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We study Z2 topologically ordered states enriched by translational symmetry by employing a
recently developed 2D bosonization approach that implements an exact Z2 charge-flux attachment
in the lattice. Such states can display ‘weak symmetry breaking’ of translations, in which both
the Hamiltonian and ground state remain fully translational invariant but the symmetry is ‘broken’
by its anyon quasi-particles, in the sense that its action maps them into a different super-selection
sector. We demonstrate that this phenomenon occurs when the fermionic spinons form a weak
topological superconductor in the form of a 2D stack of 1D Kitaev wires, leading to the amusing
property that there is no local operator that can transport the π-flux quasi-particle across a single
Kitaev wire of fermonic spinons without paying an energy gap in spite of the vacuum remaining fully
translational invariant. We explain why this phenomenon occurs hand-in-hand with other previously
identified peculiar features such as ground state degeneracy dependence on the size of the torus and
the appearance of dangling boundary Majorana modes in certain Z2 topologically ordered states.
Moreover, by extending the Z2 charge-flux attachment to open lattices and cylinders, we construct
a plethora of exactly solvable models providing an exact description of their dispersive Majorana
gapless boundary modes. We also review the Z × (Z2)3 classification of 2D BdG Hamiltonians
(Class D) enriched by translational symmetry and provide arguments on its robust stability against
interactions and self-averaging disorder that preserves translational symmetry.

I. INTRODUCTION

The Toric Code (TC)1 is a simple example of an ex-
actly solvable model of Z2 topologically ordered states2,3.
But more than providing a single clear example of these
remarkable states, it offers a new set of building blocks
to construct a plethora of other states.4 These building
blocks are its non-trivial quasiparticles e,m and ε. e and
m are hard-core bosons and ε is a fermion, and they all
see each other as semions (‘π-fluxes’). One can describe
any state of the physical Hilbert space in a basis in which
one keeps track of the occupations of only two of these
particles, since one of them can always be viewed as the
bound state of the other two.4,5

Importantly, these particles are non-local: they can
only be created in pairs at the open ends of certain op-
erator strings. Therefore, any physical state must re-
spect the parity conservation of these particles. These
parity symmetries are a kind of ‘tautology’, in an analo-
gous sense to how an open string always necessarily has
two ends. Therefore, these symmetries can never be bro-
ken explicitly by any terms added to the Hamiltonian.
Remarkably, however, since these parity symmetries are
global, they can be broken spontaneously. This occurs,
for example, by adding a finite density of one of the
bosonic particles (say m) to the TC vacuum and having it
form a Bose-Einstein condensate.2,3 Such phases in which
the unbreakable parity symmetry is spontaneously bro-
ken, correspond to trivial short ranged-entangled phases.
This is intimately related to the long-range phase rigidity
of this condensate, leading to energetically costly long-
ranged distortions for inserting the anyon that is seen as

γ′ γ

ee

x

y

FIG. 1: Depiction of Z2 topologically ordered state
with weak symmetry breaking along y-direction, where
the ε-particles form a stack of Kitaev wires along the
x-direction. Solid lines depict the ground state pairing
of ε Majorana modes (black dots). There are dangling
modes at the boundary. The e-particles on vertices
(small cross) can hop along the x-direction (dashed
line), but there is no local operator that hops them in
the y-direction across a single wire without paying the
Bogoliubov fermion gap in spite of this being a
symmetry.

a π-flux by the condensate. On the other hand, when
a finite density of the bosonic anyons are added to the
TC vacuum but instead they form an ‘atomic insulator’
state in which they are localized at sites without spon-
taneously breaking their parity symmetry, the resulting
state is still Z2 topologically ordered, although it can dis-
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play a projective symmetry implementation of the trans-
lation group.6,7

However, adding the ε-fermions onto the TC vacuum
affords much more flexibility in constructing non-trivial
states. If e-particles are kept dynamically immobile,
these constructions can be viewed as a form of Z2 charge-
flux attachment implementing a type of local 2D Jordan-
Wigner transformation.4,5,8–17 In this case, and in con-
trast to the bosonic case, any local fermion Hamiltonian
always respects parity. Therefore the state lacks any form
of long-range parity-phase rigidity, and distant immobile
anyons (e-particles) that are seen as a π-fluxes by the
fermions can be inserted with a finite energy cost. In fact
the celebrated Kitaev honeycomb model18 can be viewed
as a special case of this construction,5 and deconfinement
of the π-fluxes in these states with a finite density of ε-
fermions remains even when they form a gapless Fermi
sea4 akin to an orthogonal metal.19 For other studies of
local boson-fermion mappings, see also Refs. 18, 20–24.

Even though the fermion parity symmetry cannot be
broken spontaneously in the proper sense, the 1D topo-
logical phase of a Kitaev wire has certain features resem-
bling spontaneous parity symmetry breaking.25 In this
study, we will demonstrate how states containing such
Kitaev wires of the emergent ε-fermions underlie a re-
markable phenomenon dubbed ‘weak symmetry break-
ing’ in the case of translational symmetry in Z2 topolog-
ically ordered states.18 A state weakly breaking transla-
tional symmetry is one in which its ground state is ex-
actly translationally invariant, but the symmetry is in
a sense broken by its anyon quasi-particles. To be pre-
cise, it is the situation in which the symmetry action
on its anyon quasi-particles cannot be implemented lo-
cally and maps them between different super-selection
sectors;26 this phenomenon was also referred to as ‘un-
conventional’ symmetry implementation in Ref. 27. The
reason for the appearance of weak symmetry breaking in
stacks of Kitaev wires of ε-fermions, is related to the fact
that such wires display a ‘locking’ of fermion parity and
boundary conditions twist, namely, their ground state
has an odd (even) number of fermions for periodic (anti-
periodic) boundary conditions. As a consequence, if a
π-flux crosses a Kitaev wire, it will swap the boundary
condition of the wire, and such operations would neces-
sarily excite a single Bogoliubov fermion above the gap,
as depicted in Fig. 1. However, it is impossible to remove
such a single fermion by any local operation, because lo-
cal operations can only add or remove fermions in pairs.
Therefore, the π-flux cannot be transported to any site in
which it crosses an odd number of ε-fermion wires even
though such sites are related by translational symmetry
(see Fig. 1). As a consequence these states will display
two types of fluxes belonging to two superselection sec-
tors.

Our work builds on a series of several key previous
studies. These anomalies of the implementation of trans-
lational symmetry have been investigated by a series of
works in the past,18,28–34 where it was emphasized that

Z2 topologically ordered states can have a size depen-
dent ground state degeneracy (GSD) in the torus differ-
ent from 4, and display features such as edge dangling
Majorana modes protected by translational symmetry.
The Wen plaquette model was the first and seminal ex-
ample of such states.28 We will combine this understand-
ing with the recently completed classification of 2D topo-
logically superconductors enriched by translational sym-
metry30,32,35–47, exploiting the exact lattice Z2 charge-
flux attachment,5 to develop an overarching picture of
the interplay of translational symmetry and Z2 topolog-
ical order. In particular, we will be able to specify when
a state will have a projective symmetry implementation
and when the symmetry will be weakly broken for any
topological paired state of ε-fermions with translational
symmetry. We will then link the appearance of dangling
boundary Majorana modes with the existence of stacks
of Kitaev wires and the bulk weak symmetry breaking
of translations of fluxes. In doing so, we will extend
the constructions of Refs. 4 and 5 to lattices with fully
open boundaries and cylinders and provide exactly solv-
able models for the bulk and edge excitations. We note
that, because translational symmetry swaps the super-
selection sectors of the anyons in states with weak sym-
metry breaking, this phenomenon is beyond the projec-
tive symmetry group construction,6,7 and also beyond
the considerations of Ref. 38. Also, since translational
symmetry is not exactly on-site, it is also beyond the
considerations of Ref. 39. We also note in passing that a
related form of weak symmetry breaking of translations
in fractional quantum Hall states has been recently stud-
ied in Ref. 48.

Since our paper is quite lengthly we have provided a
succinct summary of main results in the Sec. VII, which
can be read in an essentially independent way of the main
body of the paper. The remainder of the paper is orga-
nized as follows. In Section III we extend this construc-
tion to lattices with open boundaries. In Section IV we
review the classification and bulk-boundary correspon-
dence of 2D BdG Hamiltonians with translational sym-
metry. In Section V we apply this machinery to develop
a theory of the lattice-size-dependent ground state de-
generacy, the dangling Majorana modes, and the weak
symmetry breaking of translations of Z2 topologically or-
dered states. In section VI we write down and analyze an
exactly solvable model that interpolates from the TC to
the Kitaev honeycomb model and realizes many exam-
ples of the aforementioned properties of translationally
symmetric Z2 topologically ordered states. Several tech-
nical aspects and alternative derivations are presented in
Appendices A-G.

II. REPRESENTATION OF PARTICLES IN
TORIC CODE

In this work we would like to advance the point of view
that the TC Hamiltonian provides an exact re-writing of
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FIG. 2: (a) Representation of Γev,Γ
ε
p and Up,x,y defined on vertex v and plaquette p. Here spins reside in the links

of the square lattice, and those participating in these operators are shown as solid black lines. (b)-(c) Definitions of
L and R plaquettes for the mapping Eq. (6).

a Hilbert space of local degrees of freedom in terms of
non-local degrees of freedom. These local or physical
degrees of freedom are spin-1/2, or equivalently hard-
core bosons, residing in the links of a square lattice. In
its traditional formulation, the non-local or unphysical
degrees of freedom can be viewed also as spin-1/2 residing
in the vertices and the plaquettes. More specifically, the
states of such non-local degrees of freedom are labeled by
the ±1 eigenvalues of operators Gev and Gmp , defined on
each vertex v and plaquette p:

Gev = X3X4X1X2, G
m
p = Z3Z5Z6Z4; (1)

where the convention is depicted in Fig. 2. When placed
in a torus such operators satisfy a global constraint:∏

p

Gmp = 1,
∏
v

Gev = 1, (2)

where the product is taken over all plaquettes and ver-
tices in the lattice. More specifically, we say that when
Gev = −1 (Gmp = −1) an e (m) hard-core bosonic par-
ticle resides in the corresponding vertex (plaquette). In
order to account for the above constraint of Eq. (2) in
the torus, we take these non-local hard-core bosonic par-
ticles to satisfy separate global Z2 number parity con-
servation symmetries, and we would only interpret par-
ity even subspaces as physical, and discard all the states
with a total odd number of hard-core bosons as unphysi-
cal. The non-locality of these bosonic degrees of freedom
stems from the fact that any Hamiltonian which is local
in the underlying local physical spins degrees of freedom
maps onto a Hamiltonian in which the e and m bosons
experience a non-local mutual semionic statistical inter-
action.1,18 Hamiltonians in which one of the boson species
is held immobile while the other is allowed to hop and
pair fluctuate on top of the TC vacuum are examples of
classic bosonic Z2 lattice gauge theories.2 Each subspace
of such Hamiltonians is labeled by the static location of

the immobile particles, while the remaining mobile parti-
cles can be viewed as ordinary hard-core bosons moving
in a background configuration of static π-fluxes.4

More recently a different re-writing of the microscopic
Hilbert space in terms of other non-local degrees of free-
dom has been introduced in Ref. 5. For related ideas
and elaborations see also Refs. 4, 8–14, and 16. The
idea behind this construction is to exploit the property
that the bound state of the e and m particles, denoted
by ε, has fermionic exchange statistics relative to itself,
and therefore can be used to introduce a non-local de-
gree of freedom that is a fermion, rather than hard-core
boson. Therefore, rather than using e and m as a basis,
we can alternatively represent exactly the entire Hilbert
space associated with any local spin Hamiltonian by in-
troducing an ε spinless complex fermion (two Majorana
modes) residing in the plaquettes, and an e hard-core
boson residing at the vertices.4 (see Fig. 1) In this new
representation, the operator that used to measure the
parity of the m boson is now taken to measure parity of
the ε-fermion:

Γεp = Z3Z5Z6Z4. (3)

Therefore, we say that an ε fermion resides in the pla-
quette p if Γεp = −1. On the other hand the operator
measuring the parity of the e boson is now replaced by a
new composite operator, which requires a pairing conven-
tion for plaquettes and vertices, which we do so following
the convention of Ref. 5, by pairing each vertex with its
North-East plaquette, as depicted in Fig. 2, and the e-
parity is defined as:

Γev = X3X4X1X2 × Z3Z5Z6Z4. (4)

Similarly, we say that an e hard-core boson resides in
a vertex v if Γev = −1. The current rewriting allows
to represent the local Hamiltonians of the microscopic
spins in terms of Hamiltonians for the ε-fermion and the
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FIG. 3: Majorana representation of (a) horizontal, (b)
vertical ε-hopping in Eq. (6).

e boson which experience a non-local mutual semionic
interaction. If the e-particles are held immobile by en-
forcing that all operators in the Hamiltonian commute
with the local e-particle number, Γev for all vertices of
the lattice, the resulting theory can be viewed as a mod-
ified Z2 lattice gauge theory, whose gauge invariant sub-
spaces correspond to those of ordinary fermion Hamil-
tonians subjected to non-dynamical static background π
magnetic flux tubes at the vertices that contain an e bo-
son.4 In particular, the subspace without flux (Γev = 1
for all vertices) can be viewed as an ordinary fermionic
Hilbert space, and thus the restriction to this subspace is
a systematic form of local higher dimensional bosoniza-
tion of fermion models.5

Before describing finite size geometries we will review
this fermionic representation in the infinite plane follow-
ing the convention from Ref. 5. We define two elementary
ε pair-creation operators as follows:

Ux,p = X5Z3, Up,y = X6Z4, (5)

that create a pair of ε particles on plaquette p and its
nearest neighbour to its East and North, as shown in
Fig. 2. Together with Γεv, they form a complete alge-
braic basis of spatially local operators out of which any
operator that commutes with all Γεv from Eq. (4) can
be obtained by multiplying and adding these. These op-
erators can therefore be mapped exactly to a complete
set of parity-even fermionic operators in a way that pre-
serves space locality. To do so we introduce two Majo-
rana fermion operators in every plaquette, γp and γ′p, and
map their bilinear products onto operators acting on the
underlying physical spins as follows: (see Fig. 3)

Up → iγLγ
′
R, Γεp → −iγpγ′p. (6)

Directionality L,R follows the same convention as in
Ref. 5. The above representation is exact in the sub-
space where there are no e particles, namely for Γev = 1
on every vertex v, but can be easily extended to cases
where there are static e-particles.4 γ, γ′ are related to
the ε-particle complex fermion operator a by:

γ = a+ a†, γ′ = −i(a− a†). (7)

We reiterate that this mapping (6) preserves spatial lo-
cality in the dual fermionic theory, namely that local
spin operators that commute with Eq. (4) are mapped
into local fermion operators and it is, therefore, a two-
dimensional version of the Jordan-Wigner transformation
which preserves locality.

A. Torus Geometry

We will now generalize the construction of Ref. 5 to
a finite-size torus with side length Lx and Ly (the lat-
tice constants are taken unity). We begin by describing
how to recover the full dimensionality of the underlying
Hilbert space of physical spins, which is 22LxLy , in terms
of the dual fermionic ε and the static bosonic e degrees of
freedoms. Since, the e particles are held immobile by en-
forcing that every operator in the Hamiltonian commutes
with Γev from Eq. (4), the Hilbert space decomposes into
a direct sum of decoupled subspaces with specific values
Γev = ±1. In the torus there are 2LxLy−1 such indepen-
dent values, since the Γev operators also satisfy a parity
constraint: ∏

v

Γev = 1. (8)

Notice that if we take the product of Γev over all the ver-
tices contained inside a simply connected region in the
torus, one obtains a closed loop operator that acts only on
spins at the boundary of such region, which can be viewed
as a Z2 lattice version of the Gauss-Ostrogradsky’s di-
vergence theorem. Clearly such boundary operator must
commute with any Hamiltonian, since the Hamiltonian
commutes with every Γev. However, notice that when
such region is not simply connected but wraps around
either the x or y directions of the torus, there are two
disconnected loop operators that make up the boundary
of the region and which wind completely around either of
the directions of the torus, as depicted in Fig. 4. We call
these two operators along the x, y directions Tx,y, and
write them explicitly as:

Tx,y = −
∏

XZ, (9)

where the convention for taking the product is depicted
in Fig. 4, and we have added a global minus sign for fu-
ture notational convenience. Notice that the Tx,y opera-
tors cannot be expressed in terms of the Γev and therefore
they are algebraically independent. Importantly, any lo-
cal Hamiltonian that commutes with every Γev must also
commute with Tx,y. The spectrum of these operators is
Tx,y = ±1 , they also commute [Tx, Ty] = 0, and there-
fore we have 2LxLy+1 decoupled sectors of the Hilbert
space labeled by {Γev, Tx, Ty}.

Each of these 2LxLy+1 subspace labeled by {Γev, Tx, Ty}
can be mapped exactly into the parity-even subspace of
a Fermionic model with static background π-fluxes. This
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FIG. 4: (a) Representation of the t’Hooft operator Tx along the x-direction. (b) Visual representation of the
t’Hooft operator Ty along the y-direction. The lattice size is Lx = Ly = 4.

n+ 1 n n− 1 · · ·· · ·

FIG. 5: Transport of fermion across a given row given
by Eq. (11), with the order of product n shown
explicitly.

parity even restriction appears in the torus because of
the constraint of the operator Γεp:∏

Γεp = 1. (10)

Therefore, in analogy to the bosonic case, we only inter-
pret the parity even subspaces of the fermions as physical
and discard all of the states with a total odd number of
fermions as unphysical. Since there are LxLy plaque-
ttes, this leads to a degeneracy 2LxLy−1for each of these
parity-even fermion sub-spaces. As we see, then the total
dimensionality of the Hilbert space is recovered from the
2LxLy+1 subspaces labeled by {Γev, Tx, Ty}, each contain-
ing only even numbers of ε-fermions.

Now, however, the representation from Eq. (6) only
applies to the sector in which Γev = 1, and Tx = Ty = 1,
and needs to be modified in other sectors. To show this,
we will describe the correspondence between the repre-
sentation of these operators and the four sectors with
arbitrary values of {Tx, Ty}, but restricted to Γev = 1;
the representation of sectors with Γev 6= 1 is discussed in
Ref. 4. To do this, notice that the Tx,y operators can be

written as a string of products of the Ux,p, Uy,p and Γεp
operators as follows:∏

n∈γx

(
ΓεnUx,n

)
= Tx,

∏
n∈γy

(
ΓεnUy,n

)
= Ty, (11)

where the product is taken along horizontal and vertical
paths γx,y from East to West and South to North respec-
tively. As an example, the convention for γx in the strings
is shown in Fig. 5. These string operators in Eq. (11) can
be viewed as the operators associated with the transport
of fermions around the non-contractible loops of the torus
oriented along x- and y-directions. Substituting Eq. (6)
in the right-hand side of both equalities in Eq. (11) gives
Tx,y = 1. Therefore, the subspace with Tx = Ty = 1
corresponds to fermions having periodic boundary condi-
tions along both directions. The subspaces with Tx = −1
(Ty = −1) can be represented as fermions having anti-
periodic boundary conditions along the x- (y-)direction.
For example, if Tx = −1 and Ty = 1, we can represent the
Ux,p, Uy,p and Γεp in the same way as was done in Eq. (6)
except that we introduce a ‘branch-cut’ directed along
the y-direction, as depicted in Fig. 6 and those Ux,p that
intersect such “branch-cut” acquire an extra −1 factor
relative to the representation in Eq. (6), and are given
by:

Ux,p → −iγγ′. (12)

Eq. (11) then gives Tx = −1. Analogous choices are made
for other values of {Tx, Ty}.

Thus, in summary, Tx,y is the operator that deter-
mines whether the fermion has anti-periodic boundary
conditions along the x-, y-directions of the torus, and
the representations from Eq. (6) need to be adjusted by
adding an appropriate minus sign along a branch-cut of
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p1 p2

FIG. 6: Twist of the horizontal boundary as a
branch-cut shown by the bold black line. Fermion
transport across the branch-cut has an additional factor
of −1 in Eq. (6). For example, Ux,p1 is mapped into
−iγp1γ′p2 .

the torus. Clearly there is a freedom in the representa-
tion for choosing the precise shape of the branch-cut and
other gauges where the vector potential is spread over
more bonds are also possible. In Appendix A, the map-
ping in Eq. (6) is constructed more explicitly using a 2D
analog of Jordan-Wigner transformation. There the rela-
tion of Tx,y to boundary conditions (12) is also obtained
straightforwardly.

III. TORIC CODE AND Z2 CHARGE-FLUX
ATTACHMENT WITH OPEN BOUNDARIES

In this Section we will discuss the detailed implemen-
tation of the bosonization construction in lattices with
open boundaries. The idea is to first generalize the TC
model to a lattice with open boundaries. Provided that
the lattice has as many vertices as plaquettes, the Z2

charge-flux attachment described in Section II proceeds
then naturally. Open lattices are interesting because they
will allow us to explicitly study boundary modes in ex-
actly solvable models that we will describe in Section
IV. They are also interesting because the open boundary
removes the global parity constraints on the number of
non-local e,m, ε particles. This is because particles ap-
pear at the end of string operators but, unlike the torus
where the string always has two ends, in open boundaries
one can formally view one end of the string to lie outside
of the system leaving a single unpaired non-local excita-
tion in its bulk. For related discussion of TC with open
boundaries see e.g. Refs. 8 and 49

A. Open boundaries

Our open rectangular lattice is constructed by remov-
ing the links along upper and right edges of the rectan-
gular lattice, as shown in Fig. 7. The number of links,
and consequently of physical local spins, in the lattice is
still 2LxLy, and its Hilbert space dimension 22LxLy . The
number of vertices and plaquettes in the lattice is still
LxLy respectively. The vertex and plaquette operators
are defined as:

Gev =
∏
l∈v

Xl, G
m
l =

∏
l∈p

Zl, (13)

where l are the links connected to a given vertex v or sur-
rounding a given plaquette p. Notice that the vertex op-
erators, Gev, acting on the left and bottom edges contain
only three links, and the one in the bottom left corner
contains only two links, as shown in Fig. 7. Similarly, the
plaquette operators acting over the top and right edges
contain three links and the one in the upper right corner
contains 2 links, as shown in Fig. 7. However the local
algebraic properties of these operators are the same as in
those in the usual torus geometry, namely, they are fully
commutative among themselves and they have spectrum
±1. However, one important global distinction with the
torus is that these operators are completely independent
from each other, and in particular they do not satisfy
any global parity constraint analogous to that in Eq. (2).
We provide a rigorous proof of this in Appendix B. As a
consequence, the corresponding TC Hamiltonian, given
by:

H = ∆e

∑
v

(
1−Gev

2

)
+ ∆m

∑
p

(
1−Gmp

2

)
, (14)

has a unique ground state and there is a gap,
min(∆e,∆m), to all excitations (assuming ∆e,m > 0).
This is in agreement with the known property of the or-
dinary TC topological order, namely that it is not forced
to have accompanying gapless boundary modes (see e.g.
Ref. 50).

Importantly, in this geometry the e and m particles can
be created as isolated particles by a string that extends
up the boundary without any accompanying boundary
energy cost. In the case of e particles, for example, a
string of Z operators can be extended from the loca-
tion of the e particle towards the right edge or the upper
edge, and in the case of the m particles, a string of X
operators it can be extended from the desired plaquette
towards the bottom or left edge, as depicted in Fig. 7. In
other words, there are 2LxLy independent labels associ-
ated with Gev, G

m
p that can be used to uniquely label the

full 22LxLy -dimensional Hilbert space. Therefore we can
view e and m as hard-core bosons without any global par-
ity constraint. If we hold one of these species static, say e,
by enforcing the commutativity of the Hamiltonian with
its local particle number operator, Gev, then the remain-
ing Hilbert spaces can be exactly mapped into Hilbert
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FIG. 7: (a) Gev and Gmp operators on a boundary in an open lattice. They become three-spin operators on v1, p1.
On the lower left vertex v2 and upper right plaquette p2, Gev and Gmp have only two spins. (b) Creation operators for
a single e and m on vertex v and plaquette p respectively, by extending the corresponding Z and X lines from the
left and right boundaries. The lattice size is Lx = Ly = 4.

spaces of hard-core bosons coupled to static π-fluxes lo-
cated at the vertices that contain e-particles, without any
global parity constraints.

We will now extend Z2 charge-flux attachment in Ref. 5
to open lattices. We begin by describing the modified
parity operators that measure the presence of the ε and
e particles. We again view the e-particles as residing in
the vertices and the ε-particles in the plaquettes. Notice
that our lattice has been chosen so that there is a unique
plaquette to the north-east of any given vertex, and thus
we can follow the same convention of north-east pairing
of vertices and plaquettes from the torus defined in Sec-
tion II. The operators measuring the parity of the e- and
ε-particles are:

Γev = Gev ×GmNE(v), Γεp = Gmp , (15)

where NE(v) is the plaquette north-east of the vertex v.
To map onto pure fermionic models we freeze the dynam-
ics of e-particles (π-fluxes) as before, by demanding that
the Hamiltonian commutes with every Γev for all vertices
v. This leads to operators in the bulk which are anal-
ogous to those we had in the torus, but forbids certain
boundary operators. Namely, we define Ux and Uy in
an identical way to how they are defined in Fig. 2 and
Eq. (5).

However, if one of the links making up the Ux,y is ab-
sent in our new lattice with removed boundaries (see
Fig. 7), then the corresponding operator Ux,y will not
commute with some Γev and thus it is not allowed. The
remaining allowed operators can be represented exactly
as Majorana fermion bilinears as before. Specifically, we
introduce two Majorana modes γ, γ′ on every plaquette
and we associate the operators in the same way as in

Eq. (6). Such representation from Eq. (6) would describe
the sector Γev = 1 which has no e-particles (π-fluxes). The
sectors with e-particles can be represented by introducing
strings that connect to the e-particles and twisting the
sign of the representation of Up when the fermions hop
along such cuts to account for the localized π-fluxes.4

We emphasize that in the current lattice the particle
numbers of ε-particles on plaquettes, (1−Γεp)/2, and the
particle numbers of the e-particle at vertices, (1−Γev)/2,
form a complete set of labels of all the 22LxLy states
in the Hilbert space, because there are no global par-
ity constraints on ε and e in the open lattice, in anal-
ogy to the bosonic representation in terms of the parity
hard-core bosons m and e, discussed at the beginning
of this Section. Consequently, we can also create iso-
lated ε-fermions in this geometry by extending the string
operators to the boundaries. This allows for a detailed
and explicit lattice representation of all operators within
any given sector with fixed Γev, including the single Majo-
rana mode operator. We note however that the operators
with odd fermion parity are necessarily accompanied by
non-local strings, whereas the non-local strings disappear
from the bilinear operators defined in Eq. (6), and thus
these are the only ones that one must include in physical
Hamiltonians or other local operators that are obtained
by products of these. Details of the representation of
single fermion operator in terms of spin operators in this
lattice are presented in Appendix C.
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Lm(y)Le(y)

(a)

Lε(n)

(b)

FIG. 8: (a) The twist of boundary conditions for e and m particles along the y-direction in a cylinder. The bold
links along paths Le(y) and Lm(y) are multiplied by Z and X respectively in Eq. (16). (b) The twist of boundary
conditions Ty from Eq. (9) for ε particles along the y-direction in a cylinder. Lε(n) are along the n-th column and
Ty along this path satisfies Eq. (17).

B. Cylindrical Geometry

The cylinder geometry has an interesting blend of
topological features from the Torus and open lattice ge-
ometries. To construct it, we choose the system to be
periodic along the y-direction and open along the x-
direction by removing the links in the right edge, as
shown in Fig. 8.

Operators on the boundary plaquettes with links re-
moved are modified in the same way as the open lattice
case. This means Gev and Gmp are three-spin operators on
the left and right edges respectively. As in the case of the
open lattice, these operators are still completely indepen-
dent and do not satisfy any global parity constraint, and
the e and m particles can still be created as single isolated
particles by extending their string towards right and left
the open edges of the cylinder respectively. Therefore,
the corresponding TC Hamiltonian from Eq. (14) has a
unique ground state in the cylinder and a gap to all exci-
tations. Notice that the closed-loop electric and magnetic
string operators along the periodic y-direction are not in-
dependent operators from the local Gev and Gmp , but are
related by: ∏

l∈Lm(y)

Xl =
∏

v∈left of Lm(y)

Gev,∏
l∈Le(y)

Zl =
∏

p∈right of Le(y)

Gmp .
(16)

Here Lm(y) and Le(y) are closed loops around the pe-
riodic y-direction associated with transport of m and e
particles and the convention for the above relations is
depicted in Fig. 8.

Now since every vertex has a unique north-east pla-
quette we can follow the same convention for the Z2

charge-flux attachment of previous Section, by enforcing
that all terms in the Hamiltonian commute with the new
e-particle parity operator Γev = GevG

m
NE(v). This leads

to an effective fermionic representation for the various
subspaces of the Hilbert space in terms of ε-fermions,
whose parity is measured again by Γεp = Gmp . And we
follow the same convention for representation of opera-
tors in terms of the two Majorana modes γ, γ′ on ev-
ery plaquette as the one described in the previous Sec-
tions. There are no global constraints on the parity of
ε-particles and a single particle creation operator can be
defined. But it always involves a non-local loop operator,
and therefore can be discarded from appearing in physi-
cal Hamiltonians, which will only contain again operators
within the fermion parity even sub-algebra and thus can
be completely generated by from the local spin operators
Γεp, Ux,p, Uy,p.

One particularly amusing aspect of the cylinder ge-
ometry is that, even though there are no global parity
constraints on the ε particles, it is still possible to twist
boundary conditions along the periodic y-direction. At
first glance one might think that this will induce a mis-
match between the size of the dual fermionic Hilbert
space and that of the underlying spin Hilbert space, since
the locations of ε-fermions and π-fluxes are enough to la-
bel all the states in the physical Hilbert and exhaust its
dimensionality, and thus one might think the extra twist
of boundary conditions along y-direction will double the
size of the dual fermionic Hilbert space relative to the
underlying spin space. There is however a non-trivial
constraint between the local e and ε parity operators in
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the fermionic operators and the operator that transports
fermions over a closed loop around the y-periodic direc-
tion of the cylinder, Ty. Namely by adopting the same
definition we had in the torus in Eq. (9) for the operator
Ty that performs transport over the periodic direction,
we encounter that this operator satisfies the following
constraint with products of local parity operators of e
and ε particles :

Ty = −
( ∏

left of Lε(n)

Γev

)( ∏
p∈lattice

Γεp

)
, (17)

where Lε(n) is a vertical closed loop around the peri-
odic y-direction at the n-th column of the lattice. The
schematic of the definition of these operators is depicted
in Fig. 8. The first product of Γev operators can be un-
derstood intuitively by noting that it measures the extra
induced twist of boundary conditions by the presence of
static e particles (π-fluxes), within the convention that
e-particles are added from the right open edge of the
cylinder, and that each one induces a −1 twist of the
amplitude of the hopping in the vertical y-direction, as
depicted in Fig. 7. The second product of Γεp is very in-
teresting as it implies that the the boundary conditions
along the y-direction are not independent of the global
parity of the fermions. In particular in the case of no
static e-particles (Γev = 1 for all v), the constraint im-
plies that for a total odd (even) number of ε-fermions in
the cylinder one must necessarily choose periodic (anti-
periodic) boundary conditions along its y-direction. In
other words, the dual Hilbert spaces with e.g. periodic
y-boundary conditions and an even number of fermions
must be discarded as un-physical.

There is a simple intuitive picture behind this amus-
ing constraint, which is illustrated in Fig. 9. From Fig. 9
one can see that this constraint arises from the fact that
operators that raise the ε-fermion number by one with-
out adding e-particles must have electric and magnetic
strings extending to opposite open edges of the cylinder,
and therefore they intersect Ty an odd number of times
leading to these operators to anti-commute, and thus
to the property that the boundary conditions and the
global fermion parity cannot be changed independently
but must obey the constraint in Eq. (17). This point is
further discussed in Appendix C. The above discussion
implies that in order to properly dualize the subspaces
with static e-particles (commutativity with every Γev) as
ordinary fermionic models of ε-particles, one must im-
pose a global fermion parity conservation, namely that
the Hamiltonian commutes with Πp∈latticeΓεp, in order to
have a definite fermionic boundary condition along the
periodic y-direction.

IV. TOPOLOGICAL SUPERCONDUCTORS
WITH TRANSLATIONAL SYMMETRY

The exact fermionic representations of spin Hamilto-
nians in terms of fermionic models described in previous

p

Ty

FIG. 9: String operator that changes ε-parity at
plaquette p. The operator intersects Ty and changes the
vertical boundary condition for ε-fermions. This is due
to the dependence of ε particle number and vertical
twist Ty in Eq. (17).

Sections provides a boundless tool to build new phases
of matter on top of the Toric Code vacuum. Naturally a
simple class of phases is that in which ε-fermions have an
effective non-interacting fermion bilinear Hamiltonian.
The only ‘unbreakable symmetry’ that these ε-fermions
are required to have is their global parity. Therefore the
natural free-fermion states that one is lead to consider are
those described by Bogoliubov-De-Gennes (BdG)-type
Hamiltonians. In two dimensions and in the absence of
any symmetry, these are Hamiltonians belonging to class
D and in the topological classification of free particle sys-
tems are labeled by the integer spectral Chern number,
C ∈ Z, which counts the number of right-moving minus
the number of left-moving Majorana modes at the edge.35

The Z2 topologically ordered states that one would con-
struct on top of the Toric Code vacuum by having the
ε-fermions form a topological superconductor state with
Chern number C were those considered by Kitaev in his
seminal paper Ref. 18, where he demonstrated that the
bulk topological properties of the anyons in such phases,
as encoded in the data of their fusion modular tensor cat-
egory, only depend on C mod 16. In spite of this, any
two states with different C can still be regarded as topo-
logically distinct phases since they cannot be connected
adiabatically while preserving their bulk gap.

In the present study we would like to extend these con-
siderations to the case in which the topological order is
enriched only by the discrete lattice translational sym-
metry. We will restrict to cases in which the e-particles
(π-fluxes) are absent, which means that we will only con-
sider the phases in which the translational symmetry is
implemented non-projectively on the ε-fermions. In the
perspective of the projective symmetry group of Refs. 6
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and 7, these correspond to states where the ε-fermions
experience zero flux per unit cell. Another set of trans-
lational invariant states are those in which there is one
e-particle (π-flux) in every vertex, which can be stud-
ied by similar methods to those we develop, but we will
not consider this case here. However, as we will see in
Section V D, some of the phases that we will consider
still feature a non-trivial projective representation of the
translational symmetry of e-particles. Therefore, we are
naturally led to consider the symmetry protected topo-
logical phases of free fermions in Class D enriched by
translational symmetry. The remainder of this Section is
essentially a review of results in the literature of classifi-
cation of BdG Hamiltonians with particular emphasis on
the aspects that are relevant for our analysis. We note in
passing that even though our analysis is restricted to only
BdG Hamiltonians with discrete translational symme-
tries, it can be naturally extended to other symmetries,
which is naturally aided by recent progress on complet-
ing the full classification of crystalline topological BdG
Hamiltonians.44–47

A. Z× (Z2)3 classification of translationally
invariant 2D BdG Hamiltonians

We assume the fermion bilinear Hamiltonian has an
ordinary commutative discrete translational symmetry
group with generators {tx, ty}. This requires that
fermion pairing terms respect translational symmetry
and therefore Cooper pairs carry zero momentum. We
can therefore label BdG fermion eigenmodes by crystal
momenta (kx, ky). In crystal momentum basis, the BdG
Hamiltonian pairs states of momenta k and −k. There
are four special momenta residing at the center and cor-
ners of the Brillouin zone that satisfy k = −k mod 2π,
namely {(0, 0), (0, π), (π, 0), (π, π)}. They are special be-
cause the fermion modes at these momenta are ‘paired
with themselves’. Therefore, for these points the BdG
Hamiltonian can be viewed effectively as a 0D single site
Hamiltonian. 0D BdG Hamiltonians (class D) are in turn
classified by a ζ ∈ Z2 index,35 which simply measures the
parity of the fermion number operator (NF ) at the site,
ζ = NF mod 2. Namely, ζ = 0 corresponds to states
with an even number of fermions on the site, which are
adiabatically connected to the trivial empty vacuum with
no fermions, and ζ = 1 corresponds to states with odd
fermions on the site, which are connected adiabatically
to the state with only one fermion. As a consequence,
topological superconductors with translational symmetry
in 2D have four topologically invariant Z2 indices (also
referred to as Pfaffian indicators),45 which measure the
fermion number parity at the 4 special momenta in the
Brillouin zone.30,32,45 We will represent these 4 parity in-
dices with a 2×2 matrix, ζij , where the indices i, j denote
the special momenta kij , arranged as follows:(

(0, 0) (0, π)
(π, 0) (π, π)

)
≡
(
k11 k12

k21 k22

)
, ζij = ζ(kij). (18)

L even

L odd

Periodic B.C.

L even

L odd

Anti-periodic B.C.

FIG. 10: Visual representation of quantisation of
momenta for periodic and anti-periodic boundary
conditions and given lattice size L. We show here odd
L = 3 and even L = 4.

These topological parity indices are not all independent
from the spectral Chern number, C ∈ Z, but satisfy the
following constraint:36,37

(−1)C =

2∏
i,j=1

(−1)ζ(kij) (19)

Therefore, once the Chern number C is specified, only
three of the parity labels are independent, and we have a
Z× (Z2)3 classification of translationally invariant topo-
logical superconductors in 2D.

To illustrate this more concretely, let us consider a
BdG Hamiltonian with a single complex fermion mode,
aR, on every unit cell (spinless fermions with a single
site per unit cell) labeled by the vector R in the Bra-
vais lattice. These systems are sufficient to realize repre-
sentatives of all the topologically non-trivial phases and
the exactly solvable models that we will discuss in Sec-
tion VI are of this kind. In crystal momentum basis

a†k = N−1/2
∑

R exp(−ik.R)a†R, the BdG Hamiltonian
has the form:

H =
∑
k

Ψ†k

(
ε(k) ∆(k)

∆∗(k) −ε(−k)

)
Ψk, Ψk =

(
ak
a†−k

)
.

(20)
The pairing function is antisymmetric ∆(k) = −∆(−k),
and therefore at the special momenta satisfying kij =
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−kij , the BdG Hamiltonian is diagonal and the sign
of ε(kij) determines the topological parity index ζij .
Namely, the complex fermion mode at kij is occupied
if ε(kij) < 0 and empty if ε(kij) > 0. The topological in-
dex ζij is therefore simply given by the zero temperature
Fermi-Dirac occupation function at such momenta,30,32

which explicitly reads as:

ζij = 1−Θ[ε(kij)], (21)

These ζij parity indices determine also the global fermion
number parity of the ground state when placed on a finite
size torus,30,32 in a way that generalizes the classic result
of Read and Green on 2D topological paired states.51

To see this we consider a finite torus with a number of
Lx,y ∈ Z Bravais unit cells along the x-, y-directions,
whose crystal momenta belong to a discrete lattice:

(kx, ky) = 2π

[
nx + Φx/(2π)

Lx
,
ny + Φy/(2π)

Ly

]
, nx,y ∈ Z.

(22)
Here we imagine that the system can have periodic or
anti-periodic boundary conditions along the two direc-
tions of the torus leading to twists of boundary conditions
labeled by Φx,y ∈ {0, π}. Crucially, some of the special
crystal momenta might not be allowed in a given finite
size torus depending on the parity of the total number of
unit cells Lx,y mod 2 and the boundary condition twist.
This is illustrated in Fig. 10 where crystal momenta are
depicted as discrete angles in a circle. It is useful to con-
struct a matrix, A(kij), of ‘allowed’ momenta, namely a
function which equals 1 when a special crystal momen-
tum point kij is allowed and 0 when it is not in a given
system:

A(kij) = X(kx,ij)Y (ky,ij),

X(kx) =

(
1− Φx

π

)
+ (−1)Lx

kx
π

[
1− Φx

π
− (Lx mod 2)

]
,

(23)

where Y (ky) is obtained from X(kx) by exchanging all
of the ‘x’ by ‘y’ labels in the expression above. There-
fore the total fermion particle number parity of a ground
state in a finite torus can be simply obtained by adding
the topological parity index ζij that counts the par-
ity of fermion occupation at the special momentum kij ,
weighed by the function A(kij) that equals 1 if the corre-
sponding special momentum is allowed and 0 otherwise
and it is explicitly given by the following formula:

Nf mod 2 =

( 2∑
i,j=1

A(kij)ζij

)
mod 2 = Tr(AT ζ) mod 2.

(24)
In the second equality, ζij and A(kij) are viewed as ma-
trices with momenta index i, j arranged as described in
Eq. (18). Table I lists the A matrices for the various twist
and parities of the number of lattice sites. This matrix
notation should simplify the bookkeeping of determin-
ing when a BdG topological phase has an odd number of

(P-P) (AP-P) (P-AP) (AP-AP)

(e-e)

(
1 1

1 1

) (
0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)

(e-o)

(
1 0

1 0

) (
0 0

0 0

) (
0 1

0 1

) (
0 0

0 0

)

(o-e)

(
1 1

0 0

) (
0 0

1 1

) (
0 0

0 0

) (
0 0

0 0

)

(o-o)

(
1 0

0 0

) (
0 0

1 0

) (
0 1

0 0

) (
0 0

0 1

)

TABLE I: A matrix for all lattice size and boundary
conditions

fermions in a finite torus, by simply taking the sum of the
component-by-component product of the ζ and A matri-
ces and determining if it is even or odd from Eq. (24).

B. Lower dimensional stacking and bulk-boundary
correspondence

Let us now discuss the real space picture of this finer
topological classification of 2D translationally invariant
BdG Hamiltonians and its manifestations in terms of
gapless boundary modes in open lattices. Interestingly,
some but not all of the states with non-trivial Z× (Z2)3

labels have boundary gapless modes. These parity labels
are indeed an example of ‘weak topological’ indices, in an
analogous sense to those in time-reversal-invariant topo-
logical insulators,52,53 namely, they characterize stacking
patterns of lower dimensional topological phases,36,37,45

and have therefore a very transparent real space interpre-
tation. In order to understand such real space interpre-
tation of these indices in 2D, it is useful to understand
the classification of lower dimensional BdG Hamiltonians
with translational symmetry, which we shall review next.

Topological superconductors without symmetry (class
D) in 0D and 1D both have Z2 topological classifica-
tions.35 In 0D, the state with trivial ζ = 0 Z2 index,
has an even number of fermions in the site, while the
non-trivial state, ζ = 1, has an odd number of fermions
in the site. In 1D, the trivial state with K = 0 Z2 in-
dex is connected adiabatically to the trivial vacuum with
zero fermions per site, while the non-trivial state with
K = 1 Z2 index has an odd number of unpaired Majo-
rana modes at each end of the wire, and its classic re-
alization is the Kitaev wire model.25 With translational
symmetry in 1D there appear two additional weak Z2 in-
variants, ζ(ki) ∈ {0, 1}, measuring the fermion parity at
the two special momenta ki ∈ {0, π} analogously to the
2D case discussed above. These weak parity invariants
are constrained by the strong 1D topological index K, as
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follows:45

(−1)K =

2∏
i=1

(−1)ζki . (25)

Therefore, 1D BdG superconductors (class D) with lat-
tice translations, can be fully classified by two indepen-
dent Z2×Z2 labels (ζ0, ζπ), and there is, therefore, a total
of 4 topologically distinct phases. The two states (0, 0)
and (1, 1) with trivial strong label (K = 0) are adiabati-
cally connected to the ‘stacks’ of 0D dimensional phases,
and are therefore ‘weak’ topological states. Specifically,
the trivial (0, 0) phase is adiabatically connected to the
trivial vacuum with no fermions per site, while the (1, 1)
phase is adiabatically connected to the stack of 0D sites
with one fermion per site. This can be seen simply by
noting that an insulator with a fully occupied band with
one fermion per site would have occupied both special
1D momenta ki ∈ {0, π}. Therefore these states are
‘Atomic Insulators’ (AI),45 and clearly have no dangling
gapless edge Majorana modes. We note that, because
of the above, in the classification convention of Ref. 45,
the state (1, 1) is viewed as a ‘trivial’ state because it
has a trivial ‘atomic insulator limit’. However, for our
purposes it is important to keep track of this phase as
a non-trivial topologically distinct phase from (0, 0) be-
cause they cannot be connected adiabatically without
closing the bulk gap. In fact this distinction is robust
beyond non-interacting BdG Hamiltonians, because the
(1, 1) ground state has a global odd number of fermions in
1D chains with an odd number of sites regardless of twist
of boundary conditions and an even number of fermions
in lattices with an even number of sites, in sharp con-
trast to the (0, 0) state which always has even number
of fermions regardless of twist and parity of the number
of lattice sites. This will be particularly important in
our case because states with an odd number of fermions
must be discarded as unphysical when the fermions are
emergent and are microscopically forced to be created
only in pairs from a topologically ordered ground state
in the torus, as it is the case of the ε-fermions previously
discussed in Section II. This is in fact the underlying
cause of the anomalous ground state degeneracy in the
torus of certain Z2 topologically ordered states discussed
in Refs. 28–30, 32, and 33, which we will review in the
forthcoming Sections.

The states with labels (1, 0) and (0, 1) are strong 1D
topological superconductors (K = 1 Kitaev-wire-type
states) which are obtained from the trivial state (0, 0)
via a phase transition by closing the gap either at k = 0
or k = π respectively. They both feature an odd num-
ber of dangling Majorana modes at each edge, and can be
distinguished by their global fermion parity in finite peri-
odic chains with L ∈ Z sites subjected to periodic (Φ = 0)
and anti-periodic (Φ = π) boundary conditions. Specif-
ically, the following formula, which is the 1D analogue
of Eq. (24), gives the number of fermions in a periodic

chain:

Nf mod 2 =

( 2∑
i=1

A(ki)ζ(ki)

)
mod 2 = A.ζ. (26)

A(ki) = X(ki) and the function X(ki) is the same as
in Eq. (23). This formula predicts that the state (1, 0)
will have an odd (even) number of fermions in its ground
state under periodic (anti-periodic) boundary conditions
regardless of the number L of lattice sites. On the other
hand (0, 1) will have an odd number of fermions for chains
with L even and periodic boundary conditions and L odd
and anti-periodic boundary conditions, and otherwise it
will have an even number of fermions.

Armed with the above results in 0D and 1D, we are
now in a position to understand the real space picture
of the Z× (Z2)3 topological classification of BdG super-
conducting phases with translational symmetry in 2D.
First notice that if we construct a 2D BdG systems out
of stacks of decoupled 1D wires which extend along the
x- (y-)direction, then the parity index matrix ζij will be
independent of its i-component (j-component). This im-
plies that the following phases will be adiabatically con-
nected to 0D atomic insulators insulators (AIi) with an
even (i = 0) and odd (i = 1) number of fermions per site
respectively:

AI0 : ζij =

(
0 0

0 0

)
; AI1 : ζij =

(
1 1

1 1

)
. (27)

Neither of the atomic insulators, AIi, has dangling Ma-
jorana modes at the boundaries. AI0 has always an even
number of fermions in its ground state regardless of the
parity of the torus size or the twist of boundary condi-
tions, whereas AI1 has a fermion parity that equals the
parity of the number of sites in the lattice LxLy mod 2
independent of the twist of boundary conditions. Simi-
larly the following phases are adiabatically connected to
decoupled stacks of Kitaev-wires (KWα,ζ) aligned along
the α-directions (α ∈ {x, y}) and with a 1D parity index
ζ at k = π (ζ ∈ {0, 1}):

KWx,0 : ζij =

(
1 1

0 0

)
; KWx,1 : ζij =

(
0 0

1 1

)
; (28a)

KWy,0 : ζij =

(
1 0

1 0

)
; KWy,1 : ζij =

(
0 1

0 1

)
. (28b)

When placed on a lattice with open boundaries, KWα,ζ

phases will have an odd number of dangling Majorana
modes per exposed unit cell along the open boundaries
that are orthogonal to the α-direction and an even num-
ber of Majorana modes per exposed unit cell for bound-
aries parallel to the α-direction of the wires, provided the
translational symmetry along the boundary is preserved.

There are two other weak topological phases that are
adiabatically connected to decoupled 1D Kitaev wires,
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and are those in which the ζij parity index depends only
on the sum of i + j mod 2. These can be viewed as
decoupled Kitaev wires that are oriented along the diag-
onal direction, namely, the fermion modes in a unit cell
labeled by coordinates (Rx, Ry) only couple to fermions
in the unit cells given by (Rx + n,Ry + n), with n ∈ Z.
Because of this, we will denote these ‘diagonal’ Kitaev-
wire phases by KWx+y,ζ where ζ ∈ {0, 1} is the 1D parity
index of the wires, and they have topological 2D parity
indices given by:

KWx+y,0 : ζij =

(
1 0

0 1

)
; KWx+y,1 : ζij =

(
0 1

1 0

)
.

(29)
When placed on a lattice with open boundaries, the
KWx+y,ζ phases will have an odd number of dangling
Majorana modes per exposed unit cell in all of the bound-
aries for which the boundary translational symmetry is
preserved. The phases in Eqs. (27)-(29) exhaust all
of the 2D ‘weak’ topological phases that are adiabat-
ically connected to stacks of lower dimensional topo-
logical phases. In particular, notice that other ‘slopes’
for stacking of wires do not lead to new topological
phases. For example, if we stack Kitaev wires with a
‘slope’ (qx, qy), qx,y ∈ Z, by coupling fermion modes γ
at the unit cell (Rx, Ry) only with fermion modes γ′ in
the unit cell (Rx + qxn,Ry + qyn), with n ∈ Z, one
can show that this state will be topologically equiva-
lent to a state with a different slope (q′x, q

′
y) provided

that q′x,y = qx,y mod 2. This follows from the fact
that these two phases have ε(k) ∝ cos(qxkx + qyky) and
ε(k) ∝ cos(q′xkx+q′yky), and they have the same topolog-
ical indices given by Eq. (21) evaluated at kx,y = 0, π due
to 2π-periodicity of the cosine function. Therefore we see
that the AIζ ,KWx,ζ ,KWy,ζ ,KWx+y,ζ phases, which re-
spectively have slopes (0, 0), (1, 0), (0, 1), (1, 1), cover all
the possible slopes of wire stacking modulo 2.

The weak topological superconducting phases form a
modular additive group, where the physical interpreta-
tion of addition is aligning the phases ‘on top of each
other’, as in a bilayer system while preserving the trans-
lational symmetry. The topological parity matrices, ζij ,
of a decoupled bilayer is the sum of the topological parity
matrices of each layer modulo 2. Because of this we can
specify a ‘complete basis’ of phases out of which all other
can be obtained by layer addition. This basis would only
have 3 phases, which we could choose for example to be
KWx,0, KWy,0,AI1, and the three Z2-valued coefficients
(0 and 1) that specify any other phase in this basis can
be taken as the (Z2)3 topological labels in the Z× (Z2)3

classification. Then to complete the basis to generate
all of the possible 2D BdG superconducting phases by
layer addition, we simply need to specify two non-trivial
states with non-zero Chern numbers C = ±1, which we
can choose to be the simplest chiral topological topolog-
ical superconductors, denoted by χC , and describe them

by a parity matrix:

χC =

(
1 0

0 0

)
. (30)

These χC topological superconductor has spectral Chern
number C = ±1. They can be obtained from the trivial
vacuum, AI0, by closing the gap at the special momenta
(0, 0) and they are a lattice version of the celebrated p±ip
spinless superconductor described by Read and Green,51

with a chiral gapless Majorana boundary mode, and an
odd number of fermions in the torus for periodic bound-
ary conditions along x- and y-directions, and even num-
ber otherwise. Therefore (χC ,KWx,0,KWy,0AI1) form
a complete basis for layer addition for all topological
BdG states with translation in 2D, and we can spec-
ify any state by a unique vector (C, ζKx

, ζKy
, ζAI) ∈

(Z,Z2,Z2,Z2).

C. Robustness of Z× (Z2)3 classification against
interactions and disorder

Our discussion of the Z × (Z2)3 classification 2D
translational invariant topological superconductors has
so far been restricted to non-interacting fermion bilin-
ear Hamiltonians, and therefore, a natural question is
whether this classification is stable against fermion in-
teractions. In fact, it is known that certain symme-
try protected topological superconducting phases are not
stable against interactions, such as 1D superconductors
with T 2 = +1 time-reversal (1D BDI class), whose non-
interacting Z classification collapses down to Z8 under
interactions,54–57 as well as other examples.27,40–43,58,59

There is however a simple argument that indicates the
Z × (Z2)3 classification 2D topological superconductors
is fully stable against interactions. First, the spectral
Chern number C is expected to be stable against inter-
actions. Second, we can provide an alternative definition
of the topological parity matrix at special momenta ζij
from Eq. (21), in terms of many-body properties without
reference to the single particle BdG spectrum. This can
be done by noting from Table I that when the system is
placed in a torus in which both Lx and Ly are odd, the
topological parity index ζij can be defined as the parity of
the many fermion ground state, Nf mod 2, under twists
of boundary conditions Nf (Φx,Φy) mod 2 as follows:

ζij =

(
Nf (0, 0) Nf (0, π)

Nf (π, 0) Nf (π, π)

)
mod 2, Lx,y odd. (31)

Since the many-body fermion parity of the ground state
will not change by adding interactions, unless a bulk-
gap closing phase transition is induced, the topological
parity matrix ζij will remain quantized to have {0, 1}
entries and the Z × (Z2)3 classification of translational
invariant superconductors is expected to remain stable
upon adding fermion interactions.
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The above re-casting of the topological parity matrix
also indicates that the Z× (Z2)3 classification of transla-
tional invariant superconductors is stable in the presence
of self-averaging disorder that respects translational sym-
metry. To see this, we appeal again to the fact that dis-
order is not expected to change the many-body fermion
parity of a gapped state unless a bulk phase transition
occurs. This is an important point because the label
of these states as ‘weak’ topological phases might cre-
ate the wrong impression that the states would be deli-
cate or fragile. This robustness of ‘weak’ topological la-
bels against disorder has been emphasized previously in
the case of time-reversal-invariant weak topological insu-
lators,60,61 and topological superconductors with other
symmetries.62

V. TRANSLATIONALLY SYMMETRIC Z2

TOPOLOGICALLY ORDERED STATES

A. Anomalous GSD In Tori

As we have seen 2D translationally invariant topo-
logical superconductors can have ground states with an
odd fermion number in the torus. As first identified in
Refs. 28–30, 32, and 33, when such paired fermions are
the ε-fermions that emerge in a Z2 topologically ordered
state, where the periodic and anti-periodic boundary con-
ditions are realized dynamically by the Hamiltonian, this
leads to an ‘anomaly’ in the number of degenerate topo-
logical ground states in the torus. Specifically, as dis-
cussed in Section II, only states with a global even num-
ber of fermions are physical and states with an odd num-
ber of fermions must be discarded. Therefore this leads
to the following formula for the ground state degener-
acy of a Z2 topologically ordered state where fermions
form a translationally invariant paired state of the kind
described in Section IV:

GSD = 4−
[ ∑

Φx,Φy

(
TrAT ζ

)
mod 2

]
. (32)

Here the sum is over the twist of BCs, Φx,y ∈ {0, π}, for
a phase described by a topological parity matrix ζ and
for a torus with a given number of Lx,y unit cells along x-
and y-directions. The A matrices are given by Eq. (23)
and are tabulated in Table I. Notice that the difference
of GSD between two states with different ζ, can in some
cases be understood as a manifestation of different bulk
topological order but in some others it cannot. For exam-
ple, as shown by Kitaev,18 the bulk topological order of
the superconductor depends on the spectral Chern num-
ber C mod 16, and states with even C are expected to
have a four-fold GSD, while C odd are expected to have
three-fold GSD. The situation when translational sym-
metry is enforced is, however, more subtle and the GSD
of states with either C even or odd can display anoma-
lous ground state degeneracy that depends on the parity

of Lx,y as dictated by Eq. (32) and shown in Refs. 28–
30, 32, and 33. This will also be explicitly demonstrated
with an exactly solvable model in Section VI. In fact the
only states with even C that have a consistent pattern
of GSD = 4 independent of Lx,y are those with a com-
pletely trivial topological parity matrix ζij = 0 which are
adiabatically connected to the TC vacuum in the case of
C = 0. On the other hand, the only states with odd
C with a consistent pattern of GSD = 3 independent
of Lx,y are those with a single non-trivial parity index
ζij = 1 and all others ζij = 0, which are obtained from
the those with ζij = 0 by a single band inversion of the
ε-fermions at a single special momenta kij , as discussed
in the previous Section.

B. Bulk-Edge Correspondence

Another manifestation of the non-trivial weak topo-
logical invariants ζij is the presence of dangling Ma-
jorana modes in open boundaries. Examples of this
were presented in Refs. 28–30, 32, and 33, but with our
discussion it is possible to have a simple and system-
atic criterion for the appearance of dangling Majorana
modes. Specifically, states where the ε-fermions form
2D stacks of Kitaev-wires will display an odd number
of Majorana modes in exposed unit cells at some of
the boundaries when translational symmetry along the
boundary is preserved. In particular, in the basis for
the topological indices described in the previous Section,
(C, ζKx

, ζKy
, ζAI) ∈ (Z,Z2,Z2,Z2), then we have that

states with Kitaev-wire nature will have non-zero values
of (ζKx

, ζKy
), and will display an odd number of dan-

gling Majorana modes in the corresponding boundaries.
For example (ζKx

, ζKy
) = (1, 0) is a state with Kitaev-

wires oriented along the x-direction and thus will have
dangling Majorana modes along the exposed boundaries
that are parallel to the y-direction. The Wen plaque-
tte model,28 which was the first example to be discov-
ered of these anomalous states, is in fact topologically
described by (ζKx , ζKy ) = (1, 1), which means that it
contains Kitaev-wires oriented along the diagonal and
therefore displays dangling Majorana modes along both
the x- and y-directions.

C. Ideal Fixed Point Hamiltonians

In this Section we will construct ideal commuting
projector Hamiltonians for all the phases with zero
Chern number, namely those with (C, ζKx

, ζKy
, ζAI) =

(0, ζKx
, ζKy

, ζAI). It is rigorously known that for phases
with a U(1) symmetry, so that the Chern number implies
a non-zero Hall conductivity, it is impossible to construct
local commuting projector Hamiltonians.63 Presumably,
this remains true in general whenever the spectral Chern
number, C, is non-zero, regardless of whether the system
has a U(1) symmetry. Note however that this clearly
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does not imply that one cannot construct exactly solv-
able models of phases with non-zero C, as demonstrated
by the Kitaev honeycomb model,18 and as we will also
illustrate in Section VI. The commuting projector Hamil-
tonians will, however, prove useful in illustrating the phe-
nomenon of ‘weak breaking of translational symmetry’,18

associated with phases with non-trivial topological parity
indices (ζKx , ζKy , ζAI) that we will discuss in Section V D.
Each of this phases can in turn be obtained as the ground
state of a commuting projector Hamiltonian of the form:

H = −∆e

∑
v

Γev −∆ε

∑
p

Cp. (33)

Here Γev is the parity of the e-particle, defined in Eq. (4),
and Cp are Z2-valued operators (C2

p = 1) that act on
a finite number of spins in the vicinity of plaquette p,
and all operators in the Hamiltonian commute with each
other:

[Cp, Cp′ ] = 0, [Cp,Γ
e
v] = 0. (34)

The operator Cp depends on the phase in question, la-
beled by parity indices (ζKx

, ζKy
, ζAI), and we choose it

so that under the fermion duality it maps onto a Majo-
rana fermion bilinear of the form Cp ↔ iγ1(p)γ

′
2(p) in the

sector with no e-particles (Γev = 1), and onto the cor-
responding fermion bilinear with twisted phases in the
sectors with e particles and non-trivial twists of bound-
ary conditions, as described in Section III. The Hamil-
tonians of Eq. (33) will realize different phases depend-
ing on the sign of ∆ε, and these are listed in Table II.
The detailed analysis to construct these operators in the
case of the phases with diagonal stacking of Kitaev wires
(KWx+y phases) is presented Appendix D. The pattern
of Majorana pairing for each of these ideal Hamiltonians
is illustrated in Figs. 12 and 17, which makes clear the
interpretation of a given phase as ‘atomic insulator’ or a
stack of Kitaev wires, and it is also straightforward to vi-
sualize which phases will have dangling Majorana modes
in their boundaries.

D. Weak Breaking of Translational Symmetry

One of the most remarkable consequences of the
non-trivial weak topological superconductivity of the ε-
particles is the concomitant appearance of a phenomenon
called ‘weak symmetry breaking’ in Ref. 18. The idea is
that, in certain topological phases, the action of a sym-
metry group can non-trivially exchange different anyon
kinds (super-selection sectors).26 In the case of transla-
tional symmetry that we are studying, this manifests, for
example, by a translation that maps an e-particle into an
m-particle, as it occurs in the Wen plaquette model.28

The underlying mechanism for why this phenomenon ap-
pears hand in hand with the GSD anomalies and the
dangling Majorana modes, has not been described before,
but as we will see, it is intimately tied to the formation

phases Cp sign ∆ε Examples

AI0 Γε
p + Toric Code1

AI1 Γε
p -

KWx,0 Ux,p +

KWx,1 Ux,p -

KWy,0 Uy,p +

KWy,1 Uy,p -

KWx+y,0 Γε
NE(p)Uy,E(p)Ux,p +

KWx+y,1 Γε
NE(p)Uy,E(p)Ux,p - Wen model28

TABLE II: Cp for different phases for the ideal
fixed-point Hamiltonian in Eq. (33). E(p) and NE(p)
are plaquettes to the east and north-east of plaquette p.
Examples for the phases in which there is no entry
under the ”Examples” column are realized by the ideal
Hamiltonian described in Sec. VI.

of stacks of Kitaev-wire states by the ε-fermions. We will
now discuss a systematic connection between patterns of
weak symmetry breaking and the underlying topological
indices,(C, ζKx

, ζKy
, ζAI) ∈ Z × (Z2)3. To do so, we will

exploit the ideal commuting projector fixed point Hamil-
tonians from Section V C, but with the implicit idea that
the results would carry over as universal properties of the
phases they belong to. We recall from Section III A that
we have enforced a local conservation law of an operator
that measures the presence of the e-particles added on
top of the TC vaccum, given in Eq. (4). Let us consider
a single e particle placed in a vertex v in an infinite lat-
tice. The presence of this particle requires to twist the
boundary conditions for the ε-fermions hopping across a
line that extends from the vertex containing the e-particle
towards infinity. Now, the pair-creation or transport op-
erator of such e-particle between two nearby vertices v1

and v2, T ev1v2 , will generally depend on the specific state
the ε-fermions are in, but it must satisfy the following
criteria:

1. It should only create two e-particles on v1 and v2.
Namely it should only anti-commute with the e-
particle parities in the two vertices in question,
Γev1 , Γev2 , and commute with the e-particle parities
elsewhere.

2. It should be local. Namely it only acts on physi-
cal spins within a certain finite radius of v1, v2 (for
non-ideal Hamiltonians away from the commuting
projector fixed point, it would have exponentially
decaying overlap with distant spin operators).

3. It should commute with the Cp term of the ideal
fixed point Hamiltonian in Eq. (33). This is be-
cause when it transports an e-particle initially lo-
cated at v1 to the vertex v2, both initial and final
states should have the same energy in order for it
to have the interpretation of an e-particle transport
operator. (For non-ideal Hamiltonians away from



16

the commuting projector fixed point, this should
remain true in the limit of an infinite transition-
ally invariant lattice when the string of the single
e-particle extends to infinity).

Let us describe these transport operators first in the
simplest phases, which are the atomic insulators AI0 and
AI1. The ideal fixed point Hamiltonian for AI0 is equiv-
alent to the one of the usual Toric Code,1 and for AI1 it
is that of the TC but with opposite sign for the plaque-
tte opeator shown in Table II. Thus the e-particle pair-
creation operators between two neighbouring vertices v1

and v2, T ev1v2 are simply given by:

T ev1v2 = Zv1v2 , (35)

where Zv1v2 operates on the link connecting the two ver-
tices. Notice that the operator that transports the e par-
ticle over the smallest allowed closed loop (one plaque-
tte), is simply Gmp and is algebraically dependent on the
operators appearing in the ideal fixed point Hamiltonian.
This is a general property of any ideal fixed point Hamil-
tonian, since contractible closed loop transport opera-
tors must commute with the Hamiltonian, and therefore
they cannot be algebraically independent of those ap-
pearing in the commuting projector Hamiltonian, since
these provide a complete algebraic basis all local opera-
tors that commute with the Hamiltonian. Thus we see
that the two vacua AI0 and AI1 are eigenstates of the
closed loop transport operator of e-particles, but with
opposite eigenvalues 1 and -1 respectively, reflecting the
fact that the e-particles experience a background π-flux
per plaquette in the AI1 phase containing one ε-fermion
per plaquette. Therefore, in the case of atomic insu-
lator phases (AIi), there is no weak symmetry break-
ing of translations, but instead there appears a projec-
tive representation of the translational symmetry group6

of e-particles in the AI1 phase, analogous to magnetic-
translations with π-flux per unit cell.

However, the situation changes considerably in the
phases that have stacks of Kitaev wires of ε-fermions. To
construct the transport operators in these cases, we be-
gin by noticing that these phases generally break the C4

rotational symmetry, and therefore, we expect the trans-
lation operators along the x- and y-directions to differ.
We will illustrate this explicitly for the KWx,ζ phases but
similar considerations apply to the other phases that can
be viewed as stacks of Kitaev wires. It is easy to ver-
ify that for the KWx,ζ phase with Kitaev wires running
along the x-direction, the e-particle pair creation opera-
tor remains the same as in the ordinary TC (AI0 phase),
for neighboring vertices along the x-direction. This is be-
cause the flux pair creation connecting nearest neighbor
vertices does not intersect the bonds that pair Majorana
modes in the given phase, as depicted in Fig. 11. In other
words, moving the flux along the direction of the wires
commutes with operators describing fermion hopping and
pair-fluctuation, since it does not introduce branch-cuts
along the bonds belonging to wires according to the prin-
ciples described in Sections II and III.

On the other hand, the operator that pair-creates e-
particles in the TC vacuum for nearest neighbor vertices
along the y-direction, which is orthogonal to the wires,
does not commute with the Cp term in Hamiltonian of
Eq. (33) for the KWx,ζ , and therefore violates the prin-
ciple (3) of e-particle pair creation or transport opera-
tors. In fact, there is a fundamental obstruction to con-
structing an operator satisfying all of the three criteria
that would transport a flux between nearest neighbor ver-
tices that intersect one of the wires in the corresponding
KWx,ζ phase. To see this let us consider placing the
system in a torus. Notice that if we hop a flux that ini-
tially resides say in vertex v to the neighboring vertex
v+ y, then, in the final configuration, the Cp operator of
the bond that is intersected by such flux hopping would
be mapped into a fermion bilinear with an extra minus,
according to principles described in Sections. II and III
and illustrated as solid black line in Fig. 11. This implies
that the intersected Kitaev wire would change bound-
ary conditions under such flux hopping. However the
ground state of a Kitaev wire with periodic boundary
conditions has an even number of fermions, whereas the
ground state with anti-periodic boundary conditions has
an odd number of fermions. Therefore, the flux hopping
would change the total ε-fermion parity of the system
by 1, which is not allowed in the torus. Therefore, from
the above argument, we conclude that the only way to
hop the flux across a single Kitaev wire would require
the creation of one Bogoliubov fermion added on top of
the vacuum with an energy cost of ∆ε, and thus would
violate principle (3). In open boundary conditions it is
possible to hop the flux across a single Kitaev wire, at
the expense of adding a single ε-fermion (see Section III
for discussion on single fermion creation in open lattices),
which would allow to satisfy criterion (3), but would vi-
olate the criterion (2), since the single fermion creation
is necessarily non-local. We are thus led to the remark-
able constraint that it is impossible to hop or pair create
fluxes along neighboring vertices in the y-direction for
KWx,ζ , while satisfying the three criteria above.

It is, however, possible to pair-create (or hop) e-
particles that are second nearest neighbor vertices along
the y-direction for KWx,ζ , while satisfying all the 3 crite-
ria as illustrated in Fig. 11. The operators accomplishing
this for the KWx,ζ phase are given by:

T ev1v2 = iZ2Z3X2 = i(Z1Z2Z3)× (X2Z1), (36)

shown visually as solid black line in Fig. 11. In the last
equality of Eq. (36), we have written the transport op-
erator as a product of the ‘bare’ e-transport operator in
the TC (product of Zs) and a vertical Majorana pair
creation operator [Up,y from Eq. (5)]. The reason this
is possible is that when hopping an e-particle across two
Kitaev wires, one twists the boundary condition of both
neighboring wires, and, therefore, if one would use the
bare hopping operators of e-particles from the TC vac-
uum, one would have two Bogoliubov fermions added to
each of these wires in the two bonds that are intersected
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by such hopping. These Bogoliubov fermions, however,
can be destroyed locally by a Majorana bilinear operator
that connects the adjacent wires, restoring both wires
back to their ground states with the twisted boundary
conditions that are induced by the ε-particle hopping.

From the operators that produce the smallest allowed
hoppings of e particles in the KWx,ζ (KWy,ζ) phases,
given in Eq. (36), it is possible to then construct the
operator that moves the e-particles around the smallest
allowed closed loop (depicted in Fig. 11). This operator
can be interpreted as creating two pair of particles in
neighbouring vertices and then annihilating one pair after
completing the smallest allowed closed loop transport of
e-particles. Therefore this operator must commute with
the ideal fixed point Hamiltonian from Eq. (33) of the
corresponding phase. For the KWx,ζ phases the closed-
loop transport operator is given explicitly by:

∏
v

T evivj = Γev5Cp1Cp2 , Cp = Ux,p, (37)

where the path is shown as the dashed line in Fig. 11.
Notice the appearance of Γev5 in Eq. (37). This implies
that the closed transport of e-particles in the smallest al-
lowed loop for the phase KWx,ζ equals the identity in the
ground state, but there is a non-trivial semionic statis-
tic among e-particles that belong to the vertices that
are separated by a single Kitaev wire and that cannot
be connected by any local e-particle transport operator.
Therefore we are led to the remarkable conclusion that
the e particles in these two kinds of vertices, are distinct
anyons with mutual semionic statistics that belong to two
different super-selection sectors.

All of the above conclusions apply as well to the phases
KWy,ζ and KWx+y,ζ , which can be viewed as having
stacking of Kitaev wires along vertical and diagonal di-
rections. In the case of KWx+y,ζ phases, the vertices
that can be connected belong to the two sub-lattices of
the square lattice. Details of the transport operators in
this case are presented in Appendix D.

Let us then summarize the picture that emerges from
the above considerations for the phases that can be
viewed as stacks of Kitaev wires of ε-fermions. The e-
particles in these phases are separated into two super-
selection sectors. e-particles in vertices separated by
crossing an even (odd) number of Kitaev wires belong
to same (different) super-selection sector. The above is
the phenomenon of weak symmetry breaking, as intro-
duced in Ref. 18. These two kinds of e-particles of differ-
ent super-selection sectors have the same bulk topological
properties of the e and m particles of an ordinary TC. In
other words, even when we force the original ε-fermions
of the toric code to not appear at low energies [say by
taking ∆ε to be large and positive in Eq. (33)], there is
an emergent anyon statistics of the fluxes in such back-
ground of gapped fermionic matter, forced upon them by
the topology of the underlying Kitaev wires.

v1

v2v3

v4

v5

1
2

3

p1

p2

FIG. 11: Emergent anyonic statistics of e-particles for
KWx,ζ phases. As shown in Eq. (37), a closed loop
transport operator (dashed line) between odd-odd or
even-even rows measures the e-parity of vertices
contained. e on odd and even rows are effective e′ (i.e.
on vertices v1−4) and m′ (v5) of the Toric Code. Note
hopping between adjacent rows will cut the Majorana
bond (dotted line) odd times. The solid black line
corresponds to hopping two rows given by Eq. (36).

VI. MODEL

The results in Section II allow us to construct a large
class of exactly solvable spin models of Z2 topologically
ordered states, one for each free fermion Hamiltonian.
In this Section we will illustrate this in a specific model
[Eq. (38) below], which will realize 14 out of the 16 classes
of states with non-trivial parity indices given in Sec-
tion IV. Moreover, the model contains 6 out of the 8
topological phases of the ideal fixed-point Hamiltonian;
see Section V C. As we will see, some of these phases will
feature anomalous GSD that depends on the size of the
torus, and some will feature dangling Majorana modes in
open boundaries, in line with the considerations of Sec-
tion IV, and we will be able to provide exact solutions
for both their bulk and boundary spectrum.

We choose the Hamiltonian to be:

H = H0 + V,

H0 =−∆e

∑
v

Γev −
∑
p

(
hxUx,p + hyUy,p + hzΓ

ε
p

)
,

V =
iδ

2

∑
p

[
Uy,p

(
Γεp + ΓεN(p)

)]
, δ,∆e > 0.

(38)

N(p) is the plaquette to the north of p. This Hamilto-
nian conserves the local parity of e-particles at each ver-
tex, measured by Γev. We will be interested in excitations
belonging to the sector without e-particles, which ener-
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FIG. 12: (a) Visual representation of Eq. (39) as a distorted ‘honeycomb’ lattice. (b) Equivalence of Eq. (40) to a
Kitaev honeycomb model. γ′ and γ are defined on left and right sides of each plaquette. Couplings between γ′, γ in
Eq. (40) are illustrated by: solid lines for fermion parity Γε; dotted lines for horizontal hopping Ux; dashed lines for
vertical hopping Uy.

getically can be enforced to be the ground state sector by
assuming that ∆e � |hx,y,z|, |δ|. Therefore, this Hamil-
tonian can be exactly mapped into a dual local fermionic
Hamiltonian even in geometries with open boundaries
such as the cyclinder or the open lattice described in
Section II, via Eqs. (6) and (12).

As we will see, the Hamiltonian from Eq. (38) maps
exactly into a free fermion bilinear Hamiltonian for any
values of its parameters and it is therefore generally ex-
actly solvable. For hx = hy = δ = 0 and hz > 0, this
model is equivalent to the Toric code.1 Additionally, for
δ = 0, this model is equivalent to the Kitaev honey-
comb model in the sector with no fluxes, Γev = 1, for all
v.18 More precisely, the following operators are unitarily
equivalent to two-spin operators in Kitaev’s honeycomb
model in all sectors regardless of Γev, which we show vi-
sually in Fig. 12:

Ux,p1 = X2Z1, Uy,p2 = X3Z2, Ux,p2Γεp2Uy,p2 = Y3Y4.
(39)

It follows that, after a unitary transformation on points
2, 5, and by viewing the lattice as a honeycomb, as de-
picted in Fig. 12, we recover x-, y- and z-links of the
Kitaev honeycomb model. Γev is then mapped to the pla-
quette operator Wp2 to its north-east. Unless otherwise
noted, throughout this work we will view the geometry
of this model as that of a square lattice rather than a
honeycomb.

In Section VI A we consider the Hamiltonian on an
infinite lattice and study the general phase diagram in
the parameter space of (hx/|hz|, hy/|hz|) and δ > 0.
Its properties in a finite torus and in open lattices will
be discussed in Sections VI B and VI C, demonstrating
its anomalous GSD and its gapless boundary Majorana
modes.

A. Infinite Lattice

On an infinite square lattice, the Hamiltonian from
Eq. (38) can be mapped directly into a sum of fermion
bilinears. Substituting Eqs. (6) and (7) into Eq. (38)
leads to:

H = −
∑
i,j

(
hxa

†
i,jai,j+1 + hya

†
i,jai+1,j − hza†i,jai,j+

+hxai,jai,j+1 +hyai,jai+1,j

)
− iδ

∑
i,j

ai,jai+1,j + h.c..

(40)

Here i, j are row and column indices of a given plaque-
tte. Notice that the pairing terms in Eq. (40) respect
translational symmetry, and, therefore, Eq. (40) has the
form of a mean-field BCS fermion bilinear Hamiltonian
with zero center-of-mass momentum for Cooper pairs.
We split each of the complex fermions operators at a
given site into two Majorana operators using Eq. (7):

a =
1

2
(γ + iγ′), a† =

1

2
(γ − iγ′). (41)

The Hamiltonian in Eq. (40) can be visualized by regard-
ing each γ, γ′ as Majorana fermion modes residing on
plaquettes of the square lattice, and viewing hx, hy, hz as
bond dependent Majorana pairing terms in the lattice, as
depicted in Fig. 12. As mentioned before, this model is
equivalent to Kitaev honeycomb model,18 although the
fermionic duality described in Section II allows one to
solve the Hamiltonian without explicitly enlarging the
local Hilbert space, and this is why there are only 2 Majo-
rana modes per plaquette, which are sufficient to exhaust
all the local degrees of freedom in the sector with no flux.
Also, we have added an explicit energy cost, ∆e, to gap
the Z2 fluxes (e-particles) to make sure they are not part
of the ground state sector of interest. The phase diagram
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is equivalent to the one in Ref. 18 for the case δ = 0, and
it is shown in Fig. 13. The gapless phases are B1−4, B

′
1−4

while the other phases are gapped. In particular, phases
B1,AI0,KWx,0,KWy,0 are B,Ay, Ax, Az in the Kitaev
Model. With a finite δ, V acts as second nearest neigh-
bour hopping iδ(γγ − γ′γ′) along the vertical direction
only. It is similar, but not identical, to the perturbation
induced by the magnetic field in Ref. 18, which couples
all the second nearest neighbors, but it produces essen-
tially the same effect in that V gaps all gapless phases
without shifting the phase boundaries. For the remain-
der, in order to ensure that all the phases are gapped so
that they can be classified within the scheme described
in the previous Section, we will fix δ > 0 unless otherwise
stated. This also allows to associate a Chern number to
each phase; see Appendix G.

Let us compute the BdG spectrum of this Hamilto-
nian. Going over to momentum space using the conven-
tion of the square lattice (which differs from the hon-
eycomb) ai,j =

∑
k ak exp(ik.rij), Eq. (40) becomes

Eq. (20) with ε(k) = −2(hx cos kx + hy cos ky − hz) and
∆(k) = 2δ sin ky − 2i(hx sin kx − hy sin ky). The lattice
constant is set to unity. The dispersion of Bogoliubov
fermions is:

E(k) = ±
[
4

(
hx cos kx+hy cos ky−hz

)2

+|∆(k)|2
] 1

2

.

(42)

From the above dispersion, one can show that all of the
phases are in fact separated by a critical line at which
the Bogoliubov spectrum becomes gapless at some spe-
cial momentum in the BZ of the square lattice. There-
fore, one can obtain the phase diagram by solving for
E(k) = 0 and the phases are shown in Fig. 13. The crit-
ical lines separating different phases are labeled by the
‘high-symmetry’ momentum points k0 where the disper-
sion is gapless. As outlined in Section IV, these phases
are classified by the four parity labels at these momenta,
and the Chern number subject to constraint (19). We
note that the model includes 6 out of the 8 phases in Sec-
tion V C with trivial Chern number (C = 0) which can
be viewed as lower dimensional stacks of ε-fermion wires,
since the lattice Hamiltonian in Eq. (38) approaches the
corresponding ideal fixed-point Hamiltonians in certain
limits of the parameter space. A model for the two
remaining phases that are not realized by this model,
namely KWx+y,ζ phases is constructed in Appendix D.

When we also include the phases with finite Chern
number, the current model realizes a total of 14 topo-
logically distinct phases, when they are viewed as topo-
logical phases enriched by translational symmetry. Some
of these phases can be distinguished by the topological
characteristics of its bulk excitations without any regard
to symmetry, in the same spirit of the Kitaev 16-fold
classification, namely, they can be distinguished by the
spectral Chern number C of the BdG spectrum.18 In our

model, the Chern numbers of these 14 phases are:

C = 0 : AI0, AI1, KWx,0, KWx,1, KWy,0, KWy,1;

C = 1 : B1,B2, B′3, B′4;

C = −1 : B3, B4, B′1, B′2.

(43)

Details of calculations are given in Appendix G. From
above one might naively think that, since phases such as
AI0 (Toric Code) and KWx,0 have the same Chern num-
ber C = 0, the gap closing along the line hx = hz, hy = 0
might be accidental and could be removed by adding a
perturbation, so that the ground states in region AI0

could be deformed adiabatically into those in region
KWx,0. In fact, some of these phases can in a sense be
recast exactly as Toric code models in certain limits in in-
finite lattices or in periodic lattices with an even number
of Kitaev wires, as shown in Appendix E. However, these
phases can be distinguished by the topological parity in-
dices described in Section IV, and therefore, provided the
underlying translational symmetry is preserved, they are
necessarily separated by an intermediate gapless critical
phase.

Let us now determine the matrix of fermion parity at
special momenta, ζij , discussed in Section IV, for these
phases. Following Eq. (21), the parity can be simply de-
termined by sign of the diagonal part of the BdG Hamil-
tonian for a single orbital model, which for the Hamilto-
nian from Eq. (40), reads as:

ε(k) = −2(hx cos kx + hy cos ky − hz). (44)

Direct calculations show that the topological parity ma-
trices, ζij , in the convention of Eq. (18), for the phases
with C = 0 listed in Eq. (43) are given by the matrices
listed in Eqs. (27)-(29), and this is why we have labeled
them accordingly. In fact, these phases realize the fixed
point ground states of commuting projector Hamiltoni-
ans discussed in Section V C in the appropriate limits.
For the KWx,ζ phases the fixed point is realized by set-
ting hy = hz = δ = 0 and ζ = 0 (1) corresponds to hx > 0
(hx < 0). Similarly AIζ , and KWy,ζ fixed points are re-
alized by setting hx = hy = δ = 0 and hx = hz = δ = 0
respectively, and ζ is determined by the sign of the re-
maining non-zero hx or hz term.

For the phases with C = ±1 listed in Eq. (43), we can
similarly compute the parity indices and obtain:

B1 :

(
0 0

1 0

)
, B2 :

(
1 0

0 0

)
, B3 :

(
0 1

0 0

)
, B4 :

(
0 0

0 1

)
,

B′1 :

(
1 0

1 1

)
, B′2 :

(
1 1

1 0

)
, B′3 :

(
1 1

0 1

)
, B′4 :

(
0 1

1 1

)
.

These can be viewed as phases that are topologically
equivalent to ‘layer addition’ of the elementary phase
with non-trivial Chern number, χC from Eq. (30), and
the phases that can be viewed as stacks of 1D wires. The
two cases which are not realized in our model are the two
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FIG. 13: Phase diagrams for (a) hz > 0 and (b) hz < 0 respectively. The 2-tuple (kx, ky) near each critical line is
the momenta of gap closing at that critical line.

KWx+y,ζ phases which are in the same class of the Wen
plaquette model,28 and correspond to weak topological
superconducting phases with diagonal stacking of Majo-
rana wires. We describe exactly solvable models for these
in Appendix D.

B. Torus

Let us consider placing the Hamiltonian in Eq. (38) on
a square Torus with Lx,y along the x, y-directions. Re-
markably, the GSD may depend on Lx, Ly being even
or odd, as first pointed out in the example identified by
Wen in Ref. 28. For example, for KWx,ζ phases, the
GSD degeneracy is 2 for Ly odd but 4 for Ly even. And
for KWy,ζ , the GSD degeneracy is 2 for Lx odd but 4
for Lx even. Such GSD can be computed from Eq. (32).
In Appendix A, this computation of GSD is performed
by mapping the system to a dual bosonic Hilbert space.
Another method for performing this computation by di-
rectly counting constraints in the underlying spin degrees
of freedom is also presented in Appendix F.

We will now approach this phenomena by using the
fermionic representation described in previous Sections
and discuss the subtle interplay of the lattice size and the
GSD in the torus geometry for the phases characterized
by the aforementioned Z2 topological parity matrices; see
Eq. (32). As is discussed in Section II, in the torus ge-
ometry only states with an even number of fermions are
physical, and therefore the physical GSD of a given phase
depends on lattice size and fermion boundary conditions.
As one moves from phase AI0 (the Toric Code vacuum),
which has no fermions in the ground state, the ground
state ε-fermion parity changes upon crossing a critical
line if the k0 at which the BdG gap closes is actually

allowed for a given system size and boundary conditions.
This GSD for any given phase can be computed explicitly
using the formula from Eq. (32).

Consider, for example, phases B1 and KWx,0. As we
start from AI0(Toric Code), the phase transition onto
B1 occurs by closing the BdG gap at k = (0, 0), and
therefore the ground state in phase B1 is forbidden for
periodic boundary conditions along x-, y-directions, since
k0 = (0, 0) is allowed for any Lx,y. Since phase B1 has
Chern number C = 1, it can be viewed to be topologi-
cally equivalent to the weak pairing phase of a 2D p+ ip
spinless superfluid. The fact that these states have an
odd number of fermions in the torus for periodic bound-
ary conditions was first identified by Read and Green in
their seminal work in Ref. 51. Phase KWx,0 however
is a paired state which has Chern number C = 0, but
it still displays a nontrivial pattern of GSD depending
on the system size. To see this, notice that in passing
from B1 to KWx,0, the gap closes at k0 = (0, π). How-
ever, k0 = (0, π) is only part of the momentum lattice
for periodic boundary conditions for Ly even. There-
fore, for periodic boundary and lattices with Ly odd,
the corresponding ground state of phase KWx,0 has still
the same parity as phase B1, namely, an odd number of
fermions, in spite of having a trivial Chern number. Sim-
ilarly, for periodic and anti-periodic boundary conditions
along x-, y-directions, k0 = (0, 0) is always forbidden
and k0 = (0, π) is allowed for Ly odd. To have even to-
tal fermion parity for phase KWx,0, Ly must be even in
both cases. For anti-periodic boundary condition along
x-direction, both k0 = (0, 0), (0, π) are not allowed, since
k0x = 0 is not admitted, and phase KWx,0 always has an
allowed parity even ground state. This agrees with the
alternative counting procedures presented in the underly-
ing spin Hilbert space presented in Appendix F that only
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anti-periodic boundary conditions for fermions along the
y-direction is allowed for Ly odd.

C. Open and Cylindrical Lattices

We now consider open and cylindrical lattices to illus-
trate that topologically non-trivial phases in Section VI B
feature gapless edge modes. The existence of chiral edge
modes is not surprising for the B phases, since they have
a non-zero C = ±1 spectral chern number, and therefore
have a robust protected chiral Majorana edge mode. As
we will see, some of the phases with C = 0 in Eq. (43)
have gapless edge modes that are not fully chiral, but still
protected in the sense of the finer topological classifica-
tion of their bulk based on the Z2 parity indices described
in Section VI B.

In open and cylindrical lattices, there are no global
constraints relating any of the elementary operators that
make up the Hamiltonian in Eq. (38). In the special limit
in which the Hamiltonian reduces to the ideal commut-
ing projector fixed point and the bulk has strictly flat
bands with no dispersion, the existence of edge modes
can be elucidated via a counting of degrees of freedom
in the underlying spin Hilbert space for all of the phases
that have zero Chern number in Eq. (43). For example,
in the special case of the phase KWx,0 whose fixed point
Hamiltonian is realized for hz = hy = δ = 0 (which can
be viewed as taking the limit hx � hy, hz, δ in the phase
diagram of Fig. 13) and open boundary conditions along
x-direction, the two terms appearing in the Hamiltonian
of Eq. (38) Γe and Ux are commutative. There are LxLy
independent Γe operators and (Lx − 1)Ly independent
Ux operators, since there is no hopping at the last col-
umn, as shown in Fig. 7. Since Γe and Ux are Z2 valued
operators with eigenvalues ±1, the number of subspaces
of the Hilbert that can be labeled by distinct eigenval-
ues of these operators is then 22LxLy−Ly . However the
total dimensionality of the underlying spin Hilbert space
is 22LxLy and therefore each of these subspaces must be
2Ly degenerate. In the fermionic representation it is easy
to see that this degeneracy stems from isolated dangling
Majorana modes along the vertical edges with

√
2 degrees

of freedom per exposed plaquette on each of the open
boundaries. This fact can be seen by going over to the
dual fermionic Hilbert space. In the fermion representa-
tion, Ux,y pairs Majorana modes γ, γ′ across plaquettes
(see Fig. 12). The zero energy states are associated with
the Majorana modes that remain unpaired in the exposed
plaquettes at the open boundaries. They have zero en-
ergy since they commute with the fermionic Hamiltonian.
For example, for hy = 0, these states are located along
the vertical edges and are γ1,n on the first column and
γLx,n on the last along a given row n. These are the zero
edge Majorana dangling modes mentioned above.

Now, one of the great powers of the fermionic rep-
resentation that we have developed for open and cylin-
drical lattices in Sections III A and III B, is that it al-

lows to obtain the exact eigenstates in these geometries
even away from the ideal fixed point limit that leads to
flat bands. In such cases the dangling Majorana modes
that we just described are allowed to couple to form a
non-trivially dispersing edge mode. For convenience we
will present results only for the cylinder geometry, which
can be more easily visualized since one direction remains
fully translationally invariant, and thus quasi-1D disper-
sions can be plotted, although calculations in an open
finite lattice are easily doable as well following the con-
struction from Section III A. Assuming periodic bound-
ary conditions along the y-direction, we partially Fourier
transform the Majorana fermions along the y-direction
and calculate the exact band-structure of Eq. (38) for a
large system size. The results are shown in Fig. 14 for
Lx = 100, hz = 1, hy = 1/2 and hx = 1, 3/2, 2. We
see that, starting from phase AI0, as each critical line
is crossed, the spectrum acquires two Majorana modes
with the corresponding y-component of momentum k0.

We now comment on the robustness of KW phases on
an open lattice in relation to results obtained in the torus.
As is shown in Section VI A, for Ly(Lx) odd, bulk orders
of KWx phases (KWy) on a Torus are stable with respect
to perturbations and cannot be deformed adiabatically
into phase AI0 due to their distinct GSDs. On an open
lattice, the stability of these phases manifests in the ro-
bustness of gapless Majorana modes with respect to local
perturbations, and the same conclusion as in the Torus
case holds. This can be seen for example in the case of
the KWx phase which can be viewed as a stack of Ly
Kitaev wires of ε-fermions oriented in the x-direction. In
the case of Ly odd, it is impossible to gap all the Ma-
jorana modes, since there is an odd number of them in
each edge, and there will always be an exact zero mode
localized in each boundary of the cylinder.

VII. SUMMARY AND OUTLOOK

In this work we have provided a unifying description of
the interplay of topological order and translational sym-
metry in fractionalized states of matter with emergent Z2

gauge fields. We do this by exploiting the Toric Code as
a convenient vacuum to construct states. Specifically,
by enforcing a local symmetry which freezes the mo-
tion of isolated e- and m-particles, but allows the fluc-
tuations of their fermionic bound state, the ε-particle,
the underlying spin Hilbert separates into subspaces of
ε-fermions coupled to non-dynamical background gauge
fields. As recently emphasized in Ref. 5, this construc-
tion can be viewed as a form of two-dimensional Jordan-
Wigner transformation or a type of charge-flux attach-
ment that preserves spatial locality. We have elucidated
this construction in geometries with fully open bound-
aries and cylinders, and extended it to the torus.

This formalism allows to construct a relatively sim-
ple unifying picture of a series of amusing properties of
Z2 topologically ordered states enriched by translational
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FIG. 14: Edge Modes in a cylinder with the y-direction periodic and Lx = 100. hy = 0.5hz, δ = 0.2hz and hz > 0.
(a)-(c) hx = 1, 1.5, 2hz. (a) hx = hz and (c) hx = 2hz belong to phases B1 and KWx,0. (b) hx = 1.5hz is at the
critical line between phases B1 and KWx,0. In Fig. 13, their locations in the phase diagram are marked with triangle,
square and circle respectively. The gapless mode acquires the ky momentum of each critical line as one crosses from
phase AI0 into other regions in the phase diagram. The small splitting of zero modes at ky = π is a finite size effect.

symmetry,28–30,32,33 including their anomaluous GSD de-
pendence on the size of the torus and the appearance of
dangling Majorana modes at the boundaries of open lat-
tices even in states whose bulk topological order is identi-
cal to the Toric Code. This formalism has also allowed us
to unravel the intimate connection between such anoma-
lies of Z2 topological ordered states and the phenomenon
of ‘weak symmetry breaking’.18 Weak symmetry break-
ing is a remarkable phenomenon in which the vacuum of
a phase of matter remains invariant under a symmetry of
the Hamiltonian, but the symmetry is in a sense broken
by its quasi-particles. This is only possible if the quasi-
particles are non-local anyons, and more precisely, it is
the phenomenon in which the symmetry action on certain
anyons switches them into a distinct anyon type belong-
ing to a different super-selection sector, and therefore,
cannot be implemented by any local physical operation.

These phenomena in translationally invariant Z2 topo-
logically ordered states are intimately related to the
topological classification of translational invariant BdG
Hamiltonians.30,32,36,37 Such 2D fermionic paired states
with translational symmetry (Class D plus lattice trans-
lations) can be classified by their Chern number and three
other Z2 topological parity indices (also known as Pfaf-
fian indicators), namely, each phase can be labeled by a
vector (C, ζKx , ζKy , ζAI), where C ∈ Z and ζ = {0, 1}.
These indices have a natural physical interpretation: C
is the well known Chern number ‘strong’ index count-
ing the chirality of edge Majorana modes, and all the ζ
indices are ‘weak’ indices accounting if the phase con-
tains stacks of lower dimensional topological supercon-
ducting phases. ζKx(ζKy ) = 1 corresponds to having a
stack of Kitaev wires oriented in the x- (y-) direction,
and ζAI = 1 corresponds to having a filled ‘Atomic Insu-
lator’ band with one fermion per unit cell. We have also
provided an argument for why all of these ‘weak’ topolog-
ical indices are robust against fermion interactions and

self-averaging disorder that respect translational symme-
try. Although in the literature of BdG Hamiltonians
the phases with ζAI = 1 are often viewed as trivial,
for our purposes it is crucial to keep track of this in-
dex, since in the case of Z2 topologically ordered states
on a torus, one must discard states with an odd num-
ber of fermions as unphysical, thus leading to anomalous
GSD dependence on the size of the torus for states with
ζAI = 1. More generally, whenever at least one of the in-
dices (C, ζKx

, ζKy
, ζAI) ∈ (Z,Z2,Z2,Z2) is odd, the sys-

tem will have a GSD that is not 4 in certain tori, and
this can occur even when C = 0 in spite of the bulk
topological properties of its anyons remaining the same
of the Toric Code. Eq. (32) provides a general formula
to compute the GSD in any system size for these states.

The phenomenon of weak breaking of translational
symmetry in Z2 topologically ordered states in two di-
mensions occurs when the ε-fermions form a paired state
which contains a stack of Kitaev wires, namely, when ei-
ther of the indices (ζKx

, ζKy
) is non-zero. Moreover, since

these states are made from stacks of Kitaev wires they
feature dangling Majorana modes that will generally hy-
bridize into a 1D boundary gapless Majorana spectrum
protected by translational symmetry in the edge. The
reason such phases display weak symmetry breaking of
translations in the bulk stems from the fact that even
though the e-particles are dynamically frozen, the oper-
ator that transports them to neighboring vertices needs
to be modified in the presence of the non-trivial back-
ground state of the ε-fermions. Specifically, because the
e-particle is viewed as a source π-flux by the ε-fermions, it
carries a ‘string’ that twists the sign of fermion hopping.
Therefore, when the π-flux hops across a Kitaev wire,
it effectively flips its boundary conditions from periodic
to anti-periodic (or vice-versa depending on the original
boundary condition of the wire). Since the fermion par-
ity of a Kitaev wire in its non-trivial phase depends on
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the boundary conditions twists, such hop will necessar-
ily create a Bogoliubov fermion and therefore cannot be
a symmetry as it would change the energy of the state.
More importantly there is no way to restore the system
back into its ground state in any local manner because it
will require the destruction of a single ε-fermion. There-
fore the e-particles cannot hop locally to any neighbor-
ing vertex if such hop requires crossing an odd number
of ε-fermion Kitaev wires. However, when the e-particle
hops to a second neighbor vertex by crossing two Kitaev
wires, the ground state can be restored by an inter-wire
ε-pair creation operator, which is local. As a result the
e-particles break into two distinct superselection sectors
residing in two sublattices of vertices with non-trivial mu-
tual semionic statistics when the ε-fermions form a stack
of Kitaev wires.

One of the advantages of employing the exact Z2 flux-
attachment description is that it provides an exact one-
to-one rewriting of the physical states of the Hamiltonian
without the need to locally enlarge the Hilbert space as
it is often done in parton descriptions. More precisely,
the Z2 flux-attachment only has global unphysical parity
symmetries in the torus, but no unphysical symmetries
in the fully open lattice or in the cylinder. In practice the
unphysical parity symmetries in the torus can be dealt
with easily, by simply restricting to states with an even
number of ε-fermions and even number of e-particles.
Using this construction we have written down a model
that interpolates from the Toric Code1 to the Kitaev
honeycomb model,18 and that realizes a variety of the
non-trivial phases described above. In addition, our ex-
tension of this technique to the open and cylindrical lat-
tices allowed us to compute explicitly their edge spectrum
even away from the ideal fixed point commuting projec-
tor Hamiltonians. This is ultimately possible thanks to
the local symmetry (gauge structure) that freezes the mo-
tion of isolated e- and m-particles and only allows fluc-
tuations of the ε-fermions, thus providing a machinery
allowing to construct exactly solvable models for any free
fermion Hamiltonian. Although we have focused only on
enforcing lattice translational symmetry, this machinery
is naturally suited to study the interplay of Z2 topological
order and symmetry in many other cases.
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Appendix A: 2D Jordan-Wigner Transformation of
Majorana Fermions in Eq. (6)

In this Section, we provide an alternative derivation of
the fermion mapping Eq. (6), which takes into account di-
rectly the dependence of boundary condition on topolog-
ical operators discussed in Section II A. In this construc-
tion, we will introduce an intermediate dual Hilbert space
with bosonic degrees of freedom. And subsequently, we
will map these dual bosonic degrees of freedom into the
fermionic ones that are discussed throughout the main
text, via a mapping that resembles the more conventional
Jordan-Wigner transformation. For simplicity we will re-
strict to the subspace containing no e-particles and the
torus geometry.

We take the dual bosonic degrees of freedom to re-
side in the plaquettes and their occupation to coincide
with that of the ε-fermion occupation number. Namely,
if we denote by N = 0, 1 the local occupation of the dual
bosons at a given plaquette, by σ the dual boson parity
and by τ the x-like Pauli matrix that swaps the boson
parity, we have:

σ |N〉 = (−1)N |N〉 , στ = −τσ. (A1)

In this appendix we will restrict our discussion here to
the representation of the susbpace physical Hilbert space
in which the e-particle configuration has been fixed with
Γev = 1 from Eq. (4). Thus the task is to find a repre-
sentation of the elementary operators that commute with
Γev, namely, Γεp and Ux,y in Eqs. (3) and (5) respectively.

As the next step, we express these operators in the
intermediate Hilbert space in terms of τ and σ defined
in Eq. (A1). The mappings for these operators must
satisfy the same commutation relations as those in the
underlying spin Hilbert space. First, the fermion parity
operators Γεp in Eq. (3) is mapped by definition into:

Γεp → σp. (A2)

The global constraint in Eq. (10) then becomes:∏
p∈lattice

σp = 1. (A3)

The transport operator Ux,p in Eq. (5) creates a pair of
fermions on plaquette p and the plaquette to its right.
Thus it anti-commutes with Γε on these two plaquettes.
To satisfy the correct commutation relations, we choose
the second duality mapping to be:

Ux,p → τn,kτn,k+1, (A4)

where p = (n, k), and n designates rows and k columns.
So far it seems that the mappings above are identical

with the usual bosonic duality in Z2 lattice gauge the-
ories.4 The difference arises for the mapping of vertical
translation operators Uy,p in Eq. (5). This is because
Uy,p anti-commutes with Ux on plaquettes to its North
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FIG. 15: (a) Visual representation of Uy in Eq. (A5) in the dual space. Shaded plaquettes indicate those that enter
into the products in Eq. (A5). (b) Visual representation of ‘stringing’ of the lattice in Eq. (A13) for given γ, γ′ on
plaquette p. The shaded plaquettes indicate those that enter into the products in Eq. (A13).

and East, whereas in the bosonic duality all Ux and Uy
commute. Therefore, Uy cannot be simply mapped into
τiτj but must contain additional terms. Here we choose
for later convenience:

Uy → τn,kτn+1,k

(∏
i<k

σn,i

)(∏
i>k

σn+1,i

)
. (A5)

The product of σ is taken over all plaquettes to the left
of (n, k) and to the right of (n + 1, k), and is visually
represented in Fig. 15. From this expression, one can
verify that these operators satisfy the same commutation
relations as those defined in terms of the underlying spins
in Eq. (6).

So far we have not taken into account that the Torus
geometry imposes a global parity constraints for Γev and
Γε in Eqs. (8) and (10). The parity constraint in Eq. (A3)
reduces the intermediate dual Hilbert space dimension
to 2LxLy−1, but the underlying spin Hilbert still has
2LxLy+1 degrees of freedom after specifying the eigen-
values of all LxLy − 1 independent Γev operators (see a
similar argument at the beginning of Section II A). This
apparent mismatch of dimensionality originates from the
fact that we have not yet accounted for the four topo-
logical degrees of freedom associated with Tx and Ty in
Eq. (9). This can also be seen from the fact that Tx,y
are related to Ux,y and Γε operators by Eq. (11), which
would contradict, for example, the identity from Eq. (A4)
that

∏
Ux taken over a row would be unity in the inter-

mediate Hilbert space. As we shall show below, this can
be resolved by a small modification of the bosonic du-
ality mappings for hopping across certain ‘branch-cuts’
of the lattice, as discussed in the main text surrounding
Eq. (12) (see also Fig. 6) and also further discussed in
Ref. 4.

Therefore, in order to be able to represent the different
possible values of {Tx, Ty}, we introduce additional dual
Z2 valued operators θn, each one associated with the n-
th row of the lattice. These operators allow to represent
the horizontal hopping operator associated with crossing

the vertical branch-cut (see Fig. 6) by modifying the last
horizontal hopping of each row:

Ux → τn,Lxτn,1ϑn. (A6)

ϑn is chosen to commute with themselves and with all
other dual operators. Then we have:∏

row n

Ux → ϑn. (A7)

Up to this point we have enlarged the dual Hilbert space
by a large number of states, because we have introduced
one θn for every row. However these operators are not
independent. To see this, we rewrite Eq. (9) as:

Tx = −
∏

p∈row n

Ux,p
∏

p∈row n

Γεp, (A8)

which gives another constraint for dual bosonic opera-
tors:

Tx → −ϑnΠn, Πn =
∏

p∈row n

σp. (A9)

Eq. (A9) holds for each row separately. However, since
Tx is row-independent, ϑn is related to ϑ on other rows
by:

ϑnΠn = ϑmΠm. (A10)

From Eq. (A10) one can see that only one of the ϑn oper-
ators is independent. Therefore, Tx is taken into account
by introducing ϑn without any further enlargement of the
Hilbert space..

For vertical hopping, we introduce a Z2 operator ϕ for
the last vertical hopping on each column analogous to
ϑn:

Uy → τLy,kτ1,k

(∏
i<k

σLy,i

)(∏
i>k

σ1,i

)
ϕk. (A11)
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Multiplying Uy across a column using Eqs. (A5) and
(A11) and substituting Eq. (A3) gives:

Ty = −
∏

p∈column k

Uy,p
∏

p∈column k

Γεp = −ϕk. (A12)

Eq. (A12) then relates Ty to ϕk. By a similar reasoning
to that above, we can see that there is only one indepen-
dent ϕk and therefore, a one-to-one correspondence with
values of Ty.

Eq. (A5) has the advantage of admitting a definition
of Majorana fermions in Eq. (6) as a natural extension
of Jordan-Wigner transformation in 1D. Similarly to the
1D case, γ, γ′ are non-local and contain a ‘string’ of σ op-
erators in the following way: on a given plaquette (n, k),
the string goes through all rows above row n from left to
right and, on row n, goes to the column k from the left;
see Fig. 15. Explicit definitions are

γn,k = i

( ∏
i>n,j

σi,j

)(∏
i<k

σn,i

)
σn,kτn,k,

γ′n,k =

( ∏
i>n,j

σi,j

)(∏
i<k

σn,i

)
τn,k.

(A13)

γ and γ′ satisfy the fermion anti-commutation relations
and, substituting Eq. (A13) into Eqs. (A4) and (A5), we
recover Eq. (6) first obtained in Ref. 5.

Eq. (A13) also gives directly the relation between
{Tx, Ty} and the fermion boundary conditions along x-
and y-directions. In the fermionic Hilbert space, peri-
odic and anti-periodic boundary conditions can be repre-
sented by an additional ±1 in Majorana fermion hopping
across the lattice ‘branch-cut’:

Up → ±iγγ′. (A14)

See Eq. (12). Using Eq. (A13), hopping across the
‘branch-cut’ along the x-axis gives:

± iγn,Lx
γ′n,1 = ∓τn,Lx

τn,1
∏
k

σn,k. (A15)

Comparing with Eqs. (A6) and (A9), we obtain ϑn =
∓Πn and Tx = ±1 for periodic and anti-periodic bound-
ary conditions respectively. Similarly, for hopping across
the ‘branch-cut’ along the y-axis:

± iγ1,kγ
′
Ly,k = ∓τLy,kτ1,k

(∏
i<k

σLy,i

)(∏
i>k

σ1,i

)
,

(A16)
where we have used Eq. (A3). Comparing Eq. (A16)
with Eqs. (A11) and (A12), we see that Ty = −ϕk =
±1 for periodic and anti-periodic boundary conditions.
Thus we have re-derived the relation between Tx,y and
the corresponding fermion boundary conditions, which is
obtained in Section II A using another method.

Finally, as a consistency check, we show that the dual
bosonic mappings in Eqs. (A2), (A4), (A5) and (A6) re-
produce the ground state degeneracy of the model con-
sidered in Section VI. As an example, we study Eq. (38)

in the intermediate Hilbert space at hz = hy = 0, hx > 0,
and compare with results in Section VI B. We first con-
sider the Torus. Multiplying Eq. (A9) over all rows and
using Eq. (A3) gives:

(−Tx)Ly =
∏

n∈all rows

ϑn. (A17)

In the ground state, Ux = 1 and ϑn = 1. Eq. (A17) gives:

(−Tx)Ly = 1. (A18)

For even Ly, this relation is trivial and both Tx values are
allowed: the ground state is 4-fold degeneracy labeled by
Tx, Ty. For odd Ly, Eq. (A17) forbids Tx = 1 (periodic
boundary condition) and Eq. (A9) gives Πn = 1 on each
row. The ground state is thus only 2-fold degenerate
labeled by Ty. For hx < 0, Ux = −1 and Eq. (A17)
becomes:

(−Tx)Ly = (−1)LxLy . (A19)

So for Ly even, both Tx values are allowed and for Ly
odd, Tx = ±1 for Lx odd or even. The dependence of
GSD on Ly is the same as for hx > 0, which agrees with
Section VI B.

In the case of open boundary along y-axis only,
Eq. (A9) still holds, so that parities on each chain are still
related. But without the parity constraint in Eq. (A3)
there is no restriction on the value of Πn hence Tx, and
the difference between Ly odd and even disappears.

Appendix B: Independence of Parity operators in
TC in an open Lattice

In this Section we prove that, in an open lattice, there
are no global constraints for Gev and Gmp , whereas on a
Torus constraints in Eq. (2) exists.

Global constraints for Z2 operators Gev and Gmp can be
written in the following form:

Gev1 = F1(Gev, G
m
p ), Gmp1 = F2(Gev, G

m
p ), (B1)

where v1 and p1 are given vertex and plaquette in the
lattice. F1 and F2 are functions of Gev and Gmp on all
other vertices and plaquettes. If there is an operator
that anti-commutes with Gev1 or Gmp1 but commutes with
all other Gev and Gmp , then it would contradict the ex-
istence of constraint (B1) and global constraints cannot
exist. However, such operators are just single-particle
creation operators for e and m particles introduced in
Section III A. Therefore the existence of single particle
creation operators that commute with all other parities
and only anti-commute with the parity of the plaquette
or vertex of interest, implies that a constraint such as
that in Eq. (B1) cannot exist in open lattices or cylin-
ders.
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Appendix C: Fermion Creation operators in Open
and Cylindrical Lattices

In open and cylindrical lattices with finite size, the
fermionic even parity constraint (10) no longer holds,
and single ε-particles can be created. In this Section,
we describe how to construct single Majorana fermion
operators on these lattices in the underlying spin Hilbert
space.

We first consider the open lattice. It is sufficient that
the operator is found for a single Majorana fermion on
a given site, since other Majorana operators can be ob-
tained by multiplying it with parity and pair-creation
operators in Eq. (6). Such an operator for the bottom
left plaquette n of the open lattice is shown in Fig. 16
as a product of a single X and a Z line along bottom
of the lattice. The operator has the following physical
meaning: because of open boundaries, the X creates a
single m-particle at plaquette n while the Z line cre-
ates an e-particle on the south-east edge, which is then
transported along the lower edge to the SW vertex of n
and forms an ε-particle. This operator is mapped into
γ′n in the fermion Hilbert space: it anti-commutes with
Γεn, Uy,n but commutes with all other local fermion oper-
ators and Γev and, from the mapping (6), it follows that
it creates a single γ′ on the plaquette n. We note that γ
or γ′ operators can be constructed similarly for all pla-
quettes along west and south edges, which differ from the
one above by appropriate product of Ux,y,Γ

ε
p and Γev. In

fact, it can be shown that the string operator in Fig. 16 is
mapped to τn in the notation of Sec. A, and γ, γ′ thus de-
fined correspond to a different Jordan-Wigner convention
than in Sec. A.

On a cylinder, an analogous operator can be defined
as the same product of X on the west edge and a Z
line which transports a single e across the lattice. How-
ever, due to the periodicity along y-direction, the Z line
anti-commutes with Uy along the path, in addition to
anti-commuting with Γεn, Uy,n. This non-locality is a re-
sult of the dependence of boundary conditions along y-
direction on particle configurations in the lattice, as given
by Eq. (17). Creating a single fermion corresponds to a
change of boundary conditions which changes the sign
of Uy along a horizontal branch cut given by the Z line
above. Thus, the operator swaps boundary conditions.
We emphasize that these operators do not map into single
Majorana fermions, since they clearly commute between
themselves.

Appendix D: Fixed Point Model with a
diagonal-stacking of Majorana fermions

As mentioned in Section IV, KWx+y,ζ denotes the class
of states that are topologically equivalent to stacking 1D
Kitaev wires along the diagonal direction. The ideal or
fixed point Hamiltonian associated with this phase can
be realized by choosing the corresponding Cp in Table II

n

X

Z

FIG. 16: Majorana fermion creation operator γ′n in an
open lattice. The lattice size is Lx = Ly = 4.

for the ideal Hamiltonian 33:

H = −∆e

∑
v

Γev −∆ε

∑
p

ΓεNE(p)Uy,E(p)Ux,p, (D1)

where E(p) and NE(p) are plaquettes to the east and
north-east of plaquette p. Substituting Eq. (6), Eq. (D1)
is mapped into the following fermionic Hamiltonian:

H = −i∆ε

∑
γiγ
′
k. (D2)

The pairing of Majorana modes is depicted by curved
dotted lines in Fig. 17. The BdG spectrum for Eq. (D2)
has the same form as Eq. (20) with

ε(k) = −2∆ε cos(kx + ky),

∆(k) = −2i∆ε sin(kx + ky).
(D3)

Parity topological matrices ζij for ∆ε > 0(< 0) coincides
with KWx+y,0 phase (KWx+y,1 phase).

We now show that there is ‘weak breaking’ of transla-
tional symmetry in these phases: the e-particles split into
two sectors of effective anyons e′ and m′ in the ground
state, and lattice translations along both directions per-
mute them. For example, in Fig. 17, when e resides
in vertices v1−4 become e′ while on v5 it becomes m′.
This is similar to the Wen’s plaquette model.28 To show
this, we proceed analogously to Section V, by finding the
modified e-translation operators in the ground state sub-
space of KWx+y,ζ . Such an operator must commute with
the corresponding Majorana bilinear terms in Eq. (D1).
They can be found only for translations between diago-
nals of a square. For example, in Fig. 17, translations
between v1, v2 and v2, v3 are

T ev2v1 = Z1Z2, T
e
v3v2 = i(Z2Z3)× (X3Z4). (D4)
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v1

v2

v3

v4
v5

1

2

3

4

FIG. 17: Couplings between Majorana modes γ′, γ in
Eq. (D2) are illustrated visually as dotted lines in
phases KWx+y,ζ . The e-particles residing in vertices
belonging to two sub-lattices acquire mutual semionic
statistics. They become e′ (v1−4) or m′ (v5) along the
diagonal of the square unit cell but has anyonic
statistics with respect to its nearest neighbor.

The factor i imposes (T ev3v2)† = T ev3v2 . Eq. (D4) can be
understood intuitively similarly to the horizontal stack-
ing case in Section V. We draw Majorna pairings with
curved lines in the form in Fig. 17. When e is trans-
ported from v1 through v5 to v2, it cuts through the
same Majorana bond twice, therefore does not change
the fermion parity associated with such a pair of Ma-
jorana modes. However, going from v2 through v5 to
v3,it cuts through two different bonds, annihilating two
Majorana fermions, which are then created by the pair
creation operator X3Z4. The loop translation operator
on the ground state |0〉 along the dashed line in Fig. 17
now gives:

T ev4v1T
e
v3v4T

e
v2v3T

e
v1v2 |0〉 = Γev5 |0〉, (D5)

where we used the ground state identity
±ΓεNE(p)Uy,E(p)Ux,p|0〉 = |0〉 for KWx,0 and KWx,1

respectively. This demonstrates how the e-particles
in one sublattice picks up a −1 sign when they are
transported in a loop that encloses an odd number of
e-particles in the other sublattice.

Appendix E: Recasting the KWx,y as an ordinary
Toric Code

In this Section we show that, the ideal fixed point
Hamiltonians associated with the KWx,ζ (KWy,ζ) phases
described in Section IV can be recast as an ordinary TC
in an infinite lattice or for Ly (Lx) even.

For this purpose, we first consider the ideal fixed
point Hamiltonian for phase KWx,ζ , which corresponds

4

32

1

5

6

FIG. 18: New lattice in the subspace of Ux = ±1 by
treating the right and lower links of a given plaquette as
one degree of freedom at the center. Γev becomes on odd

rows Ge
′

v and Gm
′

p on even rows in the TC.

to hz = δ = 0 in Eq. (38), and project it into the follow-
ing subspace satisfied by the ground states of KWx,1 and
KWx,0 respectively:

Ux,p = ∓1, hx ≶ 0, (E1)

To demonstrate our statement at the beginning of this
Section, we will show that the ideal fixed point Hamilto-
nian projecting to the subspace of Eq. (E1) becomes the
TC for Ly even. Physically, Eq. (E1) corresponds to the
limit:

0 < ∆e � |hx|. (E2)

The inequality (E2) means a large superconducting gap
for ε-fermions, and the low-energy subspace of Eq. (E1)
has no ε-particles. However, as we shall see, the e-
particles on top of this non-trivial superconducting vac-
uum are split into two groups of anyons (e′ and m′) which
can be identified with those of TC, while Γev becomes ac-

cordingly either Ge
′

or Gm
′

defined in Eq. (1).
In the subspace given by Eq. (E1), we can choose a new

basis such that the horizontal and vertical links in Ux,p
are simultaneously diagonal with respect to Z andX. For
hx ≶ 0, Z and X have opposite (the same) eigenvalues,
and can be treated as one degree of freedom defined on
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the plaquette p. Thus, in the notation of Fig. 2, we have
the mapping:

Z3 → σzp , X5 → ∓σzp , hx ≶ 0. (E3)

σzp is the third Pauli matrix acting on the plaquette p with
the eigenvalue of Z3. A simultaneous operation of X3 and
Z5 on horizontal and vertical links of p anticommutes
with Z3 or X5 yet commutes with Ux,p, so the ground
state identity Eq. (E1) is still satisfied. As a result we
have another mapping within the subspace:

X3Z5 → σxp . (E4)

Γev then becomes a four plaquette operator Γep defined on
the plaquette to the north-east of v. For hx ≶ 0 (both
KWx,0 and KWx,1 phases), Γep has the same form. For
example, in Fig. 18:

Γe3 → σz1σ
y
2σ

y
3σ

z
4 . (E5)

To make more explicit the connection with the ordinary
TC, it is more convenient to define a new lattice in which
Eq. (E5) have the explicit form of Ge

′
and Gm

′
operators

in TC. We join, for all Γep on odd rows, the centers of
plaquettes and treating them as the mid-points of links
of the new lattice. For example, in Fig. 18 this is done for
Γe3 by joining plaquettes 2, 3 and 1, 4. Then Γep becomes

the Ge
′

and Gm
′

operators in TC on odd rows and even
rows (Γε3 and Γε4 in Fig. 18). For an infinite lattice or
Ly even, the separation of e into e′ and m′ is consistent.
However, for Ly odd this construction breaks down, as
can be seen by the following. We designate e from the
first row as e′ and then e from the second row as m′

and so on. Repeating this procedure through the entire
lattice, we see that, upon returning to the first row from
the Ly-th row, the e on the first row should become m′

instead of e′ in contradiction to the initial designation.
Thus the Hamiltonian Eq. (38) in the subspace given

by Eq. (E1) is equivalent to the TC at low energies for an
infinite lattice or Ly is even. This means that, for a finite
lattice with Ly even, the usual Toric Code constraints
apply: ∏

p∈odd rows

Γep = 1,
∏

p∈even rows

Γep = 1. (E6)

In particular, the ground state of the ideal fixed point
Hamiltonian of KWx phases is always in the subspace of
Eq. (E1). Since, as discussed above, for odd Ly, only
the constraint in Eq. (2) applies, the ground state is 2-
fold degenerate for Ly odd and 4-fold degenerate for Ly
even, which agrees with the conclusion in Section VI.
Above results can also be obtained by counting degrees
of freedom of the Hamiltonian in Eq. (38). The derivation
is given in Section F.

We note that a translation along the y-direction by
unity in the original lattice exchanges e′- and m′-particles
in the new lattice. This is another manifestation of the
‘weak symmetry breaking’ mentioned in Section V.

Above considerations can be extended to KWy,ζ

phases. Without detailing the analogous arguments, we
state the similar result: for 0 < ∆e � |hy| and Lx even,
the ideal fixed point Hamiltonian can also be recast as
an ordinary TC.

Appendix F: Ground State degeneracy for gapped
phases of Eq. (38)

In this Section we provide arguments for the non-trivial
size dependence of the GSD for AIi and KW phases, and
derive their GSD using direct counting arguments in the
original spin representation of the models and without
using the fermion mapping. For this purpose we shall
set δ = 0 in the underlying spin lattice. As we shall
see, solutions in the underlying spin lattice confirms the
conclusions in Section IV.30

First, we consider the trivial phase (AI0), whose ideal
fixed point Hamiltonian corresponds to choosing hx =
hy = 0 and hz > 0 in Eq. (38). The commuting operators
are Γε and Γe which satisfy the constraint in Eq. (10)
and the system is equivalent to the standard Toric Code.
The GSD is 4 labeled by Tx,y given by Eq. (9). They are
raised by the Wilson operators Wy,x which are products
of Z lines across the Torus along two directions as in the
Toric Code. For hz < 0 (phase AI1), the state Γεp =
−1 on each plaquette minimizes the energy. However,
for Lx, Ly both odd, this state is forbidden by the total
parity constraint in Eq. (10):∏

p

Γεp = (−1)LxLy = −1. (F1)

Thus the lowest energy state has Γε = 1 on one plaquette
and has a very large degeneracy (these states are not
global ground states).

We now turn to the case of hz = hy = 0 and hx > 0
in Eq. (38), which corresponds to the ideal fixed point
Hamiltonian [see Eq. (33) and Table II] for the phase
KWx,0 describing a stack of Kitaev wires along the x-
direction. To determine ground state topological degen-
eracies, we find all constraints relating operators that
enter in Eq. (33), which in this case are Γev and Ux,p in
Table II. Interestingly, we find that these operators sat-
isfy different global constraints depending on whether Ly
is even or odd. For Ly even, their constraint is:( ∏

odd rows

Γev

)( ∏
lattice

Ux,p

)
= 1, (F2)

where the first product is taken over the lower vertices
of squares of odd rows. Eqs. (10) and (F2) give two
constraints [note if one sets Ux = ±1 in Eq. (F2) and
substitutes Eq. (8), we obtain Eq. (E6) as it should].
This means that specifying the eigenvalues of all Γev and
Ux,p (there are 22LxLy−2 of them in total) still leaves 4
degrees of freedom in the total Hilbert space. Thus, the
ground state is 4-fold degenerate labeled by topological
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operators Tx and Ty in Eq. (9), which together with Γev
and Ux,p spans the entire Hilbert space.

For Ly odd we find:

( rowLy−2∏
odd rows

Γev

)( ∏
lattice

Ux,p

)
= −Tx. (F3)

In contrast to the Ly even case, the constraint relates
Tx to Γev and Ux,p operators in the Hamiltonian. There-
fore, Tx eigenvalue cannot be assigned arbitrarily, and
the ground state degeneracy is two labeled by Ty only
raised by Wx. For example, for hx > 0 (phase KWx,0)
Ux,p = Γev = 1 in the ground state and Eq. (F3) gives
Tx = −1: periodic boundary condition along the x-
direction is forbidden. For hx < 0 (phase KWx,1),
Ux,p = −1,Γev = 1 in the ground state, and Eq. (F3)
leads to:

Tx = −(−1)LxLy . (F4)

Thus, for Ly odd, the x-direction boundary condition
is anti-periodic for Lx even and periodic for Lx odd.
As is shown in Section VI A, there is a critical point
hx = hz separating the two phases studied above. Note
that Eq. (F3) is not invariant under translation along the
y-direction by unity, which is a manifestation of ‘weak
symmetry breaking’ discussed in the main text.

The degrees of freedom counting for KWx phases can
be summarized as:

operators degrees of freedom

Γev LxLy − 1

Ux LxLy − z
Tx z

Ty 1

z =

{
1, Ly even

0, Ly odd

The ground state degeneracy is then 21+z, where 1 + z
is the number of independent Tx,y operators.

Appendix G: Chern Numbers for Model Eq. (40)

The BdG Hamiltonian Eq. (40) is diagonalized in mo-
mentum space and has the form in Eq. (20), which can
be written as:

H = σ.c(k), (G1)

where c(k) = (Re ∆(k),− Im ∆(k), ε(k)). This defines
a unit-vector in k-space n(k) = c/|c| and the Chern
number is:

C =
1

4π

∫ (
∂n

∂kx
× ∂n

∂ky

)
.n d2k. (G2)

Evaluating Eq. (G2) near each gap closing point and
adding them gives the result in Eq. (43). For this pur-
pose, we pick a specific point in the parameter space for
each phase. For example, for gapless phases we choose
|hx| = |hy| = |hz|.
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