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Abstract

Tensor network, which originates from quantum physics, is emerging as an efficient tool for classical and quantum machine learning.
Nevertheless, there still exists a considerable accuracy gap between tensor network and the sophisticated neural network models
for classical machine learning. In this work, we combine the ideas of matrix product state (MPS), the simplest tensor network
structure, and residual neural network and propose the residual matrix product state (ResMPS). The ResMPS can be treated as a
network where its layers map the “hidden” features to the outputs (e.g., classifications), and the variational parameters of the layers
are the functions of the features of the samples (e.g., pixels of images). This is different from neural network, where the layers
map feed-forwardly the features to the output. The ResMPS can equip with the non-linear activations and dropout layers, and
outperforms the state-of-the-art tensor network models in terms of efficiency, stability, and expression power. Besides, ResMPS
is interpretable from the perspective of polynomial expansion, where the factorization and exponential machines naturally emerge.
Our work contributes to connecting and hybridizing neural and tensor networks, which is crucial to further enhance our understand
of the working mechanisms and improve the performance of both models.
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1. Introduction

The tensor network (TN), as a mathematical model that
is widely used to describe quantum many-body states [1–4],
has been successful applied to machine learning (ML). For in-
stance, TN is used in supervised and unsupervised image clas-
sification, natural language processing, etc. [5–11]. Several re-
cent works also demonstrate TN’s ability of establishing the
connection between physics and artificial intelligence [12, 13].
Nevertheless, despite the high interpretability of TN [14–16],
there still exists a considerable performance gap between TN
and neural network (NN) [7, 17].

TN itself represents a linear map between quantum states.
While in machine learning, TN realizes a non-linear map from
the features to the outputs, where there exists a local kernel
function [5] that maps the features of the samples to the quan-
tum states in Hilbert space. It is however an open issue to deter-
mine whether the NN techniques can enhance TN performance.
Several recent works has explored different ways to combine
TN and NN: adopting the convolutional neural network (CNN)
as a feature extractor in TN [7, 17, 18], compressing the lin-
ear layers of deep NN by matrix product operators [19], and
implementing the convolutional operations using TN [20], etc.
These attempts further motivate us to investigate the possible
hybridization of TN and NN.

In this work, we incorporate the information highways
(also known as shortcuts) [21, 22], non-linear activations, and
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dropout [23] into TN (MPS in specific), and propose Resid-
ual MPS (ResMPS in short). The essential underlying idea of
ResMPS is a delicate way of inputting data such that the vari-
ational parameters of the network layers are the functions of
the data features. Such idea is inspired by the traditional feed-
forward neural network (FNN), while in FNN the data is input
only in the initial step.

We provide two specific examples of ResMPS dubbed as
simple and activated ResMPS. The simple version (sResMPS
in short) is a multi-linear model that can exactly be written into
a standard MPS, and the activated version (aResMPS in short)
is a non-linear model equipped with NN layers. The results
on fashion-MNIST show that the simple ResMPS achieves the
same accuracy as MPS while its parameter complexity is half of
the MPS. For the activated ResMPS, we find that the efficiency
and accuracy can be significantly enhanced by introducing the
non-linear activations and the dropout layers on the residual
terms.

Furthermore, we determine the model interpretability of
sResMPS by polynomial expression. The truncated model
achieves a high level of accuracy while keeps only a few low-
order terms of sResMPS. Surprisingly, the factorization [24]
and exponential machines [25] have naturally emerged in this
expansion scheme. ResMPS shows the underlying connections
between TN and NN for ML, and can shed light on novel pos-
sibilities and flexibility of developing powerful ML models be-
yond NN or TN.

ar
X

iv
:2

01
2.

11
84

1v
2 

 [
cs

.L
G

] 
 3

 D
ec

 2
02

1



2. Residual matrix product state

2.1. Definition of residual matrix product state

The traditional FNN, including the residual neural network,
consists of multiple trainable layers [26]. For instance, in su-
pervised learning, FNN maps the input sample x to the output
l, e.g., sample classification. The typical form of one layer can
be written as

h[n] = σ
(
F [n]

(
h[n−1];W[n]

)
+ b[n]

)
, (1)

where h[n−1] denotes the hidden variables that are input to
the n-th layer with h[0] = x, F [n] denotes the mapping of
the n-th layer (e.g., fully connected, convolution, or pooling
layer). Each layer may consist some variational parameters
W[n] (weights) and b (bias). Furthermore, σ denotes the ac-
tivation function.

Inspired by the matrix product state [27, 28] and residual
neural network [21, 22], here we propose a novel machine
learning architecture dubbed as residual matrix product state
(ResMPS). Different from FNN (see, Eq. (1)), ResMPS does
not explicitly map the features with a feed-forward network.
Instead it uses the features to parameterize FNN variational pa-
rameters. This enables the FNN to map the hidden features to
the expected outputs (see, Fig. 1). In the ResMPS, the mapping
of one layer is

h[n] = h[n−1] + v[n]
(
h[n−1];W[n] (xn) ,b

[n]
)
, (2)

where the weights W[n] of the n-th layer are parameterized
by the n-th feature xn, h[0] is simply initialized by ones, and
f [n] denotes the map of the n-th layer. Therefore, the depth
of ResMPS depends on the input size. Similar to the FNN
[Eq. (1)], in this work we consider v[n] as

v[n] = σ
(
L[n]

(
h[n−1];W[n] (xn)

)
+ b[n]

)
, (3)

where L[n] is a linear map, and σ is the activation. Similar to
ResNet, the output of one layer is the addition of the output of
v[n], and the input includes the hidden features. This is to form a
shortcut of the information flow avoid the vanishing/explosion
of the gradients. We further note that one obtains a standard
FNN is obtained by adopting h[0] = x and removing the de-
pendence of W on x.

2.2. The working mechanism of ResMPS

We illustrate the path of the hidden state h[i] of ResMPS in
the high-dimensional vector space (as shown in Fig.2a). Each
layer of the ResMPS updates the state h[i] once to make it one
step forward with shift vector v[i+1] = h[i+1] − h[i]. After
passes through all layers, all shift vectors are connected into a
continuous path, namely

∑N
i=1 v

[i]. For the same ResMPS, dif-
ferent features of the samples share the same initial point (i.e.,
h[0]). Since the parameter W of shift vector v is a function of
feature x, the path encodes the information of samples. Be-
sides, Similar samples have close paths in the vector space (as

shown in Fig.2b). After training convergence, samples of the
same category will eventually gather together.

In order to show the consistent behavior of the path endpoint
in the high-dimensional space, we use the Fashion MNIST
dataset to train aResMPS, and use the tSNE algorithm [29, 30]
to embed the endpoints of the ResMPS to a two-dimensional
plane after the network converges. Note that before we use
tSNE for dimensionality reduction, the original virtual feature
has 100 components. Fig.2c illustrates the visualization of the
endpoints in the two-dimensional space. It can be seen that the
samples with better classification accuracy are relatively sepa-
rated, while the samples with poor classification accuracy over-
lap with other classifications.

2.3. The Architecture of ResMPS

In the following, we examine two instances of ResMPS,
called simple ResMPS (sResMPS, see Fig.1c) and activated
ResMPS (aResMPS, see Fig.1f). The sResMPS is a multi-
linear model that is equivalent to MPS. It achieves the same ac-
curacy with only half of the parameter complexity of the MPS.
The aResMPS is a generalized version of sResMPS, in which
the generalization efficiency is enhanced by introducing non-
linear activation functions and dropout in the FNN part. The
map of one layer in the sResMPS is written as

h
[n]
j = h

[n−1]
j +

∑
i

xnW
[n]
ij h

[n−1]
i . (4)

The weights of the layers in the FNN are linearly dependent on
the features x. The bias terms are also disabled in this example.

sResMPS is equivalent to a restricted version of MPS,
which can achieve identical performance with only half param-
eter complexity of standard MPS. See Sec. 2.4 for details.

It is seen that MPS has a remarkable representation power.
The training error is less than 1% [31]. However, the gap be-
tween the training and testing accuracy suggests over-fitting is-
sue. To address the over-fitting issue, we propose the activated
ResMPS (aResMPS) by incorporating the non-linear activation
functions and dropout. This also enhances the generalization
power [32]. The map of each layer in the FNN of the aResMPS
is more-or-less a fully-connected layer with a shortcut, which
reads

h[n] = h[n−1] + σ
(
L[n](h[n−1]) + b[n]

)
, (5)

where σ is an activation function. The map L[n] rely on the
feature xn in a non-linear fashion

L[n](h[n−1])j =
∑
c=1,2

[
ξ[c](xn)

∑
i

W
[n,c]
ij h

[n−1]
i

]
, (6)

with ξ[1](xn) = xn and ξ[2](xn) = 1− xn.
The architecture of ResMPS is flexible, due to the choice

of ξ[c](xn) and the number of channels dim(c). We introduce
ξ[c] to enhance the non-linearity of the aResMPS. It is worth
mentioning that even sResMPS represents a non-linear map on
the features x (but a linear map on the hidden features).
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Figure 1: Illustrations of a typical ResMPS compared with a standard MPS. (a) An illustration of ResMPS containing a three-layer FNN in which the variational
parameters are functions of the features, x. (b) An illustration of a three-tensor MPS, which is contracted with the feature vectors (see Eq. (10)). (c) An illustration
of sResMPS, which is only parameterized by a single channel weight matrix. (d) An illustration of ResMPS, which is equivalent to the standard MPS. (e) An
illustration of aResMPS, where the hidden feature will pass through a two-channel linear layer, ReLU activation, and dropout layer in sequence.

Figure 2: Encoding process of the ResMPS. (a) An illustration of a high-dimensional path of one sample. Blue arrows represent hidden features between different
layers. Red arrows represent shift vectors contributed by the residual part. (b) An illustration of the aggregation behavior of samples. The same color denotes
samples belong to the same class. (c) The two-dimensional data distribution generated by tSNE on the endpoint dimension reduction of (b), the data points come
from the Fashion MNIST data set, and the corresponding accuracy is on the right. Note we reduce to two features in tSNE for illustration. The number of features
in the actual classifications equals the number of hidden features (far larger than 2), which leads to better separations of the samples from different classes than what
is visualized here.
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For the aResMPS, the map on either the features or the hid-
den features is non-linear. Indeed, the FNN embedded inside
the aResMPS is replaced by any NN. Here, we choose a stan-
dard fully-connected network with two channels labeled by c.

Throughout this paper, we choose the ReLU activation
function that screen the negative inputs [33, 34]. Due to of
its piecewise linear characteristics, the gradient directly passes
through it without any attenuation or enhancement. Therefore,
the ReLU function is suitable for enhancing non-linearity of
the deep networks through improving its expression ability and
avoiding vanishing/explosion of the gradient. Furthermore, we
use dropout combining with the residual structure to improve
the generalization ability of ResMPS. This is to create an en-
semble of networks, while avoiding the co-adaptation of inter-
mediate variables [23, 35, 36]. We impose dropout on the resid-
ual terms, i.e. h[n] = h[n−1] + dropout (σ (· · · )).

If we discard the activation and the dropout layers of
aResMPS (see Fig.1e), we will get a standard two-channel
MPS. For a standard MPS with physical bond dimension d = 2,
the map given by a local-thensor constraction is [31]

h
[n]
j =

∑
c=1,2

[
ξ[c](xn)

∑
i

T
[n,c]
ij h

[n−1]
i

]
. (7)

If we introduce transformation T
[n,c]
ij = W

[n,c]
ij + δij ,

we can simply get h
[n]
j = h

[n−1]
j

(∑
c=1,2 ξ

[c](xn)
)

+∑
c=1,2

[
ξ[c](xn)

∑
iW

[n,c]
ij h

[n−1]
i

]
. Take feature map with

norm-1 normalization [31], i.e.
∑
c=1,2 ξ

[c](xn) = 1, we get
a ResMPS with map

h
[n]
j = h

[n−1]
j +

∑
c=1,2

[
ξ[c](xn)

∑
i

W
[n,c]
ij h

[n−1]
i

]
. (8)

2.4. Benchmarking results

For the MNIST [39] and fashion-MNIST [40] datasets,
Table 1 shows the accuracy of the sResMPS and aResMPS,
compared with several established NN [38] and TN mod-
els [7, 9, 15, 17, 31, 37]. As it is seen the MPS and ResMPS
models represent high level of representation as indicated by
their high training accuracy. The aResMPS also surpasses the
probabilistically interpretable Bayesian [15] and other TN mod-
els, including the two-dimensional TN known as projected-
entangled pair state (PEPS) [17]. It also achieves a (slightly)
better accuracy than that of CNN-PEPS model, in which CNN
is adopted as the feature extractor. This accuracy surpasses the
CNN without the stacking architecture, such as AlexNet [38].
The aResMPS still does not overperform the ResNet which is
formed by stacking multiple convolution layers. It seems that
the ResMPS models eventually surpass ResNet by replacing the
fully-connected network with more sophisticated ones or stak-
ing multiple ResMPSs.

To see the equivalence to the standard MPS and sResMPS
mentioned in Sec.2.3, let us introduce the third-order tensors

T[n] satisfying

T
[n]
1,:,: = I, T

[n]
2,:,: = W[n]. (9)

The feature vectors φ(xn) are obtained by the feature map as
φ(xn) = (1, xn), similar to Refs. [5, 9, 31]. Therefore, the
sResMPS is equivalent to the standard MPS formed by the fol-
lowing tensors

T =
∑
{a}

∏
n

T [n]
pnanan+1

(10)

as its tensor-train cores [41] [Fig. 1 (b)]. The numbers of the
input and output hidden features for different layers provide the
two virtual bond dimensions of the MPS, i.e., {dim(an)}. In
this work, we fix dim(an) = χ, ∀n. The physical dimension of
the MPS should also match the dimension of the feature vector,
i.e. dim(φ(xn)) = dim(pn).

For dim(pn) = 2, the number of variational parameters in
sResMPS is ∼ O(Nχ2) where N is total number of features.
This is only half of that in the MPS which is ∼ O(2Nχ2). Our
numerical simulations show that the accuracy of both models is
almost the same. See the training and testing accuracy versus
epochs on fashion-MNIST dataset [40] in Fig. 3 (a) with χ =
40. This is because one of the two channels of each tensor in
the MPS is much less “activated”. The inset of Fig. 3 (a) shows
the average norm of the two channels of different tensors

q[n]p =
1

χ2

χ∑
j=1

χ∑
k=1

∣∣∣T [n]
pjk − δjk

∣∣∣ , (11)

with p = 1, 2 representing the channels. The main contribu-
tion to the output is from the second channel. Therefore, one
channel is sufficient to propagate the information to the output.

In physics, the virtual bond dimension, χ, characterizes the
representation power of the MPS. This is because it determines
the total number of variational parameters and the upper bound
of the entanglement entropy the MPS can carry [1]. This may
not be the case for machine learning. We show this by adding
masks on the variational parameters, i.e., pruning [14]. Each
parameter is multiplied by a factor that is either zero or one.
The parameters multiplied by zeros are masked. To mask a cer-
tain number of parameters, we choose to mask those with rel-
atively small absolute values. We then optimize the unmasked
parameters after the masks taking effect.

Fig. 3 (b) shows the accuracy values versus the number of
unmasked parameters M . For different virtual bond dimen-
sions, χ = 20, 30, and 40, the results are similar if the num-
ber of the unmasked parameters are the same. This suggests
that the parameter which characterizes the representation and
generalization power, is in fact, M (not χ). For a the given
χ, it is possible to further reduce the complexity of MPS (and
sResMPS) without harming the accuracy. Our results also in-
dicate that the sResMPS achieves its maximal representation
power for M ∼ O(104) (the training accuracy ' 99.98%).
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Table 1: Experimental results on MNIST and Fashion-MNIST dataset. The first 6 models are prune TN architectures, while AlexNet, ResNet, and CNN-PEPS are
NN or TN-NN hybrid models. For aResMPS, we use RELU as activation function.

Model MMIST train MMIST test Fashion-MMIST train Fashion-MMIST test
MPS machine [31] 1.0000 0.9855 0.99 0.88
Unitary tree TN [9] 0.98 0.95 - -
Tree curtain model [37] - - 0.9538 0.8897
Bayesian TN [15] - - 0.8950 0.8692
EPS-SBS [7] - 0.9885 - 0.886
PEPS [17] - - - 0.883
CNN-PEPS [17] - - - 0.912
AlexNet [38] - - - 0.8882
ResNet [38] - - - 0.9339
sResMPS(+dropout) 1.0000 0.9898 0.9920 0.9076
aResMPS(+ReLU,+dropout) 1.0000 0.9900 0.9999 0.9146

Figure 3: Numerical results of the simple ResMPS. (a) Training and test-
ing accuracy of sResMPS (without dropout) and MPS versus epochs on the
fashion-MNIST dataset. The inset shows the average norm [Eq. (11)] of the
two channels in the MPS for different tensors n. (b) Training and testing accu-
racy of the sResMPS versus the total number of the unmasked weights in the
sResMPS. The left end of each curve corresponds to the un-pruned result. It is
also seen that the first few steps of pruning improve the accuracy. Note the total
number of sResMPS with χ = 20, 30, and 40 equals to about 3×105, 7×105

and 13× 105, respectively.

3. Properties of the residual structure

3.1. Avoiding the gradient problems by residual terms

A typical MPS architecture that is designed for pattern
recognition contains hundreds of tensor cores. Such an archi-
tecture probably encounters the gradient vanishing/exploding
problems. For this reason, some existing MPS schemes ap-
ply a DMRG-like algorithm where the MPS takes the canonical
form [5, 6, 10, 42]. In these attempts, however, the accuracy
is sensitive to the hidden features’ dimensions (virtual bonds).
Recently, an MPS algorithm was proposed based on automatic
gradient technique [31] that can achieve higher accuracy than
that of the previous ones, while its performance is not sensi-
tive to the virtual dimensions. To find the reason that such a
deep network avoids the gradient problems, here we construct
the tensor cores to satisfy a special form given by Eq. (9). The
identity in T [n]

1,:,: plays the role of “highway” to pass the infor-
mation from the previous tensor core directly to the latter ones.
The components T [n]

2,:,: represent the residual terms, which is
� O(1). The application of residual condition implies that
each layer of ResMPS can easily express identity mapping. In
other words, the architecture of ResMPS satisfies the identity
parameterization [21, 22, 43].

To further demonstrate the role of identity parameterization
in ResMPS, we use Gaussian distributions with zero mean and
standard deviation ε to randomly initialize the elements of T [n]

2,:,:.
Fig. 4 shows the testing accuracy at the 10-th, 20-th and 50-
th epochs. For a sufficiently small ε, the accuracy is quickly
and stably converged. However, for relatively large ε (e.g.,
O(10−1)) which is illustrated by the red region, the gradients
become unstable. Consequently, the accuracy stays around 0.1
and cannot be further improved by the training process. Not
that this may be unstable in most cases if instead of the identity
parameterization, the entire T is randomly initialized.

3.2. Relations to polynomial expansion

The forward propagation of the sResMPS (4) is fully linear
on the hidden features. Applying the maps to the initial hidden
features h0 in sequence, we can then rewrite the output hidden
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Figure 4: The testing accuracy of the sResMPS versus ε on fashion-MNIST
dataset. Here ε is the standard deviation of the initial residual part. We fix the
number of epochs to be 10, 20, and 50. The network can be trained stably for
small values of ε. Otherwise, the training process encounters gradient vanishing
(or explosion) problems. The stable and unstable regions are illustrated by
green and red colors, respectively. Note that for the red region, the value of the
network elements is diverged, The network will give classifications randomly,
thus, the accuracy tends to 0.1.

features in an expansive form [Fig. 5 (b)] as

h[N ] =
(
I+ xNW[N ]

)
. . .
(
I+ x2W

[2]
)(

I+ x1W
[1]
)
h[0]

=

N∑
k=0

M[k]h[0], (12)

where N is the total number of features x. The output h[N ] is
the stack ofN terms. The zeroth term satisfies M[0] = I, which
is the result of the information highway from the first input hid-
den features to the output. The term M1 =

∑N
α=1 xαW

[α] is
the part in ResMPS which is linear on the features x. The k-th
term contains the k-th order contributions from x, i.e.,

Mk =

N∑
α1...αk=1

Gα1...αk
xα1

. . . xαk
W[α1] . . .W[αk],(13)

Ga1,a2,...,an =

{
1, a1 > a2 > . . . > an

0, otherwise.
(14)

This formula is a specific form of the Exponential Ma-
chines [25]. Due to their essential similarity, the algebraic prop-
erties of Exponential Machines are also valid for sResMPS. For
instance, the output feature h[N ] is a linear mapping concern-
ing the initial hidden feature h0, and a multi-linear mapping
concerning the feature x.

From the residual condition (see Eq. (9) with |W[n]| �
O(10−1)), the contributions from the higher-order terms of (13)
should decay exponentially with k. Therefore, we can define a
set of lower-order effective models by retaining the first few
terms. For instance by only keeping the zeroth- and first-order
terms in Eq. (13), we simply obtain a model in which the output

Figure 5: Polynomial expansion based on ResMPS. (a) Training and testing
accuracy versus χ by taking different orders in the expansion form; (b) The
illustration of the polynomial expansion picture of the sResMPS. See Eq. (13).

features are linear to both hidden and sample features. Keeping
the zeroth, linear, and quadratic terms the resulting model is

h[N ](2) =
(
I+

N∑
α=1

xαW
[α]+

N∑
α,β=1

Gα,βxαxβW
[α]W[β]

)
h[0].

(15)
This model is similar to Factorization Machines [24] and poly-
nomial NN [44].

Fig. 5 (a) shows the difference between the accuracy of sev-
eral lower-order models and the sResMPS. This implies that
the significant improvement achieved by the sResMPS has its
root in a few lower-order terms, especially the linear term. As
the order increases, the cost of directly computing Eq. (12) is
also exponentially increased. Therefore, truncating the order of
expansion is not economical. ResMPS adopts a different and
efficient scheme for retaining all higher-order interactions.

4. Conclusion

We propose ResMPS by incorporating MPS with the infor-
mation highways, non-linear activations, and dropout. In con-
trast to from FNN, the variational parameters in ResMPS are
replaced by adjustable functions. For FNN, features are input
at the first layer of the network. For ResMPS, however, features
are divided and input into the weight matrices of each layer,
which is inherited from MPS. Furthermore, the introduction of
the neural network structures results in ResMPS to have a more
vital expression ability than the MPS. We also present two spe-
cific versions of ResMPS.

The first derived architecture sResMPS, is a simple linear
version of ResMPS. By comparing MPS’ learning performance
on the fashion-MNIST dataset, we further reveal the channel re-
dundancy of MPS. sResMPS also discards the redundant chan-
nel. Consequently, it achieves consistent accuracy while the
parameter complexity is halved.

The second one is aResMPS, which is the general ResMPS
equipped with activation and dropout layers. We further com-
pare the model with several TN and NN models on the fashion-
MNIST dataset. The activation and dropout layer enhance the
non-linearity and generalization ability of the model, respec-
tively. Therefore, aResMPS surpass the state-of-the-art TN
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methods and AlexNet in terms of accuracy, although still in-
ferior to ResNet that is formed by stacking multiple convolu-
tion layers. Going beyond present aResMPS to achieve higher
accuracy, e.g. replacing the weight matrices with convolution
layers, is a valuable improvement direction of ResMPS.

The perspectives of the residual network derived the poly-
nomial expansion of ResMPS. The benefits are two-fold.
Firstly, we give the condition of vanishing/explosion of the gra-
dients of ResMPS. This helps the feature design of MPS and
ResMPS algorithms with stable convergence. Secondly, it es-
tablishes the equivalence between MPS and polynomial net-
works such as Factorization Machines and Exponential Ma-
chines. Further numerical evidence suggests that the contri-
bution of high-order terms is insignificant. This helps to better
understand the MPS and ResMPS.

Are other NN structures (e.g., convolution and pooling
layers) compatible with ResMPS? Is it possible to propose a
ResMPS structure based on general NN structures (e.g., Tree
TN or Projected Entangled-Pair States)? These problems are
worthy of further investigation in the future.
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