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Atomic structures and adatom geometries of surfaces encode information about the 

thermodynamics and kinetics of the processes that lead to their formation, and which can be 

captured by a generative physical model. Here we develop a workflow based on a machine 

learning-based analysis of scanning tunneling microscopy images to reconstruct the atomic and 

adatom positions, and a Bayesian optimization procedure to minimize statistical distance between 

the chosen physical models and experimental observations. We optimize the parameters of a 2- 

and 3-parameter Ising model describing surface ordering and use the derived generative model to 

make predictions across the parameter space. For concentration dependence, we compare the 

predicted morphologies at different adatom concentrations with the dissimilar regions on the 
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sample surfaces that serendipitously had different adatom concentrations. The proposed workflow 

is universal and can be used to reconstruct the thermodynamic models and associated uncertainties 

from the experimental observations of materials microstructures. The code used in the manuscript 

is available at https://github.com/saimani5/Adatom_interactions. 

 

  



4 
 

One of the key factors in understanding the physical functionalities and chemical reactivity of 

materials surfaces is the behavior of the adatom system, including the interactions between the 

adatoms and the substate, and interactions between adatoms, as well as associated local and global 

surface properties. Depending on the relative interaction energies, the adatoms can form surface 

gas and liquid phases, form multiple ordering types, and even give rise to the incommensurate 

surface phases.1-9 

 Traditionally, the properties of adatom systems were explored through the scattering 

methods such as low energy electron diffraction.10-13 Here, the scattering pattern of reflected 

electrons yields insight into the surface and adatom configurations, much like conventional Laue 

scattering gives insight into crystal structure.14 The quantitative analysis of the intensity-energy 

curves in LEED allows reconstruction of structural models, whereas high resolution LEED yields 

insight into long-range ordering mechanisms. However, the intrinsic difficulties in inversion of 

many-body scattering data and intrinsically low-k resolution of LEED has severely limited 

popularity of this approach, and in conjunction with advances in synchrotron light sources led to 

rapid proliferation of the surface-sensitive X-Ray scattering.15-20 This average structural 

information has provided insight into the surface phases and their evolution that can be directly 

compared to the prediction of lattice or molecular dynamics models. 

 The harbinger of a new era in surface studies was the invention of Scanning Tunneling 

Microscopy (STM)21, 22 and later non-contact Atomic Force Microscopy (nc-AFM).23 In the 

decades since their invention, these techniques have evolved into highly robust methods for 

visualization of surface atomic structures, allowing localization of individual atoms and their 

groups.24 This allowed scientists to gain insight into the structural and, via tunneling spectroscopy, 

electronic properties of the surfaces and adatom structures in unprecedented detail.25-27 

 However, the capability to visualize surface atomic structures have not yet fully been 

matched by development of analysis tools that can extract the physics of observed phenomena. 

Generally, such analysis necessitates several consecutive workflow tasks, including the transition 

from the images to materials specific descriptors, and subsequently recovering or building a 

correlative or generative model that can recreate the observed phenomena.  

 Here, we explore surface interactions in a system of Sulphur adatoms on CoSn terminated 

surface of a cleaved Co3Sn2S2 crystal. We develop a machine learning workflow that allows 

seamless transformation of observed scanning tunneling microscopy images to atomic coordinates 
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of surface and adatoms and referencing them to ideal lattice models. We further develop a Bayesian 

optimization-based approach that allows matching the experimental observables to a lattice 

Hamiltonian model, thus recovering a parsimonious generative physical model of this system.   

 As a model system, we explore S adatom features on top of CoSn subsurface of Co3Sn2S2 

single crystal, a newly discovered magnetic kagome-lattice Weyl semimetal from the Shandite 

family28-33. The Shandite family A3M2X2 crystallizes in a rhombohedral structure, with a CoSn 

Kagome-lattice sandwiched by S and Sn layers 34. Weyl semimetals, as a type of topological 

materials, possess a three-dimensional linear dispersion. They can be realized when time reversal 

and/or inversion symmetry are broken 28-33. The ball and stick model of S adatoms on top of CoSn 

subsurface of Co3Sn2S2 crystal is shown in Figure 1 (a). A large size STM image of one of the 

cleavage surfaces of Co3Sn2S2 is shown in Fig. 1(b). Large amount of S adatoms scatter on top of 

flat hexagonal subsurface of CoSn, in many forms including monomers, dimers, long 1D adatom 

chains, or zig-zag chains. The density of the adatoms varies from area to area. Fig. 1(c) shows an 

atomic resolution zoomed-in STM image on one of the terraces of (b). Both the S adatoms (brighter 

atoms in chains and other irregular shapes) and hexagonal subsurface lattices are clearly visible.  

Some of the adatoms can be shifted or removed by scanning under harsher conditions. Fig. 1 (d) 

shows two images of the same areas before and after an imaging scan at 0.1A, -30mV. The red 

and blue dotted atoms in the blue and red circles are either moved to a nearby position or were 

removed from the surface.  
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Figure 1. (a) Ball and stick model of Co3Sn2S2 crystal with S adatoms on top of CoSn subsurface. 

(b) STM image of one of the cleavage surfaces of Co3Sn2S2 (104 nm x 104 nm, 0.1 nA, -2000 

mV)), shows large of S adatoms on top of flat subsurface of CoSn. (c) Zoomed in STM image on 

one of the terraces of (b) (30 nm x 30 nm, 0.1 nA, -100 mV)). (d) Some of the adatoms can be 

shifted or removed by scanning under harsher condition. Large red and blue circles outline two 

such areas before and after a 0.1A, -30mV scan. 
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 The STM image in Fig. 1 (c) clearly illustrates the tendency of adatoms to form the 

elongated chains, breaking the D3h symmetry of the underlying surface. This symmetry breaking 

indicates strong anisotropic interactions between Sulphur atoms. Furthermore, the observed 

mobility of the atoms suggests that the adatoms are not trapped in a very deep potential wells, and 

hence the observed structures are close to being thermodynamically equilibrated locally. Here, we 

aim to construct models that can gain quantitative insight into this ordering behavior.  

 One such approach can be based on purely correlative models. In these models, the relative 

probabilities of first, second, and subsequent atomic neighborhoods are analyzed and can further 

be used to generate similar microstructures. This can be accomplished through dimensionality 

reduction methods such as principal component analysis, more complex strategies based on the 

standard or variational autoencoders, or development of a suitable low dimensional embedding 

such as graph2vec methods.35, 36 However, these correlative models necessitate large volumes of 

data to train and do not offer direct physical insight into the observed behaviors. Furthermore, 

introducing progressively more complex descriptors will lead to severe data scarcity since the 

amount of available experimental data is highly limited.  

 An alternative approach is offered by the recovery of generative models. In this approach, 

it is assumed that the observed microstructures emerge as a result of time evolution of the model 

encoding physical interactions in the system (as opposed to all possible states), and the analysis 

seeks to recover the model parameters.37-40 Note that in this context the model includes both the 

specific class and parameters within the class. Given the nature of the observed data that can be 

well-represented as partially occupied ideal adatom sublattice on the fully occupied surface atom 

lattice, here we use the triangular Ising model as a generative lattice model. 

 As the first step of the analysis, we seek to recover the coordinates of the surface adatoms 

in the lattice coordinates. To achieve this goal, we use blob detection class available in the scikit-

image library.41 The radii of the blobs detected is directly proportional to the standard deviation of 

the gaussian distribution used in finding the blobs. The surface atoms are then differentiated from 

the ad-atoms based on the standard deviation of the gaussian used to detect them. The coordinates 

of detected surface atoms and ad atoms are shown in Fig. 2 (b).  
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Figure 2. (a) STM image of the S adatoms on top CoSn surface and (b) identified surface atoms 

(red) and adatoms (green). (c) Nearest neighbor distribution of first six nearest neighbors 

corresponding to all the surface atoms detected (d) Observed surface atom lattice and (e) fully 

reconstructed surface lattice. (f) Overlay of the observed adatom lattice and reconstructed possible 

sites for ad atoms. 

 

 Some of the surface atoms are not visible in the image due to the overshadowing by the 

larger ad-atoms. To reconstruct the entire surface atom lattice, we first obtain the Bravais lattice 

corresponding to the surface atoms. This is done by plotting the positions of six nearest neighbors 

with respect to each surface atom. We then select the neighbors that are closer to the center than a 

certain threshold and divided them into six classes using k-means as shown in Fig 2 (c). The centers 

of these clusters are then the positions of surface atoms in the triangular Bravais lattice. The set of 

surface atoms detected using blob detection technique is shown in Fig. 2 (d) and the entire surface 

atom lattice is reconstructed using the obtained Bravais lattice and is shown in Fig. 2 (e). The 

possible sites for the adatoms are then derived from the fully reconstructed surface atom lattice 

and are shown along with the ad-atoms in Fig. 2 (f). This analysis allows us to determine both the 

lattice coordinates and real-space coordinates of the observed adatoms and observed surface atoms, 
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as well as reconstruct likely positions of the unobserved surface atoms (shadowed under adatoms), 

providing thus a complete reconstruction of the surface crystal structure.  

 As a relevant descriptor that connects the observed surface structures and the modelling, 

we choose the relative frequencies of appearance of the atomic neighborhoods. This approach was 

derived by Vlcek37, 42, 43 earlier and is dubbed statistical distance minimization. Here, we aim to 

minimize the statistical distance between the observations and the model, given as 

 𝑠 = arccos (∑ √𝑝𝑖√𝑞𝑖

𝑘

𝑖=1

) (1) 

Where s is the statistical distance, a similarity measure between two distinct thermodynamic 

systems, pi and qi are the probabilities of configurations i in the measurement of systems P and Q, 

respectively, with the total of k possible outcomes. This description was shown to be rigorous for 

the system in a state of thermodynamic equilibrium. For a triangular Bravais lattice, we collected 

the histograms corresponding to the six nearest neighbors.  

 As a generative model, we chose the Ising model on the triangular lattice, which reflects 

the observed structure of the adatom lattice. The Ising Hamiltonian is given by 

 𝐻(𝜎) =  − ∑ 𝐽𝑖𝑥𝜎𝑖𝜎𝑥

<𝑖,𝑥>

− ∑ 𝐽𝑖𝑦𝜎𝑖𝜎𝑦

<𝑖,𝑦>

−  ∑ 𝐽𝑖𝑧𝜎𝑖𝜎𝑧

<𝑖,𝑧>

 (2) 

Where H is the Hamiltonian of a given configuration 𝜎, (x, y, z) corresponds to the sites in three 

60⸰ axes in C3 symmetry, i is the central atom, Jij is the interaction parameter corresponding to the 

sites i and j and the summation runs over all the nearest neighbor combinations. The vacant adatom 

sites are treated as -1 (downward) spin and the occupied ones are treated as +1 (upward) spin. 

Interactions between empty sites are ignored. Monte Carlo simulations are run on a triangular 

lattice model subjected to Kawasaki dynamics where the adatoms hop to a randomly selected 

empty site. A hop is accepted if the energy of the newly formed state is less than the original state 

else, the probability of hopping is then determined by the Boltzmann distribution and is given by 

equation 2. 

 

 

 
𝑃𝛽(𝜎𝑖) =  

𝑒−𝛽𝐻(𝜎𝑖)

∑ 𝑒−𝛽𝐻(𝜎𝑗)
𝑗

 
(2) 
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Where β is the inverse temperature. Kawaski dynamics helps in conserving the number of ad-

atoms in the system. The statistics of configurations generated by the Monte Carlo simulations are 

then compared with those extracted from the image by calculating their statistical distance. A total 

of 128 distinct combinations of spins corresponding to the six nearest neighbors in a triangular 

lattice are used as descriptors. The set of interaction parameters that yield the minimum statistical 

distance from the experimentally observed structures are the interaction parameters we seek. 

 

 

Figure 3. (a) Phase diagram of symmetric model (Jx = Jy = J1 and Jz = J2, Tr = 0.8) showing 5 

distinct phases, (b) dendrogram showing the frequencies of classes, (c) Representative 

microstructures corresponding to the phases shown in (a). 

 

 Here, we consider both a symmetric model with two parameters Jx= Jy = J1 and Jz = J2, and 

the full model with all three integrals being non-equal. To obtain the phase diagram of the 

symmetric model, histograms are collected over the entire parameter space (J1  [-1.5, 1.5], J2  
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[1.5, 1.5]) and are then divided into five clusters using the k-means algorithm. The typical phase 

diagram for the symmetric model is shown in Fig. 3a and representative microstructures of each 

phase are shown in Fig. 3c. Relative class sizes and the distance between the classes are shown in 

the dendrogram in Fig. 3b. Depending on the relative signs of the interaction parameters, the phases 

corresponding to isolated adatoms (5), large-clusters (2), and ordered chains in one (3,4) and two 

possible directions (1) are realized. Note that these configurations can be expected from 

straightforward physical considerations, and here we did not aim to explore the phase diagram of 

the model Eq. (2) in detail. Rather we illustrate rapid mapping of configurations across a broad 

parameter space and associated qualitative morphological features. In fact, the proposed analysis 

pathway relies on the near-neighborhood configuration analysis, and hence is relatively insensitive 

to the long-range correlations, etc. that are traditionally explored in the context of statistical 

physics. 

 To extract the model parameters from the experimental data, here we develop an analysis 

based on the Bayesian optimization approach, an extension of the Gaussian Process (GP) 

regression towards guided search of parameter space.44-46 Briefly, the GP regression refers to an 

approach towards interpolating, or learning, a function, f, given the set of observations D = (x1, y1), 

. . .(xN , yN )}. The arguments xi are assumed to be known exactly, whereas the observations are 

the sum of the function value and Gaussian noise with zero mean, yi = f(xi) + . The key assumption 

of the GP method is that the function f has a prior distribution f ~ 𝒢𝒫(0, 𝐾𝑓(𝑥, 𝑥′)), where  𝐾𝑓 is a 

covariance function (kernel).47 The kernel function defines the relationship between the values of 

the function across the parameter space, and its functional form is postulated as a part of the fit. 

The learning is performed via Bayesian inference in a function space and the expected value of the 

function, corresponding uncertainties, and kernel hyperparameters are optimized simultaneously. 

The output of the GP process is then the predicted data set, uncertainty maps representing the 

quality of prediction, and kernel hyperparameters.  

 The aspect of the GP analysis that differentiates it from other interpolation methods is that 

not only the function value, but also associated uncertainty are determined over the parameter 

space. This can be used for effective exploration of the parameter space in an automated fashion.  

In this approach following a purely exploratory strategy, the subsequent measurement point is 

chosen as a region of maximal uncertainty of function f after previous measurements. The GP 

method can be further extended towards Bayesian optimization, where the selection of the next 
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measurement point in the parameter space is based both on the uncertainty and target value of the 

function.   

 Here we implement the Bayesian Optimization based on the GPyTorch library48 and GPim 

package.49 We used the RBF or Matern kernels, defined as 

𝑘𝑅𝐵𝐹(𝑥1, 𝑥2) = 𝜎2exp (−0.5 ×
|𝑥1−𝑥2|2

𝑙2 )     (2) 

where l and 2 are kernel length scale and variance, respectively, which are learned from the data 

by maximizing the log-marginal likelihood. The acquisition function, which determines the 

trajectory of subsequent measurements, was chosen to switch between pure exploration and 

exploitation with 60% probability towards exploitation. For exploitation, we aimed to minimize 

statistical distance between the experimental histogram and the histograms obtained from the 

Monte Carlo simulations.  
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Figure 4. (p) Data points explored, (q) Statistical distance surface, (r) Uncertainty in statistical 

distance surface at the end of (a) Step-0, (b) Step-25, (c) Step-50, (d) Step-75. The yellow cross 

indicates the combination of parameters that yield the minimum statistical distance after the 

corresponding step. 

 

 The flow of the Bayesian optimization is delineated in Fig. 4. Here, shown is the explored 

points in the parameter space, the reconstructed statistical distance, and uncertainty. Outcomes at 
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the end of Bayesian optimization step – 0, 25, 50, 75 are shown in Fig. 5a-d respectively. Data 

points explored, interpolated statistical distance surface and uncertainty in the interpolation for the 

different steps are shown in Fig. 5p-r. Since the shape of the statistical distance surface is simple 

with no multiple local minima, the region of global minimum is identified in the first few steps. 

25 steps are sufficient to generally delineate the position of the minimal statistical distance, 

corresponding to the maximal (in a sense of thermodynamics of the generative model) similarity 

between the experimental data and realizations of the generative model. This saves a lot of 

computational power when compared to doing a grid search over the entire space. To determine 

the reproducibility, we run analysis 10 times and the determined interactions parameters are J1 = 

0.59, J2 = -1.79 at Tr = 4.0.  

 To attest the veracity and systematic error of the proposed approach, we further explore to 

which extent the known interaction parameters of the symmetric model can be reconstructed from 

experimentally observed histograms. As an example, we collected the statistics of two distinct 

pseudo-experimental cases (J1 = 0.5, J2 = -0.5, Tr = 4.0 and J1 = 1.0, J2 = -1.0, Tr = 0.8). The 

purpose of the pseudo experimental simulations is that their statistics mimic the real-world data. 

The proportion of the adatoms in these simulations are consistent with the experimental data. The 

histograms of the pseudo experimental cases are then compared with the simulations over the 

entire parameter space at the same reduced temperature using statistical distance. At stronger 

interactions (lower temperature and/or higher values of interaction parameters), the statistical 

distance minimization technique identifies the phase of the experimental data.  

 These reconstructions are illustrated in Fig. 5, where we try to reconstruct the interaction 

parameters of case-2 (J1 = 1.0, J2 = -1.0, Tr = 0.8). The microstructures corresponding to this case 

are shown in Fig. 5 (d), where clearly the clusters of adatoms are visible, suggesting a ‘pre-

transition’ region. Around the transition region, reconstruction would be ideal with minimum 

uncertainty and the uncertainty/shallowness of the statistical distance surface increases with 

increase in temperature. This effect can be observed in the reconstruction of case – 1 in Fig. 5 (a) 

and the corresponding microstructures are shown in Fig. 5 (c). Shallowness of the statistical 

distance surface can also be attributed to the low concentration of adatoms present.  
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Figure 5. Statistical distance as a function of interaction parameters for (a) case - 1 (J1 = 0.5, J2 = 

-0.5, Tr = 4.0) and (b) case - 2 J1 = 1.0, J2 = -1.0, Tr = 0.8), Representative microstructures for (c) 

case - 1 and (d) case - 2. Red and blue sites correspond to occupied and empty sites respectively. 

 

 However, the analysis clearly suggests that the observed morphologies of the adatom 

structures allows to establish the nature of the adatom interactions (attractive in 2 directions, 

repulsive in one direction), and establish the approximate values of interaction parameters. The 

characteristic morphology of the error surface suggests that the ratio of the parameters can be 

determined reliably, whereas absolute value is associated with larger errors. 
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Figure 6. Statistical distance landscapes of the 3D model for optimal values of (a) Jy = 0.4, (b) Jz 

= -1.2 and (c) Jx = 0.5. The red dots indicate the combination of optimal parameters after projecting 

the statistical distance curve onto a 2D surface. (d) Randomly selected sites with different 

concentrations of adatoms and the predicted configurations using the optimal values for interaction 

parameters. 

 

 We further apply the technique discussed to a 3D parameter space where Jx and Jy are 

treated differently. The set of optimal values provided by the analysis are Jx = 0.5, Jy = 0.4, Jz = -

1.2 in the units of kBT. The statistical distance surface formed is then projected onto 2D surfaces 

for visualization. The 2D surfaces selected are the optimal values of the each of the interaction 

parameters. Statistical distance landscapes after projection onto the optimal values of the 

interaction parameters are shown in Fig. 6 (a-c). Statistical distance surface in 3D is projected onto 

Jx-Jz (Fig. 6a), Jy-Jx (Fig.6b), and Jy-Jz and (Fig. 6c) at the optimal values of Jy = 0.4, Jz = -1.2 and 

Jx = 0.5 respectively. Several random areas from the image are then selected with varying 

concentrations of adatoms and the reconstructed configurations obtained with the optimal values 

of interaction parameters are shown for comparison (Fig. 6d). 
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 To summarize, here we explored the surface structures of adatoms on the shandite surface. 

The adatoms tend to form 1D chains breaking the hexagonal symmetry of the surface and are 

weakly mobile under observation conditions. This suggests the attractive interactions between the 

atoms, in agreement with the known chemistry of sulphur favoring chain-like molecule formation. 

 To extract the generative physical model, we use the Bayesian optimization to minimize 

statistical distance between the chosen physical model and experimental observations. As a 

physical model, here we explore the 2- and 3-parameter Ising models on triangular lattice with the 

particle density corresponding to experimental adatom density. It was shown that the cost surface 

corresponding to the experimentally relevant parameter space region has an elongated minimum, 

resulting in the relatively large errors of reconstruction both for synthetic (known ground truth) 

and experimental data. With this limitation, the interaction parameters of J1 = 0.59, J2 = -1.79 for 

2D and Jx = 0.5, Jy = 0.4, Jz = -1.2 for 3D are obtained. 

 Thus, the derived generative model in turn allows generalization across the parameter 

space. For concentration dependence, we compare the predicted morphologies for different adatom 

concentrations with the dissimilar regions on the sample surfaces that serendipitously had different 

adatom concentrations.  

 We believe that the proposed workflow is universal and can be used to reconstruct the 

thermodynamic models and associated uncertainties from scarce experimental observations of 

materials microstructures at a limited computational cost. We note that critical consideration going 

further will be the analysis of the non-equilibrium effects, i.e. presence of frozen interactions. Here, 

statistical distance minimization requires proximity to (local) thermodynamic equilibrium, 

whereas observability via imaging requires the frozen atomic configurations. However, overall, 

the proposed approach opens the pathway for extracting generative models from observations.  
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Materials and methods 

 

Synthesis: Co3Sn2S2 crystals were synthesized using the self-flux method using a procedure 

similar to that described in Ref50. Co slugs(Alfa  Aesar,  99.995%), Sulfur pieces(Alfa  Aesar,   

99.9995%) and Sn shots(Alfa  Aesar, 99.99+%) with an atomic ratio of Co:S:Sn=9:8:83 were 

placed in a 2 ml Al2O3 Canfield crucible set51 and sealed into a silica tube under vacuum. The tube 

was heated to 400C at 100C/h. After dwelling for 4 hours, the tube was heated with the same 

rate to 1100C and kept at this temperature for 24 hours. The tube was then cooled to 700C at 

3C/h prior to separating the flux from the crystals in a centrifuge.  After centrifuging at 973K to 

separate the crystals from the flux, single crystals were obtained from the crucibles.  

 

Characterization: Magnetic measurements were performed using a Quantum Design Magnetic 

Property Measurement System (MPMS) which has Reciprocating Sample Option (RSO) and ac 

susceptibility options. Phase purity, crystallinity, and the atomic occupancy of all crystals were 

checked by collecting Powder X-ray diffraction (XRD) data).  

 

STM and STS: Crystals were cleaved in ultra-high vacuum (UHV) at ~ 78 K and then 

immediately transferred to the Scanning Tunneling Microscopy/Spectroscopy (STM/S) head 

which was precooled to 4.2 K or 78 K without breaking the vacuum. The STM/S experiments were 

carried out at 4.2 K or 78 K using a UHV low-temperature and high field scanning tunneling 

microscope with base pressure better than 2×10-10 Torr. Pt-Ir tips were mechanically cut then 

conditioned on clean Au (111) and checked using the topography, surface state and work function 

of Au (111) before each measurement. The STM/S were controlled by a SPECS Nanonis control 

system. Topographic images were acquired in constant current mode with bias voltage applied to 

sample, and tip grounded. All the spectroscopies were obtained using the lock-in technique with a 

modulation of 0.1 to 1 mV at 973 Hz on bias voltage, dI/dV. 
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