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We introduce new families of pure quantum states that are constructed on top of the well-known
Gilmore-Perelomov group-theoretic coherent states. We do this by constructing unitaries as the
exponential of operators quadratic in Cartan subalgebra elements and by applying these unitaries
to regular group-theoretic coherent states. This enables us to generate entanglement not found in
the coherent states themselves, while retaining many of their desirable properties. Most importantly,
we explain how the expectation values of physical observables can be evaluated efficiently. Examples
include generalized spin-coherent states and generalized Gaussian states, but our construction can
be applied to any Lie group represented on the Hilbert space of a quantum system. We comment
on their applicability as variational families in condensed matter physics and quantum information.

I. INTRODUCTION

Families of many-body quantum states play an impor-
tant role in many contexts of quantum science. They are
studied in quantum information because they have inter-
esting entanglement structures or because they can be
shown to be useful for specific computational tasks. In
quantum many-body physics they underlie many collec-
tive phenomena and are particularly important for vari-
ational methods, both in classical and in quantum com-
putations. For all these applications, the states of these
families should be either easy to prepare experimentally
(e.g., in a quantum computer) or it should be easy to cal-
culate with them classically. Several families that fulfil
one or both properties have been studied. For exam-
ple, product states, Gaussian states and matrix product
states (MPS) fulfil both criteria. However, they have
limited potential to accomplish the tasks above. For in-
stance, product states do not have correlations at all and
Gaussian states have them only in limited forms, while
MPS are specifically constructed for 1D geometries.
The goal of this manuscript is to extend some existing

families, such that they continue to satisfy both prop-
erties above, but contain more correlations or can be
used for higher dimensional systems. To do this we base
ourselves on two observations: (i) there exist classes of
states that extend Gaussian states [1] or spin product
states [2, 3] to contain more correlations while contin-
uing to admit easy computations of expectation values;
(ii) Gaussian states, bosonic coherent states and some
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FIG. 1. We show schematically how a unitary operator V(M)
can generate entanglement in composite systems between dif-
ferent sectors, e.g., bosonic, fermionic or spin sectors.

classes of product states can all be understood within a
unified framework based on Lie group theory.

This unification was understood independently by
Gilmore [4, 5] and Perelomov [6, 7], leading to the defi-
nition of so-called group-theoretic coherent states. These
are defined by the action of a unitary representation of
a Lie group on a fixed reference state. The properties
of the ensuing family of states are fully encoded in the
algebraic properties of the chosen group and representa-
tion. Several frequently used families of quantum states
can be understood as instances of group-theoretic coher-
ent states resulting from different choices of Lie groups.
Standard bosonic coherent states arise from the group
of translations, bosonic and fermionic Gaussian states
arise from representations of the groups Sp(2N,R) and
O(2N,R), while atomic coherent states [8] arise from the
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two dimensional representation of SU(2).

Exploiting these available group-theoretical structures,
we thus consistently extend all families of group-theoretic
coherent states to include states that go beyond the co-
herent state paradigm, while still maintaining the prop-
erty of efficient computation of expectation values. We
achieve this by applying to them a single unitary transfor-
mation V(M) = exp(− i

2M
abĤaĤb), where Ĥa represents

a so-called Cartan subalgebra operator and the matrix
M contains additional variational parameters. This con-
struction is inspired by the extensions of Gaussian states
defined in [1].

As said, the specific form of this extension is designed
to preserve the desirable feature of being able to com-
pute expectation values efficiently. In fact, all necessary
operations are performed in terms of objects (matrices
and vectors) whose dimension is at most the one of the
Lie group. In most examples, this dimension scales poly-
nomially with the size of the considered system, mak-
ing our methods feasible even for studying large systems
and exploring the thermodynamic limit. While satisfying
this constraint, the extension also enlarges the range of
available types of quantum correlations, going thus be-
yond mean field treatments, such as the Landau-Lifshitz
equations [9]. Indeed, the exponent of V(M), which is
quadratic in algebra operators, can represent structures
not present in coherent states. For example, it can be
used to introduce non trivial density-density correlations
in Gaussian states or spin-spin correlations in spin sys-
tems. Furthermore, in composite systems it can produce
entanglement between different types of degrees of free-
dom (spins, bosons, fermions) as it can contain products
of Cartan subalgebra operators from the different sectors,
as sketched in figure 1.

The proposed construction is very general, in the
sense that it can be applied to group-theoretic coherent
states associated to any choice of Lie group. For this
reason, we will give all definitions in a sufficiently general
language that does not refer to a specific Lie group
and algebra. To make the rather formal construction
more concrete, we will illustrate each step for two
paradigmatic examples, namely spin- 12 coherent states
and bosonic Gaussian states.

This manuscript is structured as follows: In section II,
we review the construction of group-theoretic coherent
states according to the insight of Gilmore and Perelo-
mov. In section III, we define our generalization of group-
theoretic coherent states and show how any expectation
value with respect to those states can be brought into
a certain standard form. In section IV, we then explain
how expectation values in the previously introduced stan-
dard form can be evaluated efficiently. In section V, we
summarize our findings and give an outlook of where we
believe they will be most useful. In appendix A and B,
we provide a detailed discussions of the examples men-
tioned in the main text, namely spin- 12 coherent states
and bosonic Gaussian states. For completeness, in Ap-

pendix C we also give more details about the case of
fermionic Gaussian states, another paradigmatic exam-
ple to which our construction can be applied.

II. GROUP-THEORETIC COHERENT STATES

In this section, we review the basic definition and prop-
erties of group-theoretic coherent states based on [10] and
following the conventions of [11], where we studied their
geometric properties.
We consider a semi-simple Lie group G with Lie algebra

g. Let U be a unitary representation of G on the Hilbert
space H, i.e., U(g) is a unitary operator on H for every
group element g ∈ G, such that

U(g1)U(g2) = U(g1g2) ∀g1, g2 ∈ G . (1)

The representation of the group induces a correspond-
ing representation of the algebra. Indeed, for group el-
ements g sufficiently close to the identity, it is possible
to write U(g) = exp(KiẐi), where Ẑi is a set of anti-
Hermitian operators representing a basis of the algebra
g and Ki are real coefficients. We have the commutation
relations1

[Ẑi, Ẑj ] = ckij Ẑk , (2)

fixed by the structure constants ckij of the algebra. The

action of U(g) on the operators Ẑi follows the adjoint
representation of the group. More precisely, we have

U−1(g) Ẑi U(g) = Ad(g)ji Ẑj , (3)

i.e., U−1(g) Ẑi U(g) is just a linear combination of oper-

ators Ẑi with the coefficients given by the adjoint matrix
Ad(g)ji , which is a fixed property of the group2.
The set Mφ of group-theoretic coherent states is then

defined as the set of states obtained by acting with all
possible U(g) on a fixed reference state |φ〉 ∈ H, i.e.,

Mφ = { U(g) |φ〉 : g ∈ G} ⊂ H . (4)

Mφ is determined by the choice of the group G, of
its representation U and of the reference state |φ〉. The
elements of Mφ are parametrized by group elements g.
This parametrization may entail some redundancies, as
there might exist in G a stabilizer subgroup for |φ〉

Sφ = { g : U(g) |φ〉 = eiθ |φ〉} , (5)

1 Note that here, as in the rest of the paper, we use Einstein’s
convention of summing implicitly over all repeated indices.

2 In particular, if we can write U(g) = exp(KiẐi), then it is

straightforward to see that Ad(g)ji = [exp ad(K)]ji where the

matrix ad(K) is given by ad(K)ji = Kkc
j
ki
. For a more complete

discussion see Appendix E.
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i.e., a set of group transformations that leave |φ〉 un-
changed up to an overall phase, which is irrelevant for
what concerns the definition of quantum states. The
set of inequivalent group-theoretic coherent states is then
isomorphic to the quotient G/Sφ.
For our purposes, it is necessary to restrict the pos-

sible choices for the reference state |φ〉. We will indeed
assume that |φ〉 is a so-called lowest weight state of the
representation U . To understand what is meant by this
it is necessary to give some more details about the struc-
ture of the algebra operators [12, 13]. We will explain
this in the rest of this section.
It is always possible to pick a set of ℓ linearly inde-

pendent mutually commuting anti-Hermitian operators
Ĥa = Hi

aẐi, defined by Hi
a ∈ R for a = 1, . . . , ℓ, such

that [Ĥa, Ĥb] = 0. In the standard theory of Lie alge-
bras, the space spanned by real linear combinations of
Ĥa, which we will indicate with h, is known as a Cartan
subalgebra of g. The choice of h is not unique, however
all possible choices are isomorphic and will therefore have
the same dimension ℓ, known as the rank of the algebra.
A given a choice of Cartan subalgebra identifies the fol-
lowing structures:

• There exist real vectors η = (η1, . . . , ηℓ) ∈ R
ℓ and

corresponding operators Êη such that

[Ĥa, Êη] = iηaÊη . (6)

The operators Êη will be linear combinations of Ẑi,
however they will in general be complex linear com-
binations and therefore will not be anti-Hermitian
operators.

• The vectors η are known as roots of the algebra and
the operators Êη as root space operators. There is a
finite set of non-zero roots which we indicate as ∆.
The roots always come in pairs (η,−η). One can
choose a conventional ordering of the roots such
that they split into the two disjoint sets of positive
roots ∆+ and negative roots ∆−, with ∆ = ∆+ ∪
∆− and −η ∈ ∆− for every η ∈ ∆+.

• Let us indicate with gC the space of all complex
linear combinations of algebra elements Ẑi, which
is known as the complexified Lie algebra. The op-
erators Ĥa together with the operators Êη span gC

under complex linear combinations.

A Hilbert space vector |µ〉 ∈ H is called a weight vec-
tor of the representation if it is a common eigenstate of
all Cartan subalgebra operators Ĥa, i.e., Ĥa |µ〉 = iµa |µ〉
for some number µa ∈ R ∀a. Among the weight vectors
|µ〉 there is a unique one, called the lowest weight vec-

tor, such that Êη |µ〉 = 0 for all negative roots η ∈ ∆−.
From now on we assume that the reference state |φ〉 that
appears in the definition (4) of group-theoretic coherent
states is a lowest weight vector |µ〉 for a given choice of
Cartan subalgebra and root ordering.

Example 1 (Spin- 12 coherent states). Spin- 12 coherent
states are defined with respect to the group SU(2) and al-
gebra su(2), represented as complex 2-by-2 matrices. For
the algebra, we choose the basis Zi = iσi with σi being
the well-known Pauli matrices. The rank of su(2) is 1

and, as conventional, we choose Ĥ = i
2σ3 as basis of the

Cartan subalgebra h. For this choice, we have the roots
±η = ±1, with the respective root space operators

Ê±η = σ̂± =
1

2
√
2
(σ̂1 ± iσ̂2) =

1

2
√
2
(−iẐ1 ± Ẑ2) . (7)

The resulting weight vectors are |↑〉 and |↓〉 because they

are the eigenvectors of Ĥ = i
2σ3. Due to Ê−η |↓〉 = 0, the

state |↓〉 is the lowest weight vector, which we thus choose
as reference state. The family of group-theoretic coher-
ent states results then from applying all possible group
elements U ∈ SU(2) and is given by

MSU(2) = {eiKiσ̂i |↓〉 : K ∈ R
3} . (8)

This construction can be readily extended to a system of
N spin- 12 , in which case the Cartan algebra will be com-

posed of N operators Ĥk = i
2 σ̂

k
3 , one for each spin k, and

the lowest weight vector will be |µ〉 = |↓ . . . ↓〉.

Example 2 (Bosonic Gaussian states). The well-known
Gaussian states for a system of N bosonic modes can be
understood as the group-theoretic coherent states arising
from the algebra of all anti-Hermitian operators Q̂ that
are quadratic in the canonical creation and annihilation

operators â†k and âk. The corresponding unitary group is

the one of all operators that can be written as U = eQ̂.
Within the algebra of quadratic operators we can choose
the Cartan operators

Ĥk = i(â†kâk +
1

2
) , (9)

and root space operators

Ê+η(k,l) = iâ†kâ
†
l , Ê−η(k,l) = iâkâl, k ≤ l (10a)

Ê+η̃(k,l) = â†kâl, Ê−η̃(k,l) = âkâ
†
l , k < l (10b)

corresponding to the root vectors η
(k,l)
a = (δak + δal) and

η̃
(k,l)
a = (δak − δal). The lowest weight vector of this rep-

resentation is the Fock vacuum |0〉 as it is an eigenstate

of all Ĥk and is annihilated by all Ê−. The corresponding
group-theoretic coherent states are then all states that can

be written as eQ̂ |0〉, which we recognise as conventional
bosonic Gaussian states. The algebra of quadratic oper-
ators Q̂ and the corresponding group of unitaries U can
be recognised as infinite dimensional representations of
the Lie algebra sp(2N,R) and Lie group Sp(2N,R). For
more details on this and on how to parametrise the uni-
taries U(S) and algebra operators Q̂(K) in terms of ma-
trices S ∈ Sp(2N,R) and K ∈ sp(2N,R) see Appendix B.
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III. GENERALIZED GROUP-THEORETIC

COHERENT STATES AND STANDARD FORM

OF EXPECTATION VALUES

In this section, we will first define new families of
states, which we refer to as generalized group-theoretic co-
herent states, that extend the families of group-theoretic
coherent states described in the previous section. In the
second part, we will then show how the expectation value
of arbitrary operators (written as power series of refer-
ence operators) can be brought into a standard form,
which can then be evaluated efficiently.

A. Definition

We choose a Cartan subalgebra h ⊂ g, spanned by the
operators Ĥa as defined in the previous section. Let us
then consider the unitary operator

V(M) = exp

(

i

2
MabĤaĤb

)

. (11)

The real symmetric matrix Mab defines a bilinear form
on h and contains ℓ(ℓ+ 1)/2 real parameters that define
the operator.
The exponent of (11) is not an element of the Lie alge-

bra g, as it is quadratic in the basis operators Ẑi. Con-
sequently, V(M) is not a group transformation and the
product of more operators of this type does not follow a
group multiplication rule. Furthermore, the action of a
transformation V(M) will in general take an element of
Mφ out of the set of group-theoretic coherent states.
We now define the class of generalized group-theoretic

coherent states as the set of states of the form

|ψ(g1, g2,M)〉 = U(g1)V(M)U(g2) |µ〉 . (12)

The states are conveniently parametrized by two group
elements g1 and g2 and one bilinear form M , although
this parametrization will contain several redundancies.
Similarly to group-theoretic coherent states, this class of
states is determined by the choice of the group G and
of its representation U on Hilbert space. In the case
of compact Lie groups any choice of Cartan subalgebra
and lowest weight state |µ〉 will define the same family of
states3.

Example 3 (Generalized spin- 12 coherent states). Based

on Example 1, we consider a system of N spin- 12 degrees

3 This is because in this case all Cartan subalgebras and lowest
weight states are equivalent up to group unitary transformations,
which can be absorbed in to the parameters g1 and g2. In the
case of non-compact Lie groups there may instead exist unitar-
ily inequivalent classes of Cartan subalgebras. Their choice is
therefore relevant. Note that the choice with respect to which
operator (11) is defined may even be different from the one with
respect to which the lowest weight state |µ〉 is defined.

of freedom with Cartan algebra spanned by Ĥk = i
2σ

k
3 .

The unitary operator (11) takes the form

V(M) = exp

(

− i

8
Mkl σ̂

k
3 σ̂

l
3

)

, (13)

for any given N × N real symmetric matrix M . The
generalized spin- 12 coherent states take the form

|ψ(K1,K2,M)〉 = U(K1)V(M)U(K2) |↓ · · · ↓〉 , (14)

where, similarly to Example 1 and as explained in more
detail in Appendix A, the group unitaries are defined as

U(K) = exp
(

iKi,kσ̂k
i

)

, (15)

with the coefficients Ki,k taking values for i = 1, 2, 3 and
for each spin k = 1, . . . , N .

Example 4 (Generalized bosonic Gaussian states).
Based on Example 2, we consider a system of N bosonic

modes with Cartan algebra spanned by Ĥk = i(â†kâk+
1
2 ).

The unitary operator (11) takes the form

V(M) = exp

(

− i

2
Mkl(â†kâk +

1
2 )(â

†
l âl +

1
2 )

)

, (16)

for any given N × N real symmetric matrix M . The
generalized bosonic Gaussian states take the form

|ψ(S1, S2,M)〉 = U(S1)V(M)U(S2) |0〉 , (17)

where U(S) are the Gaussian unitaries discussed in Ex-
ample 2 and defined more precisely in Appendix B. We
recognize that these states constitute one of the classes of
non-Gaussian states previously introduced in [1].

B. Entangling degrees of freedom in composite

systems

The construction of group-theoretic coherent states is
possible also in the case in which different groups act
on different sectors of a composite system. In this case
the construction of generalized group-theoretic coherent
states is particularly useful, because, as mentioned in the
introduction, it enables us to entangle and correlate the
different types of degrees of freedom in the system, such
as spins, bosons and fermions. This provides a distinct
advantage over coherent states alone, which are always
product states over the different system components, de-
scribed by the different groups (special unitary group for
spin, symplectic group for bosons, orthogonal group for
fermions).
More precisely, let us assume that we have two semi-

simple Lie groups G1 and G2, such that the respective
representations act on a tensor product of Hilbert spaces
H = H1⊗H2 and thus commute with each other, i.e., we
have a representation of the product group G = G1 × G2

with Lie algebra g = g1 ⊕ g2. By applying the construc-
tion of group-theoretic coherent states, we will find that
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the Cartan subalgebra h = h1⊕h2 is the direct sum of the
respective Cartan subalgebras. Following our definition
of generalized coherent states, the transformation V(M)
will contain three terms, i.e.,

i

2
MabĤaĤb =

i

2

(

Mab
(1)Ĥ

(1)
a Ĥ

(1)
b +Mab

(2)Ĥ
(2)
a Ĥ

(2)
b

+ 2Mab
(12)Ĥ

(1)
a Ĥ

(2)
b

)

,

(18)

where H
(i)
a ∈ hi. We thus see explicitly that the last

term is a product of Cartan generators associated to the
two different original groups. As our representation acts
on a tensor product, this last term in V(M) will be re-
sponsible for entangling degrees of freedom associated to
different parts of a composite system. This is particularly
relevant when G1 and G2 are associated to different types
of physical degrees of freedom, such as spins, bosons and
fermions.

Example 5 (Entangling spin- 12 and bosonic systems).

Let us consider a system composed of N spin- 12 degrees

of freedom, as described in Example 1, and Ñ bosonic
modes, as described in Example 2. The total Lie group
acting on it will be given by G = SU(2)N × Sp(2Ñ,R).
The corresponding Cartan subalgebra is given by the span
of all the operators

Ĥ
(1)
k =

i

2
σ̂k
3 , Ĥ

(2)
k = i(â†kâk +

1

2
) . (19)

Consequently the unitary V(M) takes the form

V(M) = exp

[

− i

8
M

(1)
kl σ̂k

3 σ̂
l
3

− i

2
Mkl

(2)(â
†
kâk +

1
2 )(â

†
l âl +

1
2 )

− i

2
M

(12)
kl σ̂k

3 (â
†
l âl +

1
2 )

]

.

(20)

In particular we see that the last term generates entan-
glement between the spin and bosonic degrees of freedom.

C. Standard form of expectation values

Our definition was carefully chosen, such that we can
efficiently compute the expectation value of physical ob-
servables Ô of interest (e.g., Hamiltonians). Here, we

assume that the group was chosen, such that Ô can be
expressed as a polynomial in the operators Ẑi, which can
be accomplished in most physical systems. Then, any
such expectation value can be brought into the standard
form

〈ψ|Ô|ψ〉 =
∑

n,{i}
Ci1...in 〈µ| U(gn) Ẑi1 · · · Ẑin |µ〉 . (21)

To reach this standard form, we need to commute U1 ≡
U(g1), V and U2 ≡ U(g2) through the operators Ẑi that

appear in Ô according to

〈ψ|Zi1 . . . Zin |ψ〉 = 〈µ|U†
2V†U†

1 Zi1 . . . ZinU1VU2|µ〉 .
(22)

This will only transform the operators Ẑi or generate ad-
ditional group unitaries U(gi), which can all be collected
to the left to form the single unitary U(gn). To do this,
we need the following two commutation rules:

• Commuting U with Zi:

From (3) we have that commuting group transfor-
mations with algebra operators only gives rise to
linear combinations according to

Ẑi U(g) = Ad(g)ji U(g) Ẑj . (23)

• Commuting V with Zi:

Even though V(M) is not a group transformation,
its action on algebra elements has a simple form.
Indeed, from relation (6) it follows that

Êη V(M) = V(M) eηaM
abĤb− i

2ηaM
abηbÊη

= V(M) eiθη U(eKη)Êη ,
(24)

where in the second line we have recognised that
the exponential can be decomposed into a complex
phase factor θη = − 1

2ηaM
abηb and the exponential

of a real linear combination of algebra operators
Kη = ηaM

abHb. Furthermore we have that

ĤaV(M) = V(M)Ĥa , (25)

as V(M) is a function exclusively of Cartan subalge-

bra operators and therefore commutes with Ĥa. As
all algebra operators Ẑi can be expressed as com-
plex linear combinations of operators of the types
Ĥa or Êη, it follows that the commutation of V(M)

through Ẑi will be a linear combination of (25)
and (24).

By combining a series of operations of these kinds, we
can always commute the unitaries U1, V and U2 in (22)

through any monomial of operators Ẑi. They will then

combine with the corresponding U†
1 , V† and U†

2 coming
from the bra vector 〈ψ| yielding identities and leaving a

linear combination of terms of the form U(g) Ẑj1 · · · Ẑjn .
More specifically, the unitaries V(M) will give rise to

a series of group transformations eθηiU(eKηi ) accord-
ing to (24). Then one has to commute all U(eKηi )
to the left using using (23), which will produce linear

combinations of U(eKηi ) Ẑj1 · · · Ẑjn . Once all the group
transformations are on the left side, they combine to

U(g) = U(eKηi1 ) . . .U(eKηin ). Thus, the action of V(M)

on a monomial of algebra operators Ẑi will give rise to
a polynomial of the same order multiplied with a single
group transformation U(g) from the left.
In summary, any expectation value of an observable

Ô can be brought into the standard form (21), whose
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efficient evaluation will be subject of the next section.
This enables the application of a wide range of varia-
tional methods when using generalized group-theoretic
coherent states as an approximation of the true state of
the system4. The specific form of definition (11) – which
at first sight may appear somewhat arbitrary – was fun-
damental for achieving this. Indeed, the inclusion in the
exponent of (11) of algebra elements outside of the Car-
tan subalgebra or of non-quadratic terms would make it
impossible to express the transformations (23) and (24)
exclusively in terms of algebra and group operators, and
thus would prevent the subsequent calculations.

Example 6 (Commutation rules for generalized spin- 12
coherent states). The operators U(K) and V(M), defined
in Example 3 satisfy the following relations:





σ̂k
1

σ̂k
2

σ̂k
3



 U(K) = U(K) e−2Ki,k
Li





σ̂k
1

σ̂k
2

σ̂k
3



 , (26)

corresponding to (23), where we have the 3-by-3 matrices
(Li)mn = ǫimn, with ǫimn being the totally antisymmetric
tensor; and

σ̂k
3 V(M) = V(M) σ̂k

3 , (27)

σ̂k
± V(M) = V(M) e−

i
2Mkke±

i
2Mklσ̂

l
3 σ̂k

± , (28)

corresponding to (25) and (24).

Example 7 (commutation rules for generalized Gaussian
states). The commutation of U(S), discussed in Exam-
ples 2 and 4, with any creation or annihilation operator
can be achieved through

U†(S) x̂U(S) = Sx̂ , (29)

where x̂ = (q̂1, . . . , q̂N , p̂1, . . . , p̂N )⊺ and q̂i = (â†i+âi)/
√
2

and p̂i = i(â†i − âi)/
√
2 are canonical quadrature op-

erators. The commutation of V(M), discussed in Ex-
amples 4, with creation or annihilation operators can be
achieved through

V†(M)âkâlV(M) = e−
i
2 (M

kk+Mkl+Mlk+Mll)

× e−i(Mkm+Mlm)(â†
mâm+ 1

2 )âkâl ,
(30)

V†(M)â†kâlV(M) = e−
i
2 (M

kk−Mkl−Mlk+Mll)

× ei(M
km−Mlm)(â†

mâm+ 1
2 )â†kâl ,

(31)

4 The more experienced reader will know that to apply the full
range of known variational methods to a given family of quan-
tum states (e.g., as described in [11]), it is not always sufficient
to be able to compute the expectation values of the Hamiltonian.
It is also necessary to compute quantities involving so-called tan-

gent vectors. In appendix D, however, we show that for general-
ized group-theoretic coherent states also these quantities can be
simply brought to the standard form (21).

and the corresponding conjugate relations, which follow
from (24). Combining transformations of these types, the
expectation value on the states (17) of any polynomial of
creation and annihilation operators can be brought to the
standard form of linear combinations of

〈0|U(S)x̂i1 · · · x̂in |0〉 . (32)

IV. EFFICIENT EVALUATION OF

EXPECTATION VALUES IN STANDARD FORM

Generalized group-theoretic coherent states will only
be useful as variational families if we can efficiently eval-
uate expectation values 〈ψ|Ô|ψ〉. In the previous section,
we have shown that any such expectation value can be
reduced to the standard form (21). To evaluate this stan-
dard form, we need to be able to compute its building
blocks of the form

〈µ| U(g) Ẑi1 · · · Ẑin |µ〉 . (33)

In this section, we will discuss how to compute (33) effi-
ciently and thereby evaluate arbitrary expectation values
from the standard form (21).

A. BCH decomposition

Computing (33) can be achieved by performing a nor-
mal ordered Baker-Campbell-Hausdorff decomposition,
also known as Gauss decomposition, of the group uni-
tary U(g) that appears in it. Let us assume that U(g)
can be written as an exponential of algebra elements. We
therefore have

U(g) = exp





∑

η∈∆+

Kη
+Êη +Ka

0 Ĥa +
∑

η∈∆+

Kη
−Ê−η



 ,

(34)

where we have used that the algebra operators Ẑi can
be decomposed on the basis Ĥa, Êη and we have intro-
duced the corresponding complex coefficients Ka

0 , K
η
±.

We would like to split the exponential appearing in (34)
into the product of three terms and rewrite U(g) as

U(g) = T̂+ T̂0 T̂− , (35)

where T̂± and T̂0 are operators of the forms

T̂± = exp





∑

η∈∆+

Aη
± Ê±η



 , T̂0 = exp
(

Aa
0 Ĥa

)

, (36)

for some appropriate choice of the coefficients Aa
0 , A

η
±.

The specific functional dependence of Aa
0 and Aη

± on
Ka

0 and Kη
± and the extent to which it can be calculated

analytically will depend on the given choice of the group
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G. However, let us point out that the decomposition (35)
only depends on the abstract group and algebra proper-
ties and not on the specific choice of representation. It
may therefore be convenient to perform such decompo-
sition working in a smaller representation than the one
of the physical system, e.g., the fundamental or adjoint
representation.
Once the decomposition (35) of U(g) has been per-

formed the computation of the expectation value (33)
becomes relatively straightforward. Indeed, one can com-
mute T̂− to the right of the algebra operators Ẑi1 · · · Ẑin

just giving rise to new linear combinations of algebra op-
erators. To do this one needs a relation analogous5 to
equation (23), i.e.,

T̂− Ẑi = R
j
i Ẑj T̂− . (37)

In this way, one reduces (33) to the form

R
j1
i1
· · ·Rjn

in
〈µ|T̂+T̂0 Ẑj1 · · · Ẑjn T̂−|µ〉

= eiA
a
0µa R

j1
i1
· · ·Rjn

in
〈µ|Ẑi1 · · · Ẑin |µ〉 ,

(38)

where we used that the lowest weight vector |µ〉 is left-

invariant by T̂− on the right, right-invariant by T̂+ on
the left and is an eigenstate with eigenvalue iµa of the
operators Ĥa that appear in T̂0. Let us stress again that
the eigenvalues µa are the only object in this derivation
that depends on the choice of representation that we are
using.
The information on the group element g appearing in

the original expression (33) is contained in the linear co-

efficients R
j
i (which will depend on Aη

−) and in the co-
efficients Aa

0 that appear in the first factor of (38). The

factor 〈µ|Ẑi1 · · · Ẑin |µ〉 is instead independent of g and
thus needs to be computed only once. This can be done
using the standard algebra commutation relations.

Example 8 (BCH for spin- 12 coherent states). As U(g)
is always a tensor product over individual spin degrees of
freedom, we can evaluate the standard form of the expec-
tation value for each one individually. We thus consider

〈↓|eiKiσi σ̂i1 . . . σ̂in |↓〉 . (39)

The BCH decomposition of eiK
iσi is well-known [8, 14]

and explicitly given by

eK+σ̂++i
K0
2 σ̂3−K∗

+σ̂− = eA+σ̂+e
A0
2 σ̂3eA−σ̂− , (40)

where the respective coefficients are given by

A0 = −2 log
(

cosϕ− 1
2K0

sinϕ
ϕ

)

(41)

A+ = A∗
− = −iK+

sinϕ
ϕ

(

cosϕ− 1
2K0

sinϕ
ϕ

)−1

, (42)

5 Formula (37) and the form of matrix R can be derived in the
same way as (3) and (23) as explained in footnote 2 and Ap-

pendix E. Note that we have here the quantity T̂− (instead of
U(g)) which is not a unitary operator, but is still the exponential
of complex combinations of algebra elements.

with ϕ =
√

|K+|2 + 1
4K

2
0 . To find the equivalent of (38),

we can use (26) to deduce eA−σ̂− σ̂i = Rij σ̂j e
A−σ̂− with

R =





1− 1
4
A2

−
i
4
A2

−
1√
2
A−

i
4
A2

− 1 + 1
4
A2

− − i√
2
A−

− 1√
2
A− i√

2
A− 1



 . (43)

Combining these results, we thus find

〈↓|eiKiσ̂i σ̂i1· · · σ̂in |↓〉 = esA0 Ri1j1· · ·Rinjn 〈↓|σ̂j1· · · σ̂jn |↓〉
(44)

with s = − 1
2 for spin- 12 , which generalizes easily to larger

spin.

Example 9 (BCH for bosonic Gaussian states). To eval-
uate (32) via BCH we first can decompose the unitary as
U(S) = U†(u)U(T ), where 〈0| U†(u) = e−iθ 〈0| and

U(T ) = exp
(

(K+)kl i â
†
k â

†
l + (K∗

+)kl i âkâl

)

, (45)

for a suitable K+. For this type of unitary the decompo-

sition U(T ) = T̂+T̂0T̂− is known analytically [15]. Using
this decomposition one can obtain the final result

〈0| U(S)x̂i1 · · · x̂in |0〉 = r0Ri1j1 · · ·Rinjn〈0|x̂j1 · · · x̂jn |0〉 ,
(46)

where r0 is given by

r0 = e−
i
4 tr(Ω log

√
S

⊺
SS−1) det(1− 4A+A

∗
+)

1
4 , (47)

and R is the 2N × 2N matrix

R =

(

1−A∗
+ −iA∗

+

−iA∗
+ 1+A∗

+

)

. (48)

The matrix A+ can be derived analytically from S ac-
cording to (B27). See Appendix B for a more detailed
derivation.

B. Time evolution of the BCH decomposition

In the previous section, we showed how to com-
pute (33) which required a normal ordered Baker-
Campbell-Hausdorff decomposition of U(g) for every g.
For many standard Lie groups, the needed formulas al-
ready exist in the literature. However, this decomposi-
tion can also be computed by solving a corresponding
set of differential equations. This approach can be used
if the respective closed analytical formulas are not known
or difficult to implement and is especially convenient in
settings where one performs time evolution.
Time evolution is an important application of general-

ized group-theoretic coherent states, where one uses them
to simulate the dynamics of quantum systems, either in
real time or imaginary time. A similar setting is the one
where one applies gradient descent methods to our fam-
ily of states. In all these applications one has the need
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to compute a certain set of expectation values at each
time step of the evolution, then update the state to a
new one which is (theoretically) infinitesimally close and
repeat the procedure. Therefore, one is required to calcu-
late the decomposition (35) at a series of subsequent time
steps as g evolves as a function of time (more precisely, g
is a function of the variational parameters which in turn
evolve as functions of time). In these settings, it would be
useful if one could compute the BCH decomposition for
U(g(t+dt)) based on the decomposition of U(g(t)) at the
previous time step, instead of having to compute it from
scratch at each step. We will now show how this can be
done. As already mentioned above, this will also lead to
a general method for computing (35), that, although not
always the most efficient, can be useful in cases where a
closed formula is not available.
Let us assume that U(g(t)) can be written as

U(g(t)) = eK
i(t) Ẑi (49)

and that we want to decompose it as

U(g(t)) = T̂+(t) T̂0(t) T̂−(t) , (50)

where T̂−(t), T̂0(t) and T̂+(t) are operators of the forms

T̂−(t) = e
∑

η∈∆+
A

η
−(t) Ê−η , (51a)

T̂0(t) = eA
a
0(t) Ĥa , (51b)

T̂+(t) = e
∑

η∈∆+
A

η
+(t) Êη . (51c)

We now take the time derivative of U(g(t)) and multi-
ply it by U−1(g(t)). From (49), we have

U−1(g(t))
d

dt
U(g(t))

=

∫ 1

0

dτ e−τKj(t) Ẑj

[

d

dt
Ki(t) Ẑi

]

eτK
j(t) Ẑj

(52)

=

[∫ 1

0

dτ eτ ad(K(t))

]i

j

d

dt
Kj(t) Ẑi (53)

=
[

ad(K(t))−1
(

ead(K(t)) − 1

)]i

j

d

dt
Kj(t) Ẑi (54)

where ad(K(t)) represents the matrix

[ad(K(t))]
i
j = Kk(t) cikj , (55)

similarly to what explained in footnote 2. For the ex-
pression used in (52) see, e.g., the appendix of [1].
From (50), we have

U−1(g(t))
d

dt
U(g(t))

= T̂−(t)
−1T̂0(t)

−1
[

∑

η∈∆+

dη+(t)Êη

]

T̂0(t) T̂−(t)

+ T̂−(t)
−1
[

da0(t)Ĥa

]

T̂−(t) +
[

∑

η∈∆+

dη−(t)Ê−η

]

.

(56)

The coefficients da0(t) and d
η
±(t) are defined by6

d

dt
T̂−(t) = T̂−(t)

[

∑

η∈∆+

dη−(t)Ê−η

]

, (57a)

d

dt
T̂0(t) = T̂0(t)

[

da0(t)Ĥa

]

, (57b)

d

dt
T̂+(t) = T̂+(t)

[

∑

η∈∆+

dη+(t)Êη

]

. (57c)

By applying relations analogous to (37), equation (56)
can be brought to the form of a linear combination of
the algebra basis operators Ẑi, similarly to (54).
Finally, comparing these algebra elements, one can

write da0(t) and dη±(t) as functions of d
dt
Ka

0 and d
dt
Kη

±
and of Aa

0(t) and Aη
±(t). More precisely, equating (56)

and (54) leads to

M[A0(t), A−(t)]





dη−(t)
da0(t)
dη+(t)





=
[

ad(K(t))−1
(

ead(K(t)) − 1

)] d

dt





Kη
−(t)

Ka
0 (t)

Kη
+(t)



 ,

(58)

where M[A0(t), A−(t)] is a matrix of the dimension of
the algebra, that depends on A0(t) and A−(t) through
the adjoint representation of the corresponding group el-
ements, and which we need to invert.
Note that here the derivatives d

dt
K(t) depend only on

how we update the variational parameters at the given
time step and how this update influences g(t). We there-
fore assume them to be known. Similarly, the quantities
K(t), A0(t) and A−(t) depend only on the group element
g(t) and on its BCH decomposition at the current time
step. Having found da0(t), d

η
±(t) from equation (58), we

can then integrate equations (57a) to (57c) for one time
step to obtain the BCH decomposition (50) at time t+dt.
If instead we just want to compute the Baker-

Campbell-Hausdorff decomposition for a fixed group
transformation of the form (34), we can write Ki(t) =
tKi and integrate from t = 0 to t = 1 the corresponding
differential equations (57a) to (57c) as described in this
section to obtain the desired decomposition (35).

V. SUMMARY AND OUTLOOK

In this manuscript, we have introduced generalized
group-theoretic coherent states as a new family of pure
quantum states. This family is defined on top of the
well-known Gilmore-Perelomov group-theoretic coherent
states by applying an additional unitary V(M). There

6 Note that in general dη±(t) 6= d
dt
A

η
±(t), because not all Êη com-

mute among themselves.
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exist many examples of group-theoretic coherent states,
defined by different choices of Lie groups and representa-
tions, and this makes our construction quite general and
applicable in various contexts.

The transformation V(M) is defined as the exponential
of a quadratic expression in the so-called Cartan subalge-
bra operators Ĥa. This introduces quantum correlations
not contained in traditional group-theoretic coherent
states, thus allowing the treatment of problems beyond
mean-field. The dynamics of regular group-theoretic co-
herent states correspond to the group-theoretic version of
semi-classical Landau-Lifshitz (LL) equations for SU(2)
spin models [9]. Our new class of wavefunctions allows
in this sense to go beyond semi-classical dynamics. In
particular, we expect generalized coherent states to be
suitable for systems with interacting Hamiltonians con-
taining terms also quadratic in Cartan operators. For
these, it will be interesting to explore whether the many
exact theoretical results that have been proven for the
Landau-Lifshitz equations, such as existence of solitons
in 1d, will be be robust to going beyond the LL factor-
izable wavefunction ansatz. We further emphasized that
generalized group theoretic states are particularly pow-
erful when we want to correlate different types of degrees
of freedom (e.g., spins, bosons, fermions) in composite
systems, as the transformation V(M) can be used to en-
tangle them by including Cartan generators of different
types.

While going beyond coherent states, we showed in sec-
tion IV that generalized coherent states still allow for
an efficient evaluation of generic expectation values. We
stress, however, that computing the overlap 〈ψ|ψ̃〉 be-
tween two arbitrary generalized group-theoretic coherent
states |ψ〉 and |ψ̃〉 remains in general a hard task.

We gave two key examples of how our construction can
be applied in different settings, namely for spin- 12 coher-
ent states and bosonic Gaussian states. However, the
range of applications of our proposal is by no means lim-
ited to these examples: they can be extended, combined
or complemented in many ways. The SU(2) construc-
tion can, for instance, be extended to higher spin repre-
sentations, for example to atomic coherent states [8] ob-
taining so-called spin squeezed states [2]. The Gaussian
state construction can be repeated for fermionic Gaus-
sian states, as sketched in Appendix C.

It is also straightforward to apply the described gener-
alization to more elaborate Lie groups and algebras [16,
17]. This is particularly useful as many lattice systems
can be described as an SU(N) problem, where N is the
dimension of the Hilbert space at a site [18, 19]. Our
approach can thus be used to study dynamics with vari-
ational states that have non-trivial entanglement utiliz-
ing this SU(N) perspective. Finally, a further interesting
possibility is that of defining V(M) in terms of a choice
of Cartan subalgebra different from the one with respect
to which the reference state |µ〉 is a lowest weight state,
which can be done for non-compact Lie groups, such as
Sp(2N,R) for bosonic Gaussian states.

We currently restricted ourselves to semi-simple Lie
groups, as those are the ones studied systematically in
mathematical physics and for which the construction of
Cartan subalgebra and root system is fully understood.
While this enabled us to present a systematic framework
of generalized group-theoretic coherent states, we know
that in special cases we can follow the same philosophy
also for Lie groups that are not semi-simple. The most
prominent example is the Heisenberg group associated
to displacement operators for bosonic degrees of free-
dom, which plays the key role in the definition of regular
bosonic coherent states. It will be an interesting exer-
cise to explore the full extent to which this group can be
incorporated in our formalism and consider whether the
same can be done for other non-semi-simple groups.
Some of the examples discussed above have already

been proposed and studied [1]. A few of them already
have a history of successful applications. For example, by
choosing a fermionic number operator n̂f and a bosonic
quadrature operator p̂ = i√

2
(â† − â) as Cartan-type gen-

erators we obtain a V(M) that corresponds to the well-
known Lang-Firsov Polaron transformation [20], often
used for correlated boson-fermion systems. However, the
presented framework can lead to a whole spectrum of new
generalizations which we believe can be of great interest.
In terms of concrete applications, we believe that in-

teresting developments can come from two directions.
First, as our states are particularly amenable to being
produced in common experimental implementations and
their expectation values can be computed efficiently by
classical computation, they provide an ideal setting for
benchmarking experimental set-ups and quantum com-
puter prototypes. Second, they can be applied as vari-
ational states to describe and understand ground state
and dynamical properties of many quantum many-body
systems. Some families of states that can be understood
as generalized coherent states have already been success-
fully employed to perform both exact and variational cal-
culations [3, 21–23], testifying to the large spectrum of
potential applications of the construction. In particular,
they include systems that contain bosons or fermions or
both, for which our construction allows to go beyond a
Gaussian approach and also caters for the necessity of en-
tangling the bosonic and fermionic sectors. One can also
consider systems where a spin impurity is coupled to a
bosonic, fermionic or spin bath, such as the paradigmatic
Kondo [24, 25] and Bose polaron models [26, 27]. We can
finally take in consideration pure spin problems for which
tensor network methods do not give satisfactory results,
e.g., in higher dimensions.
Some specific systems of the types above for which

we believe generalized coherent states would represent
an interesting novelty include the case of fermions with
bi-phonon coupling [28], where the interaction is given

by Ĥe−ph =
∑

i Q̂
(f)
i Q̂

(b)
i , where Q̂

(f)
i and Q̂

(b)
i are re-

spectively fermionic and bosonic quadratic operators. Of
interest is also the case of the Jahn-Teller polaron [29]
where, after a Lee-Low-Pines transformation [30], the
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Hamiltonian takes the form Ĥe−ph =
∑

i F̂iq̂i. Here, the

q̂i are quadratures of a bosonic bath and the F̂i are a set
of fermionic operators realizing an su(2) algebra, which
could be described by generalized spin- 12 coherent states.
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Appendix A: Spin- 1
2
coherent states

In this appendix, we illustrate in more detail the con-
struction of generalized group-theoretic coherent states
in the case of spin- 12 coherent states. In the following
subsections, we follow the structure of the main body of
the paper illustrating the construction step-by-step.

1. Group-theoretic coherent states

This example arises if we make the Lie group choice
G = SU(2) with Lie algebra g = su(2).
We consider the fundamental representation, i.e., the

spin- 12 representation. We represent group elements
g ∈ G as unitary 2 × 2 matrices U and algebra el-
ements as 2 × 2 traceless anti-Hermitian matrices K̂.
These matrices act on a 2-dimensional Hilbert space
H 1

2
= C

2 = span{|↑〉 , |↓〉}.
We can express any algebra element K̂ in the basis of

Pauli matrices, i.e., K̂ = iKi σ̂i, with

σ̂1 =

(

0 1
1 0

)

, σ̂2 =

(

0 −i
i 0

)

, σ̂3 =

(

1 0
0 −1

)

, (A1)

and some real coefficients Ki. Any group element U can

be written as the exponential U = eiK
iσ̂i . Consequently,

we choose the basis

Ẑ1 = iσ̂1, Ẑ2 = iσ̂2, Ẑ3 = iσ̂3 , (A2)

whose commutation relations (2) are well-known as
[iσ̂i, iσ̂j ] = −2ǫijkiσ̂k.

These relations can also be used to construct the ad-
joint representation, where equation (3) takes the form

e−iKiσ̂i





Ẑ1

Ẑ2

Ẑ3



 eiK
iσ̂i = e−2Ki

Li





Ẑ1

Ẑ2

Ẑ3



 (A3)

with Li are the 3× 3 antisymmetric matrices

L1=

(

0 0 0
0 0 −1
0 1 0

)

, L2=

(

0 0 1
0 0 0
−1 0 0

)

, L3=

(

0 −1 0
1 0 0
0 0 0

)

.

(A4)

Let us now examine more in detail the structure of the
algebra su(2). The maximal set of mutually commuting
algebra operators is one dimensional, i.e., the algebra has
rank ℓ = 1. We can therefore choose a single operator Ĥ
as basis of the Cartan subalgebra, which we choose to be
Ĥ = 1

2 Ẑ3 = i
2 σ̂3 without loss of generality.

Corresponding to this choice, we can identify a single
root pair composed of the positive root η = 1 and the
associated negative root −η = −1. The respective root
space operators are

Ê±η = σ̂± =
1

2
√
2
(σ̂1 ± iσ̂2) =

1

2
√
2
(−iẐ1 ± Ẑ2) . (A5)

The relation (6) then takes the form

[
i

2
σ̂3, σ̂±] = ±iσ̂± . (A6)

From (A5), we see that Ê±η are complex linear com-

binations of Ẑi and are therefore not themselves opera-
tors of su(2), as they are not anti-Hermitian. However,
all algebra operators can be expressed as complex linear
combinations of Ĥ = i

2 σ̂3, Ê+η = σ̂+, Ê−η = σ̂−.
The weight vectors of this representation are the basis

vectors |↓〉 and |↑〉, as they are eigenvectors of Ĥ = i
2 σ̂3.

In particular, the lowest weight vector is |↓〉, as it is an-
nihilated by the negative root operator, i.e., Ê−η |↓〉 =
σ̂− |↓〉 = 0. As discussed in section II, this state will
be chosen for the role of reference state in the definition
of group-theoretic coherent states, i.e., |φ〉 = |↓〉. This
leads to the definition of spin- 12 coherent states as U |↓〉,
i.e.,

MSU(2) = {eiKiσ̂i |↓〉 : K ∈ R
3} . (A7)

Let us first note that the set MSU(2) includes all states

of H 1
2
= C

2 with unit norm. Second, for any vector |φ〉 ∈
H 1

2
= C

2, there exists a choice of Cartan subalgebra and

root ordering such that |φ〉 is the lowest weight state.
A less trivial structure is obtained if instead of consid-

ering a single spin system, we consider a set of N spins,
described by the Hilbert space

H =
(

H 1
2

)⊗N

. (A8)
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Then we can choose as group the product of N spin- 12
representations of SU(2), each acting on one of the spins.
The corresponding algebra will then be the sum of N
copies of su(2). It can be expressed in terms of anti-
Hermitian linear combinations of the operators

Ĥk =
i

2
σ̂k
3 , Êk

±η = σ̂k
± , (A9)

where the index k = 1, . . . , N refers to the spin on which
the operators act. The Cartan subalgebra will be com-
posed of the N operators Ĥk = i

2 σ̂
k
3 , one for each spin k.

In what follows we will consider this system of N spin- 12
degrees of freedom.

2. Generalized family of states

We will now apply the construction introduced in sec-
tion III A. Considering the Cartan subalgebra defined by
the operators Ĥk in equation (A9), the unitary opera-
tor (11) takes the form

V(M) = exp

(

− i

8
Mkl σ̂

k
3 σ̂

l
3

)

, (A10)

for any given N ×N real symmetric matrix M . We see
that the operator V(M) encodes correlations between the
different spins.
Consequently, the generalized SU(2) spin- 12 coherent

states take the form

|ψ(K1,K2,M)〉 = U(K1)V(M)U(K2) |↓〉 , (A11)

where we recall that the group unitaries are defined as

U(K) = exp
(

iKi,kσ̂k
i

)

, (A12)

with the coefficients Ki,k taking values for i = 1, 2, 3 and
for each spin k = 1, . . . , N .
All observables, i.e., all Hermitian operators, can be

written as polynomials of Pauli matrices and are there-
fore polynomials of algebra operators. To compute the
expectation value of these observables on states (A11),
one needs to use the formulas

σ̂k
3 V(M) = V(M) σ̂k

3 , (A13)

σ̂k
± V(M) = V(M) e−

i
2Mkke±

i
2Mklσ̂

l
3 σ̂k

± , (A14)

corresponding to (25) and (24), and




σ̂k
1

σ̂k
2

σ̂k
3



 U(K) = U(K) e−2Ki,k
Li





σ̂k
1

σ̂k
2

σ̂k
3



 , (A15)

which corresponds to (23) and can be derived immedi-
ately from (A3).
Using these relations repeatedly one can commute all

the operators U(K) and V(M)to the left, which appear
in the expectation value

〈ψ(K1,K2,M)|σ̂k1

i1
· · · σ̂kn

in
|ψ(K1,K2,M)〉 (A16)

and combine them together with U†(K1) and V†(M)
coming from the bra vector to yield identities. What
is left will be of the form of linear combinations of

〈↓ |U(K) σ̂k1

i1
· · · σ̂kn

in
|↓〉 , (A17)

which we will show how to evaluate next and where U(K)
is the combination of all the remaining group unitaries.

3. Efficient computation of expectation values in

standard form

We would like to compute quantities of the form
of (A17). Let us note that the group transformation
U(K) appearing in such expression factorizes into uni-
taries acting locally on each site. As the operators σ̂k

i

are also all local, the problem reduces to a product of
single site expectations of the type

〈↓ |eiKiσ̂i σ̂i1 · · · σ̂in |↓〉 . (A18)

It is clear that computing (A18) only involves simple lin-
ear algebra of 2× 2 matrices, and can therefore be done
efficiently without necessarily exploiting the techniques
described in section IVA. Nonetheless, we will show how
this would be done to illustrate the technique. Further-
more, the derived result can be equally applied to the case
of higher spin representations, where the matrix algebra
would become more cumbersome. We write the group op-
erator appearing in (A18) as exp(K+σ̂++iK0

2 σ̂3−K∗
+σ̂−)

and decompose it as

eK+σ̂++i
K0
2 σ̂3−K∗

+σ̂− = eA+σ̂+e
A0
2 σ̂3eA−σ̂− . (A19)

By computing explicitly the matrix exponentials in this
2×2 representation and comparing the two sides of (A19)
one finds [8]

A0 = −2 log

(

cosϕ− 1

2
K0

sinϕ

ϕ

)

(A20)

A+ = A∗
− = −iK+

sinϕ

ϕ

(

cosϕ− 1

2
K0

sinϕ

ϕ

)−1

, (A21)

with ϕ =
√

|K+|2 + 1
4K

2
0 . Note that this decomposition

remains valid for any representation of the group SU(2),

i.e., we can replace σ̂i with the operators Ŝi of larger
spins.
In the last step, we need to bring (A18) into the

form (38) by commuting eA−σ̂− to the right through
all the σ̂i operators. To do this, we observe that equa-
tion (37) takes the form

eA−σ̂− σ̂i = Rij σ̂j e
A−σ̂− (A22)

where

R = eA−(iL1+L2)

=







1− 1
4A

2
−

i
4A

2
−

1√
2
A−

i
4A

2
− 1 + 1

4A
2
− − i√

2
A−

− 1√
2
A−

i√
2
A− 1







(A23)



12

and where we used in the second step that (iL1 + L2)
3
=

0. In conclusion, we have the result

〈↓ |eiKiσ̂i σ̂i1 · · · σ̂in | ↓〉
= esA0 Ri1j1 · · ·Rinjn 〈↓ |σ̂j1 · · · σ̂jn | ↓〉 ,

(A24)

where s = − 1
2 is the eigenvalue of 1

2 σ̂3 on |↓〉. This easily
generalizes to higher spin representations by replacing s
with the respective spin and σ̂i with the respective Ŝi.

Appendix B: Bosonic Gaussian states

We review in further detail the example of bosonic
Gaussian states, which is more elaborate than general-
ized spin- 12 coherent states, as it involves the more com-
plicated and non-compact Lie group Sp(2N,R). We re-
strict ourselves for simplicity to squeezing only, i.e., with-
out any coherent displacement. As before, we follow the
structure of the main body of the paper illustrating the
construction step-by-step.

1. Group-theoretic coherent states

We consider a system of N bosonic modes, char-
acterized by the position and momentum operators
q̂1, . . . , q̂N , p̂1, . . . , p̂N . They are Hermitian operators

which can also be expressed as q̂k = 1√
2
(â†k + âk) and

p̂k = i√
2
(â†k− âk), where â

†
k and âk are the canonical cre-

ation and annihilation operators of the k-th mode. They
satisfy the commutation relations

[q̂k, q̂l] = [p̂k, p̂l] = 0, [q̂k, p̂l] = iδkl . (B1)

Gaussian unitaries are defined as operators of the

form U = eQ̂, where Q̂ is any anti-Hermitian ho-
mogeneous order 2 polynomial in the operators q̂k, p̂k.
More precisely, if we group all the position and mo-
mentum operators into a single 2N -dimensional vector
x̂ = (q̂1, . . . , q̂N , p̂1, . . . , p̂N)⊺, Q̂ can be put in the form

Q̂ =
i

2
x̂⊺hx̂ , (B2)

where h is any 2N × 2N real symmetric matrix. In prin-
ciple h could be any Hermitian matrix. However, using
the commutation relations (B1) one can show that the
anti-symmetric part of h only contributes an imaginary
c-number to Q̂, therefore only a global phase to U , in
which we are not interested. So we can assume h to be
symmetric and real.
Gaussian states (also known as squeezed states) are de-

fined as the states obtained by acting with any Gaussian
unitary on the Fock vacuum |0〉. Thus, Gaussian states

are all of the form eQ̂ |0〉 for any allowed Q̂. Here, the
vacuum is defined as the state annihilated by all annihi-
lation operators, i.e., âk |0〉 = 0, ∀k.

Bosonic Gaussian states defined in this way fit into
the group-theoretic coherent states formalism described
in section II. This is because the Gaussian operators U
that we have defined give a unitary representation of the
Lie group of real symplectic matrices7

Sp(2N,R) = {S ∈ GL(2N,R) : S⊺ΩS = Ω} , (B3)

where the matrix Ω is defined as

Ω =

(

0 1N

−1N 0

)

. (B4)

Similarly, the set of anti-Hermitian operators Q̂ give a
representation of the symplectic Lie algebra

sp(2N,R) = {K ∈ gl(2N,R) : ΩK +K⊺Ω = 0} . (B5)

Indeed, for each matrix K ∈ sp(2N,R), one can con-
struct a symmetric matrix h = ΩK and the correspond-
ing Hilbert space operator

Q̂(K) =
i

2
x̂⊺hx̂ =

i

2
x̂⊺ΩKx̂ . (B6)

Similarly, for any matrix S ∈ Sp(2N,R) that can be writ-
ten as S = eK for some K ∈ sp(2N,R), one can define
the corresponding unitary

U(S) = U(eK) = eQ̂(K) . (B7)

The operators U(S) constitute a group representation, in
the sense that one can show that8

U(S)U(S̃) = U(SS̃) . (B8)

As in section II, the algebra operators Q̂ defined
in (B6) can be expanded on a basis Ẑi. In this case,

Q̂ can be expanded as

Q̂ = Akl i

2
(q̂k q̂l + p̂kp̂l) +Bkl i

2
(q̂k q̂l − p̂kp̂l)

+ Ckl i

2
(q̂kp̂l + p̂k q̂l) +Dkl i

2
(q̂kp̂l − p̂kq̂l) ,

(B9)

for real symmetric Akl, Bkl, Ckl and real antisymmet-
ric Dkl. Thus, all Q̂ are real linear combinations of the

7 To be completely precise they are a unitary representation of the
double cover of the group Sp(2N,R), known as the metaplectic

group Mp(2N,R).
8 As discussed in footnote 7 they rigorously constitute a represen-
tation only of the double cover of the group. In practice this
means that relation (B8) may be valid only up to a sign. For
more detail on how to compute such sign see [31, 32].



13

operators

i

2
(q̂k q̂k + p̂kp̂k) = i(â†kâk +

1

2
) (B10a)

i

2
(q̂k q̂l + p̂kp̂l) =

i

2
(âkâ

†
l + â†kâl), k < l (B10b)

i

2
(q̂kp̂l − p̂kq̂l) =

1

2
(âkâ

†
l − â†kâl), k < l (B10c)

i

2
(q̂k q̂l − p̂kp̂l) =

i

2
(âkâl + â†kâ

†
l ), k ≤ l (B10d)

i

2
(q̂kp̂l + p̂kq̂l) =

1

2
(âkâl − â†kâ

†
l ), k ≤ l (B10e)

which play the role of the operators Ẑi.
These can in turn be decomposed into combinations of

Cartan subalgebra operators Ĥa and root space operators
Êη. More specifically, we can choose Cartan operators

Ĥk = i(â†kâk +
1
2 ) , (B11)

which leads to the root space operators

Ê+η(k,l) = iâ†kâ
†
l , Ê−η(k,l) = iâkâl, k ≤ l (B12a)

Ê+η̃(k,l) = â†kâl, Ê−η̃(k,l) = âkâ
†
l , k < l (B12b)

corresponding to the root vectors η
(k,l)
a = (δak + δal) and

η̃
(k,l)
a = (δak − δal). We see by inspection that all algebra

operators Ẑi as defined in equations (B10a) to (B10e) are
complex linear combinations of these objects. The Fock
vacuum |0〉 is the corresponding lowest weight state. In-
deed, it is an eigenstate with eigenvalue i

2 of all Cartan

subalgebra operators Ĥk and it is annihilated by all neg-
ative root space operators Ê−η(k,l) |0〉 = Ê−η̃(k,l) |0〉 = 0.
We conclude that bosonic Gaussian states fulfil all the

criteria to be identified as the group-theoretic coherent
states for the group G = Sp(2N,R), given its unitary
representation in terms of bosonic operators described
above.

2. Generalized family of states

We now construct generalized bosonic Gaussian states
following our definition in III A. Based on (B11), we
choose our Cartan subalgebra operators as

Ĥk = i(â†kâk +
1

2
) . (B13)

This leads to the non-Gaussian unitaries of the form

V(M) = exp

(

− i

2
Mkl(â†kâk +

1

2
)(â†l âl +

1

2
)

)

(B14)

for any N×N real symmetric matrixM . The generalized
bosonic Gaussian states are then defined as

|ψ(S1, S2,M)〉 = U(S1)V(M)U(S2) |0〉 , (B15)

where U(S) are the Gaussian unitaries defined in (B7).
We recognize that these states constitute one of the
classes of non-Gaussian states previously introduced
in [1], which is not surprising as this construction heavily
inspired us to define generalized group-theoretic coherent
states in the prescribed way.
In this setting, the observables of interest will be poly-

nomials in the operators q̂k and p̂k, or equivalently in

â†k and âk. As before, in order to compute expectation
values of such observables, we need to commute them
with unitaries of the types U(S) and V(M). This can be
achieved thanks to the relations

U†(S) x̂U(S) = Sx̂ , (B16)

which can be derived from (B1), and

V†(M)âkâlV(M) = e−
i
2 (M

kk+Mkl+Mlk+Mll)

× e−i(Mkm+Mlm)(â†
mâm+ 1

2 )âkâl ,
(B17)

V†(M)â†kâlV(M) = e−
i
2 (M

kk−Mkl−Mlk+Mll)

× ei(M
km−Mlm)(â†

mâm+ 1
2 )â†kâl ,

(B18)

and the corresponding conjugate relations, which follow
from (24).
With these relations, one can reduce all expectation

values of polynomials of position and momentum opera-
tors on |ψ(S1, S2,M)〉 to linear combinations of terms of
the form

〈0|U(S)x̂i1 · · · x̂in |0〉 , (B19)

where U(S) is an appropriate Gaussian unitary, obtained
by using (B8) to combine all unitaries remaining after the
commutations. We will now deal with the calculation of
quantities of the form (B19).

3. Efficient computation of expectation values in

standard form

To compute the BCH decomposition (35) in the case
of bosonic Gaussian states, it is convenient to first per-
form an intermediate step. Given a unitary U(S), we can
always use the Cartan decomposition [33]

U(S) = U(u−1T ) = U†(u)U(T ) , (B20)

with u and T satisfying

U(u) |0〉 = eiθ |0〉 and ΩT = T−1Ω , (B21)

where Ω was defined in (B4). These requirements ac-

tually fix a unique solution given9 by T =
√
S⊺S and

u = TS−1. The phase θ can be computed as

θ = −i 〈0|Q̂(log u)|0〉 = 1

4
tr(Ω log u) . (B22)

9 Indeed, considering that T should also be an element of
Sp(2N,R), i.e., T ⊺ΩT = Ω, we have that ΩT = T−1Ω implies
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This decomposition means that the expectation value
of interest (B19) can be written as

〈0| U(S)x̂i1 · · · x̂in |0〉 = e−iθ 〈0| U(T )x̂i1 · · · x̂in |0〉
= e−iθ 〈0| eQ̂(K)x̂i1 · · · x̂in |0〉 ,

(B23)

where we have written T = eK , with the condition (B21)
on T being equivalent to {K,Ω} = 0. Considering that
K is also in sp(2N), it must have the form

K =

(

A B
B −A

)

(B24)

with A and B being real symmetric N ×N matrices. We
therefore find

Q̂(K) = i
(

(K+)kl â
†
k â

†
l + (K∗

+)kl âkâl

)

(B25)

with K+ = 1
2 (B − iA).

We now see the purpose of the intermediate decompo-
sition of the unitary U(S). This is because only for an
operator of the form (B25), we know how to perform the
splitting (35) analytically, as we have [15, 33, 34]

eQ̂(K) = e(A+)kl â
†

k
â
†

l e(A0)kl â
†

k
âl+(A⊺

0 )kl âk â
†

l e−(A∗
+)kl âkâl ,

(B26)
where A+ is defined by the relation

2

(

ReA+ ImA+

ImA+ −ReA+

)

= tanhK = tanh logT

= (S⊺S − 1)(S⊺S + 1)−1

(B27)

and A0 is calculated as

A0 =
1

4
log(1− 4A+A

∗
+) . (B28)

As before, we see that of the three exponentials ap-
pearing in the RHS of equation (B26) the first one acts
on the lowest weight state 〈0| to its left as the identity,
the second one is the exponential of operators, for which
〈0| is an eigenstate, and the third one can be commuted
through the operators x̂i to act as the identity on the
lowest weight state |0〉 to its right. To do these commu-
tations, we use (37), which here takes the form

e−(A∗
+)kl âkâl x̂i = Rij x̂j e

−(A∗
+)kl âk âl , (B29)

where R is the 2N × 2N matrix

R =

(

1−A∗
+ −iA∗

+

−iA∗
+ 1+A∗

+

)

. (B30)

T = T ⊺. The condition U(u) |0〉 = eiθ |0〉 on the other hand
implies uu⊺ = 1, as can be seen by considering

1 = 2Re 〈0|x̂x̂⊺|0〉 = 2Re 〈0|U†(u) x̂x̂⊺ U(u)|0〉

= u (2Re 〈0|x̂x̂⊺|0〉) u⊺ = uu⊺ .

Using these two properties one immediately has S⊺S = T 2.

Combining these observations, we have the final result

〈0| U(S)x̂i1 · · · x̂in |0〉 = r0Ri1j1 · · ·Rinjn〈0|x̂j1 · · · x̂jn |0〉 ,
(B31)

where R is given by (B30), A+ by (B27) and

r0 = exp

(

−iθ +
1

4
tr log(1− 4A+A

∗
+)

)

= e−
i
4 tr(Ω log

√
S

⊺
SS−1) det(1− 4A+A

∗
+)

1
4 ,

(B32)

while 〈0|x̂j1 · · · x̂jn |0〉 can be evaluated simply with
Wick’s theorem.

Appendix C: Fermionic Gaussian states

We now consider the case of fermionic Gaussian states.
This example complements the previous one of bosonic
Gaussian states, giving the reader an indication of how
to apply our constructions to even more general settings,
i.e., the ones which include fermions. As before, we follow
the structure of the main body of the paper illustrating
the construction step-by-step.

1. Group-theoretic coherent states

We consider a system of N fermionic modes, char-
acterized by the annihilation and creation operators

ĉ1, . . . , ĉN , ĉ
†
1, . . . , ĉ

†
N . It is useful to also consider the

Hermitian operators γ̂k = 1√
2
(ĉ†k + ĉk) and ˆ̄γk = i√

2
(ĉ†k −

ĉk), which are typically referred to as Majorana opera-
tors. They play a role analogous to the one of position
and momentum operators in the bosonic case. They sat-
isfy the anti-commutation relations

{γ̂k, γ̂l} = {ˆ̄γk, ˆ̄γl} = δkl, {γ̂k, ˆ̄γl} = 0 . (C1)

Gaussian unitaries are defined as operators of the form

U = eQ̂, where Q̂ is any anti-Hermitian homogeneous or-
der 2 polynomial in the operators γ̂k, ˆ̄γk. More precisely,
if we group all the Majorana operators into a single 2N -
dimensional vector x̂ = (γ̂1, . . . , γ̂N , ˆ̄γ1, . . . , ˆ̄γN )⊺, Q̂ can
be put in the form

Q̂ =
1

2
x̂⊺Kx̂ , (C2)

where K is any 2N × 2N real anti-symmetric matrix. In
principle K could be any anti-Hermitian matrix. How-
ever, using the anti-commutation relations (C1) one can
show that the symmetric part of K only contributes an
imaginary c-number to Q̂, therefore only a global phase
to U , in which we are not interested. So we can assume
K to be anti-symmetric and real.
Gaussian states are defined as the states obtained by

acting with any Gaussian unitary on the Fock vacuum

|0〉. Thus, Gaussian states are all of the form eQ̂ |0〉 for
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any allowed Q̂. Here, the vacuum is defined as the state
annihilated by all annihilation operators, i.e., ĉk |0〉 = 0,
∀k.
Fermionic Gaussian states defined in this way fit into

the group-theoretic coherent states formalism described
in section II. This is because the fermionic Gaussian oper-
ators U that we have defined give a unitary representation
of the Lie group of real orthogonal matrices

O(2N,R) = {G ∈ GL(2N,R) : G⊺G = 1} . (C3)

Similarly, the set of anti-Hermitian operators Q̂ give a
representation of the Lie algebra of anti-symmetric ma-
trices

so(2N,R) = {K ∈ gl(2N,R) : K +K⊺ = 0} . (C4)

Indeed, for each matrixK ∈ so(2N,R), one can construct
the corresponding Hilbert space operator

Q̂(K) =
1

2
x̂⊺Kx̂ . (C5)

Similarly, for any matrix G ∈ O(2N,R) that can be writ-
ten as G = eK for some K ∈ so(2N,R), one can define
the corresponding unitary

U(G) = U(eK) = eQ̂(K) . (C6)

The operators U(G) constitute a group representation, in
the sense that one can show that

U(G)U(G̃) = U(GG̃) . (C7)

As in section II, the algebra operators Q̂ defined
in (C5) can be expanded on a basis Ẑi. In this case,

Q̂ can be expanded as

Q̂ = Akl 1

2
(γ̂kγ̂l + ˆ̄γk ˆ̄γl) +Bkl 1

2
(γ̂kγ̂l − ˆ̄γk ˆ̄γl)

+ Ckl 1

2
(γ̂k ˆ̄γl + ˆ̄γkγ̂l) +Dkl 1

2
(γ̂k ˆ̄γl − ˆ̄γkγ̂l) ,

(C8)

for real anti-symmetric Akl, Bkl, Ckl and real symmet-
ric Dkl. Thus, all Q̂ are real linear combinations of the
operators

1

2
(γ̂k ˆ̄γk − ˆ̄γkγ̂k) = i(ĉ†k ĉk −

1

2
) (C9a)

1

2
(γ̂k ˆ̄γl − ˆ̄γkγ̂l) =

i

2
(ĉ†k ĉl − ĉk ĉ

†
l ), k < l (C9b)

1

2
(γ̂kγ̂l + ˆ̄γk ˆ̄γl) =

1

2
(ĉk ĉ

†
l + ĉ†k ĉl), k < l (C9c)

1

2
(γ̂kγ̂l − ˆ̄γk ˆ̄γl) =

1

2
(ĉ†k ĉ

†
l + ĉk ĉl), k < l (C9d)

1

2
(γ̂k ˆ̄γl + ˆ̄γkγ̂l) =

i

2
(ĉ†k ĉ

†
l − ĉk ĉl), k < l (C9e)

which play the role of the operators Ẑi.

These can in turn be decomposed into combinations of
Cartan subalgebra operators Ĥa and root space operators
Êη. More specifically, we can choose Cartan operators

Ĥk = i(ĉ†k ĉk − 1
2 ) , (C10)

which leads to the root space operators

Ê+η(k,l) = ĉ†kĉ
†
l , Ê−η(k,l) = ĉk ĉl, k ≤ l (C11a)

Ê+η̃(k,l) = ĉ†kĉl, Ê−η̃(k,l) = ĉk ĉ
†
l , k < l (C11b)

corresponding to the root vectors η
(k,l)
a = (δak + δal) and

η̃
(k,l)
a = (δak − δal). We see by inspection that all algebra

operators Ẑi as defined in equations (C9a) to (C9e) are
complex linear combinations of these objects. The Fock
vacuum |0〉 is the corresponding lowest weight state. In-
deed, it is an eigenstate with eigenvalue − i

2 of all Cartan

subalgebra operators Ĥk and it is annihilated by all neg-
ative root space operators Ê−η(k,l) |0〉 = Ê−η̃(k,l) |0〉 = 0.
We conclude that fermionic Gaussian states fulfil all

the criteria to be identified as the group-theoretic coher-
ent states for the group G = O(2N,R), given its unitary
representation in terms of fermionic operators described
above.

2. Generalized family of states

We now construct generalized fermionic Gaussian
states following our definition in III A. Based on (C10),
we choose our Cartan subalgebra operators as

Ĥk = i(ĉ†k ĉk −
1

2
) . (C12)

This leads to the non-Gaussian unitaries of the form

V(M) = exp

(

− i

2
Mkl(ĉ†k ĉk −

1

2
)(ĉ†l ĉl −

1

2
)

)

(C13)

for any N×N real symmetric matrixM . The generalized
bosonic Gaussian states are then defined as

|ψ(G1, G2,M)〉 = U(G1)V(M)U(G2) |0〉 , (C14)

where U(G) are the Gaussian unitaries defined in (C6).
We recognize that these states constitute one of the
classes of non-Gaussian states previously introduced
in [1], which is not surprising as this construction heavily
inspired us to define generalized group-theoretic coherent
states in the prescribed way.
In this setting, the observables of interest will be poly-

nomials in the operators γ̂k and ˆ̄γk, or equivalently in

ĉ†k and ĉk. As before, in order to compute expectation
values of such observables, we need to commute them
with unitaries of the types U(G) and V(M). This can be
achieved thanks to the relations

U†(G) x̂U(G) = Gx̂ , (C15)



16

which can be derived from (C1), and

V†(M)ĉk ĉlV(M) = e−
i
2 (M

kk+Mkl+Mlk+Mll)

× e−i(Mkm+Mlm)(ĉ†mĉm+ 1
2 )ĉk ĉl ,

(C16)

V†(M)ĉ†k ĉlV(M) = e−
i
2 (M

kk−Mkl−Mlk+Mll)

× ei(M
km−Mlm)(ĉ†mĉm+ 1

2 )ĉ†kĉl ,
(C17)

and the corresponding conjugate relations, which follow
from (24).
With these relations, one can reduce all expecta-

tion values of polynomials of Majorana operators on
|ψ(G1, G2,M)〉 to linear combinations of terms of the
form

〈0|U(G)x̂i1 · · · x̂in |0〉 , (C18)

where U(G) is an appropriate Gaussian unitary, obtained
by using (C7) to combine all unitaries remaining after the
commutations. We will now deal with the calculation of
quantities of the form (C18).

3. Efficient computation of expectation values in

standard form

To compute the BCH decomposition (35) in the case
of fermionic Gaussian states, it is convenient to first per-
form an intermediate step. Given a unitary U(G), we can
always use the Cartan decomposition [33]

U(G) = U(u−1T ) = U†(u)U(T ) , (C19)

with u and T satisfying

U(u) |0〉 = eiθ |0〉 and ΩT = T−1Ω , (C20)

where Ω was defined in (B4). These requirements actu-
ally fix a unique solution given10 by T =

√
−ΩG⊺ΩG and

u = TG−1. The phase θ can be computed as

θ = −i 〈0|Q̂(log u)|0〉 = −1

4
tr(Ω log u) . (C21)

This decomposition means that the expectation value
of interest (C18) can be written as

〈0| U(G)x̂i1 · · · x̂in |0〉 = e−iθ 〈0| U(T )x̂i1 · · · x̂in |0〉
= e−iθ 〈0| eQ̂(K)x̂i1 · · · x̂in |0〉 ,

(C22)

10 Indeed, considering that T should also be an element of
O(2N,R), i.e., T

⊺

= T−1, we have that ΩT = T−1Ω implies
ΩT = T

⊺

Ω. The condition U(u) |0〉 = eiθ |0〉 on the other hand
implies uΩu⊺ = Ω, as can be seen by considering

Ω = 2Im 〈0|x̂x̂⊺|0〉 = 2Im 〈0|U†(u) x̂x̂⊺ U(u)|0〉

= u (2Im 〈0|x̂x̂⊺|0〉) u⊺ = uΩu⊺ .

Using these two properties one immediately has −ΩG⊺ΩG = T 2.

where we have written T = eK , with the condition (C20)
on T being equivalent to {K,Ω} = 0. Considering that
K is also in so(2N), it must have the form

K =

(

A B
B −A

)

(C23)

with A and B being real anti-symmetric N×N matrices.
We therefore find

Q̂(K) =
(

(K+)kl ĉ
†
k ĉ

†
l + (K∗

+)kl ĉkĉl

)

(C24)

with K+ = 1
2 (A+ iB).

We now see the purpose of the intermediate decompo-
sition of the unitary U(G). This is because only for an
operator of the form (C24), we know how to perform the
splitting (35) analytically, as we have [15, 33, 34]

eQ̂(K) = e(A+)kl ĉ
†

k
ĉ
†

l e(A0)kl ĉ
†

k
ĉl−(A⊺

0 )kl ĉk ĉ
†

l e(A
∗
+)kl ĉk ĉl ,

(C25)
where A+ is defined by the relation

2

(

ReA+ ImA+

ImA+ −ReA+

)

= tanhK = tanh logT

= (ΩG⊺ΩG+ 1)(ΩG⊺ΩG− 1)−1

(C26)

and A0 is calculated as

A0 =
1

4
log(1− 4A+A

∗
+) . (C27)

As before, we see that of the three exponentials ap-
pearing in the RHS of equation (C25) the first one acts
on the lowest weight state 〈0| to its left as the identity,
the second one is the exponential of operators, for which
〈0| is an eigenstate, and the third one can be commuted
through the operators x̂i to act as the identity on the
lowest weight state |0〉 to its right. To do these commu-
tations, we use (37), which here takes the form

e(A
∗
+)kl ĉk ĉl x̂i = Rij x̂j e

(A∗
+)kl ĉkĉl , (C28)

where R is the 2N × 2N matrix

R =

(

1−A∗
+ −iA∗

+

−iA∗
+ 1+A∗

+

)

. (C29)

Combining these observations, we have the final result

〈0| U(G)x̂i1 · · · x̂in |0〉 = r0Ri1j1 · · ·Rinjn〈0|x̂j1 · · · x̂jn |0〉 ,
(C30)

where R is given by (C29), A+ by (C26) and

r0 = exp

(

−iθ − 1

4
tr log(1− 4A+A

∗
+)

)

= e
i
4 tr(Ω log

√
−ΩG

⊺ΩGG−1) det(1− 4A+A
∗
+)

− 1
4 ,

(C31)

while 〈0|x̂j1 · · · x̂jn |0〉 can be evaluated simply with
Wick’s theorem.
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Appendix D: Variational methods

The main application of a family of states |ψ(x)〉 such
as the one defined in (12) (where we indicate with x col-
lectively all the parameters defining the state) is to use
it as the ansatz for a variational calculation. In this ap-
pendix we show that all the relevant quantities one needs
to compute for such application can be brought to linear
combinations of terms of the form

〈µ| U(g) Ẑi1 · · · Ẑin |µ〉 . (D1)

To do this we use the result of section III C that the
adjoint action of V(M) on any polynomial of operators

Ẑi gives rise to a linear combination of products of group
operations and algebra operators.
Given a Hamiltonian Ĥ defined on H, an ansatz |ψ(x)〉

may be used both to approximate the ground state of Ĥ
and to simulate the real time dynamics of the system.
This can be done according to different variational prin-
ciples, as discussed in [11] and illustrated for Gaussian
states in [1, 35, 36]. To do so it is necessary to be able
to compute the following quantities:

〈ψ(x)|Ĥ |ψ(x)〉 , 〈Vµ(x)|Ĥ |ψ(x)〉 , 〈Vµ(x)|Vν (x)〉 , (D2)

where |Vµ(x0)〉 = ∂
∂xµ |ψ(x)〉 |x=x0 is a so-called tangent

vector of the variational manifold.
Here, we have assumed that the group G and its rep-

resentation have been chosen so that Ĥ can be expressed
as a polynomial in the operators Ẑi. For what concerns
the computation of the tangent vectors, it can be shown
(see [11]) that the derivatives of U(g) with respect to a
suitable parametrization of the group can be written as
linear combinations of terms of the form U(g) Ẑi. Simi-
larly, it holds that

∂

∂Mab
V(M) =

i

2
V(M)ĤaĤb . (D3)

Consequently, we have that for generalized group-
theoretic coherent states tangent vectors have the form

|Vµ(x)〉 =Ci
1 U(g1)ẐiV(M)U(g2) |µ〉
+ Ci

2 U(g1)V(M)U(g2)Ẑi |µ〉
+ Cab

3 U(g1)V(M)ĤaĤbU(g2) |µ〉 .
(D4)

With this in mind, one sees immediately that the
quantities (D2) are made up of terms where one has
to evaluate repeatedly the adjoint action of U(g) or

V(M) on products of operators Ẑi and then compute
the expectation value of the result on |µ〉. Using
the results (24) and (25) these give rise to linear

combinations of further products of operators Ẑi and
potentially of group transformations U(g). Using

then (23) as explained in Section III C to commute all
the group transformations to the left, they can thus be all
brought to linear combinations of terms of the form (D1).

Appendix E: Computation of Ad(g)ji

The object Ad(g)ji plays an important role for our cal-
culation of arbitrary expectation values. It is known in
mathematics as the adjoint action of the group onto its
algebra. If we represent the group element g and the al-
gebra element Zi by matrices (in any representation), we
have

g−1Zig = Ad(g)ji Zj . (E1)

In other words the product of matrices g−1Zig can be
reexpressed as a linear combination of algebra matrices
with coefficients Ad(g)ji . These coefficients are indepen-
dent of the chosen representation. Consequently, the cal-
culation is done very efficiently if we choose a represen-
tation with a low dimension, such as the fundamental
representation.
To extract the coefficients (Adg)i

j , we can use the fact

that κij = Tr(ZiZ
†
j ) is a positive-definite inner product

on the space of matrices in whatever basis we represent
them. We then represent the group element g and the

Lie algebra elements Zi as matrices, multiply (E1) by Z†
k,

take the trace and have

Ad(g)jiκjk = Tr(g−1ZigZ
†
k) . (E2)

multilpying by the inverse of κ we finally have

Ad(g)ji = Tr(g−1ZigZ
†
k)(κ

−1)kj . (E3)

If we do this numerically, we only need to compute κ−1

once and find that the matrix Ad(g)ji can be efficiently
computed for any group element g.
Alternatively, if the group element g can be repre-

sented as eK
iZi , then from a well known Baker-Campbell-

Hausdorff relation we have

g−1Zig = e−KjZjZie
KkZk

= Zi + [KjZj , Zi] +
1

2!
[KjZj , [K

kZk, Zi]] + · · ·

= Zi +KjcljiZl +
1

2!
KkclkiK

jcmjlZm + · · ·

= (ead(K))jiZj .
(E4)

where ad(K)ji = Kkcjki. This shows that the result only
depends on the algebra commutation relations and not
on the specific representation. It is also useful in the case
in which Ki are complex coefficients, as in the derivation
of (37).
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