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Abstract

We present a high-precision Monte Carlo study of the classical Heisenberg model in four
dimensions. We investigate the properties of monopole-like topological excitations that are
enforced in the broken-symmetry phase by imposing suitable boundary conditions. We show
that the corresponding magnetization and energy-density profiles are accurately predicted
by previous analytical calculations derived in quantum field theory, while the scaling of the
low-energy parameters of this description questions an interpretation in terms of particle exci-
tations. We discuss the relevance of these findings and their possible experimental applications
in condensed-matter physics.
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1 Introduction

Lattice models of interacting vector spins with global O(N) symmetry have many important
theoretical as well as experimental applications. Considering only nearest-neighbor interactions,
their Hamiltonian can be written as [1]

H = −J
∑
〈x,y〉

s(x) · s(y), (1)

where s(x) is an N -component real vector of unit length, defined on the site x of a regular
Euclidean lattice in D dimensions, the summation runs over all distinct pairs of nearest-neighbor
sites, and J > 0 corresponds to ferromagnetic coupling. As particular cases, eq. (1) includes the
self-avoiding random-walk model (for N = 0), the Ising model (for N = 1), the XY model (for
N = 2), the Heisenberg model (for N = 3), a toy model for the Higgs sector in the Standard Model
of elementary particle physics (for N = 4), and the spherical model (for N →∞). In the present
work, we study the Heisenberg model in D = 4, where a long-range-order phase is known to exist
at sufficiently low temperatures [2] and, D = 4 being the upper critical dimension, the critical
exponents at the phase transition that separates the low-temperature phase from the disordered,
high-temperature one, are equal to their mean-field values, up to logarithmic corrections [3].
Nevertheless, the model encodes non-trivial dynamics: in particular, in this work we study a
class of non-local, finite-energy excitations (topological defects) in the low-temperature, broken-
symmetry phase and show, by numerical Monte Carlo simulations, that their properties can be
successfully predicted using quantum-field-theoretical tools in a continuum formulation of the
model [4]. For lower-dimensional systems, the theoretical expectations derived in that work are
consistent with exact results for the field theory describing the continuum limit of the Ising model
in two dimensions [5] and with numerical results for the XY model in three dimensions [6]. Here,
for the first time, we provide evidence supporting these predictions, at the quantitative level,
also in a four-dimensional Euclidean spacetime, where these excitations have some analogies with
monopole-like states (even though this terminology should be taken with a grain of salt, since the
model that we are considering has no gauge symmetry nor gauge fields). As will be shown below,
however, we also find that the scaling properties of the parameters of the quantum-field-theory
model are different from what was originally conjectured in ref. [4], and challenge a possible
interpretation of the topological configurations discussed in this work as physical particles.

2 Computation setup

We consider the system defined by the Hamiltonian introduced in eq. (1), working on a four-
dimensional isotropic, hypercubic lattice of spacing a. We denote the linear extent of the system
in each of the three spatial directions as L (with spatial coordinates ranging from −L/2 to L/2),
while R is the size of the system in the Euclidean-time direction. We also denote the system
temperature as T and introduce the reduced temperature t = (T − Tc)/Tc, where Tc is the
critical temperature. In this work, we use the most recent estimate of the critical temperature,
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Tc/J = 2.19879(2), which was obtained in ref. [7] through a sophisticated finite-size-scaling
analysis of the Binder cumulant associated with the magnetization.

In our Monte Carlo simulations, Markov chains of vector-field configurations are generated
by a combination of local heat-bath [8] and overrelaxation [9] updates. For a subset of our runs,
we also use non-local, single-cluster updates [10]. Our production runs were executed in perfectly
parallel workloads on machines equipped with Intel Xeon Skylake processors.

We study the system both in the high-temperature and in the low-temperature phases. In the
high-temperature phase, periodic boundary conditions are assumed in the four directions. We
consider the zero-spatial-momentum spin operators

S(x0) =
a3

L3

∑
x1,x2,x3

s(x) (2)

and extract the mass m of the lightest physical state by fitting the two-point correlation function

G(τ,R) =
a

R

∑
x0

S(x0) · S(x0 + τ) (3)

to the functional form

G(τ,R) = A {exp (−mτ) + exp [−m (R− τ)]} (4)

for sufficiently large values of τ . In the symmetric, high-temperature phase, we run numerical
simulations on lattices of sizes (L/a)4 ranging from 404 to 1044 and for reduced temperatures in
the range 0 . t . 0.06.

Conversely, in the low-temperature phase we impose boundary conditions enforcing the exis-
tence of a “monopole-like” spin configuration. This is done by taking advantage of the topological
nature that this type of excitations have in the continuum: they can be constructed by mapping
the spatial boundary of the continuum system at fixed Euclidean time, which has the topology of
the S2 sphere, to the manifold of (classical) vacua of the theory in the broken-symmetry phase,
which is also the S2 sphere. The simplest non-trivial mapping of this type, enforcing the exis-
tence of a single, isolated, monopole, is the one that, for the points at the spatial boundary of
the system, identifies the direction of s(x) with the direction of the spatial component of x (with
respect to the center of the system). We also impose the boundary conditions identifying the
direction of s(x) with the direction of the spatial component of x for all points at the “initial”
(x0 = −R/2) and “final” (x0 = R/2) Euclidean times. Then, up to an overall normalization,
the partition function of the system Z can be identified with the probability amplitude for the
monopole propagation from x0 = −R/2 to x0 = R/2. We determine the i-th component of the
magnetization 〈si(xi)〉 and the energy density profile 〈ε(xi)〉 along the i-th spatial axis through
the center of the system (so that ε(xi) is proportional to the scalar product of s with the sum of
the spins on the nearest-neighbor sites, and is normalized to 1 for a uniform field configuration).
To increase statistics, we average over the three spatial axes.
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Figure 1: Euclidean-time-separation dependence of the two-point correlation function of zero-
momentum operators defined in eq. (2), on lattices of size L4 = (40a)4 (left-hand-side panel,
open symbols) and L4 = (104a)4 (right-hand-side panel, full symbols), for different values of
the reduced temperature t = (T − Tc)/Tc, denoted by different colors, in the symmetric phase.
The curves are obtained from two-parameter fits of our Monte Carlo simulation results to the
expected functional form in eq. (4). The inset in the left-hand-side panel shows the results for
the correlation function for all values 0 ≤ τ < L.

3 Results

The results of our calculations in the symmetric phase confirm the estimate of the critical tem-
perature reported in ref. [7]. As an example, figure 1 shows our results for the two-point, zero-
momentum correlation function defined in eq. (3) on the smallest (L4 = (40a)4, left-hand-side
panel) and on the largest (L4 = (104a)4, right-hand-side panel) lattices. In particular, the results
of our Monte Carlo calculations close to Tc (shown as black symbols) indicate that the mass of
the lightest physical state that propagates in the theory, vanishes in the thermodynamic limit.
This statement is made more quantitative by the fit results for ma for T ≈ Tc, which are reported
in table 1. The estimated uncertainties on all results are always of the order of 1% or less. We
note that, while essentially all of our data for L/a & 50 appear to be consistent with a simple,
1/L-decay and with the expected exactly zero asymptotic value for L/a → ∞, it is worth men-
tioning that the precise form of finite-size corrections in this model is not yet a completely settled
issue (see, e.g., the discussion in the recent ref. [7] and in the references therein). Moreover, it
should be emphasized that a fully systematic study of the value of ma in the thermodynamic
limit and very close to criticality would also require taking into account subleading corrections,
which are neglected in eq. (4): these include, for instance, short-distance corrections to r that
depend on the lattice geometry [11], contributions to G(τ,R) from additional periodic images
of the zero-momentum operator, terms related to heavier excitations (which are exponentially
suppressed with respect to the lightest mode), etc. While their discussion lies beyond the scope
of this work, we remark that our present analysis of the G(τ,R) results provides a reliable and
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robust way to extract the mass of the lightest physical excitation of the theory for small but non-
vanishing values of t. Following this strategy, we then evaluate the mass in units of the inverse

L/a ma L/a ma

40 0.1043(11) 80 0.05105(35)
48 0.08373(60) 88 0.04694(34)
56 0.06749(41) 96 0.04005(12)
64 0.06099(45) 104 0.03302(19)
72 0.05829(32)

Table 1: Results for the lightest mass contributing to the G(τ,R) correlator at t ≈ 0, for different
values of L = R.

lattice spacing ma at fixed t and for different lattice sizes, obtaining the results extrapolated to
the thermodynamic limit through a fit to

am(L) = am+
ak1
L
. (5)

We note, in particular, that for t ≈ 0 the thermodynamic-limit value of am = −0.0058(37)
is compatible with 0 within less that two standard deviations. In addition, we also note that
the systematic uncertainty associated with the choice of the functional form in eq. (5) can be
(roughly) estimated by studying how the thermodynamic-limit value of am varies, when a different
functional form is chosen; if one includes an additional term a2k2/L

2 on the right-hand side of
eq. (5), the extrapolated value of am in the large-volume limit changes to am = −0.023(16),
indicating that the compatibility of am with zero is robust, and that the systematic uncertainty
may be of a size similar to the statistical one.

Neglecting logarithmic corrections, the masses extrapolated to the thermodynamic limit are
expected to depend on t as

ma =
mtν

Λ+
, (6)

where Λ+ is a constant with the dimensions of an energy, and a renormalization-group analysis
predicts the critical exponent near the Gaußian fixed point to be ν = 1/2. Fitting our results to
eq. (6), we obtain the amplitude value m/Λ+ = 1.995(24) and the results shown in figure 2.

We now turn to the results of our Monte Carlo simulations in the broken-symmetry phase
at T < Tc. In this case, we investigated the spin profile and energy density in the presence
of a topological defect induced by the boundary conditions of the system, as described above.
The left-hand-side panel of figure 3 shows the spin profile along lines parallel to the three main
spatial axes, and touching the edges of the cube at the center ¨of the lattice: more precisely, the
plot displays the average value of the i-th component of the spin with the boundary conditions
enforcing a topological defect, as a function of the coordinate of the i-th axis (in units of the
lattice spacing). This quantity is averaged over the three directions, and is shown for a lattice of
spatial sizes L = 90a and extent R = 20a in the Euclidean-time direction, and for different values
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Figure 2: Mass values in units of the inverse lattice spacing at different reduced temperatures,
extrapolated to the thermodynamic limit (circles), and their fit according to eq. (6) (dashed line).

of the reduced temperature t (denoted by symbols of different colors). Our Monte Carlo results
are compared with the analytical predictions, denoted by solid curves, derived in ref. [4]:

〈si(xi)〉 = v

[(
1− 1

2z2

)
erf(z) +

exp
(
−z2

)
√
πz

]
, (7)

where z = xi
√

2M/R, with M , which, according to ref. [4], would represent the mass associated
with the topological defect, and v, the asymptotic value of si at large distances from the defect
core, as fit parameters. All fits are done in the range −25 ≤ xi/a ≤ 25 to avoid systematic effects
due to the boundaries of the system. We find excellent agreement between the theoretical curves
and the numerical results, as shown in table 2.

t v Ma χ2
red

−0.01302 0.2041(4) 0.425(7) 0.89
−0.01941 0.2327(4) 0.488(7) 0.83
−0.02571 0.2563(4) 0.582(8) 1.01
−0.03193 0.27948(35) 0.682(8) 0.88
−0.03807 0.30036(38) 0.752(9) 1.10
−0.04414 0.31790(33) 0.888(10) 0.92
−0.05013 0.33400(37) 0.996(12) 1.24
−0.05604 0.34989(35) 1.117(13) 1.21
−0.06188 0.3643(4) 1.246(17) 1.78

Table 2: Results for the fits of our numerical results for the spin profile, from simulations with
L/a = 90 and R/a = 20, to eq. (7).
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Figure 3: Left-hand-side panel: profile of the i-th component of the spin along the main axes
through the center of the lattice, as a function of the xi coordinate (in units of the lattice
spacing), in the presence of boundary conditions enforcing a topological excitation in the low-
temperature phase. The plot shows the results obtained from our Monte Carlo simulations on
a lattice of spatial sizes L = 90a and Euclidean-time extent R = 20a, denoted as circles of
different colors, for different values of the reduced temperature t, and their comparison with the
theoretical expectation according to eq. (7), which was derived in ref. [4] from quantum-field-
theory arguments. Right-hand-side panel: the average spin value v far from the defect core,
obtained from fits to eq. (7), plotted against the temperature in units of the coupling, from
different sets of simulations on lattices with L = 90a and R = 20a (including those displayed in
the plot on the right-hand-side panel), and their fit to eq. (8).

In addition, we also observe that the values for v extracted from these fits exhibit the expected
scaling when the temperature approaches Tc: in the infinite-volume limit, the modulus of the
magnetization is predicted to scale as v ∝ (−t)β, where (neglecting logarithmic corrections) the
critical exponent is expected to take its Gaußian value β = 1/2. This is indeed confirmed by our
results for v, which can be successfully fitted by

v = Av

√
1− T

Tc

, (8)

with Av = 1.376(5) and Tc/J = 2.2195(7), as shown on the right-hand side of figure 3. The slight
mismatch between the fitted and the actual value of critical temperature provides an indication
of the impact of finite-volume effects and logarithmic corrections on the critical exponent (that
were neglected in this fit): their combined effect is below 1%. We also note that the precision of
our results for v is sufficient to rule out different values of the critical exponent. For example,
fitting our data to a linear (in T −Tc) form instead of eq. (8) yields a reduced χ2 larger than 200.

It is interesting to study the scaling of the fitted value for Ma, as a function of the parameters
of the theory, L, R and t. The analytical calculations presented in ref. [4] are done in the ther-
modynamic limit, hence we restrict our analysis to lattices whose spatial volume L3 is sufficiently
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Figure 4: Left-hand-side panel: dependence of the spin profile 〈si(xi)〉 on the spatial coordinate
xi/a, as measured with respect to the center of the system, at a fixed temperature and for different
values of the Euclidean-time extent of the lattice. All results shown in this plot were obtained
from simulations with T/J = 2.062725. Right-hand-side panel: temperature dependence of the
Ma parameter, extracted from the fits of our numerical data to eq. (7), for lattices with different
values of R/a, and their fits to eq. (9).

large, in order to suppress finite-volume effects. More quantitatively, L has to be much larger
than the other length scales of the theory, i.e. the inverse of M (implying 1 � ML) and the
lattice spacing (1 � L/a). Both inequalities are satisfied in our data samples. The dependence
of Ma on R, the lattice extent in the Euclidean-time direction, is more subtle. According to
the interpretation of the topological field configuration as a particle excitation [4], M should be
interpreted as the mass of the particle, and, as such, should be independent from R (possibly up
to discretization effects, for values of R comparable with a). Our fit results, however, indicate
that the dimensionless parameter Ma extracted from the fits scales approximately proportion-
ally to R, which questions the interpretation of the topological excitation as a physical particle.
This is clearly revealed by the values of the spin profile 〈si(xi)〉 computed numerically at fixed
temperature and for different values of R, an example of which (for T/J = 2.062725) is shown
in the plot on the left-hand-side panel of figure 4, which only shows results at xi/a ≥ 0: the
data obtained on lattices with Euclidean-time extent R/a = 16, 20, 28, and 36, and spatial sizes
L & 3R collapse on the same curve (except for the points close to the boundaries of the lattice
with L = 60a), which can be described well by eq. (7). In turn, since the latter depends on M
only through the M/R ratio, it follows that M is proportional to R, or, equivalently, that the
topological excitation is characterized by an approximately constant µ = M/R. Note that, if this
is the case, i.e. if µ should be thought of as a physical quantity, then in a set of simulations at
fixed R/a and at different temperatures, the aM parameter extracted from the fits should scale
as aµR = µ(R/a)a2 ∝ |t|2ν . Remarkably, this behavior is indeed seen in our numerical data: as
an example, the plot on the right-hand side of figure 4 shows the results for aM obtained from
lattices with R/a = 36 (red diamonds), R/a = 28 (violet squares), and R/a = 20 (black circles),
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at various temperatures (and for L/a = 90). The data corresponding to each value of R/a are
fitted to the form

aM = AM

(
1− T

Tc

)E
(9)

(with the critical temperature fixed to its value computed in ref. [7]), and, for all three cases, we
always find results for the E exponent very close to 1, i.e. twice the value of ν predicted in the
Gaußian approximation. The fitted curves are shown as dashed lines in the right-hand-side plot
of figure 4. Note that the dashed curves are not (or, more appropriately: are not constrained to
be) straight lines. The fit results are reported in table 3.

R/a AM E χ2
red

20 21.3(1.5) 1.021(23) 0.50
28 23.4(1.8) 0.981(24) 2.34
36 34.6(2.3) 1.039(21) 1.76

Table 3: Results of the two-parameter fits of the data shown in the right-hand-side panel of
figure 4 to eq. (9).

Finally, in figure 5 we present our results for ε, defined as the average (dimensionless) energy
density along the main spatial axes through the edges of the cube at the center of the lattice. This
quantity is plotted as a function of the coordinate xi along that axis (in units of a), averaging
over the three spatial axes to enhance statistical precision. At any fixed temperature T < Tc, in
the infinite-volume limit ε(xi) is expected to tend to a spatially uniform value C at sufficiently
large distances. Like for the average spin profile, we observe that, for sufficiently large values of
L and R, also the average energy-density profile depends only on the temperature (for all points,
except those close to the boundaries of the lattice), and, in particular, the numerical results
obtained from Monte Carlo simulations at the same T , but for different values of R, collapse on
the same curve. An example of this behavior is shown in the plot on the left-hand side of figure 5,
displaying the results for 〈ε(xi)〉 from simulations at T/J = 2.07557, for R/a = 16 (red triangles),
R/a = 20 (yellow squares), R/a = 28 (green circles), and R/a = 36 (blue diamonds); the spatial
volume is L3 = (90a)3, except for R/a = 16, for which L3 = (60a)3.

The plot on the right-hand side of figure 5 shows a comparison of our numerical results for
the average energy-density profile to the theoretical prediction derived in ref. [4], which is

〈ε(xi)〉 = C +BM

√(
2Ma2

R

)3

exp

(
−2M

R
x2i

)
. (10)

The symbols in the figure display data obtained from simulations on lattices with R/a = 20 and
L/a = 90 at four different temperatures, focusing on the region around the center of the lattice,
where the numerical results are fitted to eq. (10), i.e. −25 ≤ xi/a ≤ 25. As for the spin profile,
the numerical results exhibit the expected qualitative features (for instance, the energy density
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Figure 5: Left-hand-side panel: average energy density 〈ε〉 along the main spatial axes through
the edges of a cube at the center of the lattice, as a function of the xi coordinate, in units of
the lattice spacing, in the presence of a topological excitation in the broken-symmetry phase, as
obtained from simulations at t = −0.05604. Right-hand-side panel: dependence of 〈ε(xi)〉 on the
reduced temperature, as evaluated from numerical simulations on lattices with Euclidean-time
extent R = 20a and spatial volume L3 = (90a)3. The solid curves are obtained from fits to
eq. (10), which was derived in ref. [4].

has a peak at the center of the system, whose width becomes larger when T → T−c ) and are in
excellent quantitative agreement with the theoretical model.

4 Discussion and conclusions

To summarize, we studied the Heisenberg model on a four-dimensional Euclidean lattice, through
massively parallel numerical simulations, based on state-of-the-art algorithms and run on high-
performance-computing clusters. Even though D = 4 is the upper critical dimension, the
model reveals interesting dynamical features. As a benchmark, our study of correlators of zero-
momentum spin operators in the disordered, high-temperature phase confirms the results recently
reported in ref. [7] (and based on the analysis of a different observable), yielding, in particular, full
consistency with the critical temperature determined in that work. This may also be interpreted
as indirect evidence for the non-trivial subleading finite-size correction terms discussed in that
reference.

In the low-temperature phase, we implemented boundary conditions enforcing the existence
of topologically non-trivial field configurations (which, in a continuum description, can be charac-
terized by a non-zero “winding number” under the second homotopy group π2(S

2)) and studied
their propagation from an initial to a final Euclidean time. As discussed in ref. [4], in the contin-
uum limit the dynamical properties of this type of configurations can be studied with analytical
tools from quantum field theory, using only general assumptions about the form factors relevant
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for different observables of the model as input. The predictions derived in this approach are
supported by exact analytical solutions in two dimensions [5] and by simulation results in three
dimensions [6]. In the present work, for the first time, they have also been quantitatively con-
firmed in four Euclidean dimensions, to the high level of numerical precision that was possible
to achieve through a large set of dedicated simulations, in a range of volumes spanning two or-
ders of magnitude (the number of degrees of freedom on the largest lattices being approximately
2.34 · 108), and for a fine scan of temperatures close to Tc. It is remarkable that the analytical
approach advocated in ref. [4] has very strong predictive power, yielding quantitatively accurate
expectations for various observables, from a very limited number of unknown parameters only,
and for quite different models, based on continuous or discrete degrees of freedom, invariant under
Abelian or non-Abelian symmetries, and defined in different spacetime dimensions.

Our simulation results also reveal that the scaling of the parameters (which could be inter-
preted as “low-energy constants”) that appear in the quantum-field-theoretical description of
the spin model for T → T−c is non-trivial, and suggest that a straightforward interpretation of
these topological configurations as particles is problematic. In particular, the data lead us to
the conclusion that the parameter playing the rôle of the particle mass in ref. [4] is actually a
quantity proportional to the “duration” (in Euclidean time, in this case) of its propagation. Our
numerical evidence for this scaling is twofold: on the one hand, the results of simulations at
fixed temperature and at different values of R reveal that the characteristic widths of average
spin and energy-density profiles do not grow with

√
R. Rather, their squared width appears to

saturate at a given value of R/M , so that, even when the topological configuration is allowed
to propagate for a longer Euclidean-time interval, it remains spatially localized. On the other
hand, we showed that the aM parameter, that we extracted from the fits, scales with the reduced
temperature t proportionally to |t|2ν , which indicates that the appropriate “physical” quantity
that characterizes these objects is µ = M/R, rather than M .

These results have interesting implications. In particular, the scaling properties observed in
four dimensions can be compared and contrasted with those reported in an analogous numerical
study in three dimensions [6], which investigated the vortices in the XY model. In that work, it
was found that the vortex has a well-defined mass in the continuum limit, which is approximately
2.1 times larger than the mass of the lightest physical excitation in the disordered phase, and
which, when expressed in units of the inverse lattice spacing, scales like |t|ν . Moreover, it was
also pointed out that those findings provided indirect evidence that Derrick’s argument [12] (a
theorem in classical field theory implying that non-trivial, regular, static, soliton-like configura-
tions in scalar field theory cannot exist in more than two spacetime dimensions, as their energy
is unstable under scale transformations) may be violated at the quantum level. The possibility
of an anomalous violation of Derrick’s theorem is particularly intriguing, especially in the light
of some arguments that have been recently put forward in axiomatic quantum field theory [13].

It should be noted that a violation of Derrick’s theorem at the quantum level would entail
far-reaching consequences, in many different areas of physics. As an example with particularly
striking phenomenological implications, it is worth remarking that in the context of relativistic
astrophysics, Derrick’s theorem implies that bosonic stars consisting of particles that are the
excitations of real scalar fields do not exist [14]. In fact, typical ways to evade Derrick’s theorem
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consist in relaxing any of its assumptions, e.g. by introducing a local internal symmetry and gauge
fields [15] or replacing the real scalar field with a complex one, which may be charged under an
unbroken, global, continuous internal symmetry and sustain stationary (i.e. time-dependent and
oscillating), rather than static, configurations [16]. Finally, the possibility that Derrick’s theorem
may be violated in curved spacetimes has been recently studied in refs. [17].

Alternatively, one can construct topologically stable, monopole-like field configurations of
finite energy in physical systems characterized by an intrinsic cutoff scale: these include, in par-
ticular, those relevant for condensed-matter theory. It is, in fact, in this setting that the findings
of our study may be particularly relevant: it is also worth pointing out that, while our calcula-
tions are carried out in a classical statistical mechanics setting, one could alternatively interpret
this model as the lattice regularization of the corresponding quantum theory in three spatial
dimensions [18]. The possibility that this theory supports artificial monopole-like objects [19]
may have important applications, given that synthetic magnetism is expected to provide a route
towards quantum simulation [20] and information communication [21]. For a recent example of
experimental work in this area, see, for instance, the study of manganese germanide reported in
ref. [22].

Finally, while the present numerical study has been carried out in a conventional, equilibrium
Monte Carlo setting, it would be interesting to generalize it to address aspects related to out-
of-equilibrium dynamics. A possible way to do this, harnessing well-established mathematical
theorems in non-equilibrium statistical mechanics [23], was recently discussed in ref. [24], which
presented a non-perturbative study of gauge theories subject to boundary conditions enforcing a
non-zero minimum action field configuration, and determined the value of the physical running
coupling, in a well-defined renormalization scheme [25], by measuring the response of the system
under a sequence of quantum quenches that “deform” the field configurations at the boundary.
Repeating a similar type of computation for the setup considered in the present work could shed
further light onto the properties of the topological configurations that we studied here, and onto
their potential applications in condensed-matter systems.
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