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We investigate the finite temperature spin density wave (SDW) and charge density wave (CDW)
transition of two-component lattice spinor Bose gases in optical lattices in the Mott-insulator limit.
At the temperature scale around half of the on-site interaction energy, we find a new critical regime
emerges and features, in particular, a new bicritical line and two critical lines associated with the fi-
nite temperature SDW-CDW, homogeneous-SDW, and homogeneous-CDW transition, respectively.
Direct calculation of the critical exponents for the scaling behavior and investigating on the effective
theory in this critical regime show that they belong to the five-dimensional Ising universality class,
clearly manifesting the long-range character of the system’s interaction. Our prediction of the emer-
gent criticality can be readily observed by current experimental setups operated at the intermediate
temperature scale around half the on-site interaction energy.

Many-body systems with high microscopic symme-
try can give rise to the rich interplay between various
macroscopic orders. Well-known examples in the con-
text of conventional condensed matter physics, range
from the multicritical points associated with various mag-
netic orders found in antiferromagnets with weak lattice
anisotropy [1, 2], over the multiferroics where the mag-
netic order and the electric order are coupled in a non-
trivial way holding the potential in greatly improving
the energy efficiency of electronic devices [3], to the even
more elusive scenario in high-temperature superconduc-
tors where the charge density wave (CDW), spin density
wave (SDW), and superconducting order can compete,
intertwine, or even form the “vestigial order” in certain
cases [4]. Noticing, however, interactions in these con-
ventional condensed matter systems are all short-ranged,
while in the context of ultracold atom physics, not only
short-range interacting, but also long-range interacting
quantum many-body systems can be realized and well-
controlled in experiments. This thus provides an ideal
platform for investigating the rich interplay between var-
ious macroscopic orders in the presence of long-range in-
teractions.

Among various long-range interacting ultracold atom
systems, Bose gases in optical cavities are unique in the
sense that they assume infinite-long range (ILR) inter-
actions. In particular, ultracold Bose gases with internal
spin degrees of freedom have recently been realized in
experiments [5–11], featuring both an ILR spin-spin and
an ILR density-density interaction mediated by cavity
photons. In the experiments of Ref. [5, 9], two macro-
scopic orders, namely the SDW and the CDW order,
have been observed and a first-order transition between

these two ordered phases have been identified by tuning
the ratio between these two types of ILR interactions.
Noticing current experiments have mainly focused on the
low-temperature regime where the temperature is much
smaller than all other energy scales in the system, it is
intriguing to expect that at a comparable temperature
scale, a new scenario for the interplay between the two
macroscopic orders could emerge. This thus gives rise to
the fundamental question of the existence and the univer-
sality class of the possible new criticality that is absent in
the low-temperature regime, in particular, the multicrit-
ical behavior associated with the interplay between the
SDW and the CDW order.

In this paper, we address this question for two-
component lattice Bose gases in optical cavities. To this
end, we establish the finite-temperature phase diagram
of the system in the deep Mott-insulator limit (cf. Fig. 1)
and investigate the emergent critical scaling of the sys-
tem (cf. Fig. 2). More specifically, we find the following.
(i) An emergent critical regime featuring in particular a
new bicritical line associated with the SDW-CDW transi-
tion at finite temperature. At low temperatures, we find
transitions between each two of the three phases, namely,
the homogeneous, the SDW, and the CDW phase are
all first-order transitions, where the SDW (CDW) or-
der parameter assumes finite jump ∆χ̄ (∆φ̄) when the
transition boundary is crossed [cf. Fig. 1(b)]. When the
temperature increases, ∆χ̄ and ∆φ̄ for the homogeneous-
SDW and the homogeneous-CDW transitions decrease,
finally vanish at their respective critical points, and both
transitions become second-order transitions [cf. Fig. 1(c)
and Figs. 2(c, d)]. At the same time, a new bicritical
point emerges, where the first-order SDW-CDW transi-
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tion terminates at this point with vanishing order param-
eter jumps ∆χ̄ and ∆φ̄ [cf. Fig. 1(d) and Figs. 2(a, b)].
(ii) The universality class of the emergent critical scaling
belongs to the five-dimensional (5D) Ising universality
class (cf. Fig. 2). This clearly shows that the criticality
of the system is strongly influenced by and thus bear the
long-range characteristic of its interactions.
System and model in the deep Mott-insulator limit.—

Among current diverse experimental setups of multi-
component Bose gases in optical cavities [5–11], here we
concentrate on the experimental setups in Ref. [5, 9],
where, in particular, cavity mediated spin-spin interac-
tions were realized. Moreover, an additional static square
optical lattice is assumed in the system, similar to what
has been realized for single-component Bose gases in op-
tical cavities [12]. For this type of two-component lattice
spinor Bose gases in optical cavities, their physics in a
large parameter regime can be described by an ILR in-
teracting Hubbard-type Hamiltonian, which consists of a
conventional hopping part and an interaction part (see
Supplemental Material [13] for the derivation of the lat-
tice model). Here, we focus on the physics in the deep
Mott-insulator limit which is completely determined by
the interaction part of the Hamiltonian whose explicit
form reads

Ĥ =
1

2

∑

i,σσ′

Uσσ′ n̂i,σ (n̂i,σ′ − δσσ′ )

−
1

L

[

UD

(

N̂e − N̂o

)2

+ US

(

Ŝe − Ŝo

)2
]

. (1)

The first term of the Hamiltonian (1) describes the
on-site intra- and inter-component interactions whose
strengths are characterized by Uσσ′ with σ(σ′) = ± be-
ing the component index. The second term in Eq. (1)
describes the cavity-mediated ILR density-density and
spin-spin interactions with their strengths characterized
by UD and US , respectively. Noticing in this term, both
UD and US are further rescaled by the total number of
lattice sites L according to the Kac prescription [14] in
order to restore the conventional thermodynamical limit.
Here, the two interpenetrating square sub-lattices of the
complete square lattice are referred to as “even” (e) and
“odd” (o) lattice, respectively. n̂i,σ is the particle number
operator that counts the number of atoms with compo-
nent index σ at site i. N̂e(o) ≡

∑

i∈e(o) (n̂i,+ + n̂i,−) and

Ŝe(o) ≡
∑

i∈e(o) (n̂i,+ − n̂i,−) are the total density and

total spin operator of the even (odd) sub-lattice.
From the Hamiltonian (1) we notice that the system

assumes both a Z2-symmetry with respect to the two
sub-lattices, i.e., exchanging the sub-lattice indices “e”
and “o”, and a Z2-symmetry with respect to the two-
components, i.e., exchanging the component indices “−”
and “+”. The ILR density-density interaction favors a
CDW phase that breaks the Z2-symmetry between the
two sub-lattices, while the ILR spin-spin interaction fa-

vors an SDW phase that breaks both Z2-symmetries.
The competition among these two types of ILR inter-
action and the short-range on-site interaction gives rise
to phase transitions among the SDW, CDW, and the
homogeneous phase as observed in experiments focusing
at fixed low temperatures [5]. At the temperature scale
that is comparable with the energy scales of interactions,
one would expect that thermal fluctuations could give
rise to new physics that is absent in the low-temperature
regime. Indeed, as we shall see in the following, new crit-
icality associated to phase transitions among the SDW,
CDW, and the homogeneous phase arises in this finite
temperature regime.
Finite-temperature phase diagram and emergent crit-

icality at intermediate temperature scale.—To establish
the complete finite-temperature phase diagram, we di-
rectly calculate the quantum grand partition function

Z = tr[e−β(Ĥ−µσ

∑

i n̂i,σ)] of the system, which can be
formulated as an integral with respect to the SDW order
parameter field χ and the CDW order parameter field φ
[13], and explicitly reads

Z =
βL

π

√

UDUS

∫∫ +∞

−∞

dχdφ e−βLΩ{US,UD,U
σσ′ ,µσ,β}(φ,χ),

(2)

with

Ω{US ,UD ,Uσσ′ ,µσ ,β}(φ, χ)

≡−
1

2β

∑

η=±1

ln





+∞
∑

n±=0

e
−β

(

∑

σσ′

1
2
Uσσ′nσ(nσ−δσσ′ )−

∑

σ

µσnσ

)

e−2βη[UDφ(n++n−)+USχ(n+−n−)]
]

+ UDφ2 + USχ
2.

(3)

Here, µσ is the chemical potential for the species with
component index σ, and β = (kBT )

−1 with kB being the
Boltzmann constant and T being the temperature. Or-
der parameter fields χ and φ in Eq. (2) are introduced via
the standard Hubbard-Stratonovich transformation, and
their expectation values χ̄ and φ̄ correspond exactly to
the CDW and SDW order parameter, respectively, i.e.,
χ̄ ≡ 〈χ〉 = 〈Ŝe − Ŝo〉/L, φ̄ ≡ 〈φ〉 = 〈N̂e − N̂o〉/L. In
the thermodynamic limit L → ∞, the partition func-
tion Z is exactly determined by its saddle point inte-
gration, hence SDW and CDW order parameters φ̄ and
χ̄ are determined by the value of (φ, χ) that minimizes
Ω{US ,UD,Uσσ′ ,µσ,β}(φ, χ) (see Supplemental Material [13]
for more technical details). The summation in Eq. (3)
can be numerically evaluated at sufficiently high accu-
racy with a large enough cut-off on nσ. This enables us
to map out the complete finite-temperature phase dia-
gram as we shall now discuss.
In the following, we focus on the balanced case with

unit filling for both species of atoms, i.e., 〈
∑

i n̂i,σ〉/L = 1
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FIG. 1. (a) Finite temperature phase diagram of the system
at the balanced unit filling for both species of atoms, i.e.,
〈
∑

i
n̂i,σ〉/L = 1. U+− ≪ U++ = U−− is assumed, and Uσσ

is set to be the energy unit. The SDW and CDW phase re-
gions are highlighted by orange and blue, respectively. Two
critical lines (marked by the thick red lines) emerge at the
temperature kBT = 0.395. The left (right) critical line sep-
arates the first-order homogeneous-SDW (CDW) transition
from the second-order homogeneous-SDW (CDW) transition.
Above these two critical lines, both the homogeneous-SDW
and the homogeneous-CDW transition are second-order tran-
sitions, and their transition boundaries (second-order critical
surfaces) meet at a bicritical line (marked by the thick pur-
ple line). (b) Phase diagram at the fixed temperature with
kBT = 0.1. The transitions between each two of the ho-
mogeneous, CDW and SDW phase are all first-order tran-
sitions whose boundaries are marked by double solid curves
and open squares. Insets: The order parameter dependence
on US when the first-order CDW-SDW (homogeneous-SDW)
transition boundary is crossed. (c) Phase diagram at the fixed
UD = 0.2. At low temperatures, the homogeneous-SDW tran-
sition is a first-order transition, whose boundary is marked by
open squares and a double solid curve. It becomes a second-
order transition (marked by filled squares and a solid curve)
at and above a critical point (marked by the red dot) whose
temperature TCP = 0.395/kB . Insets: The upper (lower) in-
set shows the SDW order parameter dependence on US with
kBT = 0.3 (kBT = 0.5), clearly showing the transition is a
first-order (second-order) transition for T < TCP (T > TCP).
(d) Phase diagram at the fixed temperature with kBT = 0.5.
The SDW-CDW transition still keeps as a first-order transi-
tion, whose boundary is marked by a double solid curve and
open squares, while it terminates at a bicritical point (marked
by the purple dot), where the two second-order transition
boundaries meet (marked by solid curves and solid squares).
Insets: The order parameter dependence on US when the
first-order CDW-SDW (the second-order homogeneous-SDW)
transition boundary is crossed. See text for more details.

for σ = ±. In addition, the intra-component interac-
tion strengths U++ and U−− are assumed to be equal
and much larger than the inter-component interaction
strength U+−, i.e., U+− ≪ U++ = U−−. This corre-
sponds to the case where the physics associated with the
internal “spin” degrees of freedom is dominated by the
ILR spin-spin interaction. For the convenience of the
discussion, the on-site inter-component interaction Uσσ

is set to be the energy unit in the following. The finite-
temperature phase diagram of the system for this case is
shown in Fig. 1(a), which consists of three phase regions
that correspond to the SDW, the CDW, and the homoge-
neous phase, respectively. At low temperature, the tran-
sitions between each two of these three phases are all first-
order transitions as shown in Fig. 1(b), which is a cross-
section of the phase diagram Fig. 1(a) at kBT = 0.1. This
corroborates recent findings in experiments [11].

In the parameter regime where the temperature scale
is comparable to the on-site interaction energy [cf. the
vicinal region of the two red lines and the purple line in
Fig. 1(a)], rich critical behavior appear. This manifests
particularly in the emergence of the two critical lines and
the bicritical line [marked by red and purple, respectively,
in Fig. 1(a)].
The two critical lines consist of critical points at

which the first-order homogenous-SDW transition or the
homogeneous-CDW transition terminates and changes to
the second-order transition. For instance, in Fig. 1(c), a
cross-section of the phase diagram Fig. 1(a) at UD =
0.2 is shown, and one can directly observe that the
homogeneous-SDW transition changes from a first-order
transition to a second-order one at the critical point
with TCP = 0.39/kB (marked by the red dot in the
plot). In fact, the second-order homogenous-SDW and
homogeneous-CDW transitions above these two critical
lines give rise to a critical line consisting of a new type of
critical point that is absent in the corresponding single-
component systems, namely, the bicritical point [cf. the
purple dot in Fig. 1(d)].

The emergence of the bicritical points can be straight-
forwardly seen by monitoring the change of the US −UD

phase diagram of the system when the temperature
is increased, as illustrated by Fig. 1(b) and Fig. 1(d)
which show two typical US − UD phase diagrams at rel-
atively low (kBT = 0.1) and high (kBT = 0.5) tem-
perature. We can directly see from these two diagrams
that at low temperatures all the transition boundaries
are first-order ones, while in the temperature regime
above the two-critical lines, both the homogeneous-SDW
and homogeneous-CDW transition boundary become the
second-order transition boundary [cf. the two solid lines
in Fig. 1(d)] and change the point where these two bound-
aries meet to a bicritical point [cf. the purple dot in
Fig. 1(d)], at which the first-order SDW-CDW transition
boundary also terminates.

The emergence of these two critical lines and the bi-
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FIG. 2. Critical scaling behavior of the SDW and CDW order
parameter in the critical regime. (a, b) Scaling behavior of or-
der parameter jumps ∆χ̄ and ∆φ̄ in the vicinity of the bicrit-
ical point with kBT = 0.5. The main plots show the interac-
tion strength dependence of ∆χ̄ and ∆φ̄ along the first-order
SDW-CDW transition boundary [cf. Fig. 1(d)]. The insets
show the power law fits to the interaction strength dependence
of ∆φ̄ and ∆χ̄ in the vicinity of the bicritical point (U∗

D, U∗
S) =

(0.2725, 0.2725), clearly manifesting the power law scaling be-
havior ∆χ̄ ∝ |US − U∗

S|
0.499 and ∆φ̄ ∝ |UD − U∗

D|0.499. (c)
SDW order parameter jump ∆χ versus temperature along the
first-order transition boundary shown in Fig. 1(c), showing a
power law scaling ∆χ̄ ∝ |T −TCP|

0.497 near the critical point
kBTCP = 0.395 as shown by the inset in the plot. (d) Temper-
ature dependence of SDW order parameter |χ̄| with (US , UD)
kept fixed at (0.3, 0.2) when T is tuned across a second-order
homogeneous-SDW transition point with kBT ∗

SDW = 0.69525,
showing a power law scaling of ∝ (T − T ∗

SDW)0.496 near the
second-order transition as shown by the inset in the plot. See
text for more details.

critical line gives rise to a new critical regime that is
absent at low temperatures where all the transitions are
first-order ones. As we shall see in the following, in this
critical regime, the system manifests critical power law
scalings characteristic of its long-range interactions.

Critical scaling and universality class of transitions

among SDW, CDW, and homogeneous phases at finite

temperatures.—For the SDW-CDW transition, irrespec-
tive of the temperature, it is always a first-order transi-
tion, i.e., both the SDW and CDW order parameter show
finite jump when either US or UD is tuned across the first-
order SDW-CDW transition boundary [cf. Fig. 1(b, d)].
Consequentially, neither φ nor χ shows any critical power
law scaling. However, in the temperature regime where
the bicritical point emerges, the SDW-CDW transition
can indeed assume a type of critical scaling in the vicin-

ity of the bicritical point, manifesting in both order pa-
rameter jumps, namely, ∆χ̄ and ∆φ̄. As we can see from
Figs. 2(a, b), which show the ILR interaction strength de-
pendence of ∆χ̄ and ∆φ̄ along a first-order SDW-CDW
transition boundary that terminates at a bicritical point
[cf. Fig. 1(d)], both ∆χ̄ and ∆φ̄ decrease monotonously
with respect to the IRL interaction strengths and finally
vanish at the bicritical point. Power law fits to the inter-
action strength dependence of ∆χ̄ and ∆φ̄ in the vicin-
ity of the bicritical point (U∗

D, U∗
S) = (0.2725, 0.2725)

[cf. the purple dot in Fig. 1(d)] as shown in the insets of
Figs. 2(a, b), clearly show the power law critical scaling
behavior ∆χ̄ ∝ |US −U∗

S |
0.499 and ∆φ̄ ∝ |UD −U∗

D|0.499.

For the homogeneous-SDW and the homogeneous-
CDW transition, there are two types of critical scaling
behavior associated with each of them. The first type
manifests in the order parameter jump in the vicinity of
the critical point where the first-order transition change
to a second-order one [cf. Fig. 1(c)]. Let us take the
homogeneous-SDW transition for instance. As we can
see from Fig. 2(c), which shows the temperature de-
pendence of ∆χ̄ along a first-order homogeneous-SDW
transition boundary that terminates at a critical point
[cf. Fig. 1(c)], ∆χ decrease monotonously with respect
to temperature and finally vanish at the critical point.
Power law fit to the temperature dependence of ∆χ̄ in
the vicinity of the critical point kBTCP = 0.395 [cf. the
red dot in Fig. 1(c)] as shown in the inset of Fig. 2(c)
clearly shows the power law critical scaling behavior
∆χ̄ ∝ |T − TCP|

0.497. The second type of critical scaling
behavior manifests in the order parameter in the vicin-
ity of the second-order transition. Let us still take the
homogeneous-SDW transition for instance. As we can
see from Fig. 2(d), which shows the temperature depen-
dence of |χ̄| when (US , UD) is kept fixed at (0.3, 0.2),
and T is tuned across a second-order homogeneous-SDW
transition point with kBT

∗
SDW = 0.69525 [cf. Fig. 1(c)],

|χ̄| decrease monotonously with respect to the tempera-
ture and finally vanish at the transition point. Power law
fit to the temperature dependence of |χ̄| in the vicinity
of the second-order transition point as shown in the inset
of Fig. 2(d) clearly shows the power law critical scaling
behavior |χ̄| ∝ |T − T ∗

SDW|0.496.

Interestingly, one can notice that the power law scal-
ing behavior for different transitions manifest almost the
same critical exponent with the value 1/2. This strongly
suggests they should originate from the same effective
critical theory. Indeed, as we shall see below, all these
scaling behavior can be well-described by an effective
Ginzburg-Landau (GL) theory with a double Z2 sym-
metry.

In the critical regime, both the CDW and the SDW
order parameters are small enough to allow a systematic
expansion of the system’s free energy F with respect to
them. The double Z2 symmetry of the system determine
the allowed terms in the expansion, whose explicit form
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reads

F = −
1

2
rφφ̄

2−
1

2
rχχ̄

2+
1

4
uφφ̄

4+
1

4
uχχ̄

4+
1

2
uφχφ̄

2χ̄2, (4)

with rφ, rχ, uφ, uχ, and uφχ being the GL coefficients.
Comparing to the single-component case, the novel as-
pect of physics, in this case, is the competition between
the two ordered phases, namely, the CDW and the SDW
phase, that is driven by the relative strength between
UD and US . In the spirit of Ginzburg-Landau effec-
tive theory, to describe this scenario, we assume that
rφ ∝ (UD − U∗

D) and rχ ∝ (US − U∗
S) with (U∗

D, U∗
S)

being the critical point around which both order param-
eters, i.e., φ̄ and χ̄, are small. uφ, uχ, and uφχ are pos-
itive fixed GL parameters that do not depend on the
tuning parameter UD and US . By analyzing the saddle
points of F (see Supplemental Material [13] for analysis
details), depending on the sign of u2

φχ − uφuχ, one can
find two distinct phase diagrams for the effective the-
ory (4) as shown in Fig. 3. Comparing to results from
direct calculations as shown in Fig. 1(d), one naturally
expects the system under consideration is described by
the GL theory with uφuχ < u2

φχ, where there is a di-
rect first-order transition between the SDW and CDW
phases. Direct calculations within the GL theory with
uφuχ < u2

φχ show that the order parameter jumps ∆φ̄
and ∆χ̄ along the first-order SDW-CDW transition line
assumes the forms ∆φ̄ =

√

rφ/uφ and ∆χ̄ =
√

rχ/uχ

[13]. Noticing rφ and rχ depend linearly on interaction
strengths, one thus directly obtains the following scaling
law

∆χ̄ ∝ |US − U∗
S |

1/2, ∆φ̄ ∝ |UD − U∗
D|1/2. (5)

We remark here that from the phase diagrams of the
effective theory (4), the tetracritical point is in princi-
ple allowed by the GL theory with the double Z2 sym-
metry. Interestingly, in the experimental setup with
two-component Bose gases in the presence of two opti-
cal resonators [6], this tetracritical point is indeed ob-
served. This indicates, for the type of experimental
systems in Ref. [6], its GL effective theory is the one
with uφuχ > u2

φχ. To discuss the scaling behavior as-
sociated with the homogeneous-SDW transition or the
homogeneous-CDW transition, since either CDW or the
SDW order is identically zero in the transition under
consideration, the effective theory (4) in fact degener-
ates to the one with the single Z2 symmetry and can be
straightforwardly analyzed as what has been done in the
single-component case [15]. Take the homogeneous-SDW
transition, for instance, this analysis results in power law
scaling ∆χ̄ ∝ |T − TCP|

1/2 in the vicinity of the criti-
cal point, and |χ̄| ∝ |T − T ∗

SDW|1/2 in the vicinity of the
second-order transition. In fact, from the structure of
the phase diagram Fig. 3(a), it is straightforward to see
that the scaling behavior for ∆χ̄ (∆φ̄) with respect to the

FIG. 3. Phase diagram of the effective GL theory (4) with
double Z2 symmetry that shows either a bicritical point or
a tetracritical point, depending on the sign of u2

φχ − uφuχ.
Solid curves stand for the second-order transition boundaries,
while the double solid ones stand for the first-order transition
boundaries. Left panel: For u2

φχ > uφuχ, the phase dia-
gram support a bicritical point (marked by the purple dot)
at (rφ = 0, rχ = 0) where two second-order phase transition
boundaries meet. Right panel: For u2

φχ < uφuχ, the phase
diagram support a tetracritical point (marked by the brown
dot) at (rφ = 0, rχ = 0) where four second-order phase tran-
sition boundaries meet. See text for more details.

interaction strength US (UD) in Eq. (5) is the same as
the one for χ̄ (φ̄) of the second-order homogeneous-SDW
(homogeneous-CDW) transition, which is determined by
the effective GL theories with the single Z2 symmetry.
Therefore, all the scaling exponents discussed above is
governed essentially by the same effective GL theories
with the single Z2 symmetry.

By comparing the critical exponents from the GL ef-
fective theory and the ones from direct calculations, one
immediately notices remarkable agreement that seems
counter-intuitive at first sight, since long-range fluctua-
tions are omitted in the effective GL theory, and it is only
expected to provide rough estimations of the critical ex-
ponents for the 2D system under consideration. In fact,
this good agreements between the mean-field type effec-
tive GL theory and direct exact calculations, originate
from the fact that long-range fluctuations in the critical
regime are strongly suppressed by the ILR interactions in
the system, hence making effective GL theory a precise
theory in the critical regime. Such a similar promotion of
an effective GL theory to a precise effective critical the-
ory is also identified in the single-component Bose gases
in optical cavities [15]. Noticing the corresponding crit-
ical exponent of the 5D Ising model is exactly 1/2 [16]
and can be obtained by the same effective GL theory,
this thus concludes that the emergent criticality of the
system at finite temperature belongs to the 5D Ising uni-
versality class, manifests clearly the long-range character
of its interactions.

Conclusions.—Thermal fluctuations at intermediate
temperature regime can strongly influence the compe-
tition between magnetic and density order of multi-
component Bose gases in optical cavities, giving rise to
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rich critical behavior: The first-order SDW-homogeneous
and CDW-homogeneous transition become second-order
transitions, and at the same time giving rise to a new
bicritical line, where the first-order SDW-CDW transi-
tion terminates at this line with vanishing order param-
eter jumps. The critical scaling behavior in this critical
regime belong to the five-dimensional Ising universality
class, clearly characterizing the long-range nature of the
system’s interactions. With current well-established ex-
perimental techniques for detecting the SDW and CDW
order [5, 12], we expect our findings can be directly ob-
served by current experimental setups [5] operated at the
temperature scale around half of the on-site energy. We
believe our work will stimulate further experimental and
also theoretical investigations on possible emergent crit-
ical behavior in multicomponent Bose gases in optical
cavities in the presence of thermal fluctuations, particu-
larly beyond the deep Mott-insulator limit.
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HAMILTONIAN OF TWO-COMPONENT

LATTICE BOSE GASES IN OPTICAL CAVITIES

In current experiments, multicomponent Bose gases
are loaded in the free space inside cavities. We consider
here a closely related system where a two-component
Bose gas is loaded in a two dimensional (2D) square op-
tical lattice within an optical cavity. As we shall present
in the following, the Hamiltonian of this system can be
derived from the atom-photon interacting model that cor-
responds to the experimental setup in Ref. [1].

Our starting point is the single-particle atom-photon
interacting model for two-component or pseudo-spin 1/2
bosonic atoms in a 2D square optical lattice which reads

Ĥsp =

{

|p̂|
2

2m
+ V2D[cos

2(kx̂) + cos2(kẑ)]

}

⊗ I

+λD(â† + â) cos(kx̂) cos(kẑ)⊗ I

−iλS(â
† − â) cos(kx̂) cos(kẑ)⊗ σz

−∆câ
†â+ U0â

†â cos2(kx̂)⊗ I (S-1)

where λD (λS) is the spin-independent (spin-dependent)
atom-photon interaction strength, V2D is the strength of
the 2D optical lattice potential, â† (â) is the creation (an-
nihilation) operator for the photons in the cavity, ∆c is
the detuning between the frequency of the cavity photon
and the frequency of the z−lattice beam, U0 is the max-
imum light shift per atom, I is the 2× 2 identity matrix,
and σz is the conventional Pauli matrix. After taking the
lowest band approximation, we can directly write down
the corresponding many-body atom-photon Hamiltonian

in the complete second quantization form, namely

ĤAP (S-2)

=

∫

drΨ̂†(r)

[

−
~∇2

2m
+ V2D(cos

2(kx) + cos2(kz))

]

Ψ̂(r)

+

∫

drΨ̂†(r)
[

λD(â† + â) cos(kx) cos(kz)
]

Ψ̂(r)

+

∫

drΨ̂†(r)
[

−iλS(â
† − â) cos(kx) cos(kz)

]

σzΨ̂(r)

+

(
∫

drΨ̂†(r)U0 cos
2(kx)Ψ̂(r) −∆c

)

â†â

where Ψ̂(r) ≡
(

∑

i Wi(x, z)b̂i,+,
∑

i Wi(x, z)b̂i,−

)T

with

Wi(x, z) being the Wannier function on the site i in the

lowest band and b̂i,± being its corresponding annihilation
operator for the atom with component index σ = ±.
After further taking into account the contact interaction
between atoms, the system can be well described by the
following many-body Hamiltonian

ĤAP (S-3)

=
1

2

∑

i,σσ′

Uσσ′ n̂i,σ (n̂i,σ′ − δσσ′ )− t
∑

〈i,j〉,σ

(

b̂†i,σ b̂j,σ +H.c.
)

+λD(â† + â)
(

N̂e − N̂o

)

− iλS(â
† − â)

(

Ŝe − Ŝo

)

− (∆c − δ) â†â

where Uσσ′ is the contact interaction strength between
atoms with component index σ and σ′, t is the hopping
amplitude, and δ is a dispersive shift [2]. Here, N̂e(o) =
∑

i∈e(o) (n̂i,+ + n̂i,−) and Ŝe(o) =
∑

i∈e(o) (n̂i,+ − n̂i,−),

with n̂i,σ ≡ b̂†i,σ b̂i,σ.
To derive the effective Hamiltonian for the atoms only,

we first write down the Heisenberg equation of motion for
cavity photons with a finite decay rate κ, i.e., idâ/dt =
[â, ĤAP]− iκâ, whose explicit form reads

i
dâ

dt
= − (∆c − δ) â− iκâ (S-4)

+λD

(

N̂e − N̂o

)

− iλS

(

Ŝe − Ŝo

)

.

http://arxiv.org/abs/2012.11894v1
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Typically, κ is much larger than the atomic recoil energy
scale, thus we can approximate â as

â =
λD

(

N̂e − N̂o

)

− iλS

(

Ŝe − Ŝo

)

∆c − δ + iκ
. (S-5)

Plugging the above expression into Eq. (S-3), we thus
eliminate the cavity field adiabatically and obtain the
effective Hubbard-type Hamiltonian ĤHub for the atoms
only, i.e.,

ĤHub = −t
∑

〈i,j〉,σ

(

b̂†i,σ b̂j,σ +H.c.
)

(S-6)

+
1

2

∑

i,σσ′

Uσσ′ n̂i,σ (n̂i,σ′ − δσσ′ )

−
1

L

[

Ul,D

(

N̂e − N̂o

)2

+ Ul,S

(

Ŝe − Ŝo

)2
]

,

with

Ul,D ≡ −2Lλ2
D

∆c − δ

(∆c − δ)2 + κ2
, (S-7)

Ul,S ≡ −2Lλ2
S

∆c − δ

(∆c − δ)2 + κ2
. (S-8)

PARTITION FUNCTION AFTER THE

HUBBARD-STRTONOVICH

TRANSFORMATION

The grand quantum partition function for the system
in the Mott-insulator limit reads

Z = tr
[

e−β(Ĥ−µσN̂σ)
]

(S-9)

=
∑

{ni,σ}

e−β(
∑

i,σ,σ′
1
2
Uσσ′ (ni,σ−δσσ′ ))

× e−β(−L−1[UD(Ne−No)
2+US(Se−So)

2]),

where Ne(o) =
∑

i∈e(o) (ni,+ + ni,−) and Se(o) =
∑

i∈e(o) (ni,+ − ni,−), with ni,σ being the eigenvalue of
the particle number operator n̂i,σ. To treat the long-
range density-density and spin-spin interaction term, we
introduce two Hubbard-Stratonovich transformations in
the density and spin channel, respectively, i.e.,

(

√

βUDL

π

)−1

exp

(

β
UD

L
[Ne −No]

2

)

(S-10)

=

∫ +∞

−∞

dφ exp
(

−βUD

{

Lφ2 + 2 [Ne −No]φ
})

,

(

√

βUSL

π

)−1

exp

(

β
US

L
[Se − So]

2

)

(S-11)

=

∫ +∞

−∞

dχ exp
(

−βUS

{

Lχ2 + 2 [Se − So]χ
})

.

Plugging the above transformations into the partition
function, we arrive at

Z =
βL

π

√

UDUS

∫∫ +∞

−∞

dχdφ e−βLΩ{US,UD,U
σσ′ ,µσ,β}(φ,χ),

(S-12)

where

Ω{US ,UD ,Uσσ′ ,µσ ,β}(φ, χ) (S-13)

≡−
1

2β

∑

η=±1

ln





+∞
∑

n±=0

e
−β

(

∑

σσ′

1
2
Uσσ′nσ(nσ−δσσ′ )−

∑

σ

µσnσ

)

e−2βη[UDφ(n++n−)+USχ(n+−n−)]
]

+ UDφ2 + USχ
2.

Here χ and φ assume the physical meaning of the fluctu-
ating SDW and CDW order parameter field, respectively.
Their expectation values χ̄ ≡ 〈χ〉 and φ̄ ≡ 〈φ〉 equal to
the SDW and CDW order parameter, respectively, i.e.,
χ̄ = 〈Ŝe − Ŝo〉/L, φ̄ = 〈N̂e − N̂o〉/L.

ANALYSIS OF THE GINZBURG-LANDAU

EFFECTIVE THEORY WITH A DOUBLE-Z2

SYMMETRY

Since both the CDW order parameter φ̄ and the SDW
order parameter χ̄ are small in the critical regime, one
can perform a systematic expansion of the system’s free
energy with respect to these two order parameters. Up
to the fourth order in the order parameters, the double-
Z2 symmetry allowed form of the Ginzburg-Landau (GL)
free energy F reads

F = −
1

2
rφφ̄

2 −
1

2
rχχ̄

2 +
1

4
uφφ̄

4 +
1

4
uχχ̄

4 +
1

2
uφχφ̄

2χ̄2.

(S-14)
Now let us discuss the interaction-induced transition

between the CDW and SDW phase at a fixed temper-
ature that is above the critical temperature which sep-
arates the first-order homogeneous-SDW (homogeneous-
CDW) transition from the second-order homogeneous-
SDW (homogeneous-CDW) transition. In the spirit of
Ginzburg-Landau effective theory, we assume that rφ ∝
(UD −U∗

D) and rχ ∝ (US −U∗
S) with (U∗

D, U∗
S) being the

critical point around which both order parameters, i.e., φ̄
and χ̄, are small. uφ, uχ, and uφχ are positive fixed GL
parameters that do not depend on the tuning parameter
UD and US . The saddle point of GL free energy is de-
termined by the equations ∂F/∂φ̄ = 0 and ∂F/∂χ̄ = 0,
whose explicit form reads

φ̄
(

−rφ + uφφ̄
2 + uφχχ̄

2
)

= 0, (S-15)

χ̄
(

−rχ + uχχ̄
2 + uφχφ̄

2
)

= 0. (S-16)

By straightforwardly investigating the solution of the
above saddle point equations, one can directly find the
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phase digram of the GL effective theory (S-14) can as-
sume two distinct structures depending on the sign of
u2
φχ − uφuχ.

In the case with u2
φχ−uφuχ > 0, the phase diagram as-

sumes two second-order phase transition boundaries that
correspond to the homogeneous-SDW and homogeneous-
CDW transition and one first-order transition bound-
ary that corresponds to the SDW-CDW transition. The
phase with both orders does not exist. These two second-
order phase transition boundaries meet at a bicritical
point (rφ = 0, rχ = 0) at which the order parameter
jumps associated with the first-order SDW-CDW tran-
sition vanish, i.e., the first-order SDW-CDW transition
boundary terminates at this point. The order parameter

jumps assume the forms ∆φ̄ =
√

rφ
uφ

and ∆χ̄ =
√

rχ
uχ

,

from which one can conclude the corresponding power
law scaling ∆φ̄ ∝ |UD − U∗

D|1/2,∆χ̄ ∝ |US − U∗
S|

1/2.

While for the case with u2
φχ−uφuχ < 0, there exists an

intermediate phase that assumes both the non-zero SDW
and the non-zero CDW order parameter, whose explicit

forms read

χ2 =
uφχrφ − rχuφ

u2
φχ − uφuχ

, φ2 =
uφχrχ − rφuχ

u2
φχ − uφuχ

, (S-17)

from which one can directly show that the phase bound-
ary of this intermediate phase regime is determined by

rφ
uφχ

uφ
≤ rχ ≤ rφ

uχ

uφχ
. (S-18)

The transition from this intermediate phase to either
the SDW or the CDW phase is the second-order tran-
sition. Moreover, both the homogeneous-SDW and
homogeneous-CDW transitions are second-order transi-
tions. From the phase diagram of the GL effective theory,
we see that all these four different second-order transition
lines meet at the same point (rφ = 0, rχ = 0), giving rise
to the tetracritical point.

∗ liang.he@scnu.edu.cn
† syi@itp.ac.cn

[1] M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner,
and T. Esslinger, Phys. Rev. Lett. 120, 223602 (2018).

[2] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl,
T. Donner, and T. Esslinger, Nature (London) 532, 476
(2016).

mailto:liang.he@scnu.edu.cn
mailto:syi@itp.ac.cn

