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Abstract We investigate a class of local quantum circuits on chains of d−level
systems (qudits) that share the so-called ‘dual unitarity’ property. In essence,
the latter property implies that these systems generate unitary dynamics not
only when propagating in time, but also when propagating in space. We con-
sider space-time homogeneous (Floquet) circuits and perturb them with a
quenched single-site disorder, i.e. by applying independent single site random
unitaries drawn from arbitrary non-singular distribution over SU(d), e.g. one
concentrated around the identity, after each layer of the circuit. We identify
the spectral form factor at time t in the limit of long chains as the dimension
of the commutant of a finite set of operators on a qudit ring of t sites. For
general dual unitary circuits of qubits (d = 2) and a family of their exten-
sions to higher d > 2, we provide an explicit construction of the commutant
and prove that spectral form factor exactly matches the prediction of circular
unitary ensemble for all t, if only the local 2-qubit gates are different from a
SWAP (non-interacting gate). We discuss and partly prove possible extensions
of our results to weaker (more singular) forms of disorder averaging, as well as
to quantum circuits with time-reversal symmetry, and for computing higher
moments of the spectral form factor.
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1 Introduction: Quantum chaos conjecture and many-body systems

The ubiquitousness of random matrix theory (RMT) [1,2,3] descriptions for
a diverse range of phenomena in Nature and Society is the example par ex-
cellence of effectiveness of mathematics. In quantum dynamical systems, the
fact that the fluctuations in the spectra of unitary evolution operators can be
described in terms of structureless ensembles of RMT, characterised solely by
unitary and anti-unitary symmetries, has been identified as a defining prop-
erty of quantum chaos. The presence of RMT spectral correlations has been
related to Hamiltonian chaos of the corresponding limiting classical dynami-
cal system via the so-called quantum chaos conjecture1 (QCC) [4,5,6], while
the absence thereof is linked to integrability or regularity of the correspond-
ing classical motion via the Berry-Tabor conjecture [7,8]. A heuristic proof of
QCC in terms of semiclassical periodic orbit theory has been a decades long
tour de force [9,10,11], while a rigorous proof has so far been possible only in
a rather restricted setting of completely connected quantum graphs [12].

In systems which lack a small parameter (e.g. an effective Planck’s con-
stant), such as extended (many-body) systems of locally interacting quantum
spins or fermions, the mechanisms for the validity of QCC have remained ob-
scure despite a plethora of empirical evidence, see e.g. Refs. [13,14,15,16,17].
For such systems, lacking any meaningful limiting classical chaotic dynamics,
the agreement of spectral fluctuations with RMT can be considered as the
most versatile definition of quantum chaos and as a robust empirical method
for detection of quantum (non)integrability.

Recently we proposed a rigorous methodology which lead to the first proof
of the emergence of RMT spectral 2-point correlation functions in the ther-
modynamic limit, for a particular locally interacting chain of quantum spins
1/2 [18]. In this paper, we present a generalisation of such methodology and
show that it can be extended to a much broader class of systems. In partic-
ular, we reformulate our approach in the general language of local quantum
circuits — which are the standard minimal model of quantum many-body (ex-
tended) systems with local interactions [19,20,21] — and show that it leads
to exact results (in the thermodynamic limit) whenever the “local gates” (the
unitary matrices encoding the nearest-neighbour interactions of local quantum
circuits) are dual-unitary, i.e. they generate unitary evolution in both time and
space. The method described here applies to quantum circuits of qudits (or ar-
bitrary spins) and can easily account for spatially inhomogeneous interactions.
Moreover, in contrast to Ref. [18], here we focus on the generic case of systems
without anti-unitary symmetries (like time-reversal) while only sketch the ex-
tension of the results to generic time-reversal invariant case. In summary, in
this paper we identify the key mathematical steps for approaching the prob-
lem of characterizing quantum ergodicity [22,23] and quantum chaos [24,20,
25] through spectral correlations in extended quantum spin lattice systems.
Although our results hold in a specific setting (and in the thermodynamic

1 Sometimes referred to also as Bohigas-Giannoni-Schmit conjecture.
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limit only), they represent the first rigorous proof of the emergence of RMT
behaviour in a class of extended quantum spin systems to the best of our
knowledge. They pertain to both the case of quenched disorder and the clean
limit, and provide the first proof of the QCC in the many-body realm.

The rest of the paper is laid out as follows. In Sec. 2 we introduce the
basic concepts and provide their definitions. In Sec. 3 we state and interpret
our main results, while in Sec. 4 we elaborate the proofs. In Sec. 5 we dis-
cuss some straightforward extensions and generalisations of our results. While
the treatment of spatially inhomogeneous dual-unitary interactions in Sec. 5.1
is rigorous, the extensions of the techniques to study fluctuations (5.2) and
singular disorder distributions (5.3) are speculative at this point.

2 Basic concepts

2.1 Floquet quantum circuits

In this work we consider a class of quantum many-body systems known as
Floquet local quantum circuits. They consist of a set of 2L, L ∈ N, quantum
variables with d internal states (“qudits”), that can be thought of as arranged
on a 1-dimensional periodic lattice ΛL = 1

2Z2L. The Hilbert space of the
system is

H2L = (H1)
⊗2L = C

N , (1)

where the “local Hilbert space” H1 = Cd is the Hilbert space of a single qudit
and N = d2L is the dimension of H2L.

In these systems the time evolution is discrete and generated by integer
powers of the unitary operator

UL :=
∏

x∈ZL

ηx,L(Ux,1)
∏

x∈ZL+ 1
2

ηx,L(Ux, 1
2
) , (2)

conventionally called the “Floquet operator”. In writing Eq. (2) we introduced
the following definitions.

(i) We indicated by ηx,n : End(H2) → End(H2n), with n ∈ N and x ∈ Λn,
the linear map defined by

ηx,n(O) := Π2x−1
2n (O ⊗ 12(n−1))Π

−(2x−1)
2n . (3)

Here Hn = (H1)
⊗n denotes the Hilbert space of a periodic qudit chain of

n sites, while Πn and 1n designate respectively the periodic shift operator
and the identity operator over Hn. Explicitly we have

Πn |j1〉 ⊗ |j2〉 ⊗ · · · |jn〉 = |jn〉 ⊗ |j1〉 ⊗ · · · |jn−1〉 , (4)

with Πn
n = 1n, where

R = {|j〉 ; j = 0, . . . , d− 1}, (5)

is the canonical orthonormal basis of H1 = Cd.
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(ii) We introduced the function U·,· : ΛL× 1
2Z2 → U(d2), where U(N) denotes

the group of N × N unitary matrices. The operators Ux, 1
2
, Ux,1 ≡ Ux,0 ∈

U(d2) define the interaction among neighbouring qudits at sites x − 1
2 , x

for half-odd integer and integer times respectively. These operators encode
all physical information about the dynamics and will be referred to as the
“local gates”.

This setting can be regarded as the simplest possible modelling for extended
quantum many-body systems [20,21]. Indeed, it captures what can be consid-
ered the primary and most essential feature of an extended system, i.e., the
locality of the interactions. It is precisely this feature that distinguishes an
extended system from a single quantum variable with arbitrary many internal
states, for example, a single (arbitrary high) spin. Note that even though local
quantum circuits describe time-depended dynamics, they can also be thought
of as approximations of time-independent local interactions obtained through
the use of the Suzuki-Trotter decomposition [26,27]. Finally, we stress that
this precise setting emerges naturally in the context of quantum simulation,
for instance, through the use of the recently developed Google’s Sycamore
processor [28].

The time evolution generated by (2) admits the following convenient graph-
ical representation

U
t
L =

1

2

1

2

3

2

1

2

3

2

5

2
1 2 3 · · · L ≡ 0

x

t

τ

...

, (6)

where each local gate is represented by

Ux,τ ≡ Ux,mod(τ,1) = , x ∈ ΛL, τ ∈ 1

2
Z, (7)

and different shades illustrate distinct matrices. The function mod(x, n) in-
dicates the remainder upon division by n. Note that leftmost and rightmost
gates are connected because of periodic boundary conditions.

Finally, we point out that the dynamics generated by (2) are time-reversal
invariant if there exist a unitary operator K ∈ U(d2L) such that [1]

KULK
† = U

T
L and K

T = ±K , (8)

where (·)T denotes transposition in the canonical basis (5) and (·)† Hermitian
conjugation. Symmetric and antisymmetric matrices correspond respectively
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to cases where the anti-unitary operator implementing time reversal on the
Hilbert space squares to plus or minus one [1]. The first, “regular”, kind of
time-reversal symmetry emerges in physical systems with integer total angular
momentum and is associated with orthogonal ensembles of RMT, while the
second characterises systems with half-odd integer spin and is associated with
symplectic ensembles [1].

2.2 Our Setting

Here we consider local gates of the form

Ux+ 1
2
, 1
2
= (ux ⊗ ux+ 1

2
)U = , (9a)

Ux,1 = (wmod(x− 1
2
,L) ⊗ wx)W = , x ∈ ZL, (9b)

where U,W ∈ U(d2) act non-trivially on a pair of neighbouring qudits and
ux, wx ∈ U(d) on a single one (we hence represented them graphically as balls
acting on a single wire). Therefore we have

UL =
0

1

1

2

1

2

3

2

5

2
1 2 3 · · ·

. (10)

In particular, it is immediate to see that, choosing local gates (9a)–(9b) with

U = UT , W = WT , wx = uT
x , ∀ x ∈ ΛL, (11)

the condition (8) is fulfilled with

K =
∏

x∈ZL+ 1
2

ηx,L(W ) = K
T . (12)

Namely, the dynamics generated by (10) are time-reversal invariant. Here we
consider both the time-reversal-invariant and the non-time-reversal-invariant
cases.

We remark that in (9a)–(9b) we assumed the 2-site gates U,W to be the
same for all x. In physical terms this means that we consider interactions
that are homogeneous in space, while we allow for some position-dependent
‘external fields’ (encoded in the single-site gates ux, wx). The extension of our
results to fully inhomogeneous systems is discussed in Sec. 5.1.
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2.3 Spectral form factor

The objective of this paper is the study of spectral statistics of the Floquet
operator. Namely, we consider the distribution of the elements of the spectrum
of the unitary Floquet matrix

spect[UL] = {eiϕj ; j = 1, 2 . . . ,N} , (13)

where ϕj — conventionally referred to as quasienergies — can be taken to be
in [0, 2π). Considering spect[UL] as a one-dimensional gas on the circle S1, we
analyse its 2-point correlation functions, specifically, the spectral form factor
(SFF) defined as

K(t, L) := E
[
|trUt

L|2
]
= E





N∑

j,j′=1

ei(ϕj−ϕj′ )t



 , t, L ∈ N . (14)

Here E[·] is an average over an ensemble of similar systems. The average is
necessary to smear out the fluctuations of |trUt

L|2, which do not die out even
in the limit of large L, and extract the universal behaviour. We shall see later
that very mild forms of averaging are sufficient (we remind the reader that
the results are most interesting in the limit of clean systems), specifically we
will consider cases where ux and wx are i.i.d. for x ∈ ΛL densely covering an
arbitrary small ball around the identity in SU(d). The SFF is directly con-
nected to the Fourier transform of the quasi-energy 2-point function. Indeed,
introducing the n-point function as

ρn(ϑ1, . . . , ϑn) := E





N∑

j1 6=...6=jn=1

n∏

k=1

δ(ϑk − ϕjk )



 , (15)

the SFF can be expressed as

K(t, L) =

∫

[0,2π]2

dϑ1dϑ2 ei(ϑ1−ϑ2)tρ2(ϑ1, ϑ2) +N . (16)

Since this quantity measures correlations between quasienergy levels at ar-
bitrary distance, it is very convenient to analyse extended systems for large
volume L where neighbouring quasienergy levels become exponentially close
in L and one has to look at correlations on larger scales.

2.4 Spectral form factor for random unitary matrices

Before moving to the analysis of (14) for local quantum circuits let us briefly
recall our point of reference: the SFF of random unitary matrices. In this case
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the average E [·] in (14) is replaced by the integration over an ensemble of
random unitary matrices of dimension N , i.e.

Kens(t,N ) :=

∫

|trUt|2dµens(U), (17)

and the result depends on the precise form of the measure dµens(U) of the
ensemble considered. Specifically, in this paper we are interested in the two
most common cases: (i) systems without anti-unitary symmetries, and (ii)
systems with regular time-reversal symmetry (squaring to the identity). In
these two cases the relevant ensembles of random matrices are two of Dyson’s
circular ensembles: the Circular Unitary Ensemble (CUE) and the Circular
Orthogonal Ensemble (COE). The CUE measure is the invariant Haar measure
over U(N ), while the COE measure is defined for symmetric unitary matrices
and is uniquely specified by the property of being invariant under orthogonal
transformations [1]. In these two cases the result reads as [29]

KCUE(t,N ) = min(t,N ) , (18)

KCOE(t,N ) = 2min(t,N )



1−
min(t,N )
∑

m=1

1

2m+ 2max(t,N )−N − 1



. (19)

In particular, in the thermodynamic limit L→∞ (N →∞) they simplify to

lim
N→∞

KCUE(t,N ) = t, lim
N→∞

KCOE(t,N ) = 2t . (20)

The main result of our paper is the proof that one recovers the r.h.s. of (20) by
computing exactly the expression (14) for a broad class of Floquet quantum
circuits.
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2.5 Spectral form factor of Floquet quantum circuits

For local quantum circuits the SFF (14) can be represented diagrammatically
as follows

K(t, L) = E

[

tr(UL)
ttr(U†

L)
t
]

= E

[ ]

, (21)

where we represented the trace in the forward time sheet (trUt
L) using the

diagram (10) and that in the backward time sheet (tr (U†
L)

t) by introducing

U † = , W † = , u†
x, w

†
x = . (22)

Once again shades of the same colour denote different matrices. Note that
top and bottom lines at the same positions within both sheets are connected
because of the traces.

Folding the backward sheet (blue) underneath the forward one (red) we
write the folded circuit representation of the SFF

K(t, L) = E

[ ]

, (23)

where we introduced “doubled” or thickened wires

= , (24)
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and “doubled” gates

= = U ⊗ U∗ , = = W ⊗W ∗ , (25)

= = ux ⊗ u∗
x, wx ⊗ w∗

x .

Here and in the following (·)∗ denotes complex conjugation in the canonical
basis (5).

2.6 Local disorder averaging

As mentioned in Sec. 2.3 the definition of SFF requires an average. Since our
interest is mainly on clean systems, we consider averages over onsite disorder
that can be made arbitrary weak. This kind of disorder is arguably the most
harmless form of disorder that one can introduce in the system because it does
not couple different sites. In particular, we focus on the following generic model
of on-site disorder where the local gates (9a)–(9b) are specified by fixed unitary
interactions U,W ∈ U(d2), and site-dependent local gates ux, wx ∈ SU(d) of
the general form

ux = eiθ0,x·σ, wx = eiθ1,x·σ
T

, x ∈ ΛL, θι,x ∈ R
d2−1 . (26)

The vector σ = (σ1, σ2, . . . , σd2−1) is formed by Generalised Gell-Mann ma-
trices σa [30] (Pauli matrices for d = 2, Gell-Mann matrices for d = 3, etc.),
the Hermitian generators of su(d), and σT = (σT

1 , σ
T
2 , . . . , σ

T
d2−1) is the vector

of the corresponding transposed generators. The expectation can be explicitly
written in terms of a factorised measure as:

E[f ] =

∫

f(θ)

L−1∏

x=0

1∏

ι,ι′=0

gιι′(θι,x+ ι′

2

)dd
2−1θι,x+ ι′

2

, θ ≡ (θι,x)
ι=0,1
x∈ΛL

. (27)

where gιι′ ∈ L1[Rd2−1] are arbitrary probability densities of i.i.d. random
variables θι,x. Note that distributions on integer (ι′ = 0) and half-odd-integer
(ι′ = 1) sublattices are generally different.

2.7 Space-time duality

The key property of E[·] (27) is the factorization with respect to a spatial coor-
dinate x. This means that, even though the diagram (23) cannot be thought of
as the trace of the product of t transfer matrices in the time direction (because
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the average couples different time layers), it can be thought of as the trace of
the product of L transfer matrices in the space direction. Specifically,

K(t, L) = E

[ ]

E

[ ]

E

[ ]

E

[ ]

E

[ ]

.

(28)
In equations this is expressed as

K(t, L) = E

[(
trUt

L

) (
trUt

L

)∗
]

= E

[

tr (UL ⊗ U
∗
L)

t
]

= E

[

tr

(
L∏

x=1

Ũt (x) ⊗ Ũt(x)
∗

)]

= tr
(

E

[

Ũt ⊗ Ũ
∗
t

])L

= trTL, (29)

where the tensor product operates between the two different time sheets, and
we introduced the following definitions:

(i) “Dual” Floquet operator propagating in the space-direction over the Hilbert
space H2t of 2t qudits, explicitly depending on the position x ∈ ZL:

Ũt(x) :=
∏

τ∈Zt+
1
2

ητ,t(Ũ (ux− 1
2
⊗ wT

x− 1
2

))
∏

τ∈Zt

ητ,t(W̃ (wx ⊗ uT
x )) . (30)

Here Ũ , W̃ ∈ End(H2) are the “dual” 2-body interaction gates defined via
the space-time duality mapping ˜: End(H2) → End(H2). Specifically, for
any O ∈ End(H2) with matrix elements

Oi1i2,j1j2 = 〈i1| ⊗ 〈i2|O |j1〉 ⊗ |j2〉 , (31)

we define

Õjl,ik := Oij,kl, i, j, k, l ∈ {0, 1, . . . , d− 1} . (32)

We see that Ũij,kl and W̃ij,kl correspond to a particular reshuffling of the
indices of Uij,kl and Wij,kl.

(ii) SFF–transfer matrix:

T := E
[
Ũt ⊗ Ũ

∗
t

]
∈ End(H2t ⊗H2t). (33)

Note that T does not depend on position x due to the identical distribution
of (θι,x−1

2
, θι,x) for all x ∈ ZL.
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More specifically, performing explicitly the average via (27), we find

T = (Ũ⊗ Ũ
∗)O†

1(W̃⊗ W̃
∗)O0, (34)

where we introduced

Ũ :=
∏

τ∈Zt+
1
2

ητ,t(Ũ) , (35)

W̃ :=
∏

τ∈Zt

ητ,t(W̃ ) , (36)

Oι′ := O0ι′O1ι′ = O1ι′O0ι′ , (37)

Oιι′ :=

∫

dd
2−1θ gιι′(θ) exp (iθ · (M ι ⊗ 12t − 12t ⊗M∗

ι )) . (38)

Here M ι = (M1,ι,M2,ι, . . . ,Md2−1,ι) with Ma,ι denoting the representation of
the Hermitian generators of su(d) in the lattice made of integer and half-odd-
integer time indices

Ma,ι :=
∑

τ∈Zt+
1
2
ι

σa,τ , σa,τ := Π2τ
2t (σa ⊗ 12t−1)Π

−2τ
2t , ι ∈ {0, 1} . (39)

Normalisability and non-negativity of the probability densities gιι′ imply the
following important properties of the operators Oιι′:

(a) Oιι′ is a non-expansive mapping:

‖Oιι′‖ ≤
∫

dd
2−1θ |gιι′(θ)| ‖exp (iθ · (M ι ⊗ 12t − 12t ⊗M∗

ι ))‖ = 1 . (40)

(b) Let Oιι′ |B〉 = eiφ |B〉 for some |B〉 ∈ H2t ⊗H2t and φ ∈ R. Then:

φ = 0, and (Ma,ι⊗12t−12t⊗M∗
a,ι) |B〉 = 0 , ∀a ∈ {1, 2, . . . , d2−1} . (41)

Indeed, the assumptions imply

eiθ·(Mι⊗12t−12t⊗M∗

ι ) |B〉 = eiφ |B〉 , (42)

for a dense set S ∋ θ with positive measure, e.g. the support of gιι′ or its
dense subset. Without loss of generality we can assume that S contains the
origin 0 ∈ S. Taking a partial derivative ∂

∂θa
|θ=0 of (42) we obtain (41).

As convenient examples we can consider a Gaussian measure

gιι′(θ) =

d2−1∏

a=1

1√
2πνaιι′

exp

(

−1

2

θ2a
ν2aιι′

)

, (43)

or a box-measure

gιι′(θ) =
d2−1∏

a=1

1

2νaιι′
Θ(νaιι′ − |θa|) , (44)

where choosing sufficiently small nonvanishing variabilities νaιι′ > 0 allows for
arbitrary concentration of measure around the identity in SU(d), and hence
description of an “almost clean system”.
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2.8 Relevant limits

For the class of dual-unitary circuits, which is the main focus of this paper and
will be elaborated in the next section, the expression (29) in terms of the map
T [which is, in fact, a vectorised form of a completely positive trace preserving
and unital mapping over End(H2t)] allows us to explicitly compute the SFF
at any fixed t in the thermodynamic limit L→∞. In particular, as we show
below, we find that

lim
L→∞

K(t, L) = lim
N→∞

KRMT(t,N ) = t, ∀t. (45)

This fact is quite remarkable and signals a special property of the dual-
unitary systems considered here. Indeed, in generic quantum chaotic systems
one typically observes that there exists a timescale t∗(L) such that the uni-
versal behaviour described by RMT emerges only for times t > t∗(L). This
timescale, usually referred to as the Thouless (or Ehrenfest) time, is typically
observed to grow monotonically with L [25,20,36]. The fact that for us, in-
stead, t∗(L) is strictly equal to zero can be interpreted as a sort of “critical
chaotic” (scale-free) property of dual-unitary systems.

It would certainly be desirable to address spectral correlations on other
scales. For instance, those on the scale of mean level spacing (which becomes
exponentially small in L for a many-body system) and correspond to times
t of the order of Heisenberg time N = 2L. This would require studying the
scaling limit

K(τ) = lim
L→∞

2−LK
(
⌊2Lτ⌋, L

)
. (46)

At the moment, however, we do not foresee any method to rigorously attack
this challenging issue.

3 Statement of the main results

3.1 Exact SFF at large L for dual-unitary circuits

Using the representation (29) we see that to compute the SFF one has to
determine the spectrum of T. In particular, to obtain K(t, L) in the large
size limit L → ∞, it is sufficient to find all the eigenvalues with maximal
magnitude.

To achieve this goal we consider a special class of local quantum circuits
called dual-unitary circuits [31]. These systems are characterised by the prop-
erty that their dual local gates (cf. (32)) are unitary. Specifically, we consider
local gates U and W (cf. (9a, 9b)) that simultaneously fulfil

U †U = UU † = 1, Ũ †Ũ = Ũ Ũ † = 1 , (47)

W †W = WW † = 1, W̃ †W̃ = W̃W̃ † = 1 . (48)
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The above conditions admit non-trivial solutions for any local dimension d ≥
2 [32,33]. A complete classification of solutions, however, has been achieved
only for d = 2 [31].

An immediate consequence of (47) and (48) is that both Ũ (35) and W̃

(36) are unitary. This allows us to prove the following Lemma:

Lemma 1 For dual-unitary circuits the matrix T (33) fulfils the properties:

(i) |λ| ≤ 1 for all λ ∈ spect(T).
(ii) If T|A〉 = eiφ|A〉, φ ∈ R, then

(Ũ⊗ Ũ
∗) · (W̃⊗ W̃

∗) |A〉 = eiφ|A〉 ,
(Ma,ι ⊗ 12t − 12t ⊗M∗

a,ι)(W̃⊗ W̃
∗) |A〉 = 0 , (49)

(Ma,ι ⊗ 12t − 12t ⊗M∗
a,ι) |A〉 = 0, ι ∈ {0, 1}, a ∈ {1, 2, . . . , d2 − 1} .

(iii) For any unimodular eigenvalue λ, |λ| = 1, its algebraic and geometric
multiplicities coincide (i.e. its Jordan blocks are trivial).

In essence, (i) and (iii) mean that T is a linear non-expansive mapping over
H2t ⊗H2t, while (ii) suggests that computation of invariant subspaces can be
reduced to simpler algebraic problems. Indeed, it ensures that for dual-unitary
circuits

N (φ) :=
1

L

L∑

ℓ=1

e−iφℓK(t, ℓ) (50)

approaches a finite value when L→∞ which is given by the number of linearly
independent solutions |A〉 of the system of equations (49). The number of
solutions for φ = 0 give the SFF averaged over the system size, while showing
that φ = 0 is the only phase for which there are nontrivial solutions gives the
thermodynamic limit limL→∞ K(t, L).

In order to further simplify the conditions (49) we introduce a vector-

operator isomorphismH⊗H vo←→ End(H). Specifically, we define in the canon-
ical basis (5):

|j〉 ⊗ |j′〉 vo←→ |j〉 〈j′| . (51)

This implies that the problem of finding all linearly independent states |A〉
solving (49) is mapped to the one of finding all linearly independent operators
A satisfying, for all a ∈ {1, 2, . . . , d2 − 1} and ι ∈ {0, 1}:

ŨW̃AW̃†
Ũ

† = eiφA, [Ma,ι, A] = 0, [W̃†Ma,ιW̃, A] = 0 . (52)

The above conditions can be simplified further by making use of an explicit
parametrisation of a dual-unitary matrices. Specifically, we parametrise the
matrix D ∈ End(Cd ⊗ Cd) fulfilling DD† = D†D = 1 and D̃D̃† = D̃†D̃ = 1

as follows

D = (u1 ⊗ u2)Se
iJs3⊗s3(u3 ⊗ u4), J ∈ [0, π], (53)
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where uj ∈ U(d) are arbitrary unitary matrices (‘local gates’) and S ∈ End(Cd⊗
Cd) is the SWAP operator defined as

S |j1〉 ⊗ |j2〉 = |j2〉 ⊗ |j1〉 ∀j1, j2 ∈ {0, 1, . . . d− 1} . (54)

Finally, here and in the following s1, s2, s3 designate the ‘spin matrices’ car-
rying d−dimensional irreducible representation of SU(2) over H1, satisfying

[sa, sb] = i

3∑

c=1

ǫabcsc, (55)

where ǫabc is the three-dimensional Levi-Civita tensor, and we choose s3 to be
diagonal in the canonical basis (5)

s3 = diag

(

−d− 1

2
,−d− 3

2
, . . . ,

d− 1

2

)

. (56)

Local embeddings into End(H2t) are, like in (39), defined as

sa,τ := Π2τ
2t (sa ⊗ 12t−1)Π

−2τ
2t . (57)

Note that for d = 2 the parametrisation (53) exhausts all dual-unitary cir-
cuits [31] while for d > 2 it characterises a physically interesting sub-class [33].

Plugging (53) in the definitions (35)–(36) we find

Ũ = eiθeiα0·M0eiα1·M1 Ṽ eiβ0·M0eiβ1·M1 ,

W̃ = eiθ
′

eiγ0·M0eiγ1·M1 Ṽ
′ eiδ0·M0eiδ1·M1 , (58)

where αι,βι,γι, δι ∈ Rd2−1, θ, θ′ ∈ R, and we introduced

Ṽ := (SeiJs3⊗s3)⊗t , (59)

Ṽ
′ := Π2t(Se

iJ′s3⊗s3)⊗tΠ†
2t .

We are then able to simplify the conditions for the existence of unimodular
eigenvalues and write their invariant eigenoperator spaces in terms of a simple
algebraic commutant:

Lemma 2 For J, J ′ 6= 0 the conditions (52) cannot be met unless φ = 0. In
this case, they are equivalent to

[A,Ma,ι] = 0, [A,Mab,ι] = 0 , a, b ∈ {1, 2, . . . , d2 − 1}, ι ∈ {0, 1} . (60)

Here we introduced the 2-site magnetization operators of the even and odd spin
sub-lattices

Mab,ι :=
∑

τ∈Zt+
1
2
ι

σa,τσb,τ+ 1
2
, ι ∈ {0, 1} . (61)
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As a corollary of Lemma 1 and Lemma 2, we can express the SFF in the limit
L→ ∞ in terms of the dimension of the eigenspace of eigenvalue 1, which in
turn (Lemma 2) equals the dimension (in End(H2t)) of the commutantM′ of
the set

M := {Ma,ι}a,ι ∪ {Mab,ι}a,b,ι . (62)

Namely,
lim

L→∞
K(t, L) = dimM′. (63)

In fact,M′ can be completely characterised:

Theorem 1 The commutantM′ is the span of the representation of the cyclic
group Ct of even-site translations on a periodic chain of 2t spins:

M′ = span{Π2τ
2t ; τ = 0, 1, . . . t− 1} . (64)

Hence, we arrive at the following corollary, which summarises our first main
result

Corollary 1 For local quantum circuits (2) with local gates of the form (9a,9b)
and

U = (u1⊗u2)Se
iJs3⊗s3(u3⊗u4), W = (u′

1⊗u′
2)Se

iJ′s3⊗s3(u′
3⊗u′

4) (65)

where uj , u
′
j ∈ U(d) and J, J ′ 6= 0, the SFF (14) averaged according to the

measure (27) fulfils
lim

L→∞
K(t, L) = t . (66)

This is precisely the CUE result for all times. It is remarkable that 2-point
spectral correlations of dual-unitary circuits agree with RMT at all scales.

Note that the restriction J, J ′ 6= 0 for the validity of the statement is not
surprising. Indeed, for J = 0 the gate U does not encode interactions among
the qudits, they are evolved in an entirely independent fashion (an analogous
conclusion holds concerning W for J ′ = 0). This means that if one of J and J ′

is equal to zero not all the qudits are coupled by the dynamics and one cannot
expect UL in Eq. (2) to behave like a random matrix on the whole Hilbert
space.

3.2 Results on SFF at large L for T-symmetric dual-unitary circuits

To obtain circuits with time-reversal symmetry one has to choose local gates
U,W ∈ U(d2) and on-site disorder ux, wx ∈ U(d) which are compatible with
the conditions (11). A generic choice is

U = UT , W = WT , (67)

and gates ux, wx of the form

ux = eiθx·σ, wx = eiθx·σ
T

= uT
x , x ∈ ΛL, θx ∈ R

d2−1. (68)



16 Bruno Bertini, Pavel Kos, Tomaž Prosen

where now θx is the same in both ux and wx. The expectation can again be
explicitly written in terms of a factorised measure as:

ET [f ] =

∫

f(θ)

L−1∏

x=0

1∏

ι′=0

gι′(θx+ ι′

2

)dd
2−1θx+ ι′

2

, θ ≡ (θx)x∈ΛL
. (69)

where gι′ ∈ L1[Rd2−1] is a pair of arbitrary probability densities of i.i.d. ran-
dom variables θx on integer (ι′ = 0) and half-odd-integer (ι′ = 1) sublattices.

Considering local gates fulfilling the conditions (67, 68) and averaging ac-
cording to the measure ET [·], one can repeat the reasoning of Sec. 2.7 and
conclude

KT (t, L) = ET

[(
trUt

L

) (
trUt

L

)∗
]

= trTL
T , (70)

with

TT := (Ũ⊗ Ũ
∗)O†

T,1(W̃⊗ W̃
∗)OT,0 . (71)

Here Ũ, and W̃ are defined as in Eqs. (35, 36) while time-reversal symmetric
averaging operator OT,ι′ reads as

OT,ι′ :=

∫

dd
2−1θ gι′(θ) exp (iθ · (M ⊗ 12t − 12t ⊗M∗)) . (72)

Here M = (M1,M2, . . . ,Md2−1) with Ma denoting the representation of the
a-th Hermitian generator of su(d) in the full time lattice

Ma :=
∑

τ∈Λt

σa,τ = Ma,0 +Ma,1. (73)

Assuming that, together with the conditions (67, 68), the local gates also fulfil
(47, 48) (i.e. they are dual-unitary), and noting that the averaging operator
also satisifies the properties (40,41), one can immediately write an analogue of
the Lemma 1 for the transfer matrix TT (its proof 4.1 carries over). Namely,
one can prove that TT is again a linear non-expansive mapping overH2t⊗H2t,
and its eigenvectors corresponding to unimodular eigenvalues are determined
by the conditions (49) withMa,ι replaced byMa. Following the logic of Sec. 3.1,
one can map the problem of finding all linear independent eigenvectors of TT

corresponding to unimodular eigenvalues to a simpler algebraic problem. In
this case the equivalent algebraic problem is to find all linearly independent
operators A fulfilling

ŨW̃AW̃†
Ũ

† = eiφA, [Ma, A] = 0, [W̃†MaW̃, A] = 0 . (74)

for some φ ∈ R and all a ∈ {1, 2, . . . , d2 − 1}.
Using the explicit from (53) of the 2-site dual-unitary gates we can again

simplify the conditions (74) and write their invariant eigenoperator spaces
in terms of simple algebraic commutants. In this case, to lift some technical
complications, we specialise the treatment to the case of qubits (d = 2):
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Lemma 3 For J, J ′ 6= 0 and d = 2 the conditions (74) cannot be met unless
φ = 0. In this case, they are equivalent to

[A,Ma] = 0, [A,Mab,ι+R2tMab,ιR2t] = 0 , a, b ∈ {1, 2, 3} , ι ∈ {0, 1} , (75)

where the 2-site magnetization operators of the even and odd spin sub-lattices
are defined in (61) and R2t is the reflection of the time lattice Λt around the
centre, i.e.

R2t |j1〉 ⊗ |j2〉 ⊗ · · · |j2t〉 = |j2t〉 ⊗ · · · |j2〉 ⊗ |j1〉 . (76)

As before, this lemma allows us to express the SFF in the limit L → ∞ in
terms of the dimension (in End(H2t)) of the commutantM′

T of the set

MT := {Ma}a ∪ {Mab,ι +R2tMab,ιR2t}a,b,ι . (77)

Namely,

lim
L→∞

KT (t, L) = dimM′
T . (78)

The commutantM′
T can again be completely characterised by proving a state-

ment analogous to Theorem 1, which we present here without proof.

Conjecture 1 The commutantM′
T is the linear span of the representation of

the dihedral group Dt, i.e. the symmetry group of a polygon of t vertices, on
a periodic chain of 2t spins:

M′
T = span{Rn

2tΠ
2τ
2t ; τ = 0, 1, . . . t− 1, n = 0, 1} . (79)

The number of independent elements of the dihedral group is established by:

Lemma 4 The number of linearly independent elements in the representation
of Dt in Ht formed by {Rn

2tΠ
2τ
2t }n=0,1

τ=0,1,...t−1 is 2t.

Hence, we arrive at the following corollary:

Corollary 2 For local quantum circuits (2) with d = 2, local gates of the form
(9a,9b), and

U = (u1⊗u2)Se
iJs3⊗s3(uT

1 ⊗uT
2 ), W = (u′

1⊗u′
2)Se

iJ′s3⊗s3(u′T
1 ⊗u′T

2 ), (80)

where uj , u
′
j ∈ U(2) and J, J ′ 6= 0, the SFF (14) averaged according to the

measure (69) fulfils

lim
L→∞

KT (t, L) = 2t . (81)

This is precisely the COE result for all times. Once again we see that 2-point
spectral correlations of dual-unitary circuits agree with RMT at all scales.

The proof of Conjecture 1 follows the same ideas as that of Theorem 1 but
is technically more involved and will be presented elsewhere [34]. A similar
proof, for the special case of the time-reversal symmetric self-dual kicked Ising
model, has been presented in the supplemental material of Ref. [18].
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4 Proofs

4.1 Proof of Lemma 1

As a consequence of properties (40,41) the spectra of Oιι′ belong to the open
unit disk with 1 attached to it, D1 = {z ∈ C; |z| < 1}∪{1} ⊃ spect(Oιι′). Since
O0ι′ and O1ι′ commute, spect(Oι′ = O0ι′O1ι′) ⊂ D1, and all eigenvectors |R〉
of Oι′ with unique unimodular eigenvalue 1 are characterised by

(Ma,ι ⊗ 12t − 12t ⊗M∗
a,ι) |R〉 = 0, ι ∈ {0, 1}, a ∈ {1, 2, . . . , d2 − 1} . (82)

Since Ma,ι ⊗ 12t − 12t ⊗ M∗
a,ι are Hermitian, exactly the same conditions

uniquely characterise the eigenvalue 1 eigenvectors of O†
ι′.

We now turn to SFF transfer matrix (34) and write

T
†
T = O

†
0(W̃⊗ W̃

∗)†O1O
†
1(W̃⊗ W̃

∗)O0 . (83)

Let |A〉 be a normalised eigenvector of T associated to the eigenvalue λ. Con-

sidering the expectation value of (83) we have, since 〈B|O†
ι′Oι′ |B〉 ≤ 〈B|B〉,

〈B|Oι′O
†
ι′ |B〉 ≤ 〈B|B〉, for any |B〉:

|λ|2 = 〈A|T†
T|A〉 = 〈A|O†

0(W̃⊗ W̃
∗)†O1O

†
1(W̃⊗ W̃

∗)O0|A〉
≤ 〈A|O†

0(W̃⊗ W̃
∗)†(W̃⊗ W̃

∗)O0|A〉 = 〈A|O†
0O0|A〉 ≤ 1 , (84)

which proves point (i).

The eigenvalue λ is unimodular only if both inequalities in (84) are satu-
rated. The second one implies (82) for |R〉 = |A〉, i.e. the second line of (49),
while the first one implies (82) for |R〉 = (W̃ ⊗ W̃∗) |A〉, i.e. the third line of

(49). Since O0 |A〉 = |A〉, O†
1(W̃ ⊗ W̃∗) |A〉 = (W̃ ⊗ W̃∗) |A〉 we have the first

line of (49). This proves point (ii).

Finally, we prove the last point by contradiction: assuming that the eigen-
value λ corresponds to a non-trivial Jordan block, there must exist a nor-
malised vector |B〉 such that

T |B〉 = λ |B〉+ α |A〉 , α 6= 0 , (85)

where |A〉 is the eigenvector corresponding to the eigenvalue λ (where we can
choose 〈A|B〉 = 0). Reasoning as above we have

〈B|T†
T|B〉 = 1 + |α|2 ≥ 1 , (86)

which is a contradiction.
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4.2 Proof of Lemma 2

Plugging (58) into the first condition (52) and using the second condition to
commute α ·M ι around A we bring the conditions (52) to the following form

Ṽ Ṽ
′AṼ′†

Ṽ
†= eiφA, [Ma,ι, A]=0, [Ṽ′†Ma,ιṼ

′, A] = 0, (87)

where a ∈ {1, 2, 3}, ι ∈ {0, 1}. Let us now consider more closely the operator in
the last relation. Considering for example ι = 0 sublattice and a combination
of generators which yields the first spin matrix s1 = α · σ,

Ṽ
′†(α·M0)Ṽ

′ =
∑

τ∈Zt

exp
[

−iJ ′s3,τ− 1
2
s3,τ

]

s1,τ− 1
2
exp

[

iJ ′s3,τ− 1
2
s3,τ

]

, (88)

where we used S†(1 ⊗ sa)S = sa ⊗ 1. Resolving the identity in an eigenbasis
of s3 we find

Ṽ
′†(α·M0)Ṽ

′ =
∑

τ∈Zt

s1,τ− 1
2
cos(J ′s3,τ ) + s2,τ−1

2
sin(J ′s3,τ ). (89)

Next, we consider

Ṽ
′†(α·M0)Ṽ

′ − ei
π
2
α·M0Ṽ

′†(α·M0)Ṽ
′e−iπ

2
α·M0 =

= 2
∑

τ∈Zt

s2,τ− 1
2
sin(J ′s3,τ ). (90)

Since sin(J ′s3) is Hermitian and traceless it can be expanded in terms of the
generators {σa}, i.e.

sin(J ′s3) = c(J ′) · σ , where c(J ′) 6= 0 for J ′ 6= 0 . (91)

Furthermore, since the adjoint representation of SU(d) is irreducible, we can

for any non-vanishing vector β ∈ Rd2−1, and b ∈ {1, . . . , d2 − 1} find a vector

γ ∈ Rd2−1, such that

eiγ·Mι(β · στ+ 1
2
ι)e

−iγ·Mι = σb,τ+ 1
2
ι, τ ∈ Zt . (92)

This means that, conjugating the operators on r.h.s. of (90) with appropriate
γ ·M ι on integer (ι = 0) and half-odd integer (ι = 1) spin sub-lattices inde-
pendently, we can produce any operator of the form Mab,1 (cf. (61)). Since A
commutes with Ma,ι, we have for J ′ 6= 0:

[A,Mab,1] = 0, a, b ∈ {1, 2, . . . , d2 − 1}. (93)

To obtain an analogous statement for Mab,0 we first note that combining the
first and last relation of (87) yields

[ṼMa,0Ṽ
†, A] = 0 , a ∈ {1, 2, . . . , d2 − 1} . (94)
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Proceeding as before we find

Ṽ(α·M1)Ṽ
† =

∑

τ∈Zt

cos(Js3,τ )s1,τ+ 1
2
− sin(Js3,τ )s2,τ+ 1

2
, (95)

and

ei
π
2
α·M1Ṽ(α·M1)Ṽ

†e−iπ
2
α·M1 − Ṽ(α·M1)Ṽ

† = 2
∑

τ∈Zt

sin(Js3,τ )s2,τ+ 1
2
. (96)

Assuming J 6= 0, we can repeat the reasoning after (90) and find:

[A,Mab,0] = 0, a, b ∈ {1, 2, . . . , d2 − 1}. (97)

Now we note that V and V′ can be written in terms of double magnetisa-
tions (61). This can be seen by observing that

d2−1∑

a=1

σa ⊗ σa (98)

is the quadratic Casimir operator of the representation of SU(d) over Cd⊗Cd.
Therefore, we must have

d2−1∑

a=1

σa ⊗ σa = c+
1+ S

2
+ c−

1− S

2
, (99)

for some c± ∈ R. Indeed, the symmetric and antisymmetric subspaces of Cd⊗
Cd contain irreducible representations. Fixing the constants using the explicit
form of {σa} (see, e.g., Ref. [30]) we find c± = ±2− 2/d. Using

S = e−iπ
2 ei

π
2
S , (100)

and writing s3 =
∑

a γaσa we finally find

V = e−iπ
2
t exp

[

i
π

2

∑

τ∈Zt

Sτ

]

exp
[

iJ
∑

ab

γaγbMab,0

]

= e−i π
2d

t(1−d) exp
[

i
π

4

d2−1∑

a=1

Maa,0

]

exp
[

iJ
∑

ab

γaγbMab,0

]

, (101)

V
′ = e−iπ

2
tΠ2t exp

[

i
π

2

∑

τ∈Zt

Sτ

]

exp
[

iJ ′
∑

a,b

γaγbMab,0

]

Π†
2t

= e−i π
2d

t(1−d) exp
[

i
π

4

d2−1∑

a=1

Maa,1

]

exp
[

iJ ′
∑

ab

γaγbMab,1

]

, (102)

where we introduced

Sτ := 12τ−1 ⊗ S ⊗ 12t−2τ−1. (103)

Equations (93), (97), (101) and (102) imply that if J, J ′ 6= 0

Ṽ Ṽ
′AṼ′†

Ṽ
† = A , (104)

so that the first of conditions (87) can be fulfilled only for φ = 0 and in that
case it follows from (93), (97), and the second of (87). This proves the Lemma.
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4.3 Proof of Theorem 1

To prove the Theorem we use of the following Lemma.

Lemma 5 Let K ⊆ End(H2t) be a multiplicative algebra of operators over
H2t, generated by elements of M = {Ma,ι}a,ι ∪ {Mab,ι}a,b,ι. The representa-
tions of K over the eigenspaces {Wk ⊂ H2t}t−1

k=0 of the 2-site shift operator
(Π2t)

2Wk = e−2πik/tWk are all irreducible and inequivalent.

Our statement (Theorem 1) follows from a simple combination of Lemma 5
(which is proven later below) and the Schur’s Lemma. If some A fulfils the
conditions (60), it commutes with all elements of the algebra K generated
by {Ma,ι} and {Mab,ι}. Since the representations of the algebra K in the
eigenspaces Wk are irreducible and inequivalent, Schur’s Lemma implies

A =
t−1∑

k=0

ckQk, (105)

where ck ∈ C are arbitrary coefficients and

Qk :=
1

t

t−1∑

τ=0

e2πiτk/tΠ2τ
2t , k ∈ {0, . . . , t− 1}, (106)

are orthogonal projectors on {Wk}t−1
k=0, i.e. QkQk′ = δk,k′Qk. This proves

that A is a linear combination of t cyclic translations Π2τ
2t , i.e. K′ = M′ =

span{Π2τ
2t ; τ = 0, 1 . . . , t− 1}, concluding the proof of Theorem 1.

4.4 Proof of Lemma 5

We begin by introducing the following shorthand notation

S± :=
∑

τ∈Λt

s±,τ

(

s3,τ +
d− 1

2

)

, (107)

R±,n :=
∑

τ∈Λt

(

s3,τ +
d− 1

2

)

sn±,τ+ 1
2

, (108)

T±,n :=
∑

τ∈Λt

(

s3,τ −
d− 1

2

)

sn±,τ− 1
2

, (109)

M±∓ :=
∑

τ∈Λt

s±,τs∓,τ+ 1
2
, (110)

Zι :=
∑

t∈Zt

s3,τ+ 1
2
ι, (111)

where n ∈ {1, . . . , d− 1} and

s±,τ =
s1,τ ± is2,τ√

2
, τ ∈ Λt, (112)
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are local spin raising/lowering operators. Using the commutation relations
among {σa} it is straightforward to show that all operators (107)–(111) can
be expressed as linear combinations of Ma,ι, Mab,ι (cf. (39) and (61)).

In addition, we also introduce the set of vectors (states) in Ht

Sk :=







|0〉⊗2t ∪ {|n〉0 ; n ∈ I}∪
{|n,ν,m〉ℓ,0 ; n,m ∈ I,ν ∈ J ℓ−2, 2 ≤ ℓ ≤ 2t}

k = 0

{|n〉k ; n ∈ I}∪
{|n,ν,m〉ℓ,k ; n,m ∈ I,ν ∈ J ℓ−2, 2 ≤ ℓ ≤ 2t} k∈{1, . . . ,2t−1}

(113)

where we defined the sets

I := {1, . . . , d− 1}, (114)

J := {0, 1, . . . , d− 1}, (115)

and the vectors

|n〉k :=
1√
2t

2t−1∑

j=0

ei
πk
t
jΠj

2ts
n
+,0 |0〉⊗2t , (116)

|n1, 0 · · · 0︸ ︷︷ ︸

ℓ1−1

, n2, · · · , na, 0 · · · 0︸ ︷︷ ︸

ℓa−1

, na+1〉ℓ,k

:=
1√
2t

2t−1∑

j=0

ei
πk
t
jΠj

2ts
n1

+,0s
n2

+,
ℓ1
2

· · · sna

+, ℓ−ℓa
2

s
na+1

+, ℓ−1

2

|0〉⊗2t
, (117)

with {ℓj}aj=1 ⊂ {1, . . . , 2t− 1} fulfilling

N ∋ ℓ := 1 +

a∑

j=1

ℓj ≤ 2t . (118)

We note that the ‘empty’ state |0〉 ∈ R (cf. (5)) satisfies

s3 |0〉 = −
d− 1

2
|0〉 , (119)

(cf. (56)). The integer ℓ shall be referred to as the length of the states (117)
(one can verify that ℓ ≥ 2), while the states (116) have conventionally a unit
length. For each value of k the set (113) contains (d− 1)2dℓ−2 states for every
length ℓ ≥ 2 and d− 1 states for ℓ = 1.

Note that for each k the states in (113) have momentum πk/t, i.e.

Π2t |n,ν,m〉ℓ,k = e−iπk
t |n,ν,m〉ℓ,k . (120)

The set Sk is complete in Vk — the eigenspace of single-site shift Π2t asso-
ciated with momentum πk/t — but are not all linearly independent: While
for ℓ < t the states are clearly orthonormal, some of the states with ℓ ≥ t
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can be represented by a string with a shorter length or they have multiple
representations with the same length. One can then construct a basis Bk of Vk
by extracting from Sk the maximal subset of linearly independent vectors.

Here we want to prove the following (Lemma 5): The representation of the
algebra K generated by {Ma,ι} and {Mab,ι} is irreducible in

Wk ≡ span(Bk ∪ Bk+t), k ∈ {0, 1, . . . , t− 1} , (121)

specifically in the eigenspace of (Π2t)
2 corresponding to the eigenvalue e−2πik/t.

Moreover, the irreducible representations in different Wk are inequivalent.
Noting that Wk are closed under the action of K (all generators commute

with (Π2t)
2) we have that the following three requirements imply the state-

ment of the Lemma:

(1) All vectors in Bk are mapped into one another by elements of the algebra
K.

(2) There is an element of K mapping |1〉k and |1〉k+t one into another.
(3) There is no unitary matrix C such that

(Z1)k = C(Z1)pC
†, (122)

(Z0)k = C(Z0)pC
†, (123)

(M2
+−)k = C(M2

+−)pC
†, (124)

where (·)p denotes the projection to Wp, if p 6= k.

Proof of (1). We prove the statement by showing the validity of a sufficient
condition: all states (113) are mapped into one-another by elements of the
algebra K. This condition is sufficient because the elements of Bk are a subset
of the states (113).

We begin by proving that one can map |1〉k into every state (113). First,
we note that using

S± |n〉k = n |n± 1〉k (125)

we can map |1〉k to all states |n〉k with n ∈ {2, . . . , d− 1} and, for k = 0, also

to |0〉⊗2t. Next, we observe that using

R+,1 |n〉k = n |n, 1〉2,k (126)

and then repeatedly applying

S+ |n,m〉k = n |n+ 1,m〉2,k +m |n,m+ 1〉2,k (127)

we can map |1〉k into every state |n,m〉2,k with n,m ∈ {1, . . . , d− 1}.
We proceed using an inductive argument. Assuming that we can access

every state |m,ν,m〉ℓ′,k of length ℓ′ < ℓ we shall prove that we can access
every state of length ℓ, for ℓ ≥ 3. This follows straightforwardly from the
relations

R+,1 |n,ν,m〉ℓ−1,k ≃ m |n,ν,m, 1〉ℓ,k , (128)

M−+ |n,ν, 1〉ℓ−1,k ≃ |n,ν, 0, 1〉ℓ,k , (129)
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where ≃ denotes equality up to states of length < ℓ which can be accessed by
assumption, and the repeated application of

S+ |n,ν,m,m2〉ℓ,k ≃ m2 |n,ν,m,m2 + 1〉ℓ,k , (130)

S+ |n,ν, 0,m2〉ℓ,k ≃ m2 |n,ν, 0,m2 + 1〉ℓ,k . (131)

In Eq. (130), ≃ denotes equality up to states of the form |n′,ν′,m′,m2〉ℓ,k that
are accessed at the previous step (n, ν, and m are arbitrary). Analogously in
Eq. (131), ≃ denotes equality up to states of the form |n′,ν′, 0,m2〉ℓ,k.

This means that for every state |n,ν,m〉ℓ,k there exist an operatorBn,ν,m ∈
K such that

Bn,ν,m |1〉k = |n,ν,m〉ℓ,k . (132)

Then we can construct an operator mapping the arbitrary vector |n′,ν ′,m′〉ℓ′,k
into the arbitrary vector |n,ν,m〉ℓ,k

An,ν,m;n′,ν′,m′ = Bn,ν,m |1〉k k〈1|B
†
n′,ν′,m′ . (133)

To prove that this operator is in K we fist note that, since the generators are
Hermitian, we have that if Bn,ν,m ∈ K also B†

n,ν,m ∈ K. We then just need to
prove that |1〉k k〈1| ∈ K. This is explicitly done by observing

|1〉k k〈1| =
(S−)

d−2(S+)
d−2T 2t−1

−,d−1R
2t−1
+,d−1

k
〈1|(S−)d−2(S+)d−2T 2t−1

−,d−1R
2t−1
+,d−1|1〉k

, k = 0 ∨ d 6= 2 , (134)

|1〉k k〈1| =
T 2t−2
−,1 R2t−2

+,1

k
〈1|T 2t−2

−,1 R2t−2
+,1 |1〉k

, k 6= 0 ∧ d = 2 . (135)

Proof of (2). This point is immediate. Indeed, one can directly verify that

(Z0 − Z1) |1〉k = |1〉k+t . (136)

Proof of (3). The statement is trivial whenever k or p are 0. Indeed, |0〉⊗2t
is

the only eigenstate of Z0 + Z1 corresponding to eigenvalue 2t and does not
appear for p 6= 0. This means that the sum of (122) and (123) can never be
satisfied.

To prove (3) for k, p 6= 0 we note that

|1〉(0)k :=
|1〉k + |1〉k+t√

2
, (137)

is the only eigenstate of Z1 and Z0 with eigenvalues t and t − 2 respectively.

This means that (122) and (123) can be fulfilled only if |1〉(0)k is an eigenstate
of C. In turn, this implies that

〈1|(M+−)
2|1〉(0) (0)

k k = e−2iπk/t , (138)

is invariant under the mapping implemented by C. Since e−2iπk/t 6= e−2iπp/t

for k 6= p ∈ {1, . . . , t− 1} we conclude that there can be no transformation C
fulfilling (123).
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4.5 Proof of Lemma 3

We consider d = 2, where sa = 1
2σa, a ∈ {1, 2, 3}, and begin by writing the

analogue of (87). To this aim we plug the form (53) in the definitions (35, 36)
and use the constraints (67, 68) to find

Ũ = eiθeiα·M
Ṽ eiβ·M , W̃ = eiθ

′

eiγ·M Ṽ
′ eiδ·M, (139)

where α,β,γ, δ ∈ R
3, θ, θ′ ∈ R, M = (M1,M2,M3), while Ṽ and Ṽ

′ are
defined in (59). Substituting now (139) into the first condition (74) and using
the second condition to commute α ·M around A we find the desired analogue
of (87)

Ṽ Ṽ
′AṼ′†

Ṽ
†= eiφA, [Ma, A]=0, [Ṽ′†MaṼ

′, A] = 0, a ∈ {1, 2, 3} . (140)

Next we consider

Ṽ
′†M1Ṽ

′ = Ṽ
′†M1,1Ṽ

′ + Ṽ
′†M1,0Ṽ

′

= sin(2J ′)(M32,1 +M23,1) + cos(2J ′)M1, (141)

ṼM1Ṽ
† = ṼM1,1Ṽ

† + ṼM1,0Ṽ
†

= − sin(2J)(M32,0 +M23,0) + cos(2J)M1 . (142)

where we used (89) and (95) specialised to the case d = 2.
From these relations we see that, for J, J ′ 6= 0, A commutes with {M32,ι +

M23,ι}ι=0,1. Using the second of (140) to make generic SU(2) rotations we find
that actually A commutes with the following 10 operators

{M12,ι +M21,ι,M13,ι +M31,ι,

M23,ι +M32,ι,M11,ι −M22,ι,M11,ι −M33,ι}ι=0,1. (143)

In fact, A commutes also with {Maa,ι}. To show that we consider the following
objects

Pῑ(PιPῑ)
t
2
−1(M11,ι −M33,ι)(PιPῑ)

1− t
2P−1

ῑ

= −S3M11,ι −M33,ι, t even (144)

(PιPῑ)
t−1

2 (M11,ι −M33,ι)(PιPῑ)
− t−1

2

= −S3M11,ῑ +M33,ῑ, t odd (145)

for ι ∈ {0, 1}, ῑ := 1− ι, and we defined

Sa = σ⊗2t
a = i2tei

π
2
Ma , Pι = ei

π
4
(M11,ι−M22,ι) . (146)

The left hand sides of (144) and (145) commute with A by construction,
therefore we find

[A,S3M11,ι +M33,ι] = 0, t even (147)

[A,S3M11,ι −M33,ι] = 0, t odd. (148)
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Using that A commutes with {Sa}a=1,2,3 and with the operators (143) we then
have

[A, (Sa + 1t)Mbb,ι] = (Sa + 1t)[A,Mbb,ι] = 0, t even (149)

[A, (Sa − 1t)Mbb,ι] = (Sa − 1t)[A,Mbb,ι] = 0, t odd . (150)

At this point we observe

spect(S1 + S2 + S3) = {(−1)t3, (−1)t+1} , (151)

where the multiplicities (both algebraic and geometrical) of the two eigenvalues
are 22t−2 and 3 · 22t−2 respectively.

Thus, by summing (149, 150) over a we obtain that the commutators are
multiplied by invertible operators. Therefore, we finally arrive at

[A,Mbb,ι] = 0 , b ∈ {1, 2, 3} . (152)

Putting it all together we find

[A,Mab,ι +R2tMab,ιR2t] = 0 . (153)

At this point, considering Ṽ Ṽ′ and using ((101), (102)) we have

Ṽ Ṽ
′AṼ′†

Ṽ
† = A , (154)

so that the first of conditions (140) can be fulfilled only for φ = 0, and in that
case it follows from (152), and the second of (140). This proves the Lemma.

4.6 Proof of Lemma 4

To prove the statement we note that the set of operators {Rn
2tΠ

2τ
2t }n=0,1

τ=0,1,...t−1

can be written as

Π2τ
2t =

t−1∑

k=0

e−2πiτk/tQk, R2tΠ
2τ
2t =

t−1∑

k=0

e−2πiτk/tQ′
k, (155)

where Qk are the orthogonal projectors defined in Eq. (106) and we introduced

Q′
k :=

1

t

t−1∑

τ=0

e2πiτk/tR2tΠ
2τ
2t , k ∈ {0, . . . , t− 1}. (156)

Since the mapping between {Rn
2tΠ

2τ
2t }n=0,1

τ=0,1,...t−1 and {Qk, Q
′
k}k=0,1,...t−1 is

invertible it is sufficient to prove that the latter operators are linearly inde-
pendent. To this aim we note that {Qk, Q

′
k}k=1,...t−1 are obviously linearly

independent. This can be seen by writing them in a basis of eigenstates of
Π2t and noting distinct operators are non zero on distinct, non-overlapping,
blocks. Moreover, noting that all {Qk, Q

′
k}k=1,...t−1 are zero when reduced

to the block of zero two-momentum (i.e. the one composed by eigenstates of
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Π2t with eigenvalues 1 and −1), we have that the only two operators which
can be linearly dependent are Q0 and Q′

0. To prove that such operators are
independent we note that

Q0 |n〉0 = Q′
0 |n〉0 = |n〉0 , Q0 |n〉t = −Q′

0 |n〉t = |n〉t , n ∈ I , (157)

where |n〉0 , |n〉t are defined in Eq. (113) and the set I in (114). This implies
that

αQ0 + βQ′
0 = 0 (158)

only if α = β = 0 and concludes the proof.

5 Discussion of the results and their possible extensions

In this section we discuss some generalisations and extensions of our results.
While the extension to inhomogeneous interactions in Sec. 5.1 is rigorous, the
other two subsections discussing fluctuations of SFF (5.2) and singular disorder
distributions (5.3) are currently of speculative nature.

5.1 Spatially inhomogeneous interactions

The space-time duality approach adopted in this paper treats separately each
point in space and it is therefore convenient to study general inhomogeneous
interactions. However, our results as elaborated in Sec. 3 are not directly appli-
cable to this case. Here we explain how to extend them focussing for simplicity
on the case of no time reversal symmetry.

We begin by observing that for position-dependent local gates, Eq. (29) is
substituted with

K(t, L) = tr (T1T2 · · ·TL) , (159)

where Tx is defined as in Eq. (34) with O given in Eq. (38) while Ũ and W̃

are replaced by

W̃x :=
∏

τ∈Zt

ητ,t(W̃x+ 1
2
), (160)

Ũx :=
∏

τ∈Zt+
1
2

ητ,t(Ũx). (161)

Then we choose dual-unitary gates Ux,Wx of the form (53), assuming Jx, J
′
x 6=

0 for all x. We use Lemma 1, Lemma 2, and Theorem 1 to find

K(t, L) = t+ tr (R1R2 · · ·RL) , (162)

where Rx = (1−P)Tx(1−P) and P is the projector onto the eigenspace of Tx

associated to the eigenvalue 1. In writing (162) we used that, due to Lemma 1,
Lemma 2, and Theorem 1, such eigenspace is the same for all x.
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From (162) we see that to recover the result (66) we need to show that

lim
L→∞

tr (R1R2 · · ·RL) = 0 . (163)

For example this would hold if ‖Rx‖ < 1, where ‖ · ‖ denotes the operator
norm. The results of Sec. 3, however, are not sufficient to infer (163).

To overcome this problem, we focus on the case of L even and make the
following different replacement

Tx−1Tx = P+ R̃x−1,x ⇒ K(t, L) = t+ tr(R̃1,2R̃3,4 · · · R̃L−1,L) . (164)

where

R̃x−1,x = (1− P)Tx−1Tx(1− P). (165)

For the new operator R̃x−1,x we are able to prove the following theorem (the
proof is provided at the end of the subsection):

Theorem 2 For Jx, J
′
x 6= 0,

‖R̃x−1,x‖ < 1. (166)

This means that if there is a finite density of points x with nonzero couplings
(Jx, J

′
x 6= 0), i.e. finite density of non-SWAP gates, then

lim
L→∞

tr
(

R̃1,2 · · · R̃L−1,L

)

= 0 , (167)

and

lim
L→∞

K(t, L) = trP = t . (168)

A completely analogous treatment holds for L odd, e.g., considering

K(t, L) = t+ tr(R̃12 · · · R̃L−2,L−1RL) . (169)

5.1.1 Proof of Theorem 2

To prove the statement it is sufficient to show that if

〈A|(Tx−1Tx)
†
Tx−1Tx|A〉 = 1 (170)

for some state |A〉, then
P |A〉 = |A〉 . (171)

This follows immediately from Theorem 1 and the following two lemmas
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Lemma 6 For dual-unitary circuits, if a state |A〉 fulfils

〈A|(T0T)
†
T0T|A〉 = 1 (172)

where T0 and T are transfer matrices of the form (34) (with unitary matrices
Ũ0 and W̃0 and Ũ and W̃ respectively), then

(Ma,ι ⊗ 12t − 12t ⊗M∗
a,ι)(W̃0 ⊗ W̃

∗
0)(Ũ⊗ Ũ

∗)(W̃ ⊗ W̃
∗) |A〉 = 0 , (173)

(Ma,ι ⊗ 12t − 12t ⊗M∗
a,ι)(Ũ⊗ Ũ

∗)(W̃⊗ W̃
∗) |A〉 = 0 , (174)

(Ma,ι ⊗ 12t − 12t ⊗M∗
a,ι)(W̃⊗ W̃

∗) |A〉 = 0 , (175)

(Ma,ι ⊗ 12t − 12t ⊗M∗
a,ι) |A〉 = 0 , (176)

where ι ∈ {0, 1}, a ∈ {1, 2, . . . , d2 − 1}.

Lemma 7 For Ũ and W̃ of the form (58) with J 6= 0 and J ′ 6= 0 the conditions
(174), (175), and (176) are equivalent to

[A,Ma,ι] = 0 , [A,Mab,ι] = 0 , a, b ∈ {1, 2, . . . , d2− 1}, ι ∈ {0, 1} . (177)

5.1.2 Proof of Lemma 6

Considering the expectation value (172), and using that

〈B|O†
ι′Oι′ |B〉 ≤ 〈B|B〉 , 〈B|Oι′O

†
ι′ |B〉 ≤ 〈B|B〉 , (178)

for any |B〉, we have

1 = 〈A|(T0T)
†
T0T|A〉

= ‖O†
1(W̃0 ⊗ W̃

∗
0)O0(Ũ⊗ Ũ

∗)O†
1(W̃⊗ W̃

∗)O0|A〉‖2 (179)

≤ ‖O†
1(W̃0 ⊗ W̃

∗
0)O0(Ũ⊗ Ũ

∗)O†
1(W̃⊗ W̃

∗)|A〉‖2

≤ ‖O†
1(W̃0 ⊗ W̃

∗
0)O0(Ũ⊗ Ũ

∗)(W̃⊗ W̃
∗)|A〉‖2

≤ ‖O†
1(W̃0 ⊗ W̃

∗
0)(Ũ⊗ Ũ

∗)(W̃⊗ W̃
∗)|A〉‖2

≤ ‖(W̃0 ⊗ W̃
∗
0)(Ũ⊗ Ũ

∗)(W̃⊗ W̃
∗)|A〉‖2 = ‖|A〉‖2 = 1 .

This can hold only if all four inequalities in (179) are saturated. Using (82)
we see that this happens only if the conditions (173 – 176) are satisfied.

5.1.3 Proof of Lemma 7

Plugging the forms (58) we bring (174 – 176) in the form

[Ma,ι, A]=0, [Ṽ′†Ma,ιṼ
′, A] = 0, [Ṽ′†

Ṽ
†Ma,ιṼṼ

′, A] = 0, (180)

where a ∈ {1, 2, . . . , d2 − 1}, ι ∈ {0, 1}. As shown in the proof of Lemma 2 we
have that the first two relations (180) imply that for J ′ 6= 0:

[A,Mab,1] = 0, a, b ∈ {1, 2, . . . , d2 − 1}. (181)
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Using the above relation and Eq. (102) we have that the third of (180) is
equivalent to

[Ṽ†Ma,ιṼ, A] = 0. (182)

Proceeding as in (95, 97) we then find that for J 6= 0:

[A,Mab,0] = 0, a, b ∈ {1, 2, . . . , d2 − 1}. (183)

5.2 Fluctuations of the spectral form factor

The approach presented in the current manuscript can also be applied to
study the fluctuations of the SFF (14) (this idea has recently been exploited
in Ref. [35] in the special case of the self-dual kicked Ising model and in Ref. [36]
for the large d asymptotics of Floquet chains with Haar random interactions).
Specifically, it can be employed to compute the higher moments of |trUt

L|2
with respect to the i.i.d. on-site disorder distribution

Kn(t, L) := E
[
|trUt

L|2n
]
= E









N∑

i,j=1

ei(ϕi−ϕj)t





n 

, t, L ∈ N, n ≥ 1. (184)

Indeed, exploiting the space-time duality described in Sec. 2.7 we can express
the above quantities as

Kn(t, L) = trTL
n , (185)

with
Tn = (Ũ⊗n ⊗ (Ũ∗)⊗n)O†

1;n(W̃
⊗n ⊗ (W̃∗)⊗n)O0;n, (186)

where Ũ and W̃ are defined in (35, 36) while we introduced

Oι′;n := O0ι′;nO1ι′;n = O1ι′;nO0ι′;n , (187)

Oιι′;n :=

∫

dd
2−1θ gιι′(θ) exp

(
iθ · (M ι;n ⊗ 12t − 12t ⊗M∗

ι;n)
)
. (188)

and finally M ι;n = (M1,ι;n,M2,ι;n, . . . ,Md2−1,ι;n) with

Ma,ι;n :=

n−1∑

j=0

1

⊗j
t ⊗Ma,ι⊗1⊗(n−1−j)

t , a ∈ {1, . . . , d2− 1}, ι ∈ {0, 1}, (189)

where the generalised sublattice magnetisation Ma,ι is defined in Eq. (39).
Note that, for definiteness, here we considered systems without time-reversal
symmetry.

Using that the matrix Tn has the same structure as T in (34) we can
directly repeat the treatment described in Sec. 3.1. In particular, for local
gates of the form (53) we find

lim
L→∞

Kn(t, L) = dimM′
n, (190)
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where we introduced the set

Mn := {Ma,ι;n}a,ι ∪ {Mab,ι;n}a,b,ι , (191)

and the coproduct of n double magnetizations (cf. (61))

Mab,ι;n :=

n∑

j=1

1

⊗(j−1)
t ⊗Mab,ι⊗ 1⊗(n−j)

t , a, b ∈ {1, . . . , d2 − 1}, ι ∈ {0, 1} .

(192)
All elements of (191) are invariant under permutations of the n copies of Ht in
H⊗n

t and under 2-site translations within each copy, i.e., they commute with

Ap;τ1,...τn = Γ (p)(Π2τ1
2t ⊗ · · · ⊗Π2τn

2t ), τ1, . . . , τn ∈ {0, . . . , t− 1} , (193)

where Γ (·) is a representation of Sn, the symmetric group of n letters, on
Htn ≡ H⊗n

t and p ∈ Sn. Specifically,

Γ (p) |A1〉 ⊗ |A2〉 ⊗ · · · ⊗ |An〉 = |Ap(1)〉 ⊗ |Ap(2)〉 ⊗ · · · ⊗ |Ap(n)〉 . (194)

This means that

An = span{Ap;τ1,τ2...τn ; τ1, τ2 . . . , τn ∈ {0, . . . , t− 1}, p ∈ Sn} (195)

is a vector subspace ofM′
n and hence

lim
L→∞

Kn(t, L) = dimM′
n ≥ n! · tn = lim

N→∞

∫

|trUt|2ndµCUE(U), (196)

where dµCUE(U) is the CUE measure and N is the dimension of the matrix
U.

In analogy with what happens for n = 1 (c.f. Theorem 1) we expect An

and M′
n to actually coincide, leading to an equality sign in (196). However,

we leave the formal proof of this statement to future work. Similar conclusions
(with CUE replaced by COE) hold in the time-reversal invariant case.

5.3 Singular on-site disorder distributions

As discussed in Sec. 2.3 we expect our results to be stable under modifications
of the averaging procedure as long as such modifications do not introduce
spatial correlations. In our setting this can be verified explicitly by consider-
ing singular disorder distributions of local gates ux, wx, Eq. (26), supported
on lower-dimensional submanifolds of SU(d) that include the identity. For in-
stance, one can imagine having some of the components of θι,x in (26) (or θx

in (68)) set to zero for all ι and x. Physically, this choice describes a weaker
external noise where, for example, the random magnetic fields are imposed
only along certain specific directions rather than isotropically.

In this case we expect that away from certain “resonances”, namely for
almost all 2-site dual-unitary gates U,W , the treatment described in the pre-
vious sections is still applicable. In particular we anticipate that the SFF will
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still be characterised by the commutants of (64) or (79) depending on whether
or not the problem is time-reversal symmetric.

Let us illustrate the main steps that can be used to prove this idea. We con-
sider for simplicity the case of qubits (d = 2) and absence of time-reversal sym-
metry. Denoting by I the subset of indices I ⊂ {1, 2, 3} such that {θa,ι,x}a∈I

are not set to zero, and repeating the steps of Sec. 2.7 and 3.1, one readily
finds the following analogue of the conditions (52)

ŨW̃AW̃†
Ũ

† = eiφA , [Ma,ι, A] = 0 ,

[W̃†Ma,ιW̃, A] = 0 , ι ∈ {0, 1} , a ∈ I .
(197)

At this point we note that if I has at least two elements these conditions are
equivalent to (52). This follows by observing that if A commutes with Ma,ι

and Mb,ι it also commutes with their commutator

[Ma,ι,Mb,ι] = i

3∑

c=1

ǫabcMc,ι . (198)

Here we used that {Ma,ι} generate the su(2) algebra. A completely analogous

reasoning applies for the set of equivalent matrices {W̃†Ma,ιW̃}.
The only possible non-trivial choice is then to take the set I composed

by single element, which, without loss of generality, can be set to 3. This
corresponds to ux, wx being restricted to some U(1) subgroup of SU(2). To
show that the our treatment applies also in this case we need to prove the
analogue of Lemma 2. Namely, we need to show that if A fulfils (197) then it
commutes with {Ma,ι}a=1,2,3;ι=0,1, {Mab,ι}a,b=1,2,3;ι=0,1. This can be done by
considering the following set of 15 operators

S1 ={{M3,ι}ι=0,1, {[Nι,M3,ι′]}ι,ι′=0,1, {[[Nι,M3,ι′],M3,ι′ ]}ι,ι′=0,1,

{Nι}ι=0,1, [[N0,M3,0], N0], [[N0,M3,1], N0], [[N1,M3,0], N1]} ,
(199)

where we introduced the short-hand notation

Nι := W̃
†M3,ιW̃ , ι = 0, 1. (200)

Since the operators (199) are constructed by taking commutators of M3,ι,

and W̃†M3,ιW̃, they commute with A. Moreover, they can be written as linear
combinations of {Ma,ι}a=1,2,3;ι=0,1 and {Mab,1}a,b=1,2,3. This means that if we
can prove that the operators in S1 are linearly independent we immediately
have

[A,Ma,ι] = 0, [A,Mab,1] = 0 , a, b ∈ {1, 2, 3}, ι ∈ {0, 1} . (201)

We could not prove explicitly the linear independence of the set (199) but we
verified numerically that it holds almost always (away from special, measure-
zero set of U , W — the so-called “resonances”).
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An analogous reasoning considering the set of 15 operators

S2 ={{[[Ñι,M3,ι′ ],M3,ι′]}ι,ι′=0,1, {Ñι}ι=0,1, [[Ñ0,M3,0], Ñ0],

[[Ñ0,M3,1], Ñ0], {[Ñι,M3,ι′ ]}ι,ι′=0,1, [[Ñ1,M3,0], Ñ1]} ,
(202)

with
Ñι := ŨW̃W̃

†M3,ιW̃W̃
†
Ũ

† = ŨM3,ιŨ
† , (203)

leads to

[A,Ma,ι] = 0, [A,Mab,0] = 0 , a, b ∈ {1, 2, 3}, ι ∈ {0, 1} . (204)

This means that
lim

L→∞
K(t, L) = dimM′ = t, (205)

where in the second step we applied Theorem 1.
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15. T. C. Hsu and J. C. Anglès d’Auriac, Level repulsion in integrable and almost-integrable
quantum spin models, Phys. Rev. B 47, 14291 (1993).

16. T. Prosen, Ergodic properties of a generic nonintegrable quantum many-body system in
the thermodynamic limit, Phys. Rev. E 60, 3949 (1999).

17. L. F. Santos, M. Rigol, Onset of quantum chaos in one-dimensional bosonic and
fermionic systems and its relation to thermalization, Phys. Rev. E 81, 036206 (2010).

18. B. Bertini, P. Kos, and T. Prosen, Exact Spectral Form Factor in a Minimal Model of
Many-Body Quantum Chaos, Phys. Rev. Lett. 121, 264101 (2018).

19. A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum Entanglement Growth under
Random Unitary Dynamics, Phys. Rev. X 7, 031016 (2017).

20. A. Chan, A. De Luca, J. T. Chalker, Solution of a minimal model for many-body quan-
tum chaos, Phys. Rev. X 8, 041019 (2018).

21. A. Chan, A. De Luca, J. T. Chalker, Spectral Statistics in Spatially Extended Chaotic
Quantum Many-Body Systems, Phys. Rev. Lett. 121, 060601 (2018).

22. S. Zelditch, Quantum ergodicity of C* dynamical systems,
Commun. Math. Phys. 177, 507 (1996).

23. R. Alicki and M. Fannes, Quantum Dynamical Systems, Oxford University Press (2001).
24. L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, From quantum chaos and eigenstate
thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016).

25. P. Kos, M. Ljubotina, T. Prosen, Many-Body Quantum Chaos: Analytic Connection to
Random Matrix Theory, Phys. Rev. X 8, 021062 (2018).

26. M. Suzuki, General theory of fractal path integrals with applications to many-body the-
ories and statistical physics, J. Math. Phys. 32, 400 (1991).

27. T. J. Osborne, Efficient Approximation of the Dynamics of One-Dimensional Quantum
Spin Systems, Phys. Rev. Lett. 97, 157202 (2006).

28. F. Arute et al., Quantum supremacy using a programmable superconducting processor,
Nature 574, 505 (2019).

29. F. Haake, S. Gnutzmann and M. Kus, Quantum Signatures of Chaos, 4th edition,
Springer (2018).

30. C. Stover, Generalized Gell-Mann Matrix. MathWorld–A Wolfram Web Resource.
31. B. Bertini, P. Kos, and T. Prosen, Exact Correlation Functions for Dual-Unitary Lattice
Models in 1 + 1 Dimensions, Phys. Rev. Lett. 123, 210601 (2019).

32. B. Gutkin, P. Braun, M. Akila, D. Waltner, T. Guhr, Local correlations in dual-unitary
kicked chains, arXiv:2001.0128.

33. P. W. Claeys and A. Lamacraft, Ergodic and non-ergodic dual-unitary quantum circuits
with arbitrary local Hilbert space dimension, arXiv:2009.03791.

34. P. Kos, B. Bertini, and T. Prosen, in preparation.
35. A. Flack, B. Bertini, and T. Prosen, Statistics of the Spectral Form Factor in the Self-
Dual Kicked Ising Model, Phys. Rev. Research 2, 043403 (2020).

36. A. Chan, A. De Luca and J. T. Chalker, Spectral Lyapunov exponents in chaotic and
localized many-body quantum systems, arXiv:2012.05295.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.14291
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.60.3949
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.036206
http://dx.doi.org/10.1103/PhysRevLett.121.264101
https://doi.org/10.1103/PhysRevX.7.031016
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevLett.121.060601
https://link.springer.com/article/10.1007/BF02101904
https://www.tandfonline.com/doi/abs/10.1080/00018732.2016.1198134
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021062
https://aip.scitation.org/doi/pdf/10.1063/1.529425
https://doi.org/10.1103/PhysRevLett.97.157202
https://www.nature.com/articles/s41586-019-1666-5
https://mathworld.wolfram.com/GeneralizedGell-MannMatrix.html
https://doi.org/10.1103/PhysRevLett.123.210601
https://arxiv.org/pdf/2001.01298.pdf
https://arxiv.org/pdf/2009.03791.pdf
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043403
https://arxiv.org/pdf/2012.05295.pdf

