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Recently, it has been discovered that systems of Active Brownian particles (APB) at high density
organise their velocities into coherent domains showing large spatial structures in the velocity field.
Such a collective behavior occurs spontaneously, i.e. is not caused by any specific interparticle
force favoring the alignment of the velocities. This phenomenon was investigated in the absence of
thermal noise and in the overdamped regime where inertial forces could be neglected. In this work,
we demonstrate through numerical simulations and theoretical analysis that the velocity alignment is
a robust property of ABP and persists even in the presence of inertial forces and thermal fluctuations.
We also show that a single dimensionless parameter, such as the Péclet number customarily employed
in the description of self-propelled particles, is not sufficient to fully characterize such a phenomenon
neither in the regimes of large viscosity nor small mass. Indeed, the size of the velocity domains,
measured through the correlation length of the spatial velocity correlation, remains constant when
the swim velocity increases while decreases as the rotational diffusion becomes larger. We find that
the spatial velocity correlation depends on the inertia but, contrary to common belief, are non-
symmetrically affected by mass and inverse viscosity variations. We conclude that in self-propelled
systems, at variance with passive systems, variations of the inertial time (mass over solvent viscosity)
and mass act as independent control parameters. Finally, we highlight the non-thermal nature of
the spatial velocity correlations that are fairly insensitive both to solvent and active temperatures.

I. INTRODUCTION

Many systems of biological or technological interest display fascinating spatial velocity correlations extending over
lengths larger than the size of the individual constituents. This phenomenon is an example of the intriguing non-
equilibrium behavior typical of active [1–3] and granular matter systems [4, 5] and is in stark contrast with the
observed behavior characteristic of equilibrium colloidal suspensions where the particle velocities are uncorrelated
and follow the Maxwell-Boltzmann distribution.

Colonies of bacteria, such as Bacillus subtilis or Myxococcus xanthus, display spatial velocity correlations expo-
nentially decaying with a correlation length much larger than the typical bacterium size [6–8]. The velocity field
of bacteria forms vortex-domains or clusters where the velocities are mutually aligned and continuously rearrange
according to different patterns. This phenomenon occurs at large densities and is often called bacterial turbulence
and has been mostly investigated in the framework of hydrodynamic phenomenological theories [9–12]. Particle-based
numerical studies have reproduced the formation of velocity domains either in models containing an explicit velocity
alignment interaction term [13] or in models where the observed rich variety of polar phases [14] was mainly due to
the elongated shape typical of many species of bacteria.

More recently, the experimental study of cell monolayers has revealed similar spatial structures in the velocity field
extending over a range of ∼ 10 − 20 microns for mesenchymal cell up to ∼ 500 microns for very adhesive epithelial
cells reaching also ∼ 50 times the typical size of the single cell [15]. Many cells, such as the typical Madin-Darby
Canine Kidney (MDCK) cells [16] or human bronchial epithelial cells (HBEC) [17], are not elongated but still form
large groups with correlated velocities often organizing in vortex structures [17, 18] (without showing the formation
of polar bands) and give rise to velocity correlations exponentially decaying in space [19, 20]. To explain these
behaviors, several models have been proposed [21]. At the particle level, alignment interactions between particle
polarizations or particle velocities have been often included in the cell dynamics [22, 23]. However, in recent studies,
these phenomenological interactions have been replaced by additional frictional forces [19] or complex anti-alignment
interactions of biological origin [24] that could also give rise to a similar phenomenology.

Despite their different origins, the common feature of these systems is the formation of domains with correlated
velocities even in the absence of the polar bands that instead are typically observed in Vicsek-like models. At variance
with the mentioned theoretical approaches, the local velocity alignment has been recently reproduced via dissipative
stochastic dynamics without introducing any explicit alignment interactions between the particle orientations [25–27]
or some kind of local interaction between particle velocity and self-propulsion. Dense systems of purely repulsive
Active Brownian Particles (ABP) form domains where the velocities are aligned or arranged in vortex-like patterns
when they attain hexatic or solid order [26] or in the dense phase of the non-equilibrium phase-coexistence [25], known
as Motility induced phase separation (MIPS) [28–30]. The ABP already contains the following minimal ingredients
producing velocity patterns: i) persistent self-propulsion forces and ii) purely repulsive interactions. However, so far
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these results have been obtained through theoretical analysis and simulations neglecting two important aspects: the
inertial forces and thermal noise due to the molecules of the solvent. In apparent contradiction with the results of
Refs. [25–27], a successive investigation, based on thermal overdamped ABP, [31] and focused on micro-phase motility
induced phase separation did not reveal the presence of spatial velocity correlations. Two natural questions arise: i)
does the velocity alignment in ABP systems occur only in the absence of thermal fluctuations? ii) Is this ordering
suppressed if one takes into account the effect of the acceleration?

We anticipate the main result of the present study: the spatial patterns in the velocity field of active systems survive
in the case of underdamped active dynamics and thermal noise. Our investigation also proves three important results
derived by combining numerical and theoretical methods:

i) The inadequacy of the so-called Péclet number, as a single active force dimensionless parameter, to understand
the dynamical collective phenomena. Indeed, we unveil the non-symmetric role of persistence time and swim
velocity, being the spatial velocity correlation function independent of the latter but deeply affected by the
former.

ii) Asymmetric role of mass and inverse viscosity in the velocity correlations functions whose changes are not
controlled only by the inertial time (mass over viscosity), but depend on both parameters.

iii) Marginal role of thermal and active temperatures for the dynamical collective phenomena presented so far.
The temperature increase does not affect the correlation length of the spatial velocity correlation, revealing a
dynamical scenario fairly different from what one expects for equilibrium ferromagnetic systems.

The article is structured as follows: in Sec. II, we introduce the model describing the self-propelled system in the
underdamped regime and, in Sec. III, we present the velocity alignment phenomenology. Secs. IV, V and VI discuss
the role of the active force, inertial forces and temperature. Finally, we conclude by summarizing the main results
and presenting some final remarks.

II. MODEL

In order to investigate the collective dynamics of a system of inertial self-propelled particles, we perform numerical
simulations of the underdamped version of the ABP model, while to build a theoretical framework, we employ the
Active Ornstein-Uhlenbeck (AOUP) model containing the same deterministic force terms. In the two models, the
active forces are different but share similar statistical properties. We resort to this procedure because it greatly
simplifies the theoretical analysis. Both the AOUP and the ABP have been successfully employed to reproduce
many aspects of the active matter phenomenology including accumulation near an obstacle, velocity correlations
and entropy production [32–38]. The underdamped ABP equation of motion, describing a system of interacting
self-propelled particles of mass m, are:

ẋi = vi , (1a)

mv̇i = −γvi + Fi + fai +
√

2γT ηi , (1b)

where xi and vi represent the particle position and velocity, respectively. The drag coefficient, γ, and the solvent
temperature, T , determine the thermal diffusion coefficient, Dt via the Einstein relation, γDt = T/m. The term η
is a white noise vector with zero average and unit variance accounting for the random collisions between the self-
propelled particle and the particles of the solvent, such that 〈ηi(t)ηj(t′)〉 = δ(t−t′)δij . As for equilibrium colloids, the
solvent exerts a Stokes drag force proportional to vi. Often, the thermal diffusivity of active colloidal and bacterial
suspensions [39], is negligible compared to the effective diffusivity produced by the active force. The effect of inertia is
also considered not to be important in the case of typical active particles such as microscopic self-propelled colloids or
bacteria swimming in solution. However, this approach needs to be reconsidered in the light of recent studies focused
on the interplay between inertia and active forces [40–46] motivated by the existence of experimental macroscopic
systems, such as vibro-robots [47, 48] or camphor surfers [49] which behave as active particles.

The particle interactions are represented by the force Fi = −∇iUtot, where Utot =
∑
i<j U(|xi − xj |) is a pairwise

potential. We choose U as a shifted and truncated Lennard-Jones potential [26, 50]:

U(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
, (2)

for r ≤ 21/6σ and zero otherwise. The constants ε and σ determine the energy unit and the nominal particle diameter,
respectively. In the spirit of minimal modeling, the self-propulsion is represented through a stochastic force, namely
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fai . At this level of description, the details about the chemical or mechanical origin of the self-propulsion [1, 3, 39, 51]
are not specified. This force drives the system far from equilibrium [34, 52] and determines a persistent motion in
a random direction lasting for a time smaller than a characteristic persistence time, τ . The two dimensional ABP
self-propulsion is a force with constant modulus f0 and time-dependent orientation ni = (cos θi, sin θi):

fai = f0ni . (3)

The angle θi performs a Brownian motion:

θ̇i =
√

2Drχi , (4)

being χi a white noise with zero average and unit variance and Dr = 1/τ a rotational diffusion coefficient determining
how persistent is the propagation direction. The parameter f0 fixes the swim velocity induced by the self-propulsion:

v0 =
f0
γ
. (5)

Finally, we introduce the active temperature:

Ta = f20
τ

γ
= γτv20 . (6)

in agreement with previous definitions employed for overdamped active dynamics [42, 53]. This parameter will play
a relevant role in the following.

The AOUP model [54–62], employed to ease the theoretical analysis replaces the ABP self-propulsion (3) by an
Ornstein-Uhlenbeck process:

τ ḟai = −fai + f0
√

2τξi , (7)

where ξi is a white noise vector with zero average and unit variance, such that 〈ξi(t)ξj(s)〉 = δijδ(t−s). In the AOUP,
the modulus of fa is not held rigidly fixed but fluctuates around the mean value f0. The correlation time, τ , of the
active force, are chosen to have a common value in AOUP and ABP [63, 64]. In both models the self-correlation of
the active force decays in time with an exponential law.

Regarding the aptness of the AOUP for adequately reproducing the salient features of the ABP, we mention a
recent study [65] of the single-particle velocity distribution in the case of dense active solid configurations, similar to
those analyzed in this paper. In that work, we concluded that in the large persistence regime (i.e. for a broad range
of τ including the values analyzed in this work) the ABP single-velocity properties are well-described by those of an
AOUP system at variance with the small persistence regime.

III. VELOCITY ALIGNMENT

We have integrated numerically the equations (1) and (4) for a system of N particles moving in a square domain
of size L with periodic boundary conditions. The simulations are performed keeping fixed the packing fraction
φ = N/L2σ2π/4 in such a way that the system attains a solid configuration without showing changes in the positional
structure of the system for a broad range of activity parameters (both f0 and Dr). Indeed, it is known that the increase
of both f0 (or equivalently of v0) and τ induces the solid-hexatic and finally the hexatic-liquid transition [26, 66, 67].
A further increase of f0 and τ leads to a non-equilibrium phase-coexistence that, at variance with passive Brownian
particles, occurs even in the absence of attractive interactions [68–74]. This phenomenon, known as motility induced
phase separation (MIPS) is due to the particle slowdown caused by interactions [50].

Refs. [25, 26] (for a phase-separated and homogeneous liquid, hexatic and solid configurations, respectively) demon-
strated the spontaneous occurrence of velocity alignment in the case of athermal ABP in the overdamped regime
despite the absence of any form of alignment interaction. As a first result, we show that the spontaneous velocity
alignment occurs even in the case of the underdamped dynamics modeled by Eqs. (1), that account for both the finite
particle acceleration and thermal fluctuations induced by the solvent. Fig. 2, represents a pair of snapshots illustrating
the comparison between a system governed by Eqs. (1) with γ = 102 and m = 1 and a system evolving with the
overdamped dynamics whose details are reported in Appendix A. In particular, in panels (b) and (c), the color-map
represents the velocity direction of each particle while, in panels (d) and (e), the orientation of the self-propulsion. In
the former case, the particles are colored according to the angle formed by the velocity vi of each particle with the x
axis, while, in the latter case, according to the angle θi of the self-propulsion. While the self-propulsion directions are
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FIG. 1: Comparison between the velocity domains of overdamped and underdamped dynamics. Panel (a): spatial
velocity correlation, C(r) = 〈v(r) · v(0)〉/〈v2〉, for two different values of Dr, as detailed in the legend. For both

values, we compare the correlation obtained via underdamped dynamics Eq. (1) (denoted by the symbol U) with the
one corresponding to overdamped dynamics Eq. (A1) (symbol O). The dashed black lines represent the theoretical

predictions, obtained by fitting the functional form given by Eq. (10) with the function f(r) = a e−r/λ/r1/2, where λ
is given by Eq. (11) and a and b are two positive fitting parameters. Panel (b),(c),(d) and (e): Snapshot

configurations for Dr = 10 relative to underdamped dynamics (panels (b) and (d)) and to overdamped dynamics
(panels (c) and (e)). Particles are colored according to the velocity direction in panels (b), (c) and according the
orientational angle, θ ( identifying the direction of the active force), in panels (d), (e), respectively. The velocity

vector in the overdamped case are represented by ẋ as described in Appendix A. The simulations have been
obtained using γ/m = 102, ε = 102, T = 10−1, f0 = 5× 103, corresponding to a swim velocity of v0 = 50.

random without showing any spatial structure (as expected from Eq. (4)), large domains containing aligned velocities
are observed. It means that vi does not coincide with fai in dense configurations where the interparticle interactions
are not rare events. The same scenario could be detected in the bulk of the dense phase of MIPS that reaches very
large packing fractions attaining configurations that could even display the hexatic or almost-solid orders [25].

To quantify the size of the velocity domains we study the spatial velocity correlation function, C(r), defined as:

C(r) =
〈v(r) · v(0)〉
〈v2〉

,

normalized by dividing by the velocity variance, 〈v2〉. The associated correlation length provides a measure of the
average size of a velocity domain since particles not belonging to the same domain display uncorrelated velocities. The
observable C(r) is reported in Fig. 2 (a) for two different values of Dr both for the underdamped and the overdamped
dynamics for large values of γ such that the inertial forces play a marginal role. Two values of Dr are reported,
such that τ = 1/Dr � m/γ, and both reveal a fair agreement between overdamped and underdamped dynamics.
As already shown in Ref. [26], the spatial velocity correlation decreases slower as Dr is increased and, in particular,
the correlation length scales as τ1/2 with τ = 1/Dr in the overdamped regime. How that scaling with τ would be
modified due to inertial effects is described in Sec. V.

A. Theoretical prediction

We have extended to the dynamics (1) the analytical method previously employed in the study of the spatial velocity
correlation functions in the case of overdamped ABP in dense configurations [25–27]. The details of the calculations
are reported in Appendix B and lead to the following formula for the Fourier transform of the steady-state equal-time
velocity correlation:

〈v̂(q) · v̂(−q)〉 =
2T

m
+

2Ta
m

1

1 + τ/τI

1

1 + τ2

1+τ/τI
ω2(q)

(8)



5

where τI = m/γ is the inertial time and Ta the active temperature, defined in Eq. (6). The vector q is a vector of the
Fourier space and v̂(q) is the Fourier transform of the velocity vector. The frequency ω(q) in the long-wavelength
limit, q→ 0, reduces to:

ω2(q) ≈ 3ω2
E

2
x̄2q2 (9)

with

ω2
E =

1

2m

(
U ′′(x̄) +

U ′(x̄)

x̄

)
.

The terms U ′(x̄) and U ′′(x̄) represent the first and the second derivative of U calculated at x̄, the average distance
between two nearest neighbor particles. The full expression for ω2(q) is reported in Appendix B.

Using formula (9), we can find (see Appendix C) the following expression for the real space velocity correlation,
holding for large distances (at least, r > σ):

C(r) ≈ 2

〈v2〉
Ta
m

1

1 + τ/τI

x̄2

λ2

(
λ

8πr

)1/2

e−r/λ , (10)

where the correlation length λ is given by

λ2 =
3

2
x̄2

ω2
Eτ

2

1 + τ
τI

. (11)

The overdamped result derived in Refs. [25–27] is recovered in the limit τI � τ , i.e. when the solvent viscosity is
sufficiently large (or the particle mass sufficiently small) compared to the persistence time of the active force.

For some choices of the parameters of the active force, it is possible to obtain large values of λ so that a huge group of
particles moves in the same direction. Hence, to exclude undesired finite-size effects, we always performed simulations
in such a way that the condition L� λ is satisfied. Such a condition guarantees that the spatial velocity correlation
approaches zero by avoiding finite-size effects and is fundamental to get results consistent with the theoretical analysis.
If this condition is not fulfilled, particles could form a single velocity domain (spanning the entire simulation box)
oriented in a direction that changes with a typical time ∝ τ . This state is known as active traveling crystals [75–77]
and disappears performing simulations with larger boxes.

On the other hand, Eq. (10) displays a non-physical divergence at the origin and does not correctly reproduce the
behavior of C(r) for small separations, namely r < σ. The divergence is determined by the absence of an upper cutoff
in the q-integral that is used to derive analytically the Fourier anti-transform of Eq. (8). The divergence disappears by
considering the correct integration limits when anti-transforming Eq. (8). In Appendix D, we calculate the variance
of the velocity distribution employing the exact expression of ω(q) and obtain the analytical expression of the kinetic
temperature, Tk = m〈v2〉/2, in the presence of inertial forces and thermal noise:

Tk = T +
Ta

1 + τ/τI + 6ω2
Eτ

2

I
π
, (12)

where the term I is a function of τ , τI and ωE . The term I in Eq. (12) is reported in Appendix D and contains the
complete elliptic integral of the first kind. Here, we just stress that I does not show any dependence on Ta or T .
Formula (12) generalizes the overdamped result of Ref. [65], (derived for overdamped ABP, such that τI � τ), and
provides an analytical prediction for the kinetic temperature.

We remark that the predictions regarding the spatial velocity correlations and kinetic temperature hold in the
solid-like regime and, as already shown in Ref. [26], break down when the solid-hexatic transition takes place and
the number of defects becomes statistically relevant. In addition, expression (10) can be used to extract λ from
simulations through numerical fits and compare it with the prediction (11).

In the next sections, we report an extensive numerical study varying both the parameters of the active force and
inertial force taking advantage of the comparison with our theory. The effect of the density increase has been already
discussed in Ref. [26] where the phase diagram (density, ρ, vs τ plotting λ as a color gradient) has been reported. In
this paper, we do not perform numerical investigation varying the density but recall that the larger ρ the larger λ. In
the solid-like phase, this is consistent with Eq. (11), since the increase of ρ produces the decrease of x̄ and, thus, the
increase of the factor U ′′(x̄) + U ′(x̄)/x̄ appearing in the expression for ω2

E that is proportional to λ.
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FIG. 2: Spatial velcity correlation as a function of the self-propulsion intensity. Panel (a): spatial velocity
correlation, C(r), for different values of the self-propulsion intensity, f0 = v0γ. The dashed black lines are the

theoretical predictions, obtained by fitting the functional form given by Eq. (10) via the function
f(x) = a e−r/λ/r1/2, where λ is given by Eq.(11) and a is a positive fitting parameter. Panel (b): Correlation length,
λ, of C(r) as a function of f0. The value of λ has been obtained fitting the function f(r) = a e−r/c/r1/2, fitting also
the constant c to be compared with λ. The dashed black line has been obtained evaluating Eq. (11) with the set of

parameters of the simulation, where x̄ has been measured numerically and reads x̄ = 0.91. The simulations
correspond to γ/m = 102, ε = 102, T = 10−1, Dr = 10.

IV. ROLE OF THE SELF-PROPULSION

In ABP systems, the degree of activity is often accounted for by a single dimensionless parameter, the so-called
Péclet number, Pe ∝ v0/Dr, so that a decrease of Dr has the same effect as an increase of v0. Actually, most of the
studies concerning systems of interacting ABP are obtained via this procedure and the ABP phase diagram is usually
described in terms of two parameters, density and Péclet number [41, 67, 78–80].

Hereafter, we demonstrate that variations of v0 and 1/Dr are not interchangeable, as far as the spontaneous velocity
alignment is concerned. We show that a single parameter, the Péclet number, is unable to fully capture the non-
equilibrium dynamical properties of active particles. In a previous study about the dense phases of overdamped
ABP [26], the role of τ at fixed self-propulsion was investigated numerically and the results were found in agreement
with the theoretical predictions (λ ∝ τ1/2). In Fig. 2 (a), we study the velocity correlation function varying the
self-propulsion intensity, f0 (and, thus, v0) and keeping fixed the remaining parameters. In Fig. 2 (b), we display the
correlation length, λ, measured fitting the functional form reported in Eq. (11). This procedure reveals that C(r) is not
affected by the increase of f0 for a broad range of f0 values for which the system remains in solid-like configurations.
The correlation length (and, thus, the size of the velocity domains) remains constant. When f0 exceeds a threshold
value (for f0 > 5×103), the function C(r) decays faster just because a solid-hexatic transition takes place. The faster
decay, corresponding to a decrease of the correlation length, is not surprising since the lack of orientational order in
the hexatic phase and periodic order in the liquid phase has been recognized as one of the main reasons for the λ
decrease [26]. As discussed in the literature (see for instance Ref. [26, 66, 67]), the occurrence of positional order is
mainly controlled by the Péclet number and, thus, by the increase of v0 and the decrease of Dr. Here, we argue that,
to the best of our knowledge, there is no numerical quantitative validation of the symmetric action of v0 and 1/Dr in
the phase diagram of ABP and its evidence is at most qualitative. In other words, it is not clear if by changing Pe
through v0 or 1/Dr one could shift the transition lines of the phase diagram. Finally, for values of f0 producing spatial
inhomogeneity (namely for f0 > 2× 104 corresponding to v0 > 2× 102), λ increases again revealing a non-monotonic
behavior. This effect is due to the phase-separation inducing a local increase of the density and thus the growth of λ
in the denser phase, as already observed in Ref. [26].
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FIG. 3: Correlation length for different values of mass and viscosity. Panel (a): Correlation length, λ, of C(r) as a
function of the inertial time, τI . The green and yellow data have been obtained by varying γ at m = 1 and m at

γ = 50. Panel (b): λ as a function of the persistence time, τ , for two different values of γ = 10 (blue points) and 102

(red points). In both panels the points are obtained from numerical simulations while the solid lines from the
theoretical prediction, Eq. (11). The dashed blue and red lines in panel (b) are obtained from Eq. (14) and, finally,
the dashed black line is an eye-guide to evidence the linear behavior with τ . The numerical values of λ have been
obtained fitting the function f(r) = a e−r/c/r1/2, where c is the estimate of λ. The remaining parameters of the

simulations are ε = 102, T = 10−1 and f = 5× 103.

We also stress that our numerical results in the solid phase are supported by the main prediction, Eq. (10) and
Eq. (11). Indeed, the correlation length, λ, does not contain an explicit dependence on f0 (and, thus, v0). This
parameter appears as a simple prefactor in the shape of 〈v(r) · v(0)〉, specifically, through the active temperature.
Thus, cannot deeply affect the occurrence of velocity alignment, except for values of f0 comparable with T as detailed
shown in Sec. VI.

V. THE ASYMMETRIC ROLE OF MASS AND VISCOSITY

In passive systems, the role of the inertial forces could be encapsulated in a single parameter, the inertial time,
tI = m/γ, corresponding to the ratio between the mass and the solvent viscosity. Such a time controls the relaxation
towards equilibrium, but does not affect the steady-state properties of the system. By contrast, as we show hereafter,
in the ABP case, the scenario is different and reveal the non-symmetric role played by mass and inverse viscosity, and
their influence on the steady-state properties of the system and on the dynamical collective phenomena reported so
far.

Fig. 3 (a) displays the correlation length, λ, numerically extracted from C(r) for different values of τI . The green
and orange curves are obtained varying m at fixed γ and varying γ at fixed m, respectively, and clearly show different
results for the same τI but different values of m and γ. In particular, if τI is increased by varying γ, λ reaches a
constant value while, if τI is increased by varying m, λ monotonically decreases with m. This is consistent with the
prediction (11), that in the underdamped regime where the inertial time is the larger one, τI � τ , explicitly reads:

λ2u = x̄2
3

4

τ2

m

(
U ′′(x̄) +

U ′(x̄)

x̄

)
. (13)

On the contrary, if τI is decreased by varying γ, λ monotonically decreases while, if τI is decreased by varying m, λ
approaches a constant value, consistently with the outcome of Eq.(11), in the overdamped regime, i.e. when τI � τ :

λ2o = x̄2
3

4

τ

γ

(
U ′′(x̄) +

U ′(x̄)

x̄

)
. (14)

This asymmetric role of mass and inverse viscosity is a pure non-equilibrium effect without a passive counterpart
suggesting that a single parameter is not enough to describe the dynamical properties of far equilibrium systems.



8

FIG. 4: Panel (a): Spatial velocity correlation, C(r), for different values of the self-propulsion intensity, f0 = v0γ.
The dashed black lines are the theoretical predictions, obtained by fitting the functional form given by Eq. (10) via

the function f(r) = a e−r/λ/r1/2, where λ is given by Eq. (11) and a is a fitting parameter. Panel (b): T/v20 vs
correlation length, λ. The values of λ have been extracted from the data fitting the function f(r) = a e−r/c/r1/2,

fitting also the constant c. The simulations correspond to γ = 102, m = 1, ε = 102, v0 = 50, Dr = 10.

In Fig. 3 (b), we display λ as a function of τ for two different values of γ and m = 1 to evaluate how inertial forces
affect the scaling with the persistence time of the active force. At first, we observe that the effect of the inertial
forces is to reduce the correlation length of the spatial velocity correlation through the constant prefactor 1/(1+τI/τ)
appearing in the expression of λ2, Eq. (11). The comparison between the overdamped prediction, Eq.(14) (dashed
lines) and the numerical data (points) reveals a fair agreement with the prediction of Eq. (11) (solid lines). The
prefactor approaches 1 in the overdamped regime, for τI � τ , giving rise to the behavior λ ∝ τ1/2 that has been
already reported in Ref. [26]. For τ ≤ τI , the inertia starts playing a role in decreasing the value of λ. For very
small values of τI , inertial effects cannot be appreciated since they could be observed only when τ is such that λ < σ
corresponding to particle velocities at different positions almost uncorrelated. In this regime of parameters, λ ∝

√
τ

in the whole range of τ where the velocity field has a spatial structure. On the contrary, Eq. (13) shows that in the
regime τI � τ , the prefactor reduces to τ2/m in such a way that λ ∝ τ . Thus, when τI is large, the correlation length
displays two distinct regimes with τ that are visible in Fig. 3 (b), for γ = 10 (red curve): a linear increase for small
values of τ , such that when τI � τ , is followed by the overdamped scaling, λ ∝ τ1/2, always occurring in the opposite
regime, τI � τ .

VI. ROLE OF THE TEMPERATURE

The temperature, T , is crucial in determining whether it is possible to detect the spontaneous velocity alignment
and the occurrence of spatial velocity correlations. Fig. 4 shows C(r) at fixed f0 and Dr, for different values of T and
keeping fixed γ and m (and, thus, Ta). Interestingly, C(r) decays with distance at the same rate, but its amplitude
decreases until it approaches an almost flat vanishing shape when T is sufficiently large. Our observations are in
agreement with the theoretical prediction (10), as shown by the comparison between points and solid lines in Fig. 4.
In particular, in panel (a) the insensitivity of λ to changes of T is numerically corroborated by the comparison with
the theoretical prediction. The solvent temperature T only affects the amplitude of the normalized spatial profile of
the velocity correlation entering the analytical expression for C(r) just through the term 〈v2〉 (proportional to Tk,
Eq. (12)). Indeed, its value increases when T grows at variance with the expression for 〈v(r) · v(0)〉 that remains
unchanged for r > σ (Eq. (10)). Hence, the amplitude of C(r) for each r > σ is controlled by the ratio Ta/T , through
a function ∝ 1/(T/Ta + α) where α is constant with respect to T and Ta. To summarize, a change in the solvent
temperature can be mapped onto a change of the active temperature so that the relative contribution of the active
and thermal fluctuations are mainly controlled by the non-dimensional ratio Ta/T .

We remark that these conclusions apply to solid-like configurations and argue that the transition from solid-like to
hexatic-like behavior does not occur for the broad range of temperatures of the simulations neither in passive systems
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(such that f0 = 0) because of the large values of the packing fraction considered in this study.
Finally, some authors claimed the need to use alignment interactions to get consistent spatial structures in the

velocity correlations [23] or asserted that their numerical simulations did not produce any evidence of the existence
of velocity domains [31]. We believe that the these claims are a consequence of the range of temperatures considered
in their numerical system, which were perhaps too large compared to Ta according to the predictions (10) and (12).
Other relevant causes motivating those claims could the lack of periodic order, as it occurs in homogenous active
liquids.

VII. CONCLUSION

In this article, we have studied the solid and the dense cluster regimes of a system of interacting active particles
evolving according to the underdamped version of the Active Brownian Particles model. Our first target was shedding
light on an emergent collective phenomenon, namely the spatial ordering of the velocity field. This phenomenon was
already observed in systems of overdamped, athermal ABP, but demanded further investigation via more realistic
dynamics. The underdamped dynamics is the natural approach to include the inertial forces and the effect of thermal
noise. We confirmed the spontaneous occurrence of velocity domains and quantify their average size by measuring
the correlation length of the spatial velocity correlation function. We corroborated our numerical findings employing
theoretical arguments analytically predicting both the spatial shape of the velocity correlation and the parameter
dependence of its correlation length.

We have also shown that a single dimensionless parameter, such as the Péclet number (usually defined as propor-
tional to the swim velocity and to the persistence time) fails to fully describe the velocity alignment phenomenon
in dense ABP systems or their phase-separated configurations. A change in the persistence time cannot be mapped
onto a change in the swim velocity, in contrast with the widespread opinion in the literature. Indeed, the size of the
domains (corresponding to the correlation length of the spatial velocity correlation) increases with the persistence
time while remains constant with the self-propulsion intensity (that is proportional to the swim velocity). Despite
the Péclet number has been intensively used to describe the structural properties of the system (usually, the phase
diagram is described as a function of density and Péclet number), it gives an insufficient description of the spatial
properties of the velocity field. To the best of our knowledge, a phase diagram obtained by changing the Péclet
number through the persistence time in alternative to the swim velocity has not been yet evaluated in the case of
purely repulsive ABP. Our analysis suggests that a three-dimensional phase diagram is needed to characterize the
phenomenology of Active Brownian Particles (at least, concerning the dynamical collective phenomena) and further
investigations about the MIPS transition line or the solid-hexatic and hexatic-liquid transitions could be needed.

We have also explored the role of the inertial forces finding fascinating results that hold in solid configurations or
the dense clusters of MIPS. Inertial forces introduce a typical time, τI , in addition to the persistence time of the active
force. When the former is the larger one, the correlation length is decreased providing two main results: I) inertia
reduces the velocity alignment with respect to the overdamped case. ii) The scaling of the correlation length with the
persistence time is deeply affected. A linear regime, ∝ τ , for an initial broad interval of τ values, appears before the
overdamped regime, scaling as ∝

√
τ , takes over as the persistence time becomes larger than the inertial time. Last

but not least, we surprisingly observe a further non-equilibrium effect manifesting in the non-symmetric role of mass
and inverse viscosity in the correlation length of the spatial velocity correlations. While the τ scaling is controlled by
the inertial time, we show that the value of the correlation length explicitly depends on the mass and viscosity values
separately and not only on their ratio (the inertial time). This observation suggests further investigations to test
the role of the inertia on the phase diagram varying separately both γ and m (and not just the inertial time), with
particular attention to the coexistence line of the Motility Induced Phase Separation that could be deeply affected.

Finally, we highlight the non-thermal nature of the collective phenomenon described so far that is marginally
affected by a temperature change, at variance with equilibrium models, such as the XY models. The increase of the
solvent or active temperature leaves unchanged the correlation length (and, thus, the size of the velocity domains),
at least in the dense configurations evaluated in this work. The use of T/Ta can be recognized as the dimensionless
parameter necessary to compare the strengths of active force and thermal fluctuations. The increase of this ratio
reduces the amplitude of the rescaled velocity correlation because of the T/Ta dependence on the kinetic temperature.
We conclude that, to observe the velocity domains (or, equivalently, spatial structure in the velocity correlations) it
is necessary to fix the solvent temperature rather smaller than the active temperature so that the active force term
(that produces effective alignment interactions) is not overwhelmed by the uncorrelated thermal fluctuations.
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Appendix A: Overdamped ABP dynamics

In this Appendix, we report the numerical details employed to simulate overdamped ABP to measure the spatial
velocity correlations in Fig. 2. Each particle is described by an equation of motion for its position xi:

γẋi = Fi + fai +
√

2γmTηi , (A1)

where the parameters γ, T , m have the same physical meaning as in Eq. (1).
The term η is a white noise vector with zero average and unit variance due to the collision by the solvent particles.

The force term Fi models steric interactions between particles and is derived from the same potential used to simulate
Eq. (1). Finally, fai represents the active force, that in the literature based on ABP simulations is usually expressed
as

fai = γv0ni .

This is consistent with our notation and, in particular, with the swim velocity definition, Eq. (5). In this system,
the velocity vector employed to calculate the spatial velocity correlation function is obtained from the the relation
vi = ẋi.

Appendix B: Derivation of Eq. (8)

In order to obtain the velocity correlation function in the Fourier space, i.e. Eq. (8), we shall make two simplifying
assumptions in Eq. (1):

i) We consider the AOUP model, assuming that fai is given by Eq. (7).

ii) Each particle performs small oscillations around a node of a hexagonal lattice so that the total inter-particle
potential can be approximated as the sum of quadratic terms.

Introducing the displacement ui of the particle i with respect to its equilibrium position, x0
i , namely

ui = xi − x0
i ,

the pair potential, in the harmonic approximation, reads:

Utot ≈ m
ω2
E

2

∑
i 6=j

(uj − ui)
2 ,

where

ω2
E =

1

2m

(
U ′′(x̄) +

U ′(x̄)

x̄

)
.

Therefore, the equations of motion become:

ḟai = −1

τ
fai +

√
2

τ
f0ξi , (B1a)

v̇i(t) = − γ
m
vi(t) + ω2

E

n.n∑
j

(uj − ui) +
fai
m

+

√
2
γ

m
Tηi . (B1b)

where the sum is over nearest neighbour only. Introducing the discrete Fourier transforms of the displacement about

the equilibrium positions, velocity and active force ûq, v̂q, f̂
a
q , respectively, the equations of motion (B1) can be written

in the Fourier Space:

d

dt
v̂(q) = − γ

m
v̂(q)− ω2(q)û(q) +

f̂a(q)

m
+

√
2γ
T

m
η̂(q) (B2a)

τ
d

dt
f̂a(q) = −f̂a(q) + f0

√
2τ ξ̂(q) , (B2b)
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where q = (qx, qy) are the Cartesian components of vectors of the reciprocal Bravais lattice. The frequency ω2(q)
reads:

ω2(q) = −2ω2
E

[
cos(qxx̄) + 2 cos

(1

2
qxx̄
)

cos
(√3

2
qyx̄
)
− 3
]

≈ 3

2
ω2
E x̄

2q2 +O(q4) , (B3)

where in the last line we have performed a Taylor expansion around q = 0. Solving the dynamics (B2), we get the
final expression for the positional correlation function:

〈û(q) · û(−q)〉 =
2T

mω2(q)
+

2f20
mω2(q)

τ

γ

1

1 + τ2

1+τ/τI
ω2(q)

and the velocity correlation functions in the Fourier space:

〈v̂(q) · v̂(−q)〉 =
2T

m
+

2f20
m

τ

γ

1

1 + τ/τI

1

1 + τ2

1+τ/τI
ω2(q)

(B4)

Equation (B4) coincides with Eq. (8) using the definition of Ta.

Appendix C: Derivation of Eq.(10)

The velocity real space correlation, i.e. Eq. (10), is obtained by inverting formula (B4):

〈vx · vx′〉 =
2T

m
δx,x′ +

2f20
m

τ

γ

1

1 + τ/τI

∑
q

eiq(x−x
′)

1 + τ2

1+τ/τI
ω2(q)

(C1)

For large particle separations, r = |x − x′| > σ, the first term is negligible while the second term can be evaluated
by performing the following approximations: i) the finite lattice sum is replaced by a double integral over (qx, qy)
variables, ii) the frequency is replaced by its small q-expansion and iii) the limits of integration are extended from
−∞ to ∞. Using these approximations, we have:

〈vx · vx′〉 ≈ 2
f20 τ

mγ

1

2π

x̄2

λ2
1

1 + τ
τI

K0(r/λ) ,

where the coherence length (or correlation length) λ is given by:

λ2 ≡ 3

2
x̄2

ω2
Eτ

2

1 + τ
τI

(C2)

and K0(r/λ) is the zero-order modified Bessel function of the second kind which has the following asymptotic behavior
when r/λ� 1:

K0(r/λ) ≈
(πλ

2r

)1/2
e−r/λ .

Therefore, for large separations, we find the following approximation:

〈vx · vx′〉 ≈ 2
f20 τ

mγ

1

1 + τ
τI

x̄2

λ2

(
λ

8πr

)1/2

e−r/λ . (C3)

Switching to a continuous notation such that vx → v(x), fixing r = |x − x′| and formally dividing by the velocity
variance 〈v2

x〉, we obtain Eq. (10) after using the definition of Ta while Eq. (C2) coincides with Eq. (11).
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Appendix D: Kinetic temperature: Eq. (12)

To obtain an analytical expression for the kinetic temperature, we need to calculate Eq. (C1) in r = |x − x′| = 0.
In this case, we need to consider the exact expression of ω2(q) without employing any small q expansion. We replace
the sum by a double integral over a finite domain:

〈vx · vx〉 =
2T

m
+

2f20
m

τ

γ

1

1 + τ/τI + 6ω2
Eτ

2

∫ π

−π

dk1
2π

∫ π

−π

dk2
2π

1

1− zs(k1, k2)

where we have performed a change of variables of integration and introduced s(k1, k2), the so-called structure function
of the triangular lattice [81]:

s(k1, k2) =
1

3
(cos(k1) + cos(k2) + cos(k1 + k2)) ,

with

z =
1

1 + 1+τ/τI
6ω2

Eτ
2

.

In detail, one can evaluate the integral as:∫ π

−π

dk1
2π

∫ π

−π

dk2
2π

1

1− zs(k1, k2)
=

6

πz
√
c
K(k) ,

where K(k) is the complete elliptic integral of the first kind:

K(k) =

∫ π/2

0

dθ√
1− k2 sin2(θ)

,

with

c =
9

z2
− 3 +

√
3 +

6

z

k = 2
(3 + 6

z )1/4

c1/2
.

Hence, in the limit τ →∞, we have z → 1 and the integral in Eq. (D1) weakly (in fact, logarithmically) diverges for
any two-dimensional lattice, being connected to the fact that the probability of returning to the origin by a random
walker in two dimensions is certain. However, in the same limit, the dependence on τ of the prefactor in front of
the integral makes the resulting contribution of the self-propulsion to the velocity variance vanishingly small. This
can be seen as a consequence of the well-known fact that the velocity of active particles also depends on the forces
they experience in such a way that they are slower in those regions where the curvature of the local potential is high.
Finally, upon defining:

I =
6

z
√
c
K(k) ,

we get the exact expression for the kinetic temperature reported in Eq. (10). Because of the definitions of k, c and z,
the term I depends only on τ , τI and ωE and, thus, is independent of T and Ta.
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[22] N. Sepúlveda, L. Petitjean, O. Cochet, E. Grasland-Mongrain, P. Silberzan, and V. Hakim, PLoS Comput Biol 9, e1002944

(2013).
[23] D. Sarkar, G. Gompper, and J. Elgeti, arXiv preprint arXiv:2006.04519 (2020).
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[48] O. Dauchot and V. Démery, Physical Review Letters 122, 068002 (2019).
[49] M. Leoni, M. Paoluzzi, S. Eldeen, A. Estrada, L. Nguyen, M. Alexandrescu, K. Sherb, and W. W. Ahmed, Physical Review

Research 2, 043299 (2020).
[50] G. S. Redner, M. F. Hagan, and A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013).
[51] M. R. Shaebani, A. Wysocki, R. G. Winkler, G. Gompper, and H. Rieger, Nature Reviews Physics pp. 1–19 (2020).
[52] L. Dabelow, S. Bo, and R. Eichhorn, Physical Review X 9, 021009 (2019).
[53] L. Berthier, E. Flenner, and G. Szamel, The Journal of Chemical Physics 150, 200901 (2019).

https://link.aps.org/doi/10.1103/PhysRevE.102.012609
https://link.aps.org/doi/10.1103/PhysRevE.102.012609


14

[54] L. Berthier, E. Flenner, and G. Szamel, New Journal of Physics 19, 125006 (2017).
[55] C. Maggi, M. Paoluzzi, N. Pellicciotta, A. Lepore, L. Angelani, and R. Di Leonardo, Physical review letters 113, 238303

(2014).
[56] E. Woillez, Y. Kafri, and V. Lecomte, Journal of Statistical Mechanics: Theory and Experiment 2020, 063204 (2020).
[57] L. Caprini, U. Marini Bettolo Marconi, A. Puglisi, and A. Vulpiani, The Journal of Chemical Physics 150, 024902 (2019).
[58] R. Wittmann and J. M. Brader, EPL (Europhysics Letters) 114, 68004 (2016).
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[74] X.-q. Shi, G. Fausti, H. Chaté, C. Nardini, and A. Solon, Physical Review Letters 125, 168001 (2020).
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