to
compute the Fano factor, defined as F = S/2e|I|,49 which
is shown in Figure 4. We display the evolution of the
Fano factor as εM increase from εM = 0 up to εM = 0.1Γ
(see Figure 4 (a)-(d)). We observe that the Fano fac-
tor changes periodically as we sweep the magnetic flux
phase φ, which is a consequence of the periodicity in φ
of the shot noise and current. We note that for εM = 0
the Fano factor is symmetrical, and we also observe how
when we start to increase εM from εM = 0.025Γ it be-
comes antisymmetric. It is relevant to notice that when
εM = 0, there is a drastic variation of the Fano factor
consisting in a jump from F (V = 0) = 1/2 in the trivial
topological phase to F (V = 0) = 1/4 in the nontrivial
topological phase of the system. This jump is related to
the topological transition of the ring. In Figures 4 (e)-
(h) we can observe the Fano factor as a function of bias
voltage eV/Γ for several values of εM/Γ and for some rep-
resentative values of magnetic flux phase φ. We observe
how when εM starts to increase, a tiny step located at the
value of |εM | arise. The magnitude of this step decreases
with εM . Besides, we observe that when the ring is in
its nontrivial topological phase (φ = π), the Fano fac-
tor has different behavior compared with the Fano factor
when the topological superconducting nanowire is in its
trivial phase. When the ring is in its topological phase
and εM = 0, the Fano factor acquires the value of 1/4 at
eV = 0 (Fig.4 (g)). When εM 6= 0 the value of the Fano
factor at eV = 0 is zero. This unique behavior does not
occur when the ring is in the trivial topological phase,
except for the case when there is a large overlap between
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FIG. 2. Differential conductance (in units of G0 = e2/h) as a function of bias voltage eV/Γ and φ for several values of MBSs
coupling, εM , (a) εM = 0, (b) εM = 0.025Γ, (c) εM = 0.05Γ, (d) εM = 0.1Γ. Figures (e) - (h) show the conductance as a
function of bias voltage eV/Γ for several values of εM and different values of magnetic flux phase φ. We use the following
parameters: |λ1| = |λ2| = 0.1Γ, εd = 0, ΓL = ΓR = 0.5Γ.

the MBSs (εM ) at the two ends of the wire where for
εM 6= 0 the Fano factor is zero at eV = 0. This is caused
by the fact that when εM is large, the two Majorana
states are equivalent to a single ordinary ABS.23

In general, it is hard to find an analytical expression for
the Fano factor. However, at zero bias voltage, the Fano
factor can be approximated as follows: on the one hand,
for εM = 0, we have F = 1/2 and F = 1

2 −
2ΓLΓR

Γ2 , when
the system in its trivial and nontrivial topological phases,
respectively. On the other hand, for εM 6= 0, we obtain

F = 1
2 −

2ΓLΓRε
2
M

(Γ2+4ε2d)ε2M+16λ2
1λ

2
2 cos2(φ2 )−16λ1λ2 cos(φ2 )εdεM

. As a

consequence, when the system is in its topological phase,
that is, φ = (2n+ 1)π, the Fano factor is F = 1

2−
2ΓLΓR
Γ2+4ε2d

.

The Fano factor exhibits different behavior depend-
ing on whether the nanowire is in its nontrivial or triv-
ial topological phases. We will argue that an MBS sig-
nature can be extracted from this. To this purpose,
we note that the QD-Majorana coupling Hamiltonian,
HDot+MBS+DM = HDot+HMBS +HDM , for the MBS’s
– QD system is,

HDot+MBS+DM = εdd
†d+ iεMγ1γ2

+
(
λ∗1d
† − λ1d

)
γ1

+ i
(
λ∗2d
† + λ2d

)
γ2 (16)

which can be rewritten as the Hamiltonian of a dot that
is effectively coupled to a single MBS. This can be made
if we take (without lost of generality) λ1 to be real (λ1 =
|λ1|) and λ2 = |λ2|eiφ/2. Then, HDot+MBS+DM reduces
to

HDot+MBS+DM = εdd
†d+ iεM

(
η1η2 − 2i

|λ1||λ2|
λ2

cos(φ/2)

)
+ λ

(
η1d
† − η†1d

)
(17)

with η1 = (|λ1|γ1 + i|λ2|eiφ/2γ2)/λ, η2 = (|λ1|γ2 +

i|λ2|e−iφ/2γ1)/λ and λ =
√
|λ1|2 + |λ2|2

The transformation can be written as:(
η1

η2

)
=

(
cos θ/2 ieiφ/2 sin θ/2

ie−iφ/2 sin θ/2 cos θ/2

)(
γ1

γ2

)
(18)

where, cos θ/2 = |λ1|/λ and sin θ/2 = |λ2|/λ. This trans-
formation belongs to the SU(2) group.

Note that when φ = (2n+ 1)π (n integer), we ob-

tain, η1 = η†1, η2 = η†2 and HDot+MBS+DM = εdd
†d +

iεMη1η2 + λ
(
d† − d

)
η†1, that is, a dot coupled to two

MBSs reduces to a dot coupled to a single Majorana
state η1 which in turn is coupled to another Majorana
fermion η2 with a coupling εM .29,50 Therefore, a QD
coupled to two MBS in a ring configuration could be
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FIG. 3. Shot noise (in units of S0 = 2e2/h) as a function of
bias voltage eV/Γ for several values of εM/Γ and for different
values of magnetic flux phase, (a) φ = 0, (b) φ = π/2, (c)
φ = π and (d) φ = 3π/2. |λ1| = |λ2| = 0.1Γ, εd = 0, ΓL =
ΓR = 0.5Γ

mapped into a dot effectively coupled to a single Majo-
rana state, η1, in a wire configuration for any value of
εM (see Figure 1). It must be emphasized that this cor-
respondence is independent of whether the magnitudes of
the couplings (|λ1| and |λ2|) are equal or not. As a con-
sequence of such correspondence the conductance, shot
noise and Fano factor for the QD-MBSs ring system and
QD-MBS wire system are identical. In fact, Figure 5,
displays the differential conductance and Fano factor for
different values of QD-MBSs coupling, λ1, for both sys-
tems (as long as, |λ1| = |λ2| in the QD–MBSs ring system

and thus |λ| =
√

2|λ1| in the QD–MBS wire system). As
is well-known, the conductance in the topological non-
trivial phase is always G = e2/2h29 as long as εM = 0, as
can be seen in Figure 5. It is worth noticing how the Fano
factor increases with λ1 for both configurations and more
importantly, the Fano factor always gives 1/4 at zero bias
voltage, that is, F (eV/Γ = 0) = 1

4 , as long as εM=0, i.e.
as long as the dot is coupled to a single MBS. There-
fore, this result suggest that measurements of shot noise,
in particular, of Fano factor give additional informations
complementary to the one known by studying the char-
acteristic zero-bias conductance e2/2h. In consequence,
the study of the combination of both shot noise and con-
ductance through a QD could provide a clear signature
and allow to distinguish the MBSs. We believe that the
predicted qualitative behavior of conductance and cur-
rent correlations (shot noise) could still hold when on-
site Coulomb correlations are considered.42,51 Besides, a
study based on SBMF approach43 shows that a crossover
from Kondo and Majorana dominated regimes can be re-
alized by tuning the coupling λ. However, a detailed

analysis of this problem is left to future investigations.

SUMMARY

In this work, we investigated the current correlations
properties of a topological ring system configuration con-
sisting of a QD coupled to two MBSs confined at both
ends of a 1D topological superconductor nanowire. We
found that when the ring is in its nontrivial topologi-
cal phase, φ = (2n+ 1)π, the Fano factor has a unique
behavior compared with the Fano factor when the topo-
logical superconducting nanowire is in its trivial phase.
To obtain an MBS distinguishing feature from this, we
argued that a QD coupled to two MBS in a ring con-
figuration could be mapped to a quantum-dot effectively
connected to a single Majorana state in a wire config-
uration. As a consequence of such correspondence, we
found that besides the characteristic zero-bias conduc-
tance e2/2h, the Fano factor give additional information
which could be definitive to find a clear signature to dis-
tinguish the MBSs.
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