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B lażej Jaworowski1, 2, ∗ and Anne E. B. Nielsen1, 2

1Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
2Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

We use conformal field theory to construct model wavefunctions for a gapless interface between
lattice versions of a bosonic Laughlin state and a fermionic Moore-Read state, both at ν = 1/2.
The properties of the resulting model state, such as particle density, correlation function and Rényi
entanglement entropy are then studied using the Monte Carlo approach. Moreover, we construct the
wavefunctions also for anyonic excitations (quasiparticles and quasiholes). We study their density
profile, charge and statistics. We show that, similarly to the Laughlin-Laughlin case studied earlier,
some anyons (the Laughlin Abelian ones) can cross the interface, while others (the non-Abelian
ones) lose their anyonic character in such a process. Also, we argue that, under an assumption
of local particle exchange, multiple interfaces give rise to a topological degeneracy, which can be
interpreted as originating from Majorana zero modes.

I. INTRODUCTION

One of the characteristic features of the topological or-
ders is the existence of nontrivial physical phenomena at
the edges or interfaces with another topological phase.
While the former can be used to characterize a single
topological phase [1, 2], the latter can tell us how two dif-
ferent topological phases are related to each other (e.g. if
one of them can be transformed into the other by anyon
condensation [3–12]). In experiments, the interfaces can
be potentially useful for example for isolating a certain
edge mode to prove its existence [13, 14]. From the per-
spective of applications, the interfaces can exhibit addi-
tional topological degeneracy connected to the existence
of non-Abelian zero-energy modes similar to the Majo-
rana zero modes [7, 15–18], which can encode quantum
logic gates [15, 16, 19, 20]. Curiously, this can happen
even if both sides are Abelian [15–17].

As the fractional quantum Hall (FQH) [21, 22] states
are the paradigmatic examples of topological orders, the
study of interfaces between them is particularly impor-
tant. Some such interfaces can be created experimentally,
e.g. the Camino et al.’s anyonic interferometry experi-
ments used a system with two different filling factors [23].
Proposals for realizing other interfaces also do exist, in-
volving either two Abelian states [24, 25] or one Abelian
and one non-Abelian state [13]. Moreover, one should
bear in mind that FQH states can exist in lattice settings,
as shown in a number of numerical studies [26–29] and ex-
periments with graphene moiré superlattices subjected to
magnetic fields [30]. There are ongoing attempts to cre-
ate lattice FQH states, including their bosonic versions,
in optical lattices [31–39]. The large degree of control
that we can exert on these systems make them poten-
tially useful also for the study of the interfaces.

A majority of studies on the FQH interfaces focus on
their most general features, using “top-down” techniques
based on field theory: the topological symmetry breaking
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formalism (i.e. anyon condensation) [4–6, 10–12], cou-
pling of effective edge theories [13, 18, 40–46], or other
methods [47–50]. On the other hand, microscopic ap-
proaches are used less often [14, 24, 25, 51–54]. One of
the reasons is the required system size (we need to have
two well-defined topological orders) combined with re-
duction of the translational symmetry, which makes the
exact diagonalization challenging.

The interfaces involving non-Abelian FQH states are
in general less understood than those of Abelian states
only. In addition to general considerations based on
topological symmetry breaking [4–6, 10–12], or other
methods [50], particular attention was devoted to the
Pfaffian/anti-Pfaffian [18, 41, 42, 44, 45, 53–55], Pfaf-
fian/Halperin [13, 14], Pfaffian/NASS [49] and Pfaf-
fian/Pfaffian [46] cases. Few of these calculations were
performed on the microscopic level: the Pfaffian/anti-
Pfaffian case was studied using DMRG [53, 54], and for
the Pfaffian/Halperin case model wavefunctions were cre-
ated by combining exact MPS matrices obtained from
conformal field theory (CFT) [14] (see also [24, 25] for
the same method used for an Abelian interface). Thus,
further microscopic studies using various methods are
needed to extend our understanding of non-Abelian in-
terfaces and to provide concrete examples of systems em-
bodying the abstract concepts of topological symmetry
breaking and related approaches.

Here, we perform a microscopic analysis of a system
which, as far as we know, was not studied before –
the gapless interface between the non-Abelian Moore-
Read state and the Abelian Laughlin state. While Refs.
[14, 53, 54] considered continuum systems, we investigate
the lattice case, more suited for settings such as optical
lattices. This work is also – up to our knowledge – the
first microscopic study of bulk non-Abelian anyons in the
presence of FQH interfaces, as Refs. [14, 53, 54] focused
on the ground state and interface modes. Therefore, it
complements the topological symmetry breaking analy-
ses [4–6, 10–12] which describe anyons and interfaces on
a general and abstract level.

Our results are obtained by using conformal field the-
ory to construct model wavefunctions, and then evaluat-
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ing their properties using Monte Carlo methods, as we
did before for the Abelian Laughlin/Laughlin interface
[52]. This approach is similar to the one by Regnault et.
al [14, 24, 25], but different from it – we patch together
the CFT operators directly, without an additional step
of creating MPS, which gives us more freedom of choos-
ing the geometry of the system (we can consider both a
plane and a cylinder, with any shape of the interface).

The article is organized as follows. In Section II we
construct the ground state wavefunction and investigate
its properties, such as particle density profile, correlation
function and entanglement entropy for various positions
of the cut. Next, in Section III, we study the anyonic ex-
citations. We determine their charge, statistics and den-
sity profile and show that the non-Abelian anyons cannot
cross the interface, as their statistics become undefined.
In Section IV we describe a system with more than one
Laughlin island within the MR plane, arguing that it ex-
hibits topological degeneracy. Section V summarizes the
conclusions of our study.

II. THE GROUND STATE

A. The construction of the wavefunction

Our approach follows the CFT construction for lat-
tice quantum Hall wavefunctions from Refs. [52, 56, 57],
which is based on the idea devised by Moore and Read
for continuum quantum Hall wavefunctions [58]. We con-
sider a system of N sites on a plane, each one at a com-
plex position zj = xj + iyj . The sites can be occupied
by at most one particle, with nj ∈ {0, 1} denoting the
occupation number of site j. That is, each site hosts a
fermionic or hardcore bosonic degree of freedom (a sys-
tem can contain sites of both types). We set the charge
of each particle to unity. In contrast to the continuum
case, we do not assume a constant magnetic field, but
rather set it to zero everywhere except at the positions
of the lattice sites. That is, we attach an infinitely thin
solenoid, containing ηi ∈ R+ flux quanta, to each site.
The total number of flux quanta is Nφ =

∑
i ηi and can

be different from N , which means that we can define two
kinds of filling factors. In the simplest case of a single MR
or Laughlin state, the particle number M is conserved,
so we can define a “lattice filling” νlat = M/N and a
“topological filling” ν = M/Nφ = 1/q, q ∈ N+. The for-
mer describes the degree of discretization (the lower νlat,
the denser are the lattice points, i.e. the closer we are to
the continuum), while the latter tells us which state we
discretize (i.e. it is equal to the Landau level filling factor
of the corresponding continuum state).

Any wavefunction in our system can be written in the
occupation number basis,

|Ψ〉 =
1

C

∑
n

Ψ(n) |n〉 (1)

where n is a vector of occupation numbers of all sites,

|n〉 is a corresponding basis state (to define it unambigu-
ously we fix the order of fermionic creation operators in
the definition of |n〉 to be the same as the order of site
indices), Ψ(n) are the unnormalized wavefunction coeffi-
cients and C is the normalization constant (which we fix
to be real without loss of generality).

To construct a model CFT wavefunction for a single
lattice quantum Hall state, an operator Vi(zi, ni), con-
taining the vertex operator of a certain conformal field
theory (depending on which kind of state we want to cre-
ate), is assigned to each site. The wavefunction is then
given by the correlator of these operators for all sites,

Ψ(n) = 〈0|
∏
i

Vi(zi, ni)|0〉 . (2)

This method can be generalized to interfaces [52]. In
general, for two given quantum Hall states, there can be
many different types of interfaces. A wavefunction for
a particular type can be created by forming a correla-
tor of the form (2), but made from the operators be-
longing to two different CFTs. Such a quantity is well-
defined when the two CFTs can be embedded in a third
one, which puts a restriction on the states for which this
method can be applied. We note that in Refs. [14, 24, 25],
model wavefunctions for interfaces (Laughlin/Halperin,
Pfaffian/Halperin) in continuous systems were created
by patching together infinite-dimensional matrix product
states, derived from conformal field theory, representing
the two different fractional quantum Hall states. Our ap-
proach is similar, but it uses the CFT operators directly,
without the need of a matrix-product-state representa-
tion.

So far, we employed this method only for Abelian
Laughlin states [52]. Here, we use it to study an inter-
face between a bosonic Laughlin state and a non-Abelian
fermionic Moore-Read state, both at topological filling
ν = 1/2. They are described by U(1)2 and U(1)2× Ising
CFTs, respectively. The embedding condition is satis-
fied, as the U(1)2 part is the same for both states.

We assume that the system consists of two parts. The
left one, which consists of the first NL sites, is described
by the MR state. In the right one, consisting of the next
NR sites up to N = NL + NR, the particles are in the
Laughlin state. The number of flux quanta per site is set
to a constant within each part, ηi = ηL for i ≤ NL and
ηi = ηR for i > NL, but it can differ between the parts,
i.e. we can have ηL 6= ηR. We note that in general the
two parts of the system can be of any shape and can be
split into disconnected regions, but we will use the L and
R labels for simplicity, as this is the geometry that we
will study numerically in this work.

More specifically, the planar systems considered in this
work consist of sites arranged in a square lattice of size
(NxL+NxR)×Ny. The interface is parallel to the y direc-
tion, as shown in Fig. 1 (a). Without loss of generality,
we set the lattice constant to unity and the position of
the interface to x = 0.
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The operators describing the sites are given by

Vi(zi, ni) =

{
VIsing,i(zi, ni)VLaughlin,i(zi, ni) for i ≤ NL
VLaughlin,i(zi, ni) for i > NL

.

(3)
Here, the VLaughlin,i(zi, ni) and VIsing,i(zi, ni) are the
Laughlin-like and Ising-like parts of the operator, respec-
tively. Here

VLaughlin,i =

=

{
eiπ(j−1)ηLni :e

qni−ηL√
q φ(zi) : for i ≤ NL

eiπ(j−1)ηRni :e
qni−ηR√

q φ(zi) : for i > NL
, (4)

with φ(zi) being a free chiral bosonic field and q = 2 in
our case, ensuring the topological filling ν = 1/2 on both
sides. We note that the same expressions can be used
in the case q = 1 (an interface between a bosonic MR
state and a fermionic integer quantum Hall state, both
at ν = 1), but then double occupancy of the L sites has
to be allowed [57]. In this work we restrict the study to
the q = 2 case.

The Laughlin-like part is the same for all sites, except
from the different values of ηi on the two sides. The Ising
part is

VIsing,i(zi, ni) = ψ(zi)
ni , (5)

where ψ(zi) is a chiral Majorana field. In contrast to the
Laughlin factor, the Ising one is assigned only to the L
sites.

By evaluating the correlator (2), we obtain the unnor-
malized wavefunction coefficients

Ψ(n) = δnPf

(
1

z′i − z′j

)∏
i<j

(zi − zj)qninj×

×
NL∏
j=1

∏
i(6=j)

(zi − zj)−niηL
N∏

j=NL+1

∏
i(6=j)

(zi − zj)−niηR ,

(6)

where i(6= j) means that we sum over all possible values
of i (from 1 to N) except i = j, z′i, z

′
j denote coordinates

of filled L sites, and

δn = δ(qM −NLηL −NRηR) (7)

is the charge neutrality condition (M =
∑
i ni is the total

number of particles in the entire system). The charge of
particles is compensated by a background charge −ηi/q
assigned to every site i.

We note that, in contrast to the Laughlin/Laughlin in-
terface [52], in the Pfaffian/Laughlin case the charge neu-
trality condition (7) enforces the conservation of the total
particle number. The numbers of particles MI , I = L,R,
on each side of the interface can nevertheless fluctuate -
provided the same number of particles is annihilated on
one side and created on the other. This means that the

FIG. 1. The geometry of the considered systems: (a) an ex-
ample planar system, (b) an example cylindrical system. The
vertical plane in (b) shows the division of the system used
when computing the entanglement entropy.

number of bosons and fermions in the system is not con-
served. However, because the Pfaffian in (6) is nonzero
only if the number of particles in the L part is even, the
fermionic parity is conserved, i.e. the particles can be
created and annihiliated only in pairs.

So far, we have worked on a plane. However, the nu-
merical investigation of certain properties of our wave-
function (such as the entanglement entropy scaling) is
easier for a cylinder. We start with an Lx × Ly rect-
angle on the complex plane, within which we put the
sites at the positions Wj = x̃j + iỹj . To impose periodic
boundary conditions in the y (i.e. imaginary) direction,
we consider the following mapping

zj = exp(2πWj/Ly). (8)

The resulting zj ’s are then substituted to (6). We will
consider systems on a square lattice, of size (NxL+NxR)×
Ny (here Ly = Ny), with the interface being parallel to
the periodic direction (see Fig. 1).

We require that our wavefunction is scale-invariant on
a plane and inversion-invariant on a cylinder. The scale
invariance is typical for CFT wavefunctions, and it means
that the only length scale in the system is the ratio of
the magnetic length to the lattice constant, which is set
by ηL, ηR. This is the case also in the Hofstadter prob-
lem, which is a natural setting for the lattice quantum
Hall states, therefore it seems desirable that our wave-
functions exhibit this property. The inversion invariance
on the cylinder is also expected, as the physics should
stay the same when the Moore-Read and Laughlin parts
change places. These requirements are enforced by de-
manding that the wavefunction does not change (except
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from a multiplication by a constant) when subjected to
the transformations zi → czi, c ∈ C and zi → 1/zi. It
turns out that to fulfill both conditions, one has to set
ηL = 3/2, ηR = 1. We enforce this condition throughout
this work.

We note that at these values of η, the possible system
sizes can be divided into four classes, corresponding to
(NL mod 8) = 0, 2, 4, 6, differing by the way the charge
is distributed among L and R parts within each configu-
ration |n〉. Each such configuration has well-defined ML

and thus it corresponds to the L charge ML− 3
4NL, as a

background charge −η/q = − 3
4 is associated with every L

site, and each particle has unit charge. The charge of the
L part is not well-defined for the entire |Ψ〉 state, as it is a
linear combination of different configurations with differ-
ent values of ML, because pairs of particles can be trans-
ferred across the interface. However, the L charge mod-
ulo 2, ∆Q =

((
ML − 3

4NL
)

mod 2
)

is well-defined, and
equal to ∆Q = 0, 0.5, 1, 1.5 for (NL mod 8) = 0, 2, 4, 6.
In other words, only in the first class both parts of the
system can be charge-neutral by themselves if the sys-
tem is cut through the interface. In the third class, the
charge neutrality is achieved if a unit charge (e.g. in the
form of a quasiparticle) is introduced in each part. In
the two remaining classes, such charge would have to be
fractional.

The coupling between the L and R parts can be con-
trolled by adjusting the distance between them. If we
separate them infinitely far apart from each other, then
for the (NL mod 8) = 0 case (i.e. when charge neutrality
on each side can be satisfied separately), the wavefunc-
tion becomes a tensor product of MR and Laughlin states
(see Appendix A). In this work, we consider the situation
where L and R are separated by one lattice constant, i.e.
the entire system is the perfect square lattice as in Fig.
1.

Finally, let us remark that for some values of η, it is
possible to derive a parent Hamiltonian for single Moore-
Read [57, 59] or Laughlin [60] lattice quantum Hall states.
However, it is not straightforward to extend these calcu-
lations to the case when the system is described by two
different CFTs. Another way to connect our wavefunc-
tion to a Hamiltonian is to find a short-range Hamilto-
nian, whose ground state is approximated by our wave-
function, following the approach from Ref. [57]: diago-
nalizing the Hamiltonian numerically and optimizing its
coefficients to maximize the overlap between the ground
state and our wavefunction. However, this would require
extensive exact-diagonalization or DMRG calculations,
and we leave it for future works.

Often the wavefunction itself, which may, but does not
have to, be related to a Hamiltonian, can provide in-
sights into the inner structure of given topological or-
der. For example, the Laughlin wavefunction revealed
the physical mechanism of FQHE and the nature of the
fractionalized excitations [21]. The Kalmeyer-Laughlin
wavefunction provided a vital example of a chiral spin
liquid [61, 62]. The concepts of Haldane hierarchy [63] or
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FIG. 2. The particle density plots for the ground state of
systems with an interface. (a)-(d) The density as a function
of x for example cylindrical systems from four groups, (a),
(b), (c), (d), corresponding to (NL mod 8) = 0, 2, 4, 6. The
color denotes Ny. The NxR size of the systems within a group
is not necessarily the same. (e), (f) Example plots of particle
density for planar systems of size (4 + 4)× 8 and (6 + 6)× 6,
respectively.

composite fermions [64] were also embodied in wavefunc-
tions. Speaking of the interfaces, Regnault et al. used a
model wavefuncion to study the nature of the interface
modes [14, 24, 25], while we employed our model state
to determine the properties of bulk anyons in presence of
the interface [52]. Therefore, we believe that the study
of the wavefunction itself is important and thus, in this
work we focus solely on |Ψ〉.

B. Numerical results – particle density

Once we have the wavefunction (6), we can study its
properties numerically using Monte Carlo methods. In
particular, it is straightforward to obtain the average par-
ticle density 〈ni〉. On a cylinder, the density is constant
in the y direction, so we define the density as a function
of x

〈n(x)〉 =
1

Ny

∑
i

〈ni〉δ(x− xi) (9)

We investigate this quantity for a number of systems
with different sizes, some of which are shown in Fig. 2 (a)-
(d). When the cylinder is thin, the states display large
oscillations in density within the L part. In particular, at
Ny = 1 (blue curves in 2 (a)-(d)), we have either 〈ni〉 = 0
or 〈ni〉 = 1, with no fractional values, reminiscent of the
thin torus limit of the continuum FQH states. As the
cylinder gets wider, the density in the L bulk becomes
close to 3/4, as expected for a η = 3/2, ν = 1/2 MR state
(see the orange and green curves in Fig. 2 (a)-(d)). Apart
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FIG. 3. The total charge QL in part L per unit of interface
length, as a function of interface length Ny. The different
colors correspond to different system sizes in the x direction.
The marker shapes denote the values of NL mod 8. The inset
shows the magnification of the right part of the plot.

from very thin cylinders, the density inhomogenities exist
mostly near the edges and the interface and get smaller
as Ny increases. In the R part, independently of Ny,
the density is close to 1/2 everywhere except from the
vicinity of the interface. This value is expected for a
η = 1, ν = 1/2 Laughlin state.

Near the interface, the density has to drop from 3/4
to 1/2. How this happens exactly depends on the size
of the system. As can be seen in Fig. 2 (a)-(d), for thin
enough cylinders (e.g. Ny = 5), the four (NL mod 8)
groups display four qualitatively different patterns of
particle density. This is most striking when comparing
(NL mod 8) = 4, which has an additional “step” (i.e. a
local maximum of density near the interface in part R)
to (NL mod 8) = 0, where such a feature is absent. For
wider cylinders (e.g. Ny = 17), the density profiles in all
four groups become similar.

In the case of planar systems, the density patterns are
more complicated, as the translational invariance is lost,
and the density inhomogenities exist near the interface
and all three edges of the L part. Two examples are
shown in Fig. 2 (e),(f).

The background charge −ηi/q changes abruptly from
−3/4 to −1/2 at the interface. On the other hand,
we have seen that the particle density changes more
smoothly. This means that some excess charge is ac-
cumulated near the interface on each side. Let us in-
vestigate this more closely for the cylindrical systems we
have already studied. We define the excess charge as a
function of x as

Q(x) =
∑
i

(〈ni〉 − ηi/q)δ(x− xi), (10)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
yj yi

10 5

10 4

10 3

10 2

10 1

|C
ij|

L edge
L bulk
L, near interface
R, near interface
R bulk
R edge

FIG. 4. The absolute value of correlation function |Cij | for
xi = xj as a function of yj−yi at different locations of xi = xj :
in the bulk of each part (x = −5, 5, x = 4.5), at the edges
(x = −10.5, x = 10.5) and near the interface (x = −0.5,
x = 0.5). The system size is (10 + 10)× 16

and a total charge accumulated in part I as

QI =
∑
i∈I

(〈ni〉 − ηI/q). (11)

Apart from thin cylinders, the excess charge is con-
centrated mostly near the interface, at x = ±0.5, with
Q(−0.5) ≈ −Q(0.5). Thus, for wide enough cylinders,
we have Q(−0.5) ≈ QL. Therefore, let us study the lat-
ter quantity as a function of system size. To be precise,
instead of QL itself, we investigate the charge in part L
per unit of interface length, i.e. QL/Ny. If there is a
fixed density pattern in the thermodynamic limit, then
this quantity should converge to a fixed value.

The results are shown in Fig. 3. The different col-
ors correspond to different system sizes in the x direc-
tion, while the marker shapes refer to the four classes
(NL mod 8). It can be seen that at Ny = 1 (the leftmost
points from every class) the charge modulo 2 equals ∆Q.
As we increase Ny, QL/Ny in all four classes seems to
display convergence towards a fixed, negative value of
QL/Ny, lying between −0.03 and −0.07.

The charge Q(−0.5) behaves very similarly to Fig. 3 for
wide cylinders. On the other hand, qualitative differences
arise in the thin cylinder limit. At Ny = 1, there are
only two possible values: Q(−0.5) = 1/4 (filled site at
x = −0.5) or Q(−0.5) = −3/4 (empty site at x = −0.5).

A similar charge accumulation at the interface was ob-
served in Ref. [53] for the Pfaffian/anti-Pfaffian case. In
this work, the accumulated charge on the two sides of the
interface in the thin-torus limit was equal to ±1/4 (i.e.
the charge of a non-Abelian quasiparticle). In our case,
QL is equal to a charge of an Abelian quasiparticle or a
particle, depending on NL.
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FIG. 5. The second Rényi entropy as a function of cylinder
circumference for three series of systems: (a) (8+8)×Ny, (b)
(10 + 4)×Ny and (c) (12 + 4)×Ny.

C. Numerical results – correlation function

We expect that our interface is gapless. This is be-
cause the edges of the Laughlin state are described by a
chiral Luttinger liquid [1], while the MR state has also a
single Majorana fermion edge mode [65, 66]. In the effec-
tive interface theories considered so far for various non-
Abelian interfaces [13, 18, 41, 42, 44–46], the Majorana
mode can be gapped only when paired with a second Ma-
jorana mode. Since there is just a single Majorana mode
in the system, we expect that it cannot be gapped.

It is expected that gapped systems generated by short-
range interactions have exponentially decaying correla-
tion functions. In our case, we do not have the parent
Hamiltonian, so we cannot ensure that our wavefunc-
tion indeed can be generated by a short-range interac-
tion. But assuming it is the case, the correlation function
would give us some indication on whether the interface
is gapped or gapless.

The correlation function is given by

Cij = 〈ninj〉 − 〈ni〉〈nj〉, (12)

and can be easily computed using Monte Carlo. For the
ease of presentation, we choose sites with xi = xj and
investigate Cij as a function of yj − yi. The results for
the different values of xi = xj are shown in Fig. 4.

In the bulk, the correlation function seems to decay
roughly exponentially. However, near the edges its de-
cay seems to be slower. Near the interface, the values of
the correlation function halfway across the cylinder seem
to be located roughly in the middle between the results
for the bulk and the edge, still showing the lack of expo-
nential decay. This suggests that the interface is indeed
gapless (provided that it is generated by a short-range
interaction).

D. Numerical results – entanglement entropy

The topological properties of the interface can mani-
fest themselves in the entanglement entropy when the cut
coincides with the interface. While this issue was studied
using field theory for Laughlin/Laughlin [40, 43] or Pfaf-
fian/Pfaffian interfaces [46], for the Pfaffian/Laughlin
interface, up to our knowledge, there were no predic-
tions how the entropy should scale with the interface
length. Thus, we are going to study the entropy numeri-
cally, using the Monte Carlo method outlined in [67, 68]
(see also our previous work where we used this method
[52, 56, 57]). Within this approach, the second Rényi
entropy can be obtained by sampling two independent
copies of the system.

In Fig. 5, we show the entanglement entropy scaling for
three series of systems, of size: (8+8)×Ny, (10+4)×Ny
and (12 + 4) × Ny. The cut is parallel to the interface,
as shown in Fig. 1. We are interested especially in the
four positions of the cut: in the bulks of the two sides,
precisely at the interface and right next to the interface
on the left (i.e. x = −1).

The scaling in the bulks in Fig. 5 corresponds to
the position x = −NxL + bNxL/2c for the L side and
x = bNxR/2c for the R side, with bc denoting the floor
function. If the interface wavefunction indeed describes
the expected topological orders, then, by applying a lin-
ear fit,

S(2)(Ny) = ANy − γ (13)

we should recover the expected value of γ: γL = ln(8)/2
and γR = ln(2)/2, corresponding to the topological en-
tanglement entropies of the MR and Laughlin state, re-
spectively. These values are indicated by blue and red
ticks, respectively, on the y axes of the plots. The red
and blue lines denote the fits. Because for thin cylinders
the linear scaling is distorted by finite-size effects, we dis-
card these systems from the calculation. That is, in the
fit we include only the data points denoted by filled sym-
bols. The fits seem to cross the Ny = 0 line relatively
close to the predicted values. For γR, the agreement is
good: we obtain 0.368±0.005, 0.361±0.009, 0.36±0.02,
for (8 + 8) × Ny, (10 + 4) × Ny and (12 + 4) × Ny, re-
spectively, compared to ln(2)/2 ≈ 0.347. The uncertain-
ties here are the fit uncertainties, without the inclusion
of Monte Carlo uncertainties. This confirms that the R
part has a ν = 1/2 Laughlin-type topological order.

For γL, we obtain 1.08± 0.13, 0.82± 0.17, 1.02± 0.15,
respectively, compared to ln(8)/2 ≈ 1.03. That is, the
agreement is worse, and the error bars are much big-
ger. In addition, the result for part L seems to depend
strongly on the position of the cut and on which data
points we take into account on the fit. Also, while the
fits in Fig. 5 were performed without the inclusion of MC
error bars in the weights, including them makes the re-
sult even more dependent on the number of included data
points. The detailed analysis is contained in Appendix B.
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Nevertheless, the fitted values oscillate around the pre-
dicted value and are clearly nonzero. Thus, we conclude
that the L part is also topologically ordered, and the
results are consistent with the Moore-Read topological
order, although not indicating it clearly.

What happens with the entropy when the cut coincides
with the interface (black markers in Fig. 5)? For almost
all the investigated systems, the entropy at the interface
is lower than in the bulks of both sides (excluding some
thin cylinders). However, as Ny increases, the interface
entropy increases faster than the R bulk entropy, thus
we can expect that the former will finally dominate over
the latter. For large enough Ny, the scaling seems to be
linear. Because we do not have compelling theoretical
arguments that in this case such a scaling is expected in
the thermodynamic limit, we do not rule out the pos-
sibility that the perceived linear dependence is in fact
nonlinear, and the nonlinearity would show up for larger
Ny. Nevertheless, assuming that it is linear, we perform
the fit. The obtained values are close to ln(8)/2, i.e. the
topological entanglement entropy of the left part. If this
is indeed the case, this is similar to the case of Laughlin
states at fillings 1/qL, 1/qR such that qR = a2qL, a ∈ N+

[40, 43, 52]. However, the fitted parameters are subjected
to the same distortions and uncertainties as γR, thus we
cannot conclude that it is indeed the case.

How far does the influence of the interface extends
into the L and R parts? Next to the interface on the
right (x = 1), the entanglement entropy values for large
enough Ny are similar to the ones in the bulk R part.
However, on the left, the influence of the interface is ap-
parent in the first column of sites next to it (x = −1).
The values of the entanglement entropy (except from
some low-Ny systems) are lower than in the L bulk of
the same system (see the violet markers in Fig. 5). The
fit for large Ny also yields values roughly close to the
theoretical value of γL, although again the results are
uncertain due to the dependence of the fitted value on
the data points included. Thus, we do not rule out the
possibility that near the interface there might be some
variation of γ, e.g. a similar increase as in the Laughlin-
Laughlin interfaces [52].

III. THE SYSTEMS WITH ANYONS

Having determined the ground state wavefunctions, we
now wonder, what are the properties of the anyonic ex-
citations above the ground state.

A. The construction of the wavefunction

The wavefunctions including anyons can be obtained
by inserting further operators into the correlator (2).
These operators depend on parameters wi, the complex

coordinates of the anyons. The state is given by

|Ψ〉α =
1

Cα

∑
n

Ψα(n,w) |n〉 . (14)

There are three differences between (14) and (1). First,
now the wavefunction coefficients, as well as the normal-
ization constant, depend on the external parameters, the
anyon coordinates w. Secondly, there can be more than
one degenerate state, hence we introduced the index α.
Third, while for the ground state the fermion parity con-
servation was enforced by the Pfaffian factor, in the pres-
ence of anyons the correlators are nonzero both for even
and odd ML. Thus, in general, we can construct a wave-
function which does not conserve fermion parity. How-
ever, we expect that it would be unphysical and hence
it cannot be generated by a local Hamiltonian. More-
over, as we will see later, it would generate problems
with boundary conditions for anyons. To restore the
fermion parity conservation, we assume that the inter-
action generating our wavefunction allows to exchange
particles through the interface only in pairs. Then, the
Hilbert space divides into two disconnected parts, with
even and odd ML. We focus on the case of even ML.

While the particle coordinates are restricted to the lat-
tice sites, the anyon coordinates can be located anywhere
on the plane/cylinder. In such a way, we will be able to
move them smoothly, which will be important when eval-
uating their statistics.

We study two classes of anyons of the Moore-Read
state. The basic non-Abelian excitations are constructed
using the following operator [59, 69]

VNA,k(wk) = σ(wk):exp

(
pi√
q
φ(wk)

)
:, (15)

where σ(wk) is the holomorphic spin operator of the chi-
ral Ising CFT, and pk = 1/2, pk = −1/2, correspond to
a quasihole and a quasielectron, respectively. We note
that the latter are difficult to construct in the continuum
[70], whereas for the lattice their construction is simple
– it requires only flipping the sign of the pk.

The other group of excitations consists of Laughlin-like
Abelian anyons, described by the operator [71]

VA,k(wk) = :exp

(
pi√
q
φ(wk)

)
:, (16)

where pk is now integer. This operator describes also the
excitations of the Laughlin state. Thus, these anyons are
valid topological excitations of the entire system. In con-
trast, the ones generated by the operator (15) are valid
topological excitations only within the L part. Never-
theless, technically we can also attempt to put such an
anyon in the R part and see what happens.

We will refer to these two groups as “Abelian” and
“non-Abelian” for brevity, although the reader should
bear in mind that the anyonic content of the Moore-Read
state is richer than the considered cases. We denote the



8

numbers of non-Abelian and Abelian anyons as RNA and
RA, and their total number as R = RNA +RA. For con-
venience, we will also assume that the anyons are indexed
in such a way that the first RNA are non-Abelian, and
the rest are Abelian.

The wavefunction coefficients for even ML are now
given by the following correlator

Ψα(w,n) =

= 〈0|
RNA∏
i=1

VNA,i(wi)

R∏
i=RNA+1

VA,i(wi)

N∏
i=1

Vi(zi, ni)|0〉 α =

= Iα(w,n)J(w,n), (17)

where the index α means that we take only the conformal
block where the Ising fields fuse to α, and Iα and J are the
Ising and Jastrow parts of the wavefunction, respectively.
The latter is given by

J(w,n) = 〈0|
R∏
i=1

: exp

(
pi√
q
φ(zi)

)
:

N∏
i=1

Vi(zi, ni)|0〉 =

= δn
∏
i<j

(wi−wj)pipj/q
∏
i,j

(wi−zj)pinj
∏
i,j

(wi−zj)−piηj/q×

×
∏
i<j

(zi − zj)qninj
∏
i 6=j

(zi − zj)−niηj , (18)

where the charge neutrality is enforced by

δn = δ(qM +
∑
i

pi − ηLNL − ηRNR). (19)

The Ising part depends on the number of non-Abelian
anyons. If there are none, then there is just one conformal
block, and we have

I(w,n) = Pf

(
1

z′i − z′j

)
. (20)

If RNA = 2, then there is also one conformal block, with

I(w,n) = 2−ML/2(w1−w2)−1/8
2∏
i=1

NL∏
j=1

(wi−zj)−nj/2PfA,

(21)
where

Aij =
(z′i − w1)(z′j − w2) + (z′i − w2)(z′j − w1)

z′i − z′j
. (22)

If RNA = 4, then there are two conformal blocks, corre-
sponding to the situation where the pairs of σ fields fuse
to α = I or α = ψ. The Ising part is given by

Iα(w,n) = 2−(ML+1)/2(w1 − w2)−1/8(w3 − w4)−1/8×

×
4∏
i=1

∏
j

(wi− zj)−ni/2
(

(1− x)1/4 +
(−1)mα

(1− x)1/4

)−1/2
×

×
(

(1− x)
1
4 Φ(13)(24) + (−1)mα(1− x)−

1
4 Φ(14)(23)

)
(23)
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FIG. 6. (a), (f): the excess charge density in the presence of
anyons. (b)-(e) and (g)-(j): the radial excess charge profiles
for the anyons denoted by the respective subplot label in (a),
(f). The system is a cylinder of size (8 + 8)× 12 and contain
four anyons: the non-Abelian quasihole with pk = 0.5 ((b),
(j)), the non-Abelian quasielectron with pk = −0.5 ((c),(h)),
the Abelian quasielectron with pk = −1 ((d), (i)) and the
Abelian quasihole with pk = 1 ((e),(g)). The plots (a)-(e)
correspond to the case when the non-Abelian anyons are both
located in the L part, while in (f)-(j) one of them is located
in the Laughlin part. The “×” symbols in (a), (f) denote
the anyon coordinates. In (b)-(e) and (g)-(j), the horizontal
dashed lines denote the expected charges −pk/q.

where mα = 0, 1 for α = I, ψ, respectively,

x =
(w1 − w2)(w3 − w4)

(w1 − w4)(w3 − w2)
, (24)

and

Φ(kl)(mn) =

= Pf

(
(wk − z′i)(wl − z′i)(wm − z′j)(wn − z′j) + (i↔ j)

z′i − z′j

)
(25)

B. Anyon charge and density distribution

Let us now verify that the anyons are well screened
and that their charges agree with the theoretical predic-
tion −pk/q. We define the excess charge at site i in the
presence of anyons as the difference

Q̃i = 〈ni〉an − 〈ni〉GS, (26)

where the index “an” means that the density is evaluated
in the presence of anyons, and “GS” means the density
evaluated in the ground state (i.e. without anyons). Note
the difference from the definition used in Sec. II B - now
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we do not care about the background charge, but only
about the difference of the particle density distributions
with and without anyons (otherwise we would always ob-
tain some excess charge near the interface). The charge
of the anyon is studied by investigating the charge accu-
mulated within some radius around the anyon position
wk,

Q̃k(r) =
∑
i

θ(r − |zi − wk|)Q̃i. (27)

If the anyons are screened, Q̃k(r) should converge to a
fixed value quickly as we increase r.

Fig. 6 (a) shows the distribution of charge Q̃i in the
case of two Abelian and two non-Abelian anyons on a
cylinder. Each of the anyons is located in a part where it
is a valid topological excitation. It can be seen that they
are indeed well screened, with most of the charge con-
centrated near their positions. The calculation of Q̃k(r),
displayed in Fig. 6 (b)-(e), shows that they indeed seem
to converge to a value close to −pk/q as r increases.

As noted in Sec. III A, the definition of our wavefunc-
tion does not forbid us to put the non-Abelian anyons
within the R part. The result of exchanging one Abelian
and one non-Abelian anyon from Fig. 6 (a) is shown in
Fig. 6 (f). It can be seen that still the charge is concen-
trated mostly in their vicinity, and approximately has the
expected value −pk/q.

We note that in some cases, even with Abelian anyons
only, there is some additional charge modulation at the
interface. This is a finite-size effect, whose strength de-
creases with Ny. The detailed analysis of this effect can
be found in Appendix C. We note that a similar phe-
nomenon was encountered for Laughlin/Laughlin inter-
faces [52].

C. Anyon statistics

To check whether the “anyons” we investigate are true
anyons, we have to evaluate their statistics. We will con-
sider the processes in which a single mobile anyon l en-
circles other, static anyons. The effect of anyon braiding
is given by

Ψ = γMγBΨ (28)

where Ψ is a vector of degenerate wavefunctions |Ψα〉
for all possible values of α, while γM and γB are the
monodromy and Berry matrices. The monodromy matrix
can be evaluated from the analytical continuation of the
wavefunctions, while the Berry matrix can be written as

γB = exp
(
iθB
)

, where the elements of θB are given by

θBαβ = i

∮
P

〈ψα|
∂

∂wl
ψβ〉dwl + c.c., (29)

where P is the path of the lth anyon.
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FIG. 7. The overlap between conformal blocks as a function
of the number of sites for the planar systems of size (2k +
k)× 2k, for k = 4, 5, 6, 7. Both subplots correspond to 4 non-
Abelian anyons in the L part and two Abelian ones in the R
part: (a) p1 = p2 = −0.5, p3 = p4 = 0.5, p5 = 1 = −p6,
(b) p1 = p2 = p3 = p4 = 0.5, p5 = p6 = −1. The rest of
the plots, (c)-(f), show the systems taken into account in the
calculation. The blue and orange points denote the sites and
the anyons, respectively. The numbers denote the ordering of
the anyons, which fixes the basis for the degenerate states via
(23).

To proceed further, we need to show that the conformal
blocks are orthogonal if there is more than one. The over-
laps can be computed using Monte Carlo, as explained
e.g. in Ref. [59]. In Fig. 7 (a) and (b) we plot the over-
lap between the two conformal blocks for two cases of
four non-Abelian anyons and two Abelian ones in four
systems, depicted in Fig. 7 (c)-(f). A general trend of
overlap decreasing with N is seen, with | 〈Ψψ|ΨI〉 | of the
order 10−2 for the largest system. This shows that in
large systems that can be studied using Monte Carlo the
conformal blocks are already close to orthogonality, and
we can expect that in the thermodynamic limit the or-
thogonality will be achieved.

It can be shown [59] that, assuming the conformal
blocks are orthogonal or there is just one, we can ex-
press the Berry phase (29) solely using the normalization
constant

θBαβ = iδαβ

∮
P

1

2C2
α

∂

∂wl
C2
αdwl + c.c. (30)
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1. Abelian anyons

In the case when the lth anyon is Abelian, the Berry
phase can be computed analytically, under the assump-
tion that the anyons are well-screened (which is sup-
ported by the numerical results from Sec. III B). The
partial derivative ∂

∂wl
in such a case does not act on the

Ising part of the wavefunction. Thus, we can easily gen-
eralize the reasoning from Refs. [72]. Knowing the wave-
function coefficients (17), we can evaluate the derivative

∂C2
α

∂wl
= C2

α

∑
k

pl〈nk〉
wl − zk

− C2
α

∑
k

plηk
q(wl − zk)

+

+ C2
α

∑
k(6=l)

plpk
q(wl − wk)

. (31)

Thus, for an anticlockwise path winding at most once
around each site and each anyon, the Berry phase is

θBαβ = δαβ

[
i

2

∮
P

∑
k

pl〈nk〉
wl − zk

dwl + c.c.

]
+

+ 2πδαβ
∑

k:zk∈S

piηk
q
− 2πδαβ

∑
k:wk∈S,
k 6=i

pipk
q

(32)

where S is the region of space encircled by the path P .
To deal with the first term of Eq. (32), we note that

we are in fact not interested in the phase θBαβ itself, be-
cause it contains both the statistical contribution and
the Aharonov-Bohm contribution, arising from the encir-
cled sites. For simplicity, let us assume that we compute
the mutual statistics of anyons l and m. To get rid of
the Aharonov-Bohm phase, we compute the difference of
Berry phases with and without encircling anyon m. That

is, we consider two cases: θB,inαβ , when anyon m is inside

S, and θB,outαβ , when it is outside, while the positions of
all the other anyons are the same in both cases. We have

θB,inαβ − θ
B,out
αβ =

= δαβ

[
i

2

∮
P

∑
k

pl(〈nk〉in − 〈nk〉out)
wl − zk

dwl + c.c.

]
+

− 2π
plpm
q

(33)

where 〈nk〉in−〈nk〉out are the particle densities in the two
cases. Now, the assumption of screened anyons comes
into play. If the anyons are screened and far from each
other, the density difference is nonzero only in the vicin-
ity of the two locations of anyonm and is wl-independent.
Thus, it can be taken out of the integral. Then, applying
the residue theorem, we obtain

θB,inαβ −θ
B,out
αβ = −2πpl

∑
k(zk∈S)

(〈nk〉in−〈nk〉out)−2π
plpm
q

(34)
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FIG. 8. (a), The path of the quasihole motion for a planar
(12 + 6)×12 system with two non-Abelian quasiholes located
in the L part and one Abelian quasielectron located in the R
part. The orange dots mark the initial positions of the anyons,
while the path is denoted by green lines. The quasihole moves
anticlockwise along the path. (b) The corresponding ratio of
squared normalization constants as a function of the quasihole
position on the path.

We note that the sum of density differences within region
S is equal to the charge of the anyon m, i.e. −pm/q. And
thus, the Berry phase vanishes.

Hence, the effect of the braiding is given by the mon-
odromy matrix, which is equal to

γMαβ = δαβ exp (2πiplpm/q) (35)

This recovers the Laughlin anyon statistics. The expres-
sion is valid in the entire system, i.e. in the parts L and R
and for paths crossing the interface, which is consistent
with the fact that the Abelian anyons are valid topo-
logical excitations of both parts. We also note that the
above reasoning is valid even when pm is fractional, i.e.
it yields also the mutual statistics of Abelian and non-
Abelian anyons, but only if the latter is static. As far
as this condition is fulfilled, there is no problem with
putting a non-Abelian anyon in part R. The problems
arise when it moves, as we will see in the next subsection.

2. Non-Abelian anyons

In the case where a non-Abelian anyon is mobile,
we verify the vanishing of the Berry phase numerically.
Following Refs. [59, 69], we rely on the fact that the
Berry phase vanishes if the normalization constant C
(and hence the integrand of (29)) is lattice-periodic in
wl as long as anyon l is far away from other anyons.
To see this is the case, let us consider a planar system
in which the anyon l moves along a rectangular path
consisting of four segments P1, P2, P3, P4. We con-
sider P1 and P3 being parallel to the x direction, with
x increasing in the former and decreasing in the lat-
ter, and located at y = y1 and y = y2. Similarly P2

and P4 are parallel to the y direction, with y increas-
ing in the former and decreasing in the latter, and are
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located at x = x1 and x = x2. Moreover, we demand
that the rectangle has integer dimension in the units of
lattice constants, i.e. x2 − x1 ∈ Z and y2 − y1 ∈ Z.
Then, we note that

∫
P1
f(wl)dwl =

∫ x2

x1
f(x + iy1)dx,

and
∫
P3
f(wl)dwl =

∫ x1

x2
f(x+ iy2)dx. If f(wl) is lattice-

periodic, then f(x + iy1) = f(x + iy2), and the contri-
butions of P1 and P3 cancel each other. Similarly, one
can show that the contribution of P4 cancels the contri-
bution of P2. Thus, on this special path the statistics are
determined by the monodromy. And, since the statistics
are a topological property, we expect that they would
not change if the path is deformed. The above reasoning
can be regarded as a lattice generalization for the con-
tinuum argument that the Berry phase vanishes when C
is constant.

The lattice periodicity can be demonstrated by cal-
culating the ratio of squared normalization constants in
each point of some path, C(wl)

2/C2
0 , where C0 corre-

sponds to the starting point of the path. The method of
caluclating such ratios with Monte Carlo is described e.g.
in [59]. Because the system size required for the simula-
tion of a complete braiding process is too large even for
the Monte Carlo, we consider a square loop around a sin-
gle lattice site (see Fig. 8 (a)), which will tell us how the
normalization constant changes as we move an anyon by
one lattice constant in the x and y directions (or both).

We focus on the case of two non-Abelian anyons, for
which there is only one conformal block. We consider a
(12+6)×12 planar system and arrange the anyons in the
way shown in Fig. 8 (a). Fig. 8 (b) shows the resulting
ratio of squared normalization constants while moving a
quasihole around a small square of unit length. It can be
seen that the dependence is nearly periodic, with ratio
being close to 1 every time the anyon is at a corner of
the square. The periodicity is not perfect – there still are
some discrepancies larger than the Monte Carlo error,
which may be due to the insufficient separation of the
mobile quasihole from other anyons or from the system
edge.

Therefore, we expect that the statistical phase will be
determined by the monodromy. We focus on the statisti-
cal contribution to the monodromy, i.e. the monodromy
after removing the Aharonov-Bohm contribution (which,
in case of one anyon moving on a closed loop, can be com-
puted by subtracting the phase with and without the sec-
ond anyon within the path). This statistical contribution
in the case of a single Moore-Read state is well-known
[73]. For a single anticlockwise exchange, it is equal to

γM = eiπ(p1p2/q−1/8). (36)

In the case of an interface, there are additional terms
involving R sites and non-Abelian anyons, but as long as
the braiding path is located in the L part, these terms do
not contribute to the monodromy as no R site is encircled
by the anyon, thus the result of an exchange is still given
by Eq. (36).

We can also ask what happens if we put the non-
Abelian anyons in the R part. In such a case, the mon-

R R

L

FIG. 9. A schematic depiction of a system with two R islands
on the L plane. The filled and empty circles denote particles
and anyons, respectively. The following processes are depicted
here: the exchange of particles between L and R (the arrows
at the bottom of each island) and measurement of the particle
number parity (the arrow around the right island).

odromy indicates that the statistics become ill-defined.
To see this, we note that now non-Abelian anyons encir-
cle the R sites. The factors (wl − zi)plni for pl = ±1/2
introduce a nontrivial contribution to the monodromy ev-
ery time ni 6= 0, i.e. when a filled site is encircled. Thus,
the monodromy depends on the path, i.e. it is not statis-
tical. Moreover, since each configuration |n〉 corresponds
to different locations of the filled sites, each coefficient in
(14) transforms in a different way and thus the effect of
a braiding is no longer a phase. Therefore, we conclude
that it is not possible for non-Abelian anyons to cross the
interface. This conclusion does not depend on the Berry
phase (for some consideration regarding the Berry phase,
see Appendix D).

We note that the factor (wl − zi)plni can generate a
nonzero phase even if the non-Abelian anyon stays within
the L part, but moves around the cylinder, or encircles
an R island on the plane. However, in this case, the
phase is well-defined as long as the parity of the number
of encircled R particles stays constant. For a single in-
terface, this is guaranteed by the conservation of L parti-
cle number parity – which is another justification to our
assumption of fermion parity conservation. The factor
(wl − zi)

plni acts also on L particles going around the
cylinder, but this does not generate inconsistency of the
boundary conditions (see Appendix E).

IV. MULTIPLE ISLANDS AND TOPOLOGICAL
DEGENERACY

So far, we discussed the properties of a single interface.
Now, let us consider two disconnected islands of the R
type within an L plane, as in Fig. 9. Let us also assume
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that the processes of exchange of particles through the
interfaces are local. That is, if the islands are sufficiently
far apart from each other, a pair of particles annihilated
from part L should correspond to a creation of two par-
ticles in island 1 or two particles in island 2, but not
one particle in each island, as shown in Fig. 9. If we fix
only the total number of particles M , the Hilbert space
contains configurations where the numbers of particles in
the first island MR;1 is even and the ones where MR;1 is
odd. There is no local process connecting the two types
of configurations. Therefore, the Hilbert space fragments
into two disconnected subspaces. For each of them, we
can define a model ground state wavefunction using Eq.
(6) or (17), but reducing the basis only to the given sub-
space. If k islands are introduced, then the Hilbert space
fragments into 2k−1 subspaces, which is reminiscent of
the degeneracy of the Majorana modes. The appearance
of topological degeneracy in a similar setting of inter-
faces forming several disconnected islands was already
discussed in Ref. [7]. The 2k−1 topological degeneracy
was also found for a Pfaffian/anti-Pfaffian interface [18],
and it is possible that the same mechanism can explain
the topological degeneracy in our case.

The parity of MR;1 can be measured by encircling a
non-Abelian quasihole around it (see the arrow around
the right island in Fig. 9). Then, the factor (wl − zi)plni
gives rise to a monodromy phase 0 if MR;1 is even and π
if it is odd.

In such a way, the R islands can store quantum in-
formation even though the interfaces are gapless. We
note that essentially the same mechanism of creating
topological degeneracy can be applied to the Laughlin-
Laughlin interfaces from Ref. [52], thus connecting our
model wavefunctions to earlier results, predicting the ap-
pearance of parafermion zero modes at some Laughlin-
Laughlin interfaces [17].

V. CONCLUSIONS

In this work, we have constructed model wavefunctions
for lattice systems at filling ν = 1/2, in which part of the
system is in the fermionic Moore-Read state, and the rest
is in a bosonic Laughlin state. We considered the cases in
the absence and presence of screened anyonic excitations.

We have seen that the conditions of reflection and scal-
ing invariance lead to different lattice filling factors νlat,
i.e. different particle densities on the two sides of the
interface. For wide enough systems, these densities are
nearly constant in the bulks of the two parts of the sys-
tem, and their values are close to what is expected for the
respective single quantum Hall states. Also, the constant
term γ of the entanglement entropy scaling in the bulks is
consistent with the values characterizing the topological
order of the respective quantum Hall states.

As for the interface itself, we have found that some
charge accumulates in its vicinity, due to the fact that
the particle density varies more smoothly than the back-

ground charge. We observed a lack of exponential decay
of the correlation function in its vicinity, consistent with
the prediction that the interface is gapless. We have also
shown that for the investigated system sizes the scaling
of the entanglement entropy at the interface is approxi-
mately linear, although the data are too noisy to deter-
mine the coefficient exactly.

We have studied the properties of the Laughlin anyons
(which are valid topological excitations of the entire sys-
tem) and the basic MR non-Abelian anyons. We have
found that the quasiparticles of both types are well-
screened and have the expected charge irrespective of
their location. However, the statistics become ill-defined
if the path of a non-Abelian anyon passes through part
R.

Moreover, we argued that for multiple, disconnected
islands of the R part within an L system, the particle
number parity at each island cannot be changed locally,
i.e. it is topologically protected. It can be measured by
braiding a non-Abelian anyon around the island.

The presented construction can be modified and ex-
tended in several ways. First, after allowing double oc-
cupancy, one can consider an interface between a bosonic
MR state and a fermionic integer quantum Hall state.
Secondly, one can also consider different fillings ν on both
sides, which would allow for all-bosonic or all-fermionic
systems, at the price of enforcing different charges of the
particles on the two sides. Finally, one can also use other
quantum Hall states – e.g. by forming a MR/Halperin
interface, studied in [13, 14] for the continuous case.
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Appendix A: Controlling the coupling across the
interface

It is natural to expect that if the L and R parts are
sufficiently separated from each other, they act as in-
dependent Moore-Read and Laughlin systems. This is
indeed the case. Let us consider the planar system as in
Fig. 1 (a), except that the coordinates of the L and R
sites are z̃i = zi and z̃i = zi+ ∆, respectively, where ∆ is
a real number, and zi are the original site positions on the
perfect square lattice as in Fig. 1(a). In other words, ∆
controls the distance between the L and R parts, while
the relative positions within each part are unchanged.
We factor each wavefunction coefficient (6) into four fac-
tors Ψ(n) = δnΨL(nL)ΨR(nR)ΨLR(n), with δn defined
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FIG. 10. The parameters of the linear fit of the entanglement
entropy scaling as a function of x position of the cut, for dif-
ferent sets of data points included. Columns 1,2,3 correspond
to systems of size (8+8)×Ny, (10+4)×Ny, (12+4)×Ny, re-
spectively. Rows 1 and 3 show the gradient A of the fit, while
rows 2 and 4 show γ, i.e. minus the intercept. The results
in the first (last) two rows were obtained without (with) the
inclusion of error bars in the weights for the fit. The colors
denote the different sets of data points included, according to
the colormap in the inset of (a) (the horizontal and vertical
axes correspond to Ny,min, Ny,max, respectively).

by (7), and

ΨL(nL) = Pf

(
1

z′i − z′j

)
NL∏
j=1

j−1∏
i=1

(zi− zj)qninj−ηLni−ηLnj ,

(A1)

ΨR(nR) =

N∏
j=NL+1

j−1∏
i=NL+1

(z̃i − z̃j)qninj−ηRni−ηRnj =

=

N∏
j=NL+1

j−1∏
i=NL+1

(zi − zj)qninj−ηRni−ηRnj , (A2)

ΨLR(n) =

N∏
j=NL+1

NL∏
i=1

(z̃i − z̃j)qninj−ηRni−ηLnj =

=

N∏
j=NL+1

NL∏
i=1

(zi − zj −∆)qninj−ηRni−ηLnj , (A3)

where ΨL(nL) and ΨR(nR) are essentially the same as
the wavefunction coefficients of single MR and Laughlin
states, respectively, apart from the charge neutrality con-
dition which allows the exchange of particles between the
L and R parts.

When ∆ is sufficiently large, it dominates over the zis,
and we can write

ΨLR(n) ≈
N∏

j=NL+1

NL∏
i=1

(−∆)qninj−ηLni−ηLnj =

= (−∆)qMLMR−NLηLMR−NRηRML =

= (−∆)(qML−NLηL)(qMR−NRηR)/q−NLNRηLηR/q. (A4)

Due to (7) we have qML+qMR = NLηL+NRηR and thus
the term (qML −NLηL)(qMR −NRηR) is either zero or
negative. Therefore, for large ∆ the highest-weight con-
figurations are the ones in which it is zero (if there are
any). These are the ones in which the charge neutrality
conditions for single quantum Hall states, qIMI = NIηI ,
are satisfied. In the limit ∆ → ∞ these are the only re-
maining configurations. As ΨLR(n) = const within these
configurations in this limit, the L and R parts become
independent from each other, and the wavefunction of
the entire system can be understood as a tensor product
of Laughlin and Moore-Read states.

If there are no states where qIMI = NIηI (or this
condition would force ML to be odd, which is not pos-
sible), then the highest-weight configurations have ML

and MR such that they are closest to charge neutral-
ity of respective quantum Hall states (i.e. maximize
(qML −NLηL)(qMR −NRηR)). If there is just one such
choice of ML, MR, then at large ∆ we a obtain a ten-
sor product of MR and Laughlin wavefunctions without
charge neutrality (i.e. with anyons not pinned to a cer-
tain point on the plane or with edge states [60]). It may,
however, occur (as in the case (NL mod 8) = 4) that
there are more such choices of ML, MR, and thus for
∆→∞ the wavefunction is a superposition of such ten-
sor products.

Appendix B: More details on entanglement entropy
results

Since the entanglement entropy scaling on the L side
and at the interface is noisy, here we provide additional
results. In Fig. 10, we provide the fit parameters A, γ
for all possible positions of the entanglement cut par-
allel to the interface. Moreover, we also study differ-
ent sets of data points characterized by different bounds
Ny,min, Ny,max. Each color corresponds to a fit based on
datapoints Ny,min, Ny,min + 1, . . . , Ny,max.

It can be seen that on the L side and at the interface,
the results display large fluctuations, sometimes larger
than the result itself. Nevertheless, the obtained values
seem to be consistent with the γL = ln(8)/2 prediction.
There is also no reason to suggest that at the interface
or at its vicinity γ has a different value than on the left.

On the other hand, in the R part, the results are close
to ln(2)/2 for every choice of data points.
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FIG. 11. The Q̃i charge density profiles in the presence of var-
ious anyon configurations for a (4+4)×8 cylinder: (a), (b) two
non-Abelian quasielectrons and one Abelian quasihole with
pi = 1, (c) two non-Abelian quasiholes and one Abelian quasi-
electron with pi = −1, (d) an Abelian quasihole-quasielectron
pair with pi = ±2 (equivalent to an R particle-hole pair), (e)
an Abelian and a non-Abelian quasihole-quasielectron pair
(pi = ±0.5, pi = ±1) (f) an Abelian quasihole-quasielectron
pair with pi = ±4 (equivalent to two holes and two particles).
The anyon positions are marked with a “×” symbol.

Appendix C: Density modulation at the interface in
the presence of anyons

For some systems and some anyon configurations, we
observe that Q̃i is nonzero also far from the anyon posi-
tions. Typically, the deviation is strongest near the in-
terface, similarly to the Laughlin/Laughlin case [52]. In

Fig. 11, we show the charge density Q̃i for six examples
of anyon configurations for a (4 + 4) × 8 cylinder. And
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FIG. 12. The scaling of the density modulation at the in-
terface for (6 + 6) ×Ny cylindrical systems. (a) The density

profile Q̃(x) for relatively low and high Ny, even and odd. (b)
The absolute value of the total charge in the L part minus the
anyon charge in the L part as a function of Ny.

indeed, for four of them some charge accumulates near
the interface on both sides with the charge on the left
being approximately equal to the charge on the right.

The presence and strength of these charge modulations
depend on the anyon configuration, as well as the size of
the system (especially Ny and (NL mod 8)). In Fig. 12
(a) we plot the excess charge as a function of x,

Q̃(x) =

∑
i Q̃iδ(xi − x)

Ny
. (C1)

for some (6 + 6) × Ny systems, with two non-Abelian
quasielectrons placed at x = −4 and two non-Abelian
quasiholes placed at x = 4. The sign of the density mod-
ulation depends on the parity of Ny, which corresponds
to the two possibilities (NL mod 8) = 0, 4 (see the red and
green curves in Fig. 12 (a), denoting Ny = 6 and Ny = 8,
respectively). The magnitude of the density variation de-
creases with Ny, and at Ny = 19 or Ny = 20 (blue and
black curves in Fig. 12 (a), respectively) it appears to be
almost gone.

To quantify the accumulated charge, we define the to-
tal excess charge in part L,

Q̃L =
∑
i≤NL

Q̃i, (C2)

and the anyon charge in part L,

QL;an = −
∑
i:wi∈L

pi/q. (C3)

In Fig. 12 (b) we plot the |Q̃L − QL;an|, i.e. the magni-
tude of the excess charge in part L not associated with
anyons. It decreases exponentially with Ny, suggesting
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FIG. 13. (a) A path of the quasi-electron motion in a planar
(2+10)×12 system. The orange points are the initial position
of the anyons, while the green lines denote the anticlockwise
path of the non-Abelian quasielectron motion. The second
anyon is a non-Abelian quasihole. (b) The ratio of squared
normalization constants in the given point on the path and in
the initial point.

that for infinitely wide cylinders the only excess charge is
concentrated in the vicinity of the anyon positions. The
excess charge near the interface, Q̃(x = −0.5), behaves
very similarly to the plot in Fig. 12 (b).

Appendix D: Berry phase for non-Abelian anyons in
the R part

We have shown that if we put the non-Abelian anyons
in the R part, the monodromy in the braiding process
becomes ill-defined, and thus they lose their anyonic be-
haviour. For completeness, here we consider the Berry
phase contribution.

Let us first consider a trivial case of NL = 0, with two
non-Abelian quasiholes (p1 = p2 = 1/2) and one Abelian
quasielectron (p3 = −1). In this case, the Pfaffian equals
1, and the only non-constant term in the Ising correlator,
(w1 − w2)−1/8, is canceled by the (w1 − w2)p1p2/q term
from the Jastrow part. We consider moving quasihole
1 on a closed loop, and compare the cases where the
quasihole 2 is inside and outside the path. Following the
same approach as in Sec. III C 1, we arrive at θB,in −
θB,out = 2π p1p2q = π/4.

The case of NL = 2 is a little more complicated,
but still tractable analytically under the assumption of
screened anyons. Let us again focus on the case of two
non-Abelian quasiholes (p1 = p2 = 1/2) and one Abelian
quasielectron (p3 = −1). The wavefunction is now given
by

Ψ(w,n) = 2−
n1+n2

2 A
n1+n2

2 (w1−w3)p1p3/q(w2−w3)p2p3/q×

×
2∏
i=1

N∏
j=3

(wi−zj)pinj
N∏
i=1

(w3−zi)p3ni
3∏
i=1

N∏
j=1

(wi−zj)−piηj/q×

×
∏
i<j

(zi − zj)qninj
∏
i 6=j

(zi − zj)−niηj (D1)

where

A =
(w1 − z1)(w2 − z2) + (w1 − z2)(w2 − z1)

z1 − z2
. (D2)

In Eq. (D1), A is raised to the power n1+n2

2 , because
there are only two options: either two L sites are empty,
and Pfaffian equals 1 (n1+n2

2 = 0), or they are both filled

and the Pfaffian is A (n1+n2

2 = 1).

The derivative of Ψ is given by

∂Ψ

∂w1
=
n1 + n2

2

∂A

∂w1

Ψ

A
+
∑
i>2

p1ni
w1 − zi

Ψ+

−
∑
i

p1ηi
q(w1 − zi)

Ψ +
p1p3

q(w1 − w3)
Ψ, (D3)

and thus, using Eq. (30), we can write the Berry phase
in a process where the first quasihole encircles the second
one as

θB =

[
i

4

∮
P

〈n1〉+ 〈n2〉
A

∂A

∂w1
dw1 +

+
i

2

∮
P

∑
i>2

p1〈ni〉
w1 − zi

dw1 + c.c.

]
+
∑
i∈S

2π
p1ηi
q
−

− δw32π
p1p3
q

, (D4)

where S is the region enclosed by the path P , and δw3 =
0, 1 for w3 inside or outside S, respectively.

Now, we need to subtract the Berry phase for the sec-
ond quasihole inside and outside S. We assume that the
quasielectron is outside S for both cases. The result is

θB,in − θB,out =

=

[
i

4

∮
P

1

A
(〈n1〉in + 〈n2〉in − 〈n1〉out − 〈n2〉out)

∂A

∂w1
dw1 +

+
i

2

∮
P

∑
i>2

p1(〈ni〉in − 〈ni〉out)
w1 − zi

dw1 + c.c.

]
(D5)

If the quasiholes are well-screened and far within the L
part, the particle density on the two L sites is the same
in the two cases. Therefore, the first term of Eq. D5
vanishes. The second term can be dealt with using the
reasoning from Sec. III C 1, resulting in the phase θB,in−
θB,out = 2π p1p2q = π/4.

In the case ofNL > 2, we can attempt to prove the van-
ishing of the Berry phase numerically, as in Sec. III C 2.
However, we observe a lack of periodicity, as seen in Fig.
13. Therefore, our current approach does not allow us to
extract the value of the Berry phase. This does not rule
out an appearance of periodicity for systems too large to
be studied using our Monte Carlo software.
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FIG. 14. Two ways of mapping the cylinder to the complex
plane. The arrow denotes a path of R particle, and the “×”
symbols denote the positions of the non-Abelian anyons.

Appendix E: Boundary conditions for a cylinder
with anyons

The factor (wi − zj)
pinj , creating nontrivial mon-

odromy when a non-Abelian anyon encircles a filled R
site, has a nontrivial effect also when an R particle encir-
cles a non-Abelian anyon. This can occur on a cylinder.
The cylindrical system mapped to a complex plane looks
as in Fig. 14 (a). Thus, if an R particle goes around
a cylinder, it encircles the entire L part, including the
non-Abelian anyons located inside. But this can create a
nonzero phase, which seems to lead to a conclusion that
the boundary conditions in the R part are determined
by the number of anyons in the L part. It would seem

strange, as we can consider another, equivalent mapping
of a cylinder to the complex plane, where the R part is
inside and no L anyons are encircled, as in 14 (b), and
thus the boundary conditions for R particles should be
determined only by quantities related to the R part.

Let us consider a path K which encircles all NL L sites,
k R sites, as well as anyons of total charge −Pin/q. The
only factors which generate nonzero monodromy of an L
particle on path K are (zi − zj)−niηj and (wl − zj)plnj .
They give rise to a phase

φ = 2π (Pin −NLηL − kηR) . (E1)

However, we can write it also as

φ = 2π (P −NLηL −NRηR)−
− 2π (Pout − (NR − k)ηR) , (E2)

where Pout is minus the charge of all anyons outside the
path in the units of −1/q (i.e. their charge is −Pout/q),
and P = Pin + Pout. Due to the charge neutrality (19),
the first term vanishes. The second term depends only
on the sites and anyons outside the path. Thus, it is
possible to express the phase on path K using only the
quantities related to part R. In this way, one can see
that the two mappings of the cylinder to the plane yield
the same result. It is straightforward to generalize this
reasoning to multiple interfaces.
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