arXiv:2012.12240v2 [cond-mat.soft] 27 Dec 2021

Single particle fluctuations dominate the long-time dynamic susceptibility in glass-forming liquids.
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Liquids near the glass transition exhibit dynamical heterogeneity, i.e. correlated regions in the liquid relax
at either a much faster rate or a much slower rate than the average. This collective phenomenon has been
characterized by measurements of a dynamic susceptibility y4(¢), which are sometimes interpreted in terms
of the size of those relaxing regions and the intensity of the fluctuations. We show that the results of those
measurements can be affected not only by the collective fluctuations in the relaxation rate, but also by density
fluctuations in the initial state and by single-particle fluctuations. We also show that at very long times the
average overlap C(r) probing the similarity between an initial and a final state separated by a time interval ¢

decays as a power law C(r) ~ t~¢/2. This is much slower than the stretched exponential behavior C(¢) ~ e~/ 0P
previously observed at times within one or two orders of magnitude of the ¢t-relaxation time 7. We find that
for times longer than 10 — 1007, the dynamic susceptibility x4 () is dominated by single particle fluctuations,
and that 4 (1) = C(r) ~ ¢~4/2_ Finally, we introduce a method to extract the collective relaxation contribution to
the dynamic susceptibility x4 () by subtracting the effects of single-particle fluctuations and initial state density
fluctuations. We apply this method to numerical simulations of two glass forming models: a binary hard sphere
system and a Kob-Andersen Lennard-Jones system. This allows us to extend the analysis of numerical data to
timescales much longer than previously possible, and opens the door for further future progress in the study of

dynamic heterogeneities, including the determination of the exchange time.

I. INTRODUCTION

Glass forming liquids are characterized by a dramatic slow-
down of the relaxation dynamics as the temperature is reduced
or the density is increased. A common way to probe relax-
ation is to measure the similarity between states of the system
at different times. To do this an often used quantity is the
average overlap C(¢) = (w(A¥)). Here w(A¥) is an individ-
ual particle overlap function that goes from one to zero as the
particle displacement A¥(¢) goes from being smaller to being
larger than a typical vibrational amplitude [1, 2]. The main
timescale describing the slowdown of the dynamics is the o-
relaxation time 7y. This timescale characterizes the decay of
an average two-time correlation function, usually the average
overlap C(t), or the self part Fy(k,) of the intermediate scat-
tering function [2—4]. The time dependence of the average
overlap C(t) for times within one or two orders of magnitude
of the a-relaxation time has been found to be well described
by a stretched exponential form C(z) ~ e~/ o’ [51.

As the relaxation time of a fragile glass former increases
in the vicinity of the glass transition, dynamical heterogeneity
emerges, i.e. the relaxation becomes much slower or much
faster in some regions than in others [3, 4, 6]. The typical dis-
tance over which the local relaxation is correlated increases as
the glass transition is approached, which, together with other
evidence [3, 4, 6], suggests that glassy dynamics is a collec-
tive phenomenon [2]. One of the most common approaches
to study those correlations is to compute the four-point struc-
ture factor S4(g,t), which is the Fourier transformed spatial
correlator of the individual particle overlap w [1, 2, 7]. The
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dynamic susceptibility x4(r) = lim,0S4(4,t) [1, 2, 5, 8, 9]
gives a measure of the overall strength of the fluctuations, and
its maximum value is sometimes interpreted as being propor-
tional to the typical number of particles in a correlated re-
gion [2]. Additionally, a dynamic correlation length &, (¢) can
be defined by the expansion S4(g,t) = xa(t)[1 — EZ(t)g* +
0(g*)], valid for small but nonzero ¢ [1, 5, 8, 9].

The dynamical behavior of glassy systems is characterized
by several timescales besides the relaxation time 7,. Some of
them, such as the time #4 when y4(¢) reaches its maximum,
are typically not far from 74 [1, 2, 8]. But other timescales
may sometimes be much longer. For example, the dynamic
correlation length of fluctuations continues to increase after
To [2, 5]; and the typical time it takes for a slow region to be-
come fast or viceversa - the exchange time T - may in some
cases be much longer than 7 [3, 10, 11]. However, for times
t > 14, little is known theoretically about y4(¢) beyond the ob-
served fact that it decreases with time [2, 8]. In the case of
(1), it is not even clear whether it decreases or not at very
long times. Additionally, even though the four point functions
S4(q,t) and x4 () have been the main tool used to analyze nu-
merical data on dynamical heterogeneity, no clear connection
has been established between them and the exchange time Tex
characterizing the lifetime of the heterogeneous regions.

The purpose of this work is twofold. First we present ev-
idence that the long time behavior of the average overlap is
given by a power law C(z) ~ t~%/2, where d is the dimension-
ality of space. Then we focus on the four point structure factor
S4(q,t). We introduce a decomposition of S4(g,7) as the sum
of four contributions: (i) S5, describing collective relaxation
fluctuations; (ii) S5, associated with the density fluctuations in
the initial state; (iii) S7'°, due to the interplay of density fluc-
tuations in the initial state with relaxation fluctuations, and
@iv) SZP, due to uncorrelated single-particle fluctuations. As a
function of ¢, S4(g,t) decays to a plateau value Y4, > 0 [8]
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for ¢ < 2m/ryy, wWhere ryy is the typical nearest neighbor
distance. We propose here that this plateau corresponds to the
sum of the contributions Sjt, Sy, and SZP, and show that its
time dependence can be well reproduced by a simple expres-
sion involving only the overlap C(¢) and the static structure
factor S(g). The fact that all contributions except Sg" are ¢-
independent allows us to introduce a simple method of analy-
sis that separates those contributions, and enables the detailed
study of dynamical heterogeneities at timescales much longer
than 7,. We apply this method to simulation data for a bi-
nary hard-sphere system and for the Kob-Andersen Lennard-
Jones system. We show that for temperatures or densities
near the mode-coupling crossover [2, 12], the collective re-
laxation contribution S3 is orders of magnitude larger than
the others at t ~ 7y, but the single particle contribution be-
comes dominant at ¢ >> T,. In fact, we find that for very long
times, S4(q,7) = SY(§,t) ~ C(t) ~ t~4/2. By subtracting the
other three contributions, we isolate the collective contribu-
tion S§"(4,¢), and find that for the systems we simulate it de-
cays as a power law at very long times S§'(g,7) ~ t~7, with
p > d,i.e. with an exponent at least twice larger than the one
for the single-particle contribution. We also use this decom-
position to determine &4(¢) for times up to r ~ 807, in the
hard-sphere system, thus showing how to provide an answer
to the longstanding question regarding the long time behavior
of &4(t).

The rest of this paper is organized as follows. In Sec. II
we briefly discuss the simulation details. In Sec. III we show
evidence for a power law behavior C(¢) ~ 1=4/2 of the overlap
at very long times. In Sec. IV we discuss the decomposition
of the four-point functions in terms of four contributions with
distinct physical interpretations, and analyze the long time be-
havior of the single-particle and collective relaxation contribu-
tions. Finally, in Sec. V we summarize our results.

II. SIMULATION DETAILS

We simulate two 3D equilibrium glass-forming liquids.
The first system is a 50:50 binary mixture of hard-spheres
(HARD), with diameters d and 1.4d. Lengths are measured
in units of d, and wavevectors are measured in units of 1/d.
Monte Carlo simulations were performed for N = 80000 par-
ticles at packing fractions ¢ = 0.50,0.52,0.55,0.56,0.57, and
0.58. For each packing fraction, data were taken for four runs,
after the system was well equilibrated, during a time of about
1007,. The second system is the Kob-Andersen Lennard-
Jones (KALJ) [13-15] 80:20 binary mixture with N = 27000
particles. Here all lengths are measured in units of Gu4, the
characteristic length of the Lennard-Jones potential between
A particles, and all wavevectors are measured in units of
1/044. The simulations were performed with Newtonian dy-
namics for temperatures 7 = 0.50,0.55,0.60,0.65,0.70, and
0.80 at a density p = N/V = 1.2. At all temperatures, four
runs were performed and data were taken for at least 1007
after the system was well equilibrated. More details about the
simulation and characterization of the systems can be found
in Ref. [5] for HARD and in Ref. [16] for KALJ.

III. SINGLE-PARTICLE DYNAMICS
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FIG. 1: Two time correlation function C(¢) for HARD for pack-
ing fractions ¢ = 0.50,0.52,0.55,0.56,0.57,0.58 (top panel) and for
KALJ for temperatures 7 = 0.80,0.70,0.65,0.60,0.55,0.50 (bottom
panel). A 1732 power-law time dependence is shown for compari-
son. Insets: Power-law exponent Pc(t) = dInC(t)/dInt of C(t).

We probe the dynamics by using a microscopic overlap
function wy,(t) = Ola — |r,(¢) — r,(0)|], where 6(x) is the
Heaviside step function, r,(¢) is the position of the n-th par-
ticle at time ¢, and a is a characteristic distance that is larger
than the typical amplitude of vibrational motion (we take a =
0.3 for HARD and a = 0.25 for KALJ). For a given time inter-
val ¢, if a particle moves less than the characteristic distance a,
then w,,(¢) = 1. The average dynamics is characterized by the
two-time correlation C(t) = N1 YN, (w,()) (i.e. the average
fraction of particles with displacements |A7| < a), where (...)
denotes the average over the simulation ensemble [1]. We de-
fine the -relaxation time 7, by setting C(7y) = 1/e. At times
of order 74, the decay of C(¢) follows a stretched exponential
form C(r) ~ exp[—(r/7)P] [28].

However, as shown in Fig. 1, at times ¢ > 7, the decay
of C(r) approaches a power law form, both for the HARD
and the KALJ systems. The insets of Fig. 1 show that the
exponent Pc(t) = dInC(t)/dInt approaches —1.5 = —d/2 at
very long times, where d = 3 is the dimensionality. A fuller
discussion of this limit is given in [17], but we can give a



simple argument to justify this behavior. At time ¢ > 74,
and considering only long lengthscales, we expect the dynam-
ics to be diffusive with self-diffusion coefficient D, and the
diplacement probability distribution G,(7,¢) to be a gaussian
with characteristic size R(r) = (2Dr)"/2. This corresponds to
G,(0,1) ~ (4Dr)~%/2, and the probability of being within a
region of radius @ < R(¢) in dimension d around the origin to
be C(1) ~ a?G,(0,1) ~ t79/2 [17]. We expect Gy(7,1) to ap-
proach normal-diffusion-like behavior and Pc(¢) to approach
—d /2 faster for less glassy systems (more weakly interacting,
lower @, higher T') and viceversa. Indeed, P () “overshoots”
its asymptotic value of —d /2 for 107, <t < 10074, and this
overshooting increases with ¢ for HARD (Fig. 1, top panel in-
set) and increases at lower T for KALJ (Fig. 1, bottom panel
inset).

IV.  FOUR-POINT FUNCTIONS: DECOMPOSITION AND
LONG-TIME BEHAVIOR

A. Contributions to the Four-Point Functions

To characterize the dynamical heterogeneity, we com-
pute [18] the four-point dynamic structure factor Si(g,7) [1,
71,
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The full lines in Fig. 2 show S4(g,¢). The two top pan-
els correspond to time around 207, for both systems. Let’s
consider intermediate values of ¢, §,” '«g<go~2n JTNN,
where g is the location of the main peak of the static structure
factor S(g), and ryy is the typical nearest neighbor distance.
We find that at ¢t ~ 2071, for 'g'[l < q < qo, S4(g,t) decays
to a plateau value x4 5 which is almost half of its maximum
X4 at the origin. By contrast, at ¢ = T4, the g-independent
background 4 5, is very small compared to the peak value Y4,
as shown in the bottom two panels of the same figure. A g-
independent background in Fourier space suggests that there
are uncorrelated displacements of particles in position space,
giving rise to S;°(§,¢) # 0. As discussed in [17], S;(G,1)
only contains contributions from same particle (n = n’) terms
in Eq. (1), and by neglecting a small collective relaxation con-

tribution to those terms we obtain

1

SE(@0) =2 (1)~ 5 ; ((wa(1) = (wa(1)))?) = C(1) = C*(1).

2)

The initial density contribution S3(g,) is obtained [17] by

replacing the microscopic overlap wy(¢) by its average C(t) =
(wa(1)) in Eg. (1),
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FIG. 2: Decomposition of S4(g,¢) (full lines): collective relaxation
part S5(7,1) (dashed lines), and background term y4 5 (¢) (dashed-
dotted lines). First panel from top: HARD at ¢ = 0.57, with r =
207q. Second panel: KALJ at T = 0.55, with t = 207, Third panel:
HARD at ¢ = 0.57, with r = 7. Bottom panel: KALJ at 7' = 0.55,
with t = Tg.

For g < qo =~ 27 /ryn, the static structure factor is weakly
dependent on ¢, and S(gq) ~ lim,—0S(g) = N~'{(6N)?). In
Reference [17] it is argued that, for 5;1 ,q K 21/ ryN, the ¢-
dependence of all contributions except S5 can be neglected,
so that

S4(q,t) = S§'(q,1)+xap(t), with 4)
Xap(t) = 237(0) + lim S§(G, 1) + lim S7(q, 1) (5)
q—0 q—0

~ C(0)+ N8N — 11C()> = 29 (1). (©)

To extract the collective relaxation part S§°(4,¢) from the
data, we use Eq. (4). Fig. 2 shows this decomposition: S4(g,7)
is shown with full lines, the g-independent background x4 (1)
is shown with dash-dotted lines, and S3'(4,7) is shown with
dashed lines.

To characterize the collective relaxation part of the four-
point function, S5 (4,¢), we fitted it with a slightly generalized
version of the Ornstein-Zernike functional form, motivated
by results from inhomogeneous mode coupling theory [19],
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FIG. 3: Dynamic susceptibility decomposition for HARD at ¢ =
0.57 (blue) and KALJ at 7 = 0.55 (red). Main panel: total dy-
namic susceptibility x4(z) (solid lines), collective relaxation part
x4"(t) (dashed lines), background term y4 5 () (dashed-dotted lines),
and its leading order approximation xif)b) (¢) (thin full lines). Power
law time dependences (orange full lines) shown for comparison with
long time asymptotic behavior for: x4 ;(f) (~ 173/, x4 (t) for
HARD (~t~* < ¢73), and x§7(t) for KALJ (~ 145 < 173). In-
set: 14" (1)/ 24 (1)

which has been used in [5, 20, 21] (see App. A for more de-
tails on the fitting procedure). The fitting form for S§(g,¢)
reads

_ x5 (1)
L+ (&P +[e()Pq*

S§(g,1) 7

where y4"(¢) is the collective relaxation part of the dynamic
susceptibility, £7(f) is the four-point dynamic correlation
length, and c(¢) is an additional parameter characterizing the
quartic contribution. From this point on we use the notation

4" (1) for this correlation length, to emphasize that it is ex-
tracted from the collective relaxation part of the four-point
function.

The presence of additional contributions beyond the one
due to collective relaxation cannot be ignored, particularly for
long times ¢t 2 107q. It is shown in Appendix B that attempt-
ing to fit the data in that time regime without taking into ac-
count those additional contributions leads to very poor fits and
to substantial systematic errors in the determination of the dy-
namic susceptibility y4(¢) and the dynamic correlation length

cr(t)'

B. Long-time behavior of the dynamic susceptibility y4(¢) and
the single particle and collective relaxation contributions

By taking the ¢ — 0 limit of Eq. (4), we obtain the de-
composition y4(t) ~ x5 (t) + x4, (t) for the dynamic suscep-
tibility. Fig. 3 shows x4(¢) (full lines), x4 (r) (dashed lines),
Za(t) (dash-dotted lines), and %) (¢) (thin full lines), in the
cases of HARD for packing fraction ¢ = 0.57 (blue) and

KALJ for temperature 7 = 0.55 (red). For both systems,
the collective relaxation part x5'(¢) of the dynamic suscep-
tibility increases with time to a peak value yx, ™, which
may be interpreted to indicate the maximum correlated vol-

ume of the fluctuating region. The approximation Y4 ,(f) ~

xﬂ () (Eq. (6)) becomes asymptotically exact for 7 > Tq,

and the biggest discrepancy between the two quantities is
X4,h(f)/li?lz(f) ~ 0.7 when y{"(¢) is near its peak, i.e. when
the collective relaxation corrections neglected in Eq. (6) are
largest [17]. For long times, f > T4, x5 (¢) decreases as a
=3 power law or faster, while ¥4 ,(f) - which in this time
regime is dominated by y,°(r) ~ C(¢) - also decreases but
as a much slower power law ~ t3/2 [17]. Thus there is a
crossover between a shorter time regime where the collective
relaxation contribution dominates and a longer time regime
where the single particle contribution dominates. We define
the crossover time Tyer /1 /5 as the time when x4"(2) /24 (1) =
1/2. We find that Tyt /=172 ~ 40T¢ for HARD at ¢ = 0.57
and Tyt /aa=1/2 ™~ 2574 for KALJ at T = 0.55. The inset of
Fig. 3 shows the ratio y§"(r)/xa(¢) for the same cases as in
the main panel. The ratio is close to unity for times up to
about 207, and then it decreases rapidly, becoming roughly
two orders of magnitude smaller by # ~ 1007,. For other val-
ues of the control parameters, as long as the system is close to
the mode-coupling crossover, the behavior of y§"(¢)/xa(t) is
very similar [22].

As the system approaches the glass transition at fixed
rescaled time #/7Ty, the collective relaxation contribution
x4 grows strongly, while the background contribution x4 5,
which, to a good approximation, can be computed in terms
of C(z) and S(q) (Eq. (6)), shows little if any change [17].
Thus we expect both the ratio 5" (¢)/xa4(t) at fixed 1/ 74 [22]
and the rescaled crossover time Tailfxf Jza=1/2 (Fig. 4) to in-
crease. Both increases are indeed observed in our data, and in
fact we find TSt /qa=1/2 ™ ‘L‘éﬂ' , with p = 0.40 for HARD and
p =~ 0.15 for KALIJ.

C. Long-time behavior of the correlation length &, (¢) for the
binary hard-sphere system

We now turn to the determination of the dynamic correla-
tion length. The behavior of the dynamic correlation length
&4(¢) in glass-forming liquids for times ¢ > 7, has been con-
troversial. In one early study [1], it was found that the time
dependence of the dynamic correlation length roughly fol-
lows that of the dynamic susceptibility. Other studies, in a
variety of glass-forming models, have found monotonous in-
creasing growth of the dynamic correlation length as time in-
creases [8], possibly with a plateau [23, 24] starting at a time
longer than both 7, and the time when )4 reaches its peak.
Monotonous growth of the dynamic correlation length with
time difference was also found in aging glassy systems [9, 25].
In Fig. 5, we show results for &;"() as a function of 7/, for
times up to 807, for the HARD system at packing fractions
¢ = 0.50,0.52,0.55,0.57,0.58. As discussed in [5], the dy-
namic correlation length grows approximately logarithmically
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FIG. 4: Rescaled timescales for HARD (blue) and KALJ (red) as
functions of the rescaled relaxation time 7o/7y ([16]): rescaled
crossover time T, 117%? /z4=1,2 (solid lines); rescaled time 7y lr@mx
at which the dynamic correlation length " becomes maximum
(dashed lines); rescaled time 7, 1 Tyermax at which the collective dy-

namic susceptibility x;" becomes maximum (dash-dotted lines). Fol-
lowing Ref. [16], the parameter 7y (7p = 70 for HARD and 79 = 1/15
for KALJ) is used so that relaxation times can be compared across
different systems.
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FIG. 5: Correlation length £{"(¢) as a function of 7/74 for HARD
system at packing fractions ¢ = 0.50,0.55,0.56,0.57,0.58. The grey
error bars represent statistical errors in the determination of &§*(r) for
a fixed fitting interval. The error bars in the same color as the curve
represent the range of variation in the determination of £{*(r) as the
fitting interval is changed (see App. A). For clarity, each type of error
bar is showed for one out of every 10 data points.

with times and reaches a maximum value &nax > E§7(74) at a
time Tgmax > Tg. The approach introduced in this work al-
lows us to now explore times ¢ >> Tegax. We find that for
Tmax <1 S 807, our results for &7 () are noisy, but they show
a general trend to decrease as time increases.

V. SUMMARY

In this paper we have discussed the behavior of the average
overlap and of the four-point functions in models of glass-
forming liquids, with emphasis on times much longer than
the o-relaxation time. We have presented simulation results
for two models of 3D glass forming liquids: a binary hard-
sphere model and a Kob-Andersen Lennard-Jones model. We
have showed that at very long times the average overlap C(t)
probing the similarity between an initial and a final state sepa-
rated by a time interval ¢ decays as a power law C(z) ~ 142,
This is much slower than the stretched exponential behavior

C(t)~e 2 previously observed at times within one or two
orders of magnitude of the a-relaxation time 7.

We have also introduced a decomposition of the four point
dynamic structure factor S4(q,?) as the sum of four parts: Sg°
(collective relaxation fluctuations); S}’ (single-particle fluc-
tuations); 3 (initial density correlations); and S (interplay
between initial density fluctuations and collective relaxation
fluctuations). Although valid at all times, this decomposition
is particularly useful to enable the study of dynamical het-
erogeneities at > T,. We argued that in this decomposi-
tion, all contributions except the collective relaxation one can
be approximated as g-independent for ¢ < 27 /ryy, thus ex-
plaining the presence of a flat background term 4, (¢) in the
g-dependence of the four-point function, as made explicit in
Eq. 4. This structure allowed us to subtract the background
from S4(q,?) and thus recover the collective relaxation con-
tribution Sg'. We have also shown that a simple approximate
expression depending only on the overlap C(¢) and the static
structure factor S(g§) reproduces very well the time depen-
dence of the background term, particularly for times ¢ >> 7.

We have found that for higher ¢ (lower T'), S§' is between
one and two orders of magnitude bigger than the other contri-
butions at ¢ ~ T, but for # > 7, the single particle contribu-
tion S & C(r) o< t~%/2 dominates against all others, because
ST+ S50+ ST < const 74, We have also used the decom-
position of S4(¢,7) to address the controversy regarding &4(t)
for ¢t > 74: for a binary hard-sphere mixture, we found that
&4(t) is maximum at t = Tegmax ~ 4 — 1574 and then generally
decreases up to at least t ~ 807.

The decomposition introduced here enables substantial
further progress in the understanding of dynamical hetero-
geneities in glassy systems. A first application [26] will in-
troduce an explicit formula for S§°(4,¢) in terms of the av-
erage correlation function C(z) and a two-point correlation
function s(g,¢) of the local relaxation rates. This two-point
function s(g,t) probes the collective relaxation dynamics and
makes quantitative the qualitative description of dynamic het-
erogeneity in terms of slow and fast regions. It also provides
a method to obtain T from S4(q,) [26], and allows to obtain
explicit predictions for x4(¢) under various assumptions re-
garding the decay of the relaxation rate fluctuations. Potential
applications of the same ideas also include, among others, the
introduction of other observables that are better able to probe
the relaxation rate fluctuations, and the study of spatiotempo-
ral correlations of local relaxation rates in aging systems.
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Appendix A: Fitting Method

To extract the collective relaxation part of the four-point
function, S§'(g,t) and the g-independent background y4 5, we
fitted S4(4,7) by combining Egs. (4) and (7). The complete
fitting form for S4(g,7) reads
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FIG. 6: Effects of allowing for a background contribution to S4(g,)
due to single particle fluctuations and initial density fluctuations.
S4(g,t) as a function of g for HARD at ¢ = 0.58,# = 207,: data
(symbols with error bars joined by full line), fit allowing for a g-
independent background (dashed line), fit not allowing for a back-
ground contribution (dot-dashed line).

The form for S4(q,t) is fitted for each time separately in
a two-step procedure. In the first step, a wide fitting range
is used: 0 < g < gy with gy ~ qo/2 =~ w/ryy. We choose
gm = 3.0 and gy = 3.5 for HARD and KALJ respectively.
In this first step, the g-independent background Y4, is deter-
mined. In the second step, a much narrower range 0 < g <
qm < qum is used, and Y4, is now kept as a fixed value as de-
termined in the first step. The fitting ranges for the second fit
are 0 < g < gn=0.7and 0 < g < g, = 0.8 for HARD and
KALJ respectively. The four independent simulation runs are
fitted separately for each value of the control parameter. The
average results and statistical errors of the fits are calculated
as the average and the standard deviation of the average from
those four fits. The LOESS smoothing technique (Ref. [27]) is
used to reduce noise in the reported results for y§"(¢), &5 (z),
and ¢(). The values of &{*(r) for HARD determined with this
procedure are somewhat sensitive to the range of wavevectors
used in the second step of the fitting procedure. To quantify
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FIG. 7: Effects of allowing for a g-independent background contri-
bution x4 5(2) to S4(g,t) due to single particle fluctuations and initial
density fluctuations, in the case of HARD. x4(r) [¥4()] is the dy-
namic susceptibility, &' (¢) [E4(¢)] is the dynamic correlation length,
and £(r) [(¢)] is the rms fitting error per degree of freedom in the
interval 0 < g < g¢ = 0.4, obtained from a fit of S4(4,7) vs g allowing
[not allowing] for a background contribution. :54 (¢) is the dynamic
correlation length obtained from the following procedure: first, x4 ()
is obtained from a fit allowing for a nonzero background; after that,
a fit is performed where y4(¢) is fixed to the value obtained before,
but the background is constrained to be zero. Top panel: &(r)/€(r)
vs time ¢, for ¢ = 0.55,0.56,0.57,0.58. Middle panel: ¥4(r)/xa(t)
vs time ¢, for ¢ = 0.55,0.56,0.57,0.58. Bottom panel: &(z)/ﬁf(r)

and é4(t)/§f(z) vs time 7, for ¢ = 0.58.

the size of this effect, the second step discussed above is per-
formed for g, € {0.6,0.7,0.8,0.9}, and the systematic error
bars due to the choice of g,,, which are shown in Fig. 5, are
evaluated for each time and packing fraction as the standard
deviation of the average of §{"(¢) over those four determina-
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FIG. 8: Effects of allowing for a g-independent background contri-
bution x4 5 (1) to S4(q,) due to single particle fluctuations and initial
density fluctuations, in the case of KALJ. y4(¢) [J4()] is the dy-
namic susceptibility and &(¢) [€(¢)] is the rms fitting error per degree
of freedom in the interval 0 < g < g¢ = 0.55, obtained from a fit of
S4(g,t) vs g allowing [not allowing] for a background contribution.
Top panel: &(t)/e(t) vs time ¢, for T = 0.50,0.55,0.60,0.65. Bottom
panel: 74(7)/xa() vs time ¢, for T = 0.50,0.55,0.60,0.65.

tions.

Appendix B: Effects of the presence of the g-independent
background y, ;,(¢) on the determination of x4 (r) and £ (r)

The presence of the background term x4 ;(¢), due mostly
to single particle fluctuations and to initial density fluctua-
tions, has a strong effect on the determination of S(g,7) for
small wavevector g, and consequently on the determination
of x4(r) and &{"(r). Fig. 6 shows an example of those ef-
fects by comparing the determination of S4(g,#) as a function
of g for HARD at ¢ = 0.58,¢ = 207, by using two different
methods: one is a fit that allows for a g-independent back-
ground Y4 ,(t) # 0, consistent with the decomposition intro-
duced in this work; the other is a fit that imposes the condition
Xap(t) = 0. It is clear that outside a narrow range of g val-
ues where the two fits are equivalent, the one that allows for
a nonzero flat background is a much better representation of
the data. Figs. 7 and 8 presents a more systematic demonstra-
tion of the effects of the background term, for the hard-sphere
system and the Kob-Andersen Lennard-Jones system respec-
tively. In these figures, x4 (¢) [§4(¢)] is the dynamic suscepti-
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FIG. 9: Time dependence of quartic term coefficient /c(¢) in the
four-point function fit, for HARD at ¢ = 0.57. £{"(¢) is shown for
comparison, since both quantities have dimension of length.

bility, £ (1) [€4(1)] is the dynamic correlation length, and &(r)
[€(7)] is the rms fitting error per degree of freedom in the in-
terval 0 < g < g, obtained from a fit of S4(q,¢) vs ¢ allowing
[not allowing] for a background contribution. In each figure,
the first panel from the top shows &(¢)/e(¢) vs ¢, and the sec-
ond panel shows ¥4(¢)/x4(t) vs time ¢. In the case of HARD,
there is a third panel that shows & (r)/ES"(¢) and &)/ &5 (n)

vs time ¢, for ¢ = 0.58. Here é4(t) is the dynamic correlation
length obtained from the following procedure: first, y4(z) is
obtained from a fit allowing for a nonzero background; after
that, y4(¢) is kept fixed and a new fit is performed with the
background constrained to be zero, which produces the value
of &,(f). We notice that in all cases the rms fitting error is
either the same or smaller if the background term is allowed.
In most cases the difference becomes largest for times ¢ in the
interval 107, < ¢ < 1007. For example, the ratio &(¢)/e(z) is
in the range of 2 — 8 for HARD at ¢ =0.57,0.58 at most times
in that interval. For the same time range, the effect on the de-
termination of the dynamic susceptibility is particularly large
for HARD at ¢ = 0.58, namely a reduction of up to a factor
of =~ 2 if the background is assumed to be zero. For KALJ,
the effect is strongest in the same time range, with a maxi-
mum reduction by a factor of ~ 1.4 for T = 0.50,0.55. For
the correlation length, there is a clear reduction in the value
measured if the background is ignored, which starts to be no-
ticeable at r = 107y, and becomes gradually stronger as time
grows. Although slightly weaker for é4(t) than for &(r), the
effect is very similar in both cases, which shows that it can-
not be avoided just by constraining the fit by fixing a better
determined value of the dynamical susceptibility.

Appendix C: Quartic term in the generalized Ornstein-Zernicke
form.

The quartic coefficient ¢(¢) included in the denominator of
the generalized Ornstein-Zernicke fitting form in Eq. 7 allows



the definition of a length /c(z), which turns out to be gener-

ally smaller than £{"(r), as shown in Fig. 9.
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