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We introduce a spinful variant of the Sachdev-Ye-Kitaev model with an effective time reversal
symmetry, which can be solved exactly in the limit of a large number N of degrees of freedom. At low
temperature, its phase diagram includes a compressible non-Fermi liquid and a strongly-correlated
spin singlet superconductor that shows a tunable enhancement of the gap ratio predicted by BCS
theory. These two phases are separated by a first-order transition, in the vicinity of which a gapless
superconducting phase, characterized by a non-zero magnetization, is stabilized upon applying a
Zeeman field. We study equilibrium transport properties of such superconductors using a lattice
construction, and propose a physical platform based on topological insulator flakes where they may
arise from repulsive electronic interactions.

Understanding strongly correlated forms of supercon-
ductivity, going beyond the celebrated BCS [1–3] and
Migdal-Eliashberg [4–7] theories, remains an ongoing av-
enue of research. One of the main difficulties lies in
the rarity of tractable models [8–10] providing analytical
insight into this phenomenon. Recently, the advent of
exactly-solvable models of non-Fermi liquids, the family
of so-called SYK models [11–14], has sparked remarkable
progress in exploring correlated phases with intriguing
properties such as strange metallic transport and maxi-
mal chaos [15–24]. Solvable models of correlated super-
conductors have been similarly constructed – two popular
approaches consisting of explicitly adding pairing terms
to an SYK construction [25–27] or considering random
Yukawa electron-phonon interactions [28–32].

Building on these ideas, in this work we introduce a
simple model for correlated superconductivity with rich
phenomenology, where the superconducting correlations
are instead generated directly by disordered SYK-type
fermionic interactions [33, 34]. It consists of a pair of
coupled complex SYK (cSYK) models [11, 12, 35] with
random two-body interactions that are constrained by
an anti-unitary time reversal symmetry, and can thus be
regarded as a spinful generalization of the SYK model.
This is inspired by recent work on a related but subtly
different symmetry setting, where two SYK models are
instead related by a unitary symmetry [36–40], and which
hosts both (gapped) symmetry-broken and (gapless) non-
Fermi liquid phases with a holographic interpretation.

In analogy with the results of these works, at low
temperature the spinful SYK model shows the sponta-
neous breaking of a U(1) symmetry. However, rather
than the breaking of an axial U(1) symmetry leading to
a “traversable wormhole” phase [38–40], the global U(1)
symmetry is instead broken, driving the system to a cor-
related spin-singlet superconducting phase. This super-
conductor shows an enhanced gap ratio compared to the
BCS prediction, and might also exhibit connections to
holography. It is separated by a first-order transition
from an SYK non-Fermi liquid, in the vicinity of which
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FIG. 1. (Left:) Illustration of the coupling terms in the spin-
ful SYK model, Eq. 2. (Right:) Low temperature (βJ = 100)
phase diagram as a function of Zeeman field B and interac-
tion parameter α, at charge neutrality µ = 0. For α < 0
the SYK non-Fermi liquid is stable, whereas for α > 0 we
find an instability to a gapped spin-singlet superconductor.
Interestingly a region of gapless superconductivity with finite
magnetization is stabilized at non-zero B. White dashed lines
denote first-order phase transitions.

a gapless superconducting phase, characterized by a fi-
nite magnetization, is stabilized upon applying a Zeeman
field B (see a schematic low-temperature phase diagram
in Fig. 1). Using a lattice construction with spinful SYK
models at each site we compute the equilibrium transport
properties of the two SC phases, finding sharp qualitative
differences in their supercurrent-phase relations.
The model. – We consider a variant of the SYK model

that consists of a (0+1)-dimensional “quantum dot” with
a large number N of degrees of freedom, each coming in
two flavors a =↑, ↓. We assume all-to-all, random inter-
actions between degrees of freedom of the same flavor,
described by the complex SYK Hamiltonian

Ha =

N∑
ijkl=1

Jaij;klc
†
iac
†
jackacla − µa

∑
j

c†jacja, (1)

where the coupling constants are drawn from a Gaussian

distribution with zero mean and variance |Jaijkl|2 = J2

8N3 ,
and µa are chemical potentials that can be tuned in-
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dependently for the two species. Fermionic commuta-
tion relations impose the constraints Jaij;kl = −Jaij;lk =
−Jaji;kl = (Jakl;ij)

∗ on the coupling constants. In the
following we also impose the stronger requirement that
Jaij;kl be fully anti-symmetric [41]. We then require in-
variance under the anti-unitary symmetry Θ = τxK,
where τx is a Pauli matrix acting on the flavor degree
of freedom and K denotes complex conjugation. This
enforces J↑ij;kl = (J↓ij;kl)

∗ = J↓kl;ij .

We now couple the cSYK models with two-body inter-
actions that conserve charge for each flavor (with U(1)

⊗ U(1) symmetry), of the form Jabijklc
†
iac
†
jbckaclb. Con-

sistency with the anti-unitary symmetry requires that
Jabijkl = (Jbaijkl)

∗. For concreteness we consider the cou-
pling constants generated by Coulomb interactions in a
degenerate manifold that is constrained by Θ (see Ap-
pendix for details and connections to a proposed experi-
mental platform based on a topological insulator flake).
This enforces the constraints Jabil;kj = αJaij;kl = αJbkl;ij ,
with α a dimensionless constant controlling the ratio of
inter to intra-flavor interactions. In the proposed phys-
ical platform α > 0 (α < 0) corresponds to repulsive
(attractive) inter-flavor interactions. We thus consider

H =
∑
ijkl

Jij;kl

[
c†i↑c

†
j↑ck↑cl↑ + c†k↓c

†
l↓ci↓cj↓

+ α
(
c†i↑c

†
l↓ck↑cj↓ + c†k↓c

†
j↑ci↓cl↑

) ]
−(µ+B)

∑
j

c†j↑cj↑ − (µ−B)
∑
j

c†j↓cj↓, (2)

where we expressed µ↑,↓ = µ ± B in terms of a (global)
chemical potential µ and a Zeeman term B which breaks
the anti-unitary symmetry Θ. For µ = 0 the Hamiltonian
is invariant under the combination of flavor and particle-
hole transformation c†ia ↔ cib with a 6= b.

Saddle-point equations.– We first consider the charge
neutrality point, µ = 0. The Euclidean-time path in-
tegral formulation of the model at inverse temperature
β = 1/kBT reads Z =

∫
[D[c, c†]e−S with the effective

action S =
∫ β

0
dτ
(∑

i,a c
†
ia(τ)∂τ cia(τ) +H

)
. Averaging

over quenched disorder in the couplings Jijkl, and consid-
ering only replica-diagonal solutions (assuming no spin
glass physics [42]), we obtain an effective action writ-
ten in terms of the (standard and anomalous) averaged

Green’s functions Gτ,τ ′ = 1
N

∑
j〈T cj↑(τ)c†j↑(τ

′)〉 and

Fτ,τ ′ = 1
N

∑
j〈T cj↑(τ)cj↓(τ ′)〉 and their respective self-

energies Σ and Π (see Appendix for details). From this
effective action the semiclassical (N → ∞) saddle-point
equations are obtained by taking functional derivatives

with respect to the Green’s functions and self-energies,

Στ = −J2
[
(1 +

α2

2
)G2

τG−τ − 2αGτFτF−τ +
α2

2
F 2
τG−τ

]
Πτ = −J2

[
(1 +

α2

2
)F 2
τ F−τ − 2αFτGτG−τ +

α2

2
G2
τF−τ

]
Gn = −B + Σn + iωn

Dn
, Fn =

Πn

Dn
, (3)

where Dn = (B + Σn + iωn)2 − Π2
n. Here we used time

translation invariance to express Gτ,τ ′ ≡ Gτ−τ ′ , while
Gn ≡ G(ωn) (and similarly) are Fourier transformed ex-
pressions in terms of fermionic Matsubara frequencies
ωn = (2n + 1)πT . This set of coupled equations can be
solved self-consistently through an iterative method until
convergence is attained. In practice, as coupled models
of this type [36–40] often exhibit first-order phase tran-
sitions, we sweep the Zeeman field B back and forth and
feed the converged solution for the next value of B con-
sidered. This gives rise to hysteresis curves from which
one picks the solution with the lowest free energy density
F = −T lnZ/N , given in the large N limit by substitut-
ing the saddle point solutions in the action [43],

−F
T

= 2 ln 2 +
∑
ωn

[
ln

(
Dn

(iωn)2

)
+

3

2
(ΣnGn + ΠnFn)

]
.

(4)

Similarly, the entropy density S = (U − F) /T is ob-
tained, with the energy density

U = T
∑
ωn

[2BGn + ΣnGn + ΠnFn] , (5)

and the magnetization M = 1
2N

∑
j〈c
†
j↑cj↑ − c

†
j↓cj↓〉 can

be read off from M = 1
2 −Gτ=0+ .

Phase diagram.– We first explore the low-temperature
physics of the model by self-consistently solving the
saddle-point equations as described above. The result-
ing phase diagram is shown in Fig. 2. For attractive
interactions between the two flavors (α < 0) we find an
SYK non-Fermi liquid with extensive residual entropy.
In contrast, for repulsive interactions (α > 0) there is
an instability to a gapped superconducting phase gen-
erated by the spontaneous breaking of U(1) charge con-
servation. This should be compared to the results of
Refs. [38, 39], showing a spontaneous breaking of the ax-
ial U(1) symmetry with quantum number Q− = Q↑−Q↓,
whereby an “excitonic” order parameter 1

N

∑
j〈cj↑c

†
j↓〉 is

generated for α < 0. Indeed, the Hamiltonian studied in
Refs. [38, 39] is related to Eq. 2 by a particle-hole trans-

formation for a single flavor c†i↓ ↔ ci↓ combined with
α → −α, according to which we expect a spontaneous
expectation value ∆ ≡ Fτ=0 = 1

N

∑
j〈cj↑cj↓〉 to develop

for α > 0. That is, in our case the global U(1) sym-
metry with Q = Q↑ + Q↓ is instead broken, leading to
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FIG. 2. Phase diagram of the model [Eq. (2)] at low-temperature βJ = 100 and charge neutrality µ = 0. The superconducting
order parameter ∆ (left panel), magnetization M (middle panel) and residual entropy density S0 (right panel) are obtained
from the self-consistent solutions of Eqs. (3) as a function of α and B. Dashed white lines indicate first-order phase transitions.

a spin-singlet SC state, and the instability now interest-
ingly occurs for repulsive inter-flavor interactions.

In the presence of a weak Zeeman field B, the SC
phase remains non-magnetized (M = 0) as expected for
a fully gapped spin-singlet superconductor. The break-
ing of time-reversal symmetry is however reflected in the
different spectral gaps for the hole and electron sides,
as shown in Fig. 3. In contrast, the non-Fermi liquid
phase can be continuously magnetized by tuning B, a
reflection of the compressibility of the underlying cSYK
models [12, 35]. At sufficiently large B a first-order phase
transition takes the system to a gapped, fully polarized
state with M = 1

2 . The discontinuous jump in residual
entropy between the non-Fermi liquid and gapped phases
signals a first-order phase transition. The transition be-
tween the two gapped, ordered phases (SC with ∆ 6= 0
and polarized phase with M = 1

2 ) is also of first order,
as expected from standard Landau arguments.

A surprising result is the appearance of an interme-
diate phase which is gapless and superconducting, upon
applying a Zeeman field B. This phase exhibits exten-
sive residual entropy and magnetization associated with
the SYK non-Fermi liquid, as well as a non-zero SC or-
der parameter ∆. The presence of a non-zero M and ∆
seems contradictory, but can occur e.g. in a “phase coex-
istence” scenario where only part of the system sponta-
neously breaks the U(1) symmetry [38]. Here the Green’s
function Gτ exhibits power-law decay at long times, in
contrast to the exponential decay observed in the gapped
SC phase (see Fig. 3). When tuning the chemical poten-
tial away from charge neutrality, µ 6= 0, we find that both
the gapped and gapless SC phases are compressible, as
described in more detail in the Appendix.

Gap ratio enhancement.– We now increase tempera-
ture and consider the transition out of the gapped SC
phase. In Fig. 4 we show the temperature dependence of
∆ for B = 0. For large α we find that ∆ smoothly goes to
zero at Tc, indicative of a second-order transition, which
is however not BCS-like as shown from comparing with
the self-consistent solution of the BCS gap equations in

0.0 0.1 0.2 0.3 0.4 0.5
/

10 3

10 2

10 1

100

G F

0.0 0.1 0.2 0.3 0.4 0.5
/

G F

FIG. 3. Comparison of the regular and anomalous Green’s
functions Gτ and Fτ in the gapped (solid lines, α = 0.4 and
B = 0.1J) and gapless (dashed lines, α = 0.4 and B = 0.2J)
SC phases at low temperature βJ = 200. We show both
negative (left) and positive (right) imaginary times τ .

the weak coupling limit [1? , 2]. In particular, in BCS
theory the following universal relations hold (with kB = 1
and ∆0 the SC order parameter at T = 0):

∆0 = 1.76Tc , ∆(T → Tc) = 3.06Tc

√
1− T

Tc
. (6)

Here we find that neither relation is satisfied, highlighting
the strongly-correlated nature of superconductivity. Fur-
ther, the data collapse near Tc suggests that the SC tran-
sition becomes of first order when decreasing α. There is
also a significant gap ratio enhancement [20] with ∆0/Tc
seemingly diverging for small α, which can be traced back
to the empirical observation that Tc ∼ α while ∆0 de-
pends only weakly on the interaction strength.
Equilibrium transport.– We finally consider transport

properties of the SC phases identified above. To do so we
build a lattice model out of spinful SYK building blocks,
connected by random hoppings similarly to Ref. [18],

H =
∑
x

Hx +
∑
〈x,x′〉

∑
ijσ

txx
′

ijσc
†
iσxcjσx′ . (7)

Here Hx describe spinful SYK models, Eq. 2, with an
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FIG. 4. (Left:) Temperature dependence of the superconducting order parameter ∆ for various values of α and µ = B = 0. The

weak-coupling BCS scaling is shown by dashed lines. (Middle:) Data collapse of ∆/∆0 against
√

1− T/Tc. There is a jump
from a second to a first order phase transition when the interaction strength α decreases. (Inset:) The ratio ∆0/Tc increases
as α→ 0 and is greatly enhanced compared to the BCS result (dashed line). (Right): Phase diagram showing ∆ in the T − α
plane, with second-order (solid line) and first-order (dashed line) phase transitions out of the gapped superconducting phase.

independent disorder realization on each site x. This en-
sures that the effective action only features local Green’s
functions and self-energies. The hopping terms connect
nearest neighbors 〈x, x′〉 and are drawn from a Gaussian

distribution with zero mean and variance |txx′
ijσ |2 = t2

N .
To drive a supercurrent in the system we consider a

ring geometry with L sites threaded by a magnetic flux
Φ. This introduces Peierls phase factors in the hopping
parameters through txx

′

ijσe
iφ, with φ = e

~
∫
A · dl = 2π

L
Φ
Φ0

and the flux quantum Φ0 = h
e . If the hopping parame-

ters are taken to be uncorrelated between the two spin
components, the disorder average yields only the Green’s
function Gx,τ which is insensitive to the magnetic flux
insertion. It is thus crucial to require invariance of the
hopping terms under the anti-unitary symmetry Θ – that
is, txx

′

ij↑ = (txx
′

ij↓ )∗. Combined with a translation-invariant
ansatz, whereby Gx,τ = Gτ and Fx,τ = Fτ , we obtain
saddle-point equations (see Appendix) that can be solved
self-consistently. The free energy density F/L is com-
puted using the appropriate generalization of Eq. 4, with
the induced supercurrent

I =
∂F
∂Φ

=
2e

~
∂

∂ϕ

(
F
L

)
, (8)

where ϕ = 2φ is the phase carried by Cooper pairs when
tunneling between SYK dots.

The limit of weak hopping t corresponds to Josephson
tunneling between neighboring SC islands that are phase
biased. Accordingly, we obtain sinusoidal supercurrent-
phase relations I(ϕ) = Ic sin (ϕ+ δ), as shown in Fig. 5
for α = 0.5 and various values of B. In the gapped phase
we find δ = 0 and the maximal supercurrent Ic ∼ t2/J ,
as expected in perturbation theory from the tunneling of
Cooper pairs between neighboring sites. For sufficiently
largeB the gapless SC phase is stabilized (see also Fig. 2),
which in transport is manifest as a phase-shifted super-
current relation with δ = π. In other words, the system’s
free energy is minimized for a staggered order parameter
∆x with a π phase difference between neighboring sites.
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FIG. 5. Equilibrium transport properties of the two supercon-
ducting phases, here for α = 0.5. (Left:) Supercurrent-phase
relation I(ϕ) [computed through Eq. 8] in the lattice model
for various values of the Zeeman field B/J (color scale) and
t/J = 0.01. The jump to a π-shifted sinusoidal profile coin-
cides with the first-order transition between the gapped and
gapless SC phases at the critical Zeeman field Bc. (Right:)
The superfluid density ρ (in arbitrary units) is independent
of B in the gapped phase and shows a recovery after a sudden
drop at Bc.

The superfluid density ρ ∼ ∂I
∂ϕ |ϕ→δ is independent of B

in the gapped phase, but interestingly shows a recovery
with B in the gapless phase, following a sudden drop
at the phase transition at Bc. The gapless SC phase is
however more fragile to competing energy scales, as seen
from the rapid decrease in ρ/t2 as a function of t.

Discussion.– In this work we introduced a simple
“spinful SYK” model for strongly-correlated supercon-
ductivity. Its exact solvability in the large N limit al-
lowed us to map the model’s phase diagram which ex-
hibits two different (gapped and gapless) superconduct-
ing phases, and show how their behavior strongly devi-
ates from BCS theory. The transport properties of such
phases, going beyond the equilibrium picture presented
here, could be explored in future work. Indeed, the lat-
tice model (Eq. 7) hosts not only correlated SC phases,
but also a strange metal and a heavy Fermi liquid (de-
pending on the ratio t/J) in the limit α = 0, where it
reduces to two decoupled (spinless) SYK chains [18]. It
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would be interesting to study the thermal and electrical
conductivity across this rich phase diagram, which bears
some resemblance to the phenomenology of cuprates.

In summary, this work adds to the growing body of lit-
erature on SYK superconductivity [25–34] by highlight-
ing the role of anti-unitary symmetries in promoting SC
instabilities. Further, the model’s simple structure and
connections to physical platforms where superconducting
instabilities are expected for repulsive electronic interac-
tions raise the hope of stimulating new experimental de-
velopments. An interesting open question concerns the
effect of (finite N) fluctuations away from the saddle-
point, which should restore the broken U(1) symmetry
at low energy in accordance with the Mermin-Wagner
theorem [14, 44].
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Experimental platforms and electronic interactions

In this Appendix we consider a simple solid-state platform that provides an approximate physical realization of the
spinful SYK model, Eq. 2. This platform is largely inspired by Refs. [38, 49], but the same symmetry setting might
be relevant for other platforms based on ultracold atoms [50], optical lattices [51] or spin chains [52].

We consider a (0+1)-dimensional “quantum dot” geometry inspired by the graphene flake of Ref. [49]. Here we
promote this setup to a topological insulator (TI) flake with the two surfaces denoted by 1, 2. Each surface hosts a
single Dirac fermion, which can described by the low-energy Hamiltonians

h1(k) = +~vFσ · k − µ1I , h2(k) = −~vFσ · k − µ2I, (9)

where σ are Pauli matrices acting on the electron spin, vF is the Fermi velocity and µ1/2 are chemical potentials,
which in general could be different on the two surfaces (e.g. due to the TI flake being deposited on a substrate). The
opposite signs of the Fermi velocity in Eq. 9 capture the fact that the two TI surfaces have opposite normal vectors.

When a strong (perpendicular) magnetic field B = ∇ ×A = Bẑ is applied to the sample (see Fig. 6), the Dirac
surface states collapse to a series of flat Landau levels [53, 54]. The low-energy theory for the two surfaces reads

h1(k) = +~vFσ · (k + eA) +BZσ
z − µ1I,

h2(k) = −~vFσ · (k + eA) +BZσ
z − µ2I, (10)

with the Zeeman energy BZ = 1
2gµBB where g is the Landé factor and µB the Bohr magneton. For µ1 = µ2 the two

surfaces are related by the unitary rotation σz – in other words the system is invariant under the unitary U = τxσz

where τx is a Pauli matrix acting on the surface pseudospin. Let us set the chemical potential of each surface to lie
within its respective zeroth Landau level at energy E0 = −BZ . Similarly to the case of graphene, where the zeroth
Landau level is sublattice polarized (within each valley), the zeroth Landau level of a TI flake is spin-polarized, with

φj(r) =


0

φj1↓(r)
0

φj2↓(r)

 . (11)

Here j labels the degenerate LL0 wavefunctions, and the unitary symmetry U imposes the constraint φj1↓(r) = φj2↓(r).
Following the reasoning described in Ref. [38, 49], when including Coulomb interactions within a strongly disordered
zeroth-Landau level manifold (where the disorder mainly comes from a controllable source such as the irregular
boundary of the flake, such that it is correlated between the two surfaces), this setup leads to an approximate physical
realization of coupled identical cSYK models, as analyzed in Ref. [38, 39]. (More precisely, each surface would be
described by a sparse or “low-rank” SYK model which nevertheless shows interesting conformal behavior [24]).

One can imagine a slightly different setup where an effective time-reversal symmetry is preserved globally, while
time reversal is broken at the level of an individual surface. This could be accomplished by using an inhomogeneous
field configuration that points mostly towards (or away from) the TI flake, using e.g. two bar magnets with their
north poles pointing towards the flake as shown in Fig. 6. In this hypothetical setup the magnetic field on the two
surfaces is opposite, with

h1(k) = +~vFσ · (k + eA) +BZσ
z − µ1I

h2(k) = −~vFσ · (k − eA)−BZσz − µ2I. (12)

When µ1 = µ2 the two surface theories are now time-reversed partners, with the anti-unitary time-reversal operator
taking the form Θ = τxσxK with Θ2 = +1. This can be understood as a combination of the spinful TRS iσyK with
the unitary rotation U = τxσz mentioned above. As a consequence, the spin polarization of LL0 wavefunctions (again
with energy E0 = −BZ) is opposite on the two surfaces, with

φj(r) =


0

φj1↓(r)
φj2↑(r)

0

 , (13)

and time-reversal Θ imposes the constraints φj1↓(r) = φ∗j2↑(r). The surface and spin degrees of freedom being locked,
we use a single index a =↑, ↓ in the following to denote the LL0 states on the two surfaces, matching the notation in
the main text.



8

TI flake

B

TI flakeN N

FIG. 6. Schematic diagram of proposed physical realizations of coupled cSYK models using the lowest Landau level (LL0)
surface states (marked in red, with the corresponding spin polarization denoted by a red arrow) of a topological insulator (TI)
flake with an irregular boundary. (Left): Under a strong perpendicular magnetic field B the two surfaces host identical spin-
polarized LL0 states, leading to an approximate physical realization of the model discussed in Refs. [38, 39], where an instability
to an excitonic phase is expected for attractive inter-flavor interactions. (Right): A pair of bar magnets creates a magnetic
field configuration that points in opposite directions at the two surfaces, leading to time-reversed LL0 states with opposite
spin projections. This provides an approximate physical realization of the spinful SYK model in Eq. 2, where superconducting
instabilities are expected for repulsive inter-flavor interactions.

Let us now analyze the form of interactions. Within the LL0 manifold, we consider the (projected) Coulomb
interactions

HC =
1

2

∑
a,b

∑
r,r′

ρa(r)Vab(r− r′)ρb(r
′) (14)

where Vab(r−r′) is the screened Coulomb potential. In the graphene flake setup of Ref. [49], where a and b denote spin
projections living in the same spatial region, the Coulomb potential does not distinguish between spin components,
leading to SU(2) symmetric interactions [38]. However, in the TI flake where a, b =↑, ↓ denote spin-polarized LL0

states on different surfaces, the intra-surface interactions are expected to be stronger than inter-surface ones. We
thus set V↑↑(r) = V↓↓(r) = V0(r) and V↑↓(r) = V↓↑(r) = αV0(r) with 0 < α < 1 expected for repulsive Coulomb
interactions. We however consider both signs of α in the main text for completeness.

The local charge density at point r reads

ρa(r) = c†racra =
∑
ik

φ∗ia(r)φka(r)c†iacka (15)

in terms of the LL0 wavefunctions, which leads to an interaction Hamiltonian Hα =
∑
a,b

∑
ijkl J

ab
ij;klc

†
iac
†
jbckaclb with

interaction parameters

Jabij;kl = −1

2

∑
r,r′

φ∗ia(r)φ∗jb(r
′)V (r− r′)φka(r)φlb(r

′), (16)

where we assumed that all indices i, j, k, l are different. This is a useful simplifying assumption also used e.g. in
Refs. [35, 38, 49] (see also footnote [41]). The anti-symmetry Θ imposes the following symmetries on the tensor of
couplings:

J↓↓kl;ij = J↑↑ij;kl , J↑↓il;kj = αJ↑↑ij;kl,

J↓↑kl;ij = J↑↓ij;kl , J↓↑kj;il = αJ↑↑ij;kl. (17)

Because Hermiticity imposes Jabij;kl =
(
Jabkl;ij

)∗
, we have J↓↓ij;kl =

(
J↑↑ij;kl

)∗
– the two cSYK models have coupling

constants that are complex conjugated. The Hamiltonian thus reads, using the constraints in Eq. 17,

Hα =
∑
ijkl

Jij;kl

[
c†i↑c

†
j↑ck↑cl↑ + c†k↓c

†
l↓ci↓cj↓ + α

(
c†i↑c

†
l↓ck↑cj↓ + c†k↓c

†
j↑ci↓cl↑

) ]
, (18)

as in Eq. 2 in the main text.
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Effective action

We now derive the large-N saddle-point equations of our model, mostly following Ref. [38]. We start by writing the
corresponding partition function in the Euclidean time formalism at inverse temperature β = 1/T ,

Z =

∫
D[c, c†] exp

−∫ β

0

dτ

 ∑
i,a=↑,↓

c†ia(τ)∂τ cia(τ) +H

 , (19)

where H is given in Eq. 2. We first rewrite the interaction terms using only independent coupling constants by
restricting the sum,

Hα =
∑

i<j,k<l

Jij;kl

[
4
(
c†i↑c

†
j↑ck↑cl↑ + c†k↓c

†
l↓ci↓cj↓

)
+ 2α

(
c†i↑c

†
l↓ck↑cj↓ − c

†
j↑c
†
l↓ck↑ci↓ − c

†
i↑c
†
k↓cl↑cj↓ + c†j↑c

†
k↓cl↑ci↓

) ]
.

(20)

We then obtain the partition function corresponding to the quenched average over the Gaussian-distributed coupling

constants, Zavg =
∫
d[J, J∗]P (Jijkl)Z =

∫
D[c, c†]e−S with P (Jijkl) = exp

(
− |Jijkl|2

σ2

)
, which leads to the effective

action

S =

∫ β

0

dτ

∑
i,a

c†ia(τ) (∂τ − µa) cia(τ)

− σ2

2

∑
i<j;k<l

φijklφklij , (21)

with the variance σ2 ≡ |Jijkl|2 = J2/8N3, and where we defined

φijkl = 4

∫ β

0

dτ
[(
c†i↑c

†
j↑ck↑cl↑ + c†k↓c

†
l↓ci↓cj↓

)
+
α

2

(
c†i↑c

†
l↓ck↑cj↓ − c

†
j↑c
†
l↓ck↑ci↓ − c

†
i↑c
†
k↓cl↑cj↓ + c†j↑c

†
k↓cl↑ci↓

)]
, (22)

with the imaginary time dependence of the Grassmann fields implied. Expanding this term and replacing
∑
i<j;k<l →

1
4

∑
ijkl, the second term in Eq. 21 becomes

−J2

4N3

∑
ijkl

∫ β

0

dτ
[
c†i↑c

†
j↑ck↑cl↑ + c†k↓c

†
l↓ci↓cj↓ +

α

2

(
c†i↑c

†
l↓ck↑cj↓ − c

†
j↑c
†
l↓ck↑ci↓ − c

†
i↑c
†
k↓cl↑cj↓ + c†j↑c

†
k↓cl↑ci↓

)]
×
∫ β

0

dτ ′
[
c†k↑c

†
l↑ci↑cj↑ + c†i↓c

†
j↓ck↓cl↓ +

α

2

(
c†k↑c

†
j↓ci↑cl↓ − c

†
k↑c
†
i↓cj↑cl↓ − c

†
l↑c
†
j↓ci↑ck↓ + c†l↑c

†
i↓cj↑ck↓

)]
. (23)

Expanding this product, one sees the fundamental difference with the solution of coupled cSYK models in the presence
of a unitary symmetry [38, 39]: the disorder average yields anomalous terms of the form

∑
i c
†
i↑c
†
i↓. These terms will

lead to spontaneous breaking of the global U(1) symmetry if they develop a finite expectation value in the saddle-point
solutions.

In order to integrate the fermion fields we introduce Green’s functions and their associated self-energies using

1 ∼
∫
DΣ↑DG↑ exp

(
N

∫
dτdτ ′Σ↑(τ, τ

′)

[
G↑(τ

′, τ)− 1

N

N∑
i=1

ci↑(τ
′)c†i↑(τ)

])
,

1 ∼
∫
DΣ↓DG↓ exp

(
N

∫
dτdτ ′Σ↓(τ, τ

′)

[
G↓(τ

′, τ)− 1

N

N∑
i=1

c†i↓(τ
′)ci↓(τ)

])
, (24)

as well as their anomalous counterparts

1 ∼
∫
DΠDF exp

(
N

∫
dτdτ ′Π(τ, τ ′)

[
F (τ ′, τ)− 1

N

N∑
i=1

ci↑(τ
′)ci↓(τ)

])
,

1 ∼
∫
DΠ̃DF̃ exp

(
N

∫
dτdτ ′Π̃(τ, τ ′)

[
F̃ (τ ′, τ)− 1

N

N∑
i=1

c†i↓(τ
′)c†i↑(τ)

])
. (25)
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Exploiting time translation invariance, whereby Ga(τ, τ ′) = Ga(τ − τ ′) and so on, we get

S = S0 −Nβ
∫ β

0

dτ
[∑

a

Σa(−τ)Ga(τ) + Π(−τ)F (τ) + Π̃(−τ)F̃ (τ)

+
J2

4

{∑
a

G2
a(τ)G2

a(−τ) + 2F 2(τ)F̃ 2(−τ)− 4α
∑
a

Ga(τ)Ga(−τ)F (τ)F̃ (−τ)

+ α2
(
G↑(τ)G↓(τ)G↑(−τ)G↓(−τ) + F (−τ)F (τ)F̃ (τ)F̃ (−τ) + 2G↑(τ)G↓(τ)F (−τ)F̃ (−τ)

)}]
. (26)

Here S0 denotes the free fermion part of the action, which must be analyzed in Nambu space to account for the
anomalous pairing terms generated by the SYK interactions. Writing µ↑,↓ = µ±B as in Eq. 2, we have

S0 =
∑
j

∫
dτdτ ′Ψ†j(τ) [Aδ(τ − τ ′) + ∂τδabδ(τ − τ ′)− Σ(τ, τ ′)] Ψj(τ

′), (27)

with the Nambu spinors Ψj = (cj↑, c
†
j↓)

T and the matrices

A =

(
−µ−B 0

0 µ−B

)
, Σ(τ, τ ′) =

(
Σ↑(τ, τ ′) Π̃(τ, τ ′)
Π(τ, τ ′) Σ↓(τ, τ ′)

)
. (28)

Using time translation invariance to express Σ(τ, τ ′) = Σ(τ−τ ′), we Fourier transform the action in terms of Matsubara

frequencies ωn = (2n+ 1)π/β. Integrating out the Grassmann fields using the spinors Ψn = (cj↑(ωn), c†j↓(−ωn))T , we
thus obtain S0 = −N ln detM with

M =
⊕
n

(
−µ−B − Σ↑(ωn)− iωn −Π̃(ωn)

−Π(ωn) µ−B − Σ↓(ωn)− iωn

)
. (29)

Saddle-point equations

Putting everything together, the action now reads

− S
N

= ln detM +
∑
ωn

(
Σ↑(ωn)G↑(ωn) + Σ↓(ωn)G↓(ωn) + Π(ωn)F (ωn) + Π̃(ωn)F̃ (ωn)

)
+
βJ2

4

∫ β

0

dτ
{∑

a

G2
a(τ)G2

a(−τ) + 2F 2(τ)F̃ 2(−τ)− 4α
∑
a

Ga(τ)Ga(−τ)F (τ)F̃ (−τ)

+ α2
(
G↑(τ)G↓(τ)G↑(−τ)G↓(−τ) + F (−τ)F (τ)F̃ (−τ)F̃ (τ) + 2G↑(τ)G↓(τ)F (−τ)F̃ (−τ)

)}
. (30)

We obtain the saddle-point equations by taking functional derivatives of the action:

Σ↑(τ) = −J2

[
G2
↑(τ)G↑(−τ)− 2αG↑(τ)F (−τ)F̃ (τ) +

α2

2

(
G↑(τ)G↓(τ)G↓(−τ) +G↓(−τ)F (τ)F̃ (τ)

)]
,

Σ↓(τ) = −J2

[
G2
↓(τ)G↓(−τ)− 2αG↓(τ)F (τ)F̃ (−τ) +

α2

2

(
G↓(τ)G↑(τ)G↑(−τ) +G↑(−τ)F (τ)F̃ (τ)

)]
,

Π(τ) = −J2

[
F̃ 2(τ)F (−τ)− αF̃ (τ)

∑
a

Ga(τ)Ga(−τ) +
α2

2

(
F (τ)F̃ (τ)F̃ (−τ) +G↑(τ)G↓(τ)F̃ (−τ)

)]
,

Π̃(τ) = −J2

[
F 2(τ)F̃ (−τ)− αF (τ)

∑
a

Ga(τ)Ga(−τ) +
α2

2

(
F̃ (τ)F (τ)F (−τ) +G↑(τ)G↓(τ)F (−τ)

)]
, (31)

and

G↑(ωn) =
µ−B − Σ↓(ωn)− iωn

D(ωn)
, G↓(ωn) = −µ+B + Σ↑(ωn) + iωn

D(ωn)
,

F (ωn) =
Π̃(ωn)

D(ωn)
, F̃ (ωn) =

Π(ωn)

D(ωn)
,

D(ωn) = (µ+B + Σ↑(ωn) + iωn)(−µ+B + Σ↓(ωn) + iωn)−Π(ωn)Π̃(ωn). (32)
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These are the general saddle-point equations, valid without additional symmetries, and are used to analyze the model
in Eq. 2 with µ 6= 0. At charge neutrality (µ = 0), the Green’s functions respect G↑(τ) = G↓(τ) and F (τ) = F̃ (τ)
(and similarly for the self-energies). The saddle-point equations above thus simplify to

Σ(τ) = −J2

[(
1 +

α2

2

)
G2(τ)G(−τ)− 2αG(τ)F (τ)F (−τ) +

α2

2
F 2(τ)G(−τ)

]
,

Π(τ) = −J2

[(
1 +

α2

2

)
F 2(τ)F (−τ)− 2αF (τ)G(τ)G(−τ) +

α2

2
G2(τ)F (−τ)

]
, (33)

G(ωn) = −B + Σ(ωn) + iωn
D(ωn)

, F (ωn) =
Π(ωn)

D(ωn)
,

D(ωn) = (B + Σ(ωn) + iωn)2 −Π2(ωn), (34)

as in Eqs. (3) in the main text.

Effective action for the lattice model

We now extend the saddle-point calculation to the lattice construction discussed in the main text, focusing on the
charge neutrality point (µ = 0) for simplicity. The lattice model, Eq. 7 contains two independent sets of Gaussian-
distributed random variables (the SYK couplings Jijkl and the hopping parameters tij), which can be averaged
separately. The previous solution for the spinful SYK model thus carries over, with an additional lattice site index x.
We have

Zavg =

∫
d[J, J∗]d[t, t∗]P (tij)P (Jijkl)Z =

∫
D[G,Σ]e−(Sl+St), (35)

with the “local” action Sl as defined above, but with an explicit x dependence in the correlators and self energies,

Sl
N

= −
∑
x

ln detMx − 2
∑
n,x

(Σx(ωn)Gx(ωn) + Πx(ωn)Fx(ωn)) (36)

− βJ2

2

∑
x

∫ β

0

dτ

{(
1 +

α2

2

)(
G2
x(τ)G2

x(−τ) + F 2
x (τ)F 2

x (−τ)
)
− 4αGx(τ)Gx(−τ)Fx(τ)Fx(−τ) + α2G2

x(τ)F 2
x (−τ)

}
,

as well as the hopping contribution St which, mirroring the steps leading to Eq. 21, reads

St = − t
2

N

∑
i,j

∑
〈x,x′〉

|Axx
′

ij |2 , Axx
′

ij =

∫ β

0

dτ
(
eiφc†i↑xcj↑x′ + e−iφc†j↓x′ci↓x

)
, (37)

with the phase φ = 2π
L

Φ
Φ0

as introduced in the main text. Expanding this expression, using translation invariance in
imaginary time and the Green’s function definitions in Eqs. 24 and 25 leads to

St
N

= 2βt2
∑
〈x,x′〉

∫
dτ {Gx′(τ)Gx(−τ)− Fx′(τ)Fx(−τ) cos 2φ} . (38)

As remarked in the main text, we stress that the presence of the anomalous correlators F (τ) in the hopping contribution
to the effective action, Eq. (38) relies on the time-reversal symmetry in the hopping parameter distribution. This is
crucial in obtaining a finite supercurrent, as the magnetic flux Φ only renormalizes the anomalous correlators.

Taking functional derivatives of this effective action then leads to the modified self-energy equations

Στ = −J2
[(

1 +
α2

2

)
G2
τG−τ − 2αGτFτF−τ +

α2

2
F 2
τG−τ

]
+ zt2Gτ

Πτ = −J2
[(

1 +
α2

2

)
F 2
τ F−τ − 2αFτGτG−τ +

α2

2
G2
τF−τ

]
− zt2 cos(2φ)Fτ . (39)
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Here we assumed that the averaged correlators respect translation symmetry at the saddle-point level, with the
ansatz Gx(τ) = G(τ), Fx(τ) = F (τ) and similarly for the self-energies. The sum over nearest neighbors then simply
contributes a factor of z which is the coordination number of the lattice (z = 2 for our ring model threaded by a
magnetic flux), while the remaining sums over x become trivial and yield a factor of L (the number of lattice sites).
The free energy density can be computed by substituting the saddle-point equations in the effective action,

F
L

= −T

[
2 ln 2 +

∑
n

ln

(
Dn

(iωn)2

)
+

3

2

∑
n

{
ΣnGn + ΠnFn − zt2

(
G2
n − F 2

n cos 2φ
)}]

. (40)
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FIG. 7. Stability of superconductivity to tuning the chemical
potential µ away from charge neutrality. We take α = 0.5 and
low temperature βJ = 100, with B/J = 0.1 (gapped, left)
and 0.2 (gapless, right). We plot the SC order parameter ∆,
charge density Q, magnetization M and entropy density S as
a function of µ. The superconductors are compressible, until
they disappear through first-order phase transitions.

Finite chemical potential

We finally consider the effect of tuning the chemical
potential away from charge neutrality, µ 6= 0 in Eq. (2),
using the generalized saddle-point equations Eqs. 31 and
32. In Fig. 7 we show how various physical quantities
evolve as a function of µ. We find that both SC phases
are compressible, with a tunable charge density as a func-
tion of µ. At larger µ the system undergoes first-order
phase transitions to non-SC phases. While the gapped
SC directly transitions to a trivial phase with Q = 1/2,
the gapless SC first transitions to a non-Fermi liquid with
roughly half of the SYK residual entropy, reminiscent of
the “small black hole” phenomenology of Ref. [38].
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