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Abstract

We study an improved holographic model for the strongly coupled nodal line

semimetal which satisfies the duality relation between the rank two tensor operators

ψ̄γµνψ and ψ̄γµνγ5ψ. We introduce a Chern-Simons term and a mass term in the

bulk for a complex two form field which is dual to the above tensor operators and

the duality relation is automatically satisfied from holography. We find that there

exists a quantum phase transition from a topological nodal line semimetal phase

to a trivial phase. In the topological phase, there exist multiple nodal lines in

the fermionic spectrum which are topologically nontrivial. The bulk geometries

are different from the previous model without the duality constraint, while the

resulting properties are qualitatively similar to those in that model. This improved

model provides a more natural ground to analyze transports or other properties of

strongly coupled nodal line semimetals.

1Email: yanliu@buaa.edu.cn
2Email: wu xm@buaa.edu.cn
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1 Introduction

Semimetals are critical states in the phase transition between insulators and conduc-

tors. In general, the Fermi surfaces in semimetals are of zero area and could be discrete

points (Dirac semimetal or Weyl semimetal, i.e. DSM or WSM) or nodal lines (nodal

line semimetal, i.e. NLSM). In topological semimetals these points or nodal lines are sta-

ble and could not be removed by perturbations of the system without breaking certain

symmetries.3 Therefore topological semimetals exhibit lots of robust and exotic quantum

properties and have attracted enormous research interests during the past few years [2,3].

Topological semimetals are beyond the conventional Landau-Ginzburg paradigm and

are characterized by the topological properties of the wave functions of the system. Most

of the current models for topological semimetals are constructed based on the existence

of quasiparticles, where one starts from a weakly coupled band theory of an effective

Hamiltonian. An important and challenging question is whether and how the topological

structures change if the system is strongly coupled. Without a clear quasiparticle de-

scription in the strongly coupled system [4], would nontrivial topological states still exist

and if yes how could we describe them?

The holographic duality is a useful technique in describing strongly coupled systems

in quantum physics by mapping them to simple gravitational problems [4–6]. Holography

has been applied to the study of the topological nature in Weyl semimetals [7] and nodal

line semimetals [8] which uncovered lots of novel properties of topological semimetals at

strong coupling [9–24]. See [25] for a recent review on this topic.

The holographic nodal line semimetals were first studied in [8] and the key ingredients

are a source for a rank two operator ψ̄γµνψ and a mass deformation parameter. In [8]

a complex two form field is introduced in the bulk whose real part is dual to the above

operator ψ̄γµνψ while the imaginary part is dual to the other rank two operator ψ̄γµνγ5ψ.

These two operators ψ̄γµνψ and ψ̄γµνγ5ψ on the field theory are not independent and

we have the duality relation ψ̄γµνγ5ψ = − i
2
εµναβψ̄γ

αβψ . However, this duality relation

has not been considered in the holographic model of [8], where it is apparent that the

two form field in the bulk is not exactly dual to the operators ψ̄γµνψ and ψ̄γµνγ5ψ. In

weakly coupled nodal line semimetals, the two operators ψ̄γµνψ and ψ̄γµνγ5ψ above are

crucial to the related physics of nodal line semimetals. Therefore in holography it is

more natural to take a two form field in the bulk to be exactly dual to these rank two

operators in order to sharply describe the physics of strongly nodal line semimetals, as

the holographic model in [8] might include the physics of other rank two operators which

is not related to the featured physics of nodal line semimetals. Thus we should consider

3The nodal points or nodal lines in semimetals are the sources of the Berry curvature and give rise

to topological charges [1, 2].
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an improved holographic nodal line semimetal model in which the duality relation of the

rank two operators are indicated.4 A similar issue has been studied in the framework

of AdS/QCD in [26] where a rank two field corresponds to vector mesons satisfying the

self-dual constraint and it turns out that the bulk action should be a first order Chern-

Simons term with a mass term. The duality of the operators on the boundary field theory

automatically follows from the bulk equation of motion.

Our strategy is to follow the constructions in [26] to improve the holographic nodal

line semimetal of [8] to include the self-duality condition to make the holographic theory

more natural. We shall focus on the zero temperature physics at which the topological

properties are most manifest, by tuning the source of the rank two operators and the mass

deformation. The bulk IR geometries vary with different emergent low energy symmetries.

We also investigate the fermionic spectral function of this improved holographic model

and multiple nodal lines of the spectral function are found. The topological invariants

of these nodal lines are also studied. From the field theoretical point of view a quantum

phase transition is triggered by the strength of external sources, which is confirmed by

studying the fermionic spectral functions. It is not obvious whether the duality constraint

might induce any different effects on the holographic model, e.g. whether the order of the

quantum phase transition might change, whether the topological state still exist and if

yes then what are the corresponding topological invariants. We find that the properties

in this improved holographic nodal line semimetal model share lots of similar physics as

the one in [8], i.e. there is no qualitative change. Therefore, our improved model serves

as a natural holographic model for strongly coupled NLSM.

The organization of this paper is as follows. In Sec. 2, we construct the improved holo-

graphic nodal line semimetal by including the self-duality condition. Zero temperature

geometries of the system are studied to uncover the phase structures and the topological

properties. In Sec. 3 we study the fermionic spectral function to uncover the Fermi sur-

face of the dual field theory. In Sec. 4 we study the topological invariants of each nodal

line of the fermionic spectal function. We conclude with discussions in Sec. 5. Some

details of calculations are collected in four appendices.

2 An improved holographic nodal line semimetal

In this section we shall first analyze the field theory of nodal line semimetals and point out

that we should consider the duality of rank two operators in the holographic construction.

Then we follow [26] to improve the holographic nodal line semimetal of [8] and study the

zero temperature solutions.

4We thank Carlos Hoyos and Elias Kiritsis for helpful discussion on this point.
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2.1 Field model

Topological nodal line semimetal is realized in a Lorentz violating field theoretical model

[3, 8, 27] with the following Lagrangian5

L = ψ̄
(
γµ∂µ −m− γµνbµν

)
ψ , (2.1)

where ψ̄ = ψ†iγ0, γµν = i
2
[γµ, γν ] and bµν = −bνµ is an anti-symmetric two form field. If

we turn on real bxy, this system describes a nodal line semimetal. The equation of motion

for the Dirac fermion is (
γµ∂µ −m− γµνbµν

)
ψ = 0 . (2.2)

The Hamiltonian matrix can be obtained by writing this equation as a Schrodinger equa-

tion

i
∂ψ

∂t
= −iγ0

(
γi∂i −m− γµνbµν

)
ψ ≡ Ĥψ . (2.3)

Therefore, the band structure and the eigenstates of this Dirac system can be determined

and reveal a quantum phase transition from the nodal line semimetal phase to gapped

system by tuning the ratio between bxy and m.

However, in the four-dimensional Minkowski spacetime, the two anti-symmetric tensor

operators ψ̄γµνψ and ψ̄γµνγ5ψ are not independent and are related by the duality relation

ψ̄γµνγ5ψ = − i
2
εµναβψ̄γ

αβψ , (2.4)

where εtxyz = 1, ψ̄γµνψ is a pure real tensor operator while ψ̄γµνγ5ψ is a pure imaginary

tensor operator. As a consequence, it is more natural to take the operator ψ̄γµνγ5ψ into

consideration and the action (2.1) is modified into

L = ψ̄
(
γµ∂µ −m− γµνbµν + γµνγ5b5

µν

)
ψ . (2.5)

Due to the duality relation of the two form operators (2.4), we turn on bxy, byx = −bxy
and their dual part of b5

µν , i.e., b5
tz = −b5

zt = ibxy. Here the external source b5
µν is set to be

pure imaginary to make the Hamiltonian real. With this choice of Lagrangian in (2.5),

the band structure, i.e. E± = ±
√

(4bxy ±
√
m2 + k2

x + k2
y)

2 + k2
z is the same as that

described with the Lagrangian of (2.1) up to a prefactor of bxy [8]. The band crossing

appears at the kz = 0 plane and forms a circle with a radius
√
k2
x + k2

y =
√

16b2
xy −m2

when 16b2
xy − m2 > 0, while for finite kz the energy band is gapped. The model (2.5)

with the duality relation of the rank two operators (2.4) is called the improved nodal line

semimetal. In this model, there still exists a quantum phase transition from a nodal line

semimetal to a gapped phase, as shown in Fig. 1.

5Note that we work in the Minkowski metric with most plus convention. The gamma matrices are

the same as in appendix D.
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Figure 1: The illustration of the band structures with kz = 0 for the nodal line semimetal

phase (left) and the gapped phase (right). In the nodal line semimetal phase, the crossing band

forms a nodal circle where the excitations can be described by the Weyl fermions. There is no

band crossing at any nonzero kz.

2.1.1 From weakly coupled model to strongly coupled model

Starting from the properties of weakly coupled model for nodal line semimetal (2.5), we

will construct a holographic model for strongly coupled nodal line semimetal with the

duality relation. In holography, we use a complex anti-symmetric two form field Bµν to be

dual to operators ψ̄γµνψ and ψ̄γµνγ5ψ. More precisely, we parameterize the complex Bµν

as Bµν = 1√
2

(
B+µν + iB−µν

)
with the real anti-symmetric fields B+µν and B−µν the real

and imaginary part in the Bµν field, i.e. B+µν and B−µν , duals to ψ̄γµνψ and ψ̄γµνγ5ψ,

respectively.

The complex two form field Bab in the gravitational theory is dynamical. Note that

Bar vanishes with a radial gauge. We expect the components Bµν to be consistent with

the duality condition between two tensor operators (2.4). Similar issue has been discussed

in AdS/QCD and there are many progresses in imposing this self-duality relation in the

gravitational theory. In particular, it has been proposed in [26, 28] that the action of

the two form field Bab should be of first order, in such a way that the four-dimensional

components satisfy a complex self-duality relation. The Chern-Simons term of Bab to-

gether with the mass term has been used in an improved holographic QCD model [26] to

investigate the physical properties of mesons, from which the self-duality relation follows

from the equation of motion directly instead of being imposed as particular boundary

conditions.6 In this paper, we follow this approach to construct the improved holographic

nodal line semimetal model that satisfies the self-duality condition.

6A kinetic term of Bab in the action is also allowed to be consistent with the self-duality condition

and can be chosen to vanish without loss of generality.
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2.2 Holographic model

The action of the improved holographic nodal line semimetal model is

S =

∫
d5x
√
−g
[

1

2κ2

(
R +

12

L2

)
− 1

4
F2 − 1

4
F 2 +

α

3
εabcdeAa

(
3FbcFde + FbcFde

)
− (DaΦ)∗(DaΦ)− V1(Φ)− 1

6η
εabcde

(
iBabH

∗
cde − iB∗abHcde

)
− V2(Bab)− λ|Φ|2B∗abBab

]
,

(2.6)

where Fab = ∂aVb − ∂bVa is the vector gauge field strength, Fab = ∂aAb − ∂bAa is the

axial gauge field strength, εabcde is the upper indexed Levi-Civita tensor, and Da =

∇a − iq1Aa is the covariant derivative.7 Note that α is the Chern-Simons coupling. Bab

is an antisymmetric complex two form field that duals to the two tensor operators ψ̄γµνψ

and ψ̄γµνγ5ψ, and

Habc = ∂aBbc + ∂bBca + ∂cBab − iq2AaBbc − iq2AbBca − iq2AcBab (2.7)

where q2 is the axial charge of the two form field. η is the coupling strength of the two

form field. The potential terms are chosen as

V1 = m2
1|Φ|2 +

λ1

2
|Φ|4 , V2 = m2

2B
∗
abB

ab , (2.8)

where m2
1 and m2

2 are the mass parameters of the scalar field and the two form field. The

λ term denotes the interaction between the scalar field and the two form field. It should

be noticed that in the previous holographic model [8] the self-duality of Bab is absent,

where a canonical kinetic term together with the potential terms were used to describe

the dynamics of Bab. In this improved holographic nodal line semimetal model (2.6) we

follow the approach in an AdS/QCD model [26] to use the Chern-Simons term and the

mass term of Bab to describe the dynamics in the gravitational theory. Different from

the AdS/QCD model [26] working in the probe limit around a pure AdS5 background,

we concentrate on how this two form field together with a scalar field deforms the bulk

geometry under continuously varying boundary sources. From the viewpoint of RG flow,

this can be interpreted as a UV fixed point flows to an IR fixed point induced by the

external sources. We will also study the properties of Fermi surfaces and topological

structures of the dual filed theories.

After a variation of the total action with respect to the gauge fields, we can obtain

7Note that εabcde ≡
√
−gεabcde, with εabcde the Levi-Civita symbol and ε0123r = 1.
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the dual consistent currents and they satisfy

∂µJ
µ
con = 0 ,

∂µJ
µ
5con = lim

r→∞

√
−g
(
− α

3
εrαβρσ(FαβFρσ + FαβFρσ) + iq1

[
Φ∗(DrΦ)− Φ(DrΦ)∗

]
+

− q2

η
εrαβρσBαβB

∗
ρσ

)
+ c.t. .

Here we have not explicitly shown the counterterm for simplicity and the above conser-

vation can be further simplified in the radial gauge. The point is that the last two terms

contribute only when the non-normalizable mode of the scalar filed or two form field is

switched on and it is straightforward to see that the above identities are of the same

structure of the weakly coupled theory. Thus this holographic model is expected to go

beyond the weakly coupled theory to a strongly coupled nodal line semimetal model.

2.2.1 Zero temperature solutions

We focus on the ground state of this system and make the following ansatz for the zero

temperature solution

ds2 = u(−dt2 + dz2) +
dr2

u
+ f(dx2 + dy2) ,

Φ = φ ,

Bxy = −Byx = Bxy ,
Btz = −Bzt = iBtz

(2.9)

in the coordinates {t, x, y, z, r}, where all the fields u, f, φ,Bxy,Btz are real functions of

the radial coordinate r. Note that the component Bxy is real while Btz is pure imaginary.

Substituting this ansatz into the equation of motion8 derived from the action (2.6), we

write down the first order differential equations of Bxy and Btz

B′tz −
η
√
u

2f
(m2

2 + λφ2)Bxy = 0 ,

B′xy −
ηf

2u
3
2

(m2
2 + λφ2)Btz = 0 .

(2.10)

We make some observations and explanations at this stage.

• Btz and Bxy are two independent functions of r and cannot be set to equal.

8The equations of motion for this system can be found in Appendix A.
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• Close to UV AdS5 boundary (r → ∞), u → r2, f → r2 while φ → 0. It is the

term η ·m2
2 that controls the conformal dimension of Bab. In the following, we will

fix m2
1 = −3, m2

2 = 1 and η = 2 to make the expected conformal dimensions for

the operators which are dual to Φ and Bab. For simplicity, we choose the couplings

q1 = q2 = 1, λ = 1 and λ1 = 0.1.

• With this choice of parameters, the leading order solutions of Btz and Bxy are the

same close to UV boundary, i.e. Btz = Bxy ' br+ · · · . This feature follows automat-

ically from the dynamical equations of motion above and therefore the self-duality

of the two form field is imposed in holography. Note that when the self-duality con-

straint is automatically imposed on the source terms, the duality condition should be

also on the rank two tensor operators as long as we perform the variational principle

on the dual field theory correctly.9

Therefore, we impose the following boundary condition which encode the duality relation

of the rank two operators

lim
r→∞

rφ = M , lim
r→∞

r−1Btz = lim
r→∞

r−1Bxy = b , (2.11)

where M plays the role of the source of the scalar operator ψ̄ψ while b corresponds to

the external source term of the tensor operators ψ̄γµνψ and ψ̄γµνγ5ψ.

In the remaining context of this section, we illuminate the existence of three phases

when tuning the dimensionless ratio between the external source strength of the scalar and

tensor operators in field theory, i.e., M/b. From the numerical study of the free energy

we found that the quantum phase transition is continuous, although the discontinuity

appears in the IR-region of the bulk, i.e. r → 0 in our choice of coordinates.

Topological nodal line semimetal (M/b < 0.8597)

The IR geometry of topological nodal line semimetal phase behaves as

u =
1

8
(11 + 3

√
13) r2 (1 + δu rα1) ,

f =

√
2

3

√
13− 2 bxy0 r

α (1 + δf rα1) ,

φ = φ0r
β ,

Btz =
1

8

√
54 + 15

√
13 r2 (1 + δbtz r

α1) ,

Bxy = bxy0 r
α (1 + δbxy r

α1) ,

(2.12)

where

(α, β, α1) = (0.183, 0.228, 1.273) , (δf, δbtz, δbxy) = (−2.616, 1.720,−0.302) δu .(2.13)

9We thank Carlos Hoyos for useful discussion on this point.
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In the IR limit r → 0, ds2 and Babdx
adxb are invariant under the transformation

(r−1, t, z) → c(r−1, t, z), (x, y) → cα/2(x, y). This implies that there is an emergent

Lifshitz-type symmetry in the deep IR region. We can set bxy0 = 1 using the scaling

symmetry in the x-y plane, i.e. the second type of scaling symmetry in appendix C. The

above emergent Lifshitz scaling symmetry can be used to set δu = ±1. With δu = −1

the IR geometry flows to an asymptotic AdS5 boundary. Therefore we can take φ0 as

the shooting parameter, which generates a class of solutions with a single dimensionless

UV parameter M/b. By continuously varying φ0 in IR, the UV geometries are the AdS

boundary with continuous M/b. We found that this type of IR geometry exist only when

M/b < 0.8597. The connection between this type of geometry and nodal line semimetal

will be discussed in section 3.

Quantum critical point ((M/b)c ' 0.8597)

The IR geometry of the quantum critical point is

u = uc r
2(1 + δu rβ) ,

f = fc r
αc(1 + δf rβ) ,

φ = φc (1 + δφ rβ) ,

Btz = btzc r
2(1 + δbtzr

β) ,

Bxy = bxyc r
αc(1 + δbxyr

β) ,

(2.14)

with

(uc, fc, αc, φc, btzc) = (2.735 , 0.754 bxyc , 0.314 , 0.557 , 1.437) , (2.15)

and

β = 1.274 , (δu, δf, δbtz, δbxy) = (0.882, − 2.151, 1.718, − 0.254)δφ . (2.16)

The Lifshitz type symmetry also emerges at the deep IR region, i.e., the geometry is

invariant under the transformation (r−1, t, z) → c(r−1, t, z), (x, y) → cαc/2(x, y) when

r → 0. Using this symmetry we can set δφ = −1. We can also set bxyc = 1 using the

scaling symmetry in the x-y plane. We obtain a unique geometry and in UV we have a

special value of M/b ' 0.8597. An interesting observation is that, the critical value in

this improved model is approximately half of that in the previous model [8]. Recall that

in the field theoretical models, the improved model with bxy = 1/2 produces exactly the

same band structure as the previous one in [8] with bxy = 1. The critical value (M/b)c
changes correspondingly with a factor 1/2 in two models seems to also hold in holography,

although the detailed geometries in the bulk are different.

Topological trivial phase (M/b > 0.8597)
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The IR geometry for the trivial phase is

u = (1 +
3

8λ1

) r2 ,

f = r2 ,

φ =

√
3

λ1

+ φ1 r
2(
√

3+20λ1
3+8λ1

−1)
,

Btz =

(
1 +

3

8λ1

)
b1 r

2
√

2
3λ+λ1√
λ1(3+8λ1) ,

Bxy = b1r
2
√

2
3λ+λ1√
λ1(3+8λ1) .

(2.17)

We can set b1 = 1 using the scaling symmetries and take φ1 as the shooting parameter.

This type of IR geometry only exist for M/b > 0.8597, when we continuously tune the

shooting parameter φ1.

The profiles of φ, Btz/u and Bxy/f for parameters close to (M/b)c as a function of

radial coordinate are illustrated in Fig. 2. As we gradually tune M/b these profiles change

smoothly from boundary to an intermediate scale r/b ∝ 10−5. However, the matter fields

flow discontinuously to different types of IR profiles. Close to (M/b)c, the geometry for

three phases first flows to an intermediate Lifshitz type geometry from UV and then

splits into different types of IR geometry.

M
-
=0.85749

M
-
=0.85970

M
-

c=0.85971

M
-
=0.85977

M
-
=0.85989
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Figure 2: Bulk profiles for background fields as a function of the radial coordinate in three

different phases in the vicinity of critical point. Different colors are for different values of

M̂ = M/b.

We can compare the background geometries in the holographic models with and with-

out the imposed the self-dual constraint. There is an extra dynamical component in Bab

in the improved NLSM model. The profiles of φ and Bxy, as well as the type of the emer-

gent symmetries at low-energy are similar to the model [8] in all the three phases. Then

we come to the question what the topological properties are in this improved NLSM

model, which will be studied in the next sections where we studied the properties of

fermionic operator by probing massive fermions in the bulk.
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Finally, the dependence of the free energy density as a function of M/b in this system

is shown in Fig. 3. We find that the free energy density smoothly across the quan-

tum phase transition point as M/b increase and the first derivative of the free energy

density with respect to M/b reaches the same value in the vicinity of (M/b)c from two

phases. Therefore, we conclude the topological phase transition in this improved NLSM

is a continuous phase transition, while the self-duality does not change the order of the

transition.

0.75 0.80 0.85 0.90 0.95
-2.40

-2.35

-2.30

-2.25

-2.20

-2.15

-2.10

-2.05

-2.00

�

�

Ω

���

Figure 3: The free energy density as a function of M/b across the critical point (the red

dot). The free energy density is continuous and smooth during the topological quantum phase

transition.

3 ARPES from probe fermion

The remaining of this paper is to provide evidence of the topological band structure

in the improved holographic nodal line semimetal and the existence of quantum phase

transition. In experiments, angle resolved photoemission spectroscopy (ARPES) has been

used to discover nodal band structure. Theoretically, this motivates us to investigate

the low-energy effective topological Hamiltonian in the holographic nodal line semimetal

phase, which is defined from the zero frequency Green’s function of the Dirac fermionic

operators, i.e., Ht(~k) = −G−1(0, ~k) [36,37]. From the topological Hamiltonian one could

obtain the topological properties of the nodal lines.

In the following we shall use the same strategy as [8] to study the fermionic spectral

function by probing a fermion in the bulk of our model. We shall compare the results of

this improved model and the previous model without duality condition of the two form

operators.
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3.1 Holographic fermionic spectral function

In holography, we can obtain the fermionic spectral function by probing a single fermion

in the gravitational bulk geometry [30, 31]. However, in the four dimensional boundary

field theory with a five dimensional bulk dual, the Dirac fermion in the bulk corresponds

to chiral fermionic operator in the field theory [8, 32, 35]. To obtain a Dirac fermionic

operators in the boundary field theory with nontrivial spectral structure, in bulk we need

to consider two sets of Dirac fermions coupled with each other through the scalar field Φ

and the self-dual two form field Bab [8] with the following action

Sfermion = S1 + S2 + Sint + Sbdy ,

Sint = SΦ + SB ,
(3.1)

where Sbdy is the boundary term to make the theory self-consistent and

S1 =

∫
d5x
√
−g Ψ̄1 (ΓaDa −mf ) Ψ1 ,

S2 =

∫
d5x
√
−g Ψ̄2 (ΓaDa +mf ) Ψ2

(3.2)

are the action for two types of free fermions with opposite signs of mass and with different

quantizations where Ψ̄ = Ψ†iΓ0 and Da = ∇a − iq3Aa, while

SΦ = −
∫
d5x
√
−g
(
η1ΦΨ̄1Ψ2 + η∗1Φ∗Ψ̄2Ψ1

)
,

SB =

∫
d5x
√
−g
(
η2BabΨ̄1Γabγ5Ψ2 − η∗2B∗abΨ̄2Γabγ5Ψ1

) (3.3)

describe how the two types of fermions couple to the background scalar field Φ and the

two form field Bab, respectively. The details of the boundary term and the definitions of

gamma matrices in the bulk are shown in the appendix D. In the absence of the interaction

terms, there are two free Dirac fermions in the bulk leading to two independent sets of

chiral fermions in the field theory and therefore the interactions are necessary. These

interaction terms take similar forms as that in the field theoretical model, although there

are several other possible interaction terms. For example, one may also couple the two

fermions to Bab with no insertion of γ5. The reason for this choice is to produce the nodal

band structure and corresponding topological properties of the nodal line semimetal [8].

The equations of motion for these two fermions are

(ΓaDa −mf ) Ψ1 − η1ΦΨ2 + η2BabΓ
abγ5Ψ2 = 0 ,

(ΓaDa +mf ) Ψ2 − η∗1Φ∗Ψ1 − η∗2B∗abΓabγ5Ψ1 = 0 .
(3.4)

After taking the ansatz

Ψl = (−ggrr)−1/4ψle
−iωt+ikxx+ikyy+ikzz = (uf)−1/2ψle

−iωt+ikxx+ikyy+ikzz , (3.5)
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where l = 1, 2 and ψl = ψl(r) are only functions of radial coordinate, (3.4) can be

simplified as(
Γr∂r +

1

u

(
−iωΓt + ikzΓ

z
)

+
1√
uf

(ikxΓ
x + ikyΓ

y) + (−1)l
mf√
u

)
ψl

−
(
η1

φ√
u

+ 2η2

(
(−1)l

Bxy√
uf

Γxy − i Btz√
uu

Γtz
)
γ5

)
ψ3−l = 0 .

(3.6)

In this equation, the couplings in the second line mixed the two different fermions and

we have assumed that the couplings η1 and η2 are real numbers. Note that comparing

with [8], the last term in (3.6) is new. However, this new term does not change the

asymptotic behaviors of this equation both in the IR and UV limits.

In the following, we introduce the necessary steps in calculating the fermionic spectral

function including the boundary conditions in both IR and UV regime [8, 32]. We also

define the topological Hamiltonian and its related eigenstates in terms of the fermionic

spectral function from holography [8]. To keep the main text straightforward, we take

the NLSM phase as the example and leave details in other phases in appendix D.

The system (3.6) contains eight first order, non-homogeneous differential equations

and we shall solve them numerically with proper boundary conditions. We start from the

asymptotic IR region (r → 0), where the nonlinear (coupling) terms become irrelevant

and the equations can be analytically solved to leading order. For example in the nodal

line semimetal phase with ω or kz finite, when r → 0,

1

u
∝ 1

r2
,

1√
uf
∝ 1

r1+α/2
,

Bxy√
uf
∝ Btz√

uu
∝ 1

r
. (3.7)

Since ψ1, ψ2 are in the same order of r, then the equations can be simplified into decoupled

forms describing two independent free fermions(
Γr∂r +

1

u0r2

(
−iωΓt + ikzΓ

z
))

ψl = 0 . (3.8)

Using the 2-components spinors ψl± defined in appendix D, the first-order spinor differ-

ential equations can be simplified to second order scalar differential equations

u2
0r

4

ω2 − k2
z

∂2
rψl+ +

2u2
0r

3

ω2 − k2
z

∂rψl+ + ψl+ = 0 , (3.9)

while ψl− is determined by ψl+. After taking the explicit representation of the gamma

matrices introduced in the appendix D, one can obtain the leading order infalling solutions

analytically expressed as

ψIR
l ' e

i

√
ω2−k2z
u0r


zl1 (1 + ...)

zl2 (1 + ...)

i

√
ω2−k2z
ω−kz zl1 (1 + ...)

i

√
ω2−k2z
ω+kz

zl2 (1 + ...)

 (3.10)
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where zl1, z
l
2 are free constants, and the dots represent the higher order corrections with

respect to r. Note that these IR behavior is the same as the one in [8] and this is due to

that the scaling symmetry of the IR geometry in NLSM here is the same as [8].

Close to the UV boundary, similar to the case in the IR region, several terms become

irrelevant and the equations take a simple form

(rΓr∂r −mf )ψ1 = 0 , (rΓr∂r +mf )ψ2 = 0 . (3.11)

The masses determine the conformal dimensions of the fermionic operators, while our

choice of coupling forms SΦ and SB do not change the conformal dimensions. In compo-

nents the Dirac fields can be solved as

ψ1 =


s1 r

mf + ...

s2 r
mf + ...

r3 r
−mf + ...

r4 r
−mf + ...

 , ψ2 =


r1 r

−mf + ...

r2 r
−mf + ...

s3 r
mf + ...

s4 r
mf + ...

 (3.12)

where the coefficients si and ri depend on the choices of zl1 and zl2 and can be solved

numerically.

In this paper we will focus on the case with mf = −1
4
. 10 We take alternative quanti-

zation for ψ1 while standard quantization for ψ2, i.e., in both cases the dominant modes

that proportional to r−mf as the operator while the subdominant modes proportional to

rmf as the external source. The source and the response are

ψs =


s1

s2

s3

s4

 , ψr =


−r1

−r2

r3

r4

 . (3.13)

With the infalling boundary conditions (3.10) in IR, (3.6) can be solved numerically and

we can get ψs and ψr. The spinor operator ψr and the spinor source ψs are related by

ψr(k) = −iΞ(k)ψs(k) where Ξ(k) is a 4×4 matrix. To compute the matrix Ξ(k), we need

at least four sets of linearly independent sources and repsonses which can be obtained

with four independent infalling boundary conditions at IR. We have a matrix equation

for Ξ(k)

Mr = −iΞMs , (3.14)

10We expect our results are independent of the choice of mf since the near horizon boundary condition

does not depend on the mass parameter. Nevertheless, it is still interesting to perform explicit numerical

study to investigate whether richer effects might appear if we vary mf .
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where

Mr =
(
ψIr , ψ

II
r , ψ

III
r , ψIVr

)
, Ms =

(
ψIs , ψ

II
s , ψ

III
s , ψIVs

)
(3.15)

are 4 × 4 matrices. By right multiplying M−1
s on both sides of (3.14), one obtains

Ξ = iMrM
−1
s , leading to the retarded Green’s function for the fermionic operator

GR(k) = iΓtMr(k)M−1
s (k) . (3.16)

The effective Hamiltonian is defined as

Heff(~k) ≡ −G−1
R (0, ~k) , (3.17)

which is a generalization of topological Hamiltonian that is first introduced as a probe

to detect topological invariants in topological insulators [36,37]. We will study the topo-

logical invariants from this topological Hamiltonian in section 4.

3.2 Numerical results

In the previous subsection, we have introduced how to calculate the fermionic spectral

function from holography. In the following, we explain our numerical results.

Similar to the case without self-duality in [8], we find that there exist multiple Fermi

surfaces in the holographic nodal line semimetal phase and the dispersion close to the

Fermi surface is linear. This observation is obtained from numerical calculation of the

eigenvalues of the effective Hamiltonian (3.17) from which the band structure at kz = 0

plane in the momentum space is studied.

More precisely, since we have assumed the existence of SO(2)-symmetry in the x-y

plane, we fix ky = 0 and compute Heff(kx, ky = kz = 0) without loss of generality and the

locations of Heff = 0 indicates the nodal circle of Fermi surfaces. The four eigenvalues

appear in two pairs and can be arranged as {h1,−h1, h2,−h2} with h1, h2 ≥ 0 varies as

a function of kx. We show the effective band structure in the nodal line semimetal phase

for M/b ' 0.0014 in Fig. 4, where the red and blue curves are used to represent two

different groups of bands. For convenience, we use “Band-1” and “Band-2” to describe

the bands in red and blue curves in the following. The most interesting observation from

this effective band structure is the existence of multiple and discrete Fermi surfaces11 for

both energy bands indicated by band crossing at h1 = h2 = 0. These Fermi surfaces

appear alternately in “Band-1” and “Band-2”, and more densely as the momentum kx
decrease. We have checked that this characteristic band structure generically exist in

11Multiple Fermi surfaces in holography has also been found in [38–40] for a finite density system.
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the nodal line semimetal phase, not limited to particular values of M/b. Then a natural

question arise that, are these band crossings accidental or topologically nontrivial? To

answer this question, one should study the topological invariant and we leave to the next

section.

-0.6 -0.4 -0.2 0.2 0.4 0.6

-30

-20

-10

10

20

30

Figure 4: Eigenvalues of G−1(0, kx, ky = kz = 0) in the holographic NLSM phase as a function

of kx for M/b ' 0.0014, in which blue and red curves represent two different sets of eigenvalues

separately. Therefore one concludes that multiple Fermi surfaces exist in the NLSM phase.

The existence of nodal line shaped Fermi surface is the signature of NLSM. In the

weakly coupled model, the Fermi surface appears at kz = 0, while for finite kz there

exists only gapped band structure. Fig. 4 shows that there exist multiple Fermi surfaces

at kz = 0 in the strongly-coupled NLSM. Next we will explain that there is no Fermi

surface for finite kz from the analysis of the fermionic spectral function. Note that the

fermionic spectral function is defined from the imaginary part of the retarded Green’s

function GR(ω,~k), from which a Fermi surface can be identified when there is a sharp

peak in Im[GR(ω → 0, ~k)] [30, 31]. The IR boundary condition for the fermions in the

NLSM phase is shown is appendix D.4 and one concludes that

• for kz = 0 while ω → 0, the IR boundary condition is complex, which leads to the

complex GR(ω → 0, ~k) ;

• for finite kz while ω → 0, the IR boundary condition is pure real and there is no

imaginary part in GR(ω → 0, ~k) .

Therefore, there is no Fermi surface when kz 6= 0 since the spectral function vanishes.

In addition, it is a special case when ω = 0 and we can identify the Fermi surface via

the effective Hamiltonian (3.17) that gives consistent results as that from the spectral

function.
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In the vicinity of the Fermi surface, the dispersion relation of the excitations is linear

in kx. We make a generalization for the effective Hamiltonian (3.17) to finite ω � 1

case. From the locations of zeros in Heff the dispersion relation can be obtained. As

shown in Fig. 5, we choose several discrete frequencies, get the locations of zeros and

then plot these points in the dimensionless ω-kx plane. We use power law functions to fit

the data and find that close to the Fermi surface in the small ω region, the almost linear

function perfectly fit the data. The linear dispersion property of the excitations around

a circular Fermi surface is another evidence to indicate that the ground state is a nodal

line semimetal.
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Figure 5: The linear dispersion around one of the multiple Fermi surfaces at kF /b = 1.085 for
M
b ' 0.0014.

The quantum phase transition from the topological nodal line semimetal phase to

a trivial phase can also be reflected from the effective band structure. This can be

observed that the size of nodal circles kF =
√
k2
x + k2

y shrink as M/b increases. 12 We

demonstrate the shrinking of two different Fermi surfaces in Fig. 6 where kF/b is a

smooth, monotonic decreasing function when 0 < M/b < 0.8597, which is a generic

feature for all the Fermi surfaces and indicates that multiple Fermi surfaces cannot be

removed from small perturbations of the ground state. In the topological trivial phase,

there is no Fermi surface other than kF = 0 since from the near horizon we know that the

retarded fermionic Green’s function is real for all values of spacelike kµ [8,32]. Finally, kF
does not vanish at the critical point, which is different from the weakly-coupled theory.

The reason is that, even though the form of interactions in (3.3) is a general approach

to realize the nodal circle band structure, the couplings also deform the shape of the

12An interesting observation is that, the size of Fermi surfaces shrink in the holographic superfluids

when the temperature is increased, e.g. in [33, 34]. In the zero temperature topological NLSM phase,

the size of Fermi surfaces shrinks as M/b changes instead of temperature.
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Figure 6: The size of fermi surfaces shrinks as M/b increases. Fermi surfaces can exist in

the nodal line semimetal phase as well as at the critical point while disappear in the trivial

phase. The sudden disappearance of Fermi surfaces can be viewed as the consequence of the

holographic quantum phase transition.

spectra. Therefore, it is reasonably expected that by fine-tuning η1 and η2, the Fermi

surface could exactly shrink to zero at the critical point.

4 Topological invariant in nodal line semimetal

In the previous section, we have studied the effective band structure of the strongly

coupled nodal line semimetal from the topological Hamiltonian of the fermionic Green’s

function in holography. The results, especially the existence of multiple nodal lines and

linear dispersion close to each nodal line, show many similarities to the case without

self-duality [8]. In this section we will further study the topological property of these

nodal lines.

We will study the topological invariants in the holographic semimetal phase to tell

whether the nodal lines can be removed by small perturbations. In the nodal line

semimetal system, one of the topological invariants is Berry phase which is defined on a

closed path enclosing a node along the line [3,29]. By “enclosing” we mean that the path

do not touch the node and the node cannot get out of the closed loop without cutting

down the loop. The nodal line is accidental when the Berry phase associated with a

closed loop enclosing a node on this line is 0 while topological protected if the Berry

phase is π. In the following, we will discuss the Berry phase in both field theory and

holography.
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4.1 Topological invariant in field theory

We first calculate Berry phase from the weakly coupled field theory where the eigenvalues

and eigenstates can be obtained analytically. Without loss of generality we set bxy =

1/2,m = 0 in the Lagrangian (2.5). With these parameters the system is in the nodal

line semimetal phase and the nodal line is located on the kx-ky plane with kz = 0 in

the momentum space. The choice of the closed path along which we shall compute the

Berrry phase is shown in Fig. 7. Note that we have the nodal line which is described by

the red circle, and each point on this circle is a Weyl node. We focus on one single Weyl

node and use a closed loop to enclose this point. For example, we choose ky = 0 and the

closed path can be parametrized as

(kx, kz) = (kF + l sin θ, l cos θ) , with θ ∈ [0, 2π) . (4.1)

Since we will generalize the discussion to strongly coupled theory in which the eigenstates

can only be obtained at discrete points, we select a series of discrete points along the

path, which is illustrated in the right plot in Fig. 7. We have θ in (4.1) with θi = 2πi
N

with i ∈ {1, ..., N}.

1 2 3

⋯

Figure 7: Left: The illustration of the closed path (blue curve) that encloses a Weyl node along

the nodal line (red curve). Right: A series of discrete black points are selected along the closed

path.

By making the circle discrete as above, we can define the discrete Berry phase

e−iφi1i2 =
〈ni1|ni2〉
|〈ni1|ni2〉|

, (4.2)

where |ni1〉 and |ni2〉 are eigenstates at two adjacent discrete points i1 and i2 along the

path. The total Berry phase along the closed path is then the summation of all the

discrete phases.

When ky = 0 from the Lagrangian (2.5) and the parameters we chose above, we have
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the eigenstates

|nI〉 =

(
1 ,

kz +
√

(kx − 2)2 + k2
z

2− kx
,
kz +

√
(kx − 2)2 + k2

z

kx − 2
, 1

)T

,

|nII〉 =

(
1 ,

kz −
√

(kx − 2)2 + k2
z

2− kx
,
kz −

√
(kx − 2)2 + k2

z

kx − 2
, 1

)T

,

(4.3)

and the associated energy eigenvalues EI = −
√

(kx − 2)2 + k2
z , EII =

√
(kx − 2)2 + k2

z .

For the choice of the “discrete” circle with (4.1), we have either states with energy −l
or l. By substituting (4.1) and (4.3) into (4.2) and do the summation of all the discrete

phases, we find that the nontrivial phase factor is from the point where the normalized

norm of two adjacent eigenstates becomes −1. For states with energy −l, i.e. |nI〉, due

to 〈nI(kx = 2 + 0−, kz ' l)|nI(kx = 2 + 0+, kz ' l)〉 < 0 we have a phase factor π from

(4.2). Similarly for states with energy l, i.e. |nII〉, the phase factor π of the Berry phase

is due to 〈nII(kx = 2 + 0−, kz ' −l)|nII(kx = 2 + 0+, kz ' −l)〉 < 0. Therefore one

concludes that Berry phase associated with a closed loop enclosing the node is π, which

means that the nodal line semimetal described by (2.5) is topologically nontrivial.

4.2 Topological invariant in holography

In this subsection we compute Berry phase in the strongly coupled NLSM system from

holography. Similar to the discussion in field theory, in holography we first compute the

eigenstates of the effective Hamiltonian at a series of discrete points along a closed path

in momentum space. The choice of discrete points and the definition of Berry phase are

the same as the previous subsection for field theory, as shown in Fig. 7. Also, the Fermi

surfaces only locate at the kz = 0 plane in the momentum space since the imaginary

part of GR(ω → 0, ~k) vanishes for finite kz, as explained in 3.2 in detail. The difference

comparing to the field model is that, now there are multiple and dense nodal lines in the

effective band structure. We should be careful that the closed loop encloses only a single

Weyl node.

Note that the IR boundary conditions become a little bit tricky in this case because kx
and kz are finite simultaneously while the SO(2) symmetry in the kx-kz plane is broken

at low energy. When kz is finite, for example in the same order compared to kx, the

kx-term in (3.6) can always be ignored since r−1−α/2 � r−2. Instead, for the discrete

points close to the kx-axis where kz is very small, in the deep IR the kx-term in (3.6) can

not ignored any more and will modify the IR boundary conditions for the bulk fermions.

However, whenever kz is nonzero one can always choose a sufficiently small r such that

the kz term dominates in (3.6). Therefore one could expect that the modification from
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finite kx on the ingoing spinor wave will not change the Berry phase. We list the IR

boundary conditions for the cases with nonzero kz and kz = 0 in appendix D. In the

following we first show the numerical results of the eigenstates and eigenvalues along the

“discrete” circle.

We numerically show the dependence of the value of four components in the eigen-

states on momentum for the negative energy eigenvalues in Fig. 8. As shown in this

figure, each component poses sudden jump when across the kx-axis from the upper plane

to lower or vice versa. This is a common numerical result which does not depend on the

radius of the “discrete” circle. Since the eigenstates change discontinuously across the

kx-axis, we should be careful to deal with points along the kx-axis, i.e., to analyze the

eigenstates for kz = 0 cases.
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Figure 8: The eigenstates (s1, s2, s3, s4)T of G−1(0,~k) as a function of θ/π along the enclosed

loop with negative energy eigenvalues. Note that momentum is parameterized in (4.1). The

sudden jump appears in all the four components of eigenstates si across the kx-axis i.e. at

θ = 1
2π,

3
2π.

When there is no sudden jump in the eigenstates, the normalized norm of the adjacent

states in (4.2) is one which contributes trivial to the phase factor of the Berry phase. The

normalized norm at location of the sudden jump in the eigenstates is crucial for the phase

factor which happens at θ = π/2, 3π/2, similar to the case in the weakly coupled field

theory. We label the states close to this momentum according to Fig. 9.

Close to these points θ = π/2, 3π/2, the eigenvalues and the corresponding eigenstates

are summarized as follows in table 1, where b > a > 0. The values of a, b are not

important for analyzing the Berry phase.13 Substituting all these eigenstates into the

discrete version of Berry phase, only the inner products formed by the eigenstates in this

table give out non-vanishing phase. Similar to the case of field theory, for each band

we can compute the Berry phase for states with either positive or negative energy of

eigenvalues.

13The eigenstates are also quantitively related to the couplings η1, η2, but qualitatively the same as

Fig. 8. Therefore, the Berry phase and further the existence of the topological invariant does not rely

on the choice of couplings.
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|kz↓〉

|kF+〉

|kz↑〉

|kz↓〉

|kF-〉

|kz↑〉

kx

kz

(kF, 0)

Figure 9: The diagram to illustrate the label of states which contributes nontrivially to the

discrete Berry phase. The normalized inner product given by the adjacent points in the same

upper or lower plane is one and gives a vanishing contribution to Berry phase. The net con-

tribution of nontrivial discrete Berry phase is from the combination of 〈kz↑|kF−〉, 〈kF−|kz↓〉,
〈kz↓|kF+〉 and 〈kF+|kz↑〉, which can give a minus sign.

With the states in table 1 the calculation with respect to “Band-1” gives rise to a

non-trivial phase π. However, the Berry phase for the nodal lines in “Band-2” cannot be

determined due to that the norm of the adjacent states vanishes close to kx = 0.

All these features are qualitatively the same as those in the previous model [8], in-

dicating that the self-duality condition on the two form operators does not change the

topological property in the strongly coupling regime. It seems that the topological prop-

erty depends crucially on the action of the probe fermion while not the geometric back-

ground.14 This might indicate that there exist a semi-holographic description for the

probe fermion similar to the case of probes with non-interacting Dirac equation [41],

from which the topological properties might be clearly shown. It would be extremely

interesting to construct this semi-holographic description.

5 Conclusion and discussion

We have considered an improved holographic nodal line semimetal model in which the

duality relation between the rank two operators ψ̄γµνψ and ψ̄γµνγ5ψ in the dual field

theory is satisfied. Following the approach in an AdS/QCD model [26], in holography

we chose a special Chern-Simons term together with a mass term for the two form field

to realize the duality constraint automatically. In this improved holographic nodal line

semimetal, we found that there still exists a quantum phase transition from topological

nodal line semimetal phase to the topologically trivial phase.

14This is related to the fact that the probe fermionic operators are 1/N suppressed and their contri-

butions to the geometric background is not visible at leading order.
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|kz↑〉 |kz↓〉 |kF−〉 |kF+〉

E1 < 0 (b,−a, a, b)T (a,−b, b, a)T 1
2
(1,−1, 1, 1)T 1

2
(1, 1,−1, 1)T

E1 > 0 (a, b,−b, a)T (b, a,−a, b)T 1
2
(1, 1,−1, 1)T 1

2
(1,−1, 1, 1)T

E2 < 0 (b,−a, a, b)T (a,−b, b, a)T 1
2
(1, 1, 1,−1)T 1

2
(1,−1,−1,−1)T

E2 > 0 (a, b,−b, a)T (b, a,−a, b)T 1
2
(1,−1,−1,−1)T 1

2
(1, 1, 1,−1)T

Table 1: We use E1 and E2 for eigenvalues of the states along discrete circles around “Band-1”

and “Band-2”. The states in the table are the ones which contribute to the nontrivial phase

factor in the Berry phase. Note that here b > a > 0.

We also calculated the fermionic spectral function by probing a massive Dirac fermion

coupled in a particular way to the background field in bulk. We have found that, multiple

nodal circle of Fermi surfaces exist in the topological NLSM phase while disappear in the

trivial phase. The dispersion relation of low-energy excitations near the Fermi surfaces is

linear. By tuning the dimensionless parameter M/b, the size of each nodal circle shrinks

in the NLSM phase. These behaviors especially the discontinuity of Fermi circle in band

structure indicate that a quantum phase transition happens at the critical point. We

also computed the Berry phases in the NLSM phase and found that nodal circles are

topologically nontrivial, which confirms the topological property of NLSM phase and the

broken of topology across the quantum phase transition,

One might expect that after imposing the duality constraint new physics appears,

while we have seen that most of the features above are qualitatively similar to the holo-

graphic model in [8]. The role of the duality in the two form operators does not modify

the phase diagram qualitatively. The properties of the fermionic spectral function seems

to depend crucially on the exact form the action of the probe fermions, while not on

the geometric background. In condensed matter literature, the shear viscosity at low

temperatures has been proposed in [42] as a probe to detect the band topology and the

topological quantum phase transition. Therefore, it would be interesting to study other

physical quantities, like transports [42–47] and non-local quantities to show some special

features in this improved holographic model which serves as a natural ground to explore

physics of strongly coupled NLSM.
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A Equations of motion

The equations of motion from the action (2.6) in the main text are

Rab −
1

2
gab(R + 12)− Tab = 0 ,

∇bF ba + 2αεabcdeFbcFde = 0 ,

∇bF
ba + αεabcde(FbcFde + FbcFde)

−iq1

(
Φ∗DaΦ− (DaΦ)∗Φ

)
+
q2

η
εabcdeBbcB

∗
de = 0 ,

DaD
aΦ− ∂Φ∗V1 − λΦB∗abB

ab = 0 ,

i

3η
εabcdeH

cde −m2
2Bab − λΦ∗ΦBab = 0 ,

(A.1)

where

Tab =
1

2

[
FacF c

b −
1

4
gabF2

]
+

1

2

[
FacF

c
b −

1

4
gabF

2
]

+
1

2

(
(DaΦ)∗DbΦ + (DbΦ)∗DaΦ

)
+ (m2

2 + λ|Φ|2)(B∗acB
c
b +B∗bcB

c
a )− 1

2

(
(DcΦ)∗(DcΦ) + V1 + V2 + λ|Φ|2B∗cdBcd

)
gab

(A.2)

is the energy-momentum tensor. We make use of the following ansatz for the zero-

temperature solutions,

ds2 = u(−dt2 + dz2) +
dr2

u
+ f(dx2 + dy2) ,

Φ = φ(r) ,

Bxy = −Byx = Bxy ,
Btz = −Bzt = iBtz .

(A.3)
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The equations of motion can be explicitly written as

u′′

u
+
f ′′

f
+

1

3

(
u′2

2u2
+

7u′f ′

2uf
− f ′2

f 2

)
− 8

u
+

2

3
φ′2 +

2

3u

(
m2

1φ
2 +

λ1

2
φ4

)
= 0

u′′

u
− f ′′

f
+
u′

2u

(
u′

u
− f ′

f

)
− 4(m2

2 + λφ2)

(
B2
tz

u3
+
B2
xy

uf 2

)
= 0

φ′′ +

(
3u′

2u
+
f ′

f

)
φ′ −

(
m2

1 + λ1φ
2 − 2λB2

tz

u2
+

2λB2
xy

f 2

)
φ

u
= 0

B′tz −
η
√
u

2f
(m2

2 + λφ2)Bxy = 0

B′xy −
ηf

2u
3
2

(m2
2 + λφ2)Btz = 0

(A.4)

There is an extra first order constraint equation which can be expressed as linear combi-

nations of the previous equations and their derivatives

φ′2

2
−
(
u′2

4u2
+
f ′2

4f 2
+
u′f ′

uf

)
+

6

u
− 1

2u

(
m2

1φ
2 +

1

2
λ1φ

4

)
+

(
m2

2 + λφ2

u

)(
B2
tz

u2
−
B2
xy

f 2

)
= 0 .

(A.5)

B Counterterms and on-shell action

To make the gravitational theory well behaved in variation and remove the divergence in

the on-shell action, the Gibbons-Hawking term SGH and the counterterms Sc.t should be

considered to construct the renormalized action

Sren = S + SGH + Sc.t , (B.1)

where

SGH =

∫
∂

ddx
√
−h (2K) ,

Sc.t =

∫
∂

ddx
√
−h
[
−6− Φ2 +

1

2
|Bµν |2 + ln r

(
(
1

3
+
λ1

2
)Φ4 + |Bµν |4

)] (B.2)

are defined on the boundary of the bulk. K = hab∇anb is the trace of the extrinsic curva-

ture of the induced metric hab = gab−nanb with na = (0, 0, 0, 0, 1√
u
) the spacelike normal

vector, and h is the determinant of the induced metric reduced onto the hypersurface

orthogonal to na, i.e., h ≡ det hµν(µ,ν 6=r).

25



Close to the AdS boundary (r →∞), the expansions of the fields are

u
∣∣
r→∞ = r2 − 2b2 − M2

3
+

(
4b4

9
+

23M4

180

)
ln(r)

r2
+
u2

r2
+ ...

f
∣∣
r→∞ = r2 − M2

3
+

(
4b4

9
+

23M4

180

)
ln(r)

r2
+
f2

r2
+ ...

φ
∣∣
r→∞ =

M

r
− 23M3

60

ln(r)

r3
+
φ2

r3
+ ...

Btz
∣∣
r→∞ = br − 2b3 ln(r)

r
+
btz2
r

+ ...

Bxy
∣∣
r→∞ = br + 2b3 ln(r)

r
+
bxy2

r
+ ...

(B.3)

where

f2 =
7b4

18
+
bbxy2

3
+

5b2M2

18
+

149M4

1440
− u2

2
− Mφ2

2

btz2 = −b3 − bxy2 −
7bM2

6

(B.4)

together with {b,M, u2, bxy2, φ2} are the coefficients of the series expansions. We have

numerically checked that when b = 1 is fixed, all the coefficients of the series expansions

change smoothly by tuning M , even pass across the critical point. The free energy density

is Ω
V

= −So.s

V
can be expressed by these coefficients

So.s =
1

b4

(
11b4

9
− 8bbxy2

3
− 38b2M2

9
− 7M4

36
+ 3u2 + 2Mφ2

)
, (B.5)

which means that the free energy density is also smooth through the phase transition as

illustrated in Fig. 3 in the main text.

C Scaling symmetries and numerical calculation

The following scaling symmetries are very useful for numerical calculations.

• {r−1, t, x, y, z} → {r̃−1, t̃, x̃, ỹ, z̃} = b{r−1, t, x, y, z}, while {u, f, Bµν} → {ũ, f̃ , B̃µν} =

b−2{u, f, Bµν} to make ds2 and B = Bµνdx
µdxν remain unchanged according to this

transformation. This symmetry can be used to fix b to be 1.

• {x, y} → {x̃, ỹ} = c{x, y} together with {f,Bxy} → {f̃ , B̃xy} = c−2{f,Bxy} indi-

cates another scaling symmetry that is restricted in the x-y plane. This symmetry

can scale f to asymptotic to r2 near the boundary. It also makes us possible to fix

a shooting parameter in the IR region, since we can make a transformation back to

the expected coordinates.
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D Dirac system in the bulk

D.1 Vielbein and spin connection

The vielbein is a two indexed object with a tangent space index m, and a coordinate

index a. It obeys the relations eame
b
ngab = ηmn and ηmne

m
a e

n
b = gab. For a diagonal metric

(A.3), we have

ema =
√
|gaa|δma (D.1)

where a does not sum. The tangent space index m is lowered or raised by Minkowski

metric ηmn or ηmn, while the coordinate index is lowered or raised by gab or gab.

The spin connection can be constructed from the vielbein and the Christoffel symbol

ω m
a n = Γbace

m
b e

c
n − ebn∂ae

m
b . (D.2)

The covariant derivative of the spinor can be defined as

∇a = ∂a −
i

4
ωamnΓmn . (D.3)

D.2 Gamma matrices and spinors

We use the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 − i
i 0

)
, σz =

(
1 0

0 − 1

)
, I2 =

(
1 0

0 1

)
. (D.4)

to build up the gamma-matrices γµ in the 4-dimensional flat space-time

γ0 =

(
0 iI2

iI2 0

)
, γi =

(
0 iσi
−iσi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−I2 0

0 I2

)
. (D.5)

The gamma matrices Γa in the 5-dimensional local flat space-time can be constructed

Γa = (Γµ, Γr) ≡
(
γµ,−γ5

)
. (D.6)

Gamma matrices Γa in the 5-dimensional curved space-time are

Γa = eamΓm . (D.7)

The Clifford algebras for the above cases are

{γµ, γν} = 2ηµν , {Γa,Γb} = 2ηab , {Γa,Γb} = 2gab . (D.8)
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The two-indexed anti-symmetrized products of gamma matrices are defined as

γµν =
i

2
[γµ, γν ] , Γab =

i

2

[
Γa,Γb

]
, Γab =

i

2

[
Γa,Γb

]
= eame

b
nΓmn . (D.9)

A spinor ψ can be decomposed into the right-handed and left-handed spinors ψR,L
defined as

ψR =

(
ψ+

0

)
, ψL =

(
0

ψ−

)
(D.10)

with the projection operator constructed from Γr

1

2
(1± Γr)ψ = ψR,L (D.11)

where ψ± are two-components spinors.

D.3 UV boundary terms of Dirac equations

In this part, we briefly review how to obtain the correct boundary action for a single chiral

fermion at the boundary [32,48,49]. Next, we review the generalization to combining two

opposite chiral fermions into a massive Dirac fermion with correct boundary action.

We start from the action for a single, free Dirac fermion with mass m in the bulk

SDirac =

∫
dd+1x

√
−g
(
ψ̄Γa∇aψ −mψ̄ψ

)
. (D.12)

Note that the boundary is defined at r →∞. The variation of the action is

δSDirac = bulk term +

∫
∂M

ddx
√
−ggrr

(
ψ̄LδψR − ψ̄RδψL

)
(D.13)

where the bulk terms give the dynamical equations of motion. The last terms are located

at the AdS boundary where ψR and ψL as varied independently. However, because the

bulk Dirac equation is of first order, ψR and ψL are related and only one of them can be

varied freely while the other behaves as the corresponding response. This can be achieved

by adding a proper boundary term to the original action [32,48,49].

For example, if we choose ψR as free variable, we add

S∂ =

∫
∂M

ddx
√
−ggrrψ̄RψL , (D.14)

and the variation of the boundary field theory is

δStotal = δ(Sbulk + S∂) =

∫
∂M

ddx
√
−ggrr

(
ψ̄LδψR + δψ̄RψL

)
. (D.15)
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Alternatively, we can take ψL as the free variable by considering the boundary term

S∂ =

∫
∂M

ddx
√
−ggrr

(
−ψ̄LψR

)
, (D.16)

leading to the alternative total variation as

δStotal = δ(Sbulk + S∂) = −
∫
∂M

ddx
√
−ggrr

(
δψ̄LψR + ψ̄RδψL

)
. (D.17)

For five dimensional bulk theory, we introduced two sets of coupled fermions ψ(1), ψ(2)

in (3.1). The boundary terms we considered are a combination of (D.14) and (D.16).

Performing the variation, we end up with

Sbdy =

∫
ddx
√
−h
(
ψ̄

(1)
R ψ

(1)
L − ψ̄

(2)
L ψ

(2)
R

)
(D.18)

where the mass of ψ(1) and ψ(2) are m and −m, respectively. One may also notice that

there is an opposite sign comparing (D.15) and (D.17). This results in the additional

minus sign in (3.13) when identifying the 4-component fermionic operator.

D.4 IR boundary conditions

We outline the infalling boundary conditions according to different phases and choices of

kµ = (ω, kx, ky, kz) in a table.

Phase kµ IR infalling solution

NLSM
ω or kz 6= 0,∀ kx, ky ψIR

l = e
i

√
ω2−k2z
u0r

(
zl1 , z

l
2 , i

√
ω2−k2z
ω−kz zl1 , i

√
ω2−k2z
ω+kz

zl2

)T
ω = kz = 0, kx or ky 6= 0 ψIR

l = e−
2k̃x
α
r−

α
2
(
zl1 , z

l
2 , z

l
2 , z

l
1

)T
Critical ω = kz = 0, kx or ky 6= 0 ψIR

l = e−
2k̃x
αc

r−
αc
2
(
zl1 , z

l
2 , z

l
2 , z

l
1

)T
Trivial ω = kz = 0, kx or ky 6= 0 ψIR

l = e−
k̃x
r

(
zl1 , z

l
2 , z

l
2 , z

l
1

)T
In this table k̃x ≡ kx√

u0f0
in NLSM phase, k̃x ≡ kx√

ucfc
at the critical point and k̃x ≡ kx√

u1
,

with (u0, f0, uc, fc, u1) =

(
1
8
(11 + 3

√
13),

√
2
3

√
13− 2, 2.735, 0.754, 1 + 3

8λ1

)
.
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