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The recent interest into the Brownian gyrator has been confined chiefly to the analysis of Brownian
dynamics both in theory and experiment despite the applicability of general cases with definite mass.
Considering mass explicitly in the solution of the Fokker–Planck equation and Langevin dynamics
simulations, we investigate how inertia can change the dynamics and energetics of the Brownian
gyrator. In the Langevin model, the inertia reduces the nonequilibrium effects by diminishing the
declination of the probability density function and the mean of a specific angular momentum, jθ,
as a measure of rotation. Another unique feature of the Langevin description is that rotation is
maximized at a particular anisotropy while the stability of the rotation is minimized at a particular
anisotropy or mass. Our results suggest that the Langevin dynamics description of the Brownian
gyrator is intrinsically different from that with Brownian dynamics. In addition, jθ is proven to
be essential and convenient for estimating stochastic energetics such as heat currents and entropy
production even in the underdamped regime.

I. INTRODUCTION

On account of its simplicity and efficiency, Brownian
dynamics has been adopted in a series of recent studies
to describe biological systems such as chromosomes [1],
primary cilia [2, 3], membrane fluctuations [4, 5], and
actin-myosin networks [6–8]. In many cases, character-
istic directed currents in configuration space reveal the
violation of detailed balance originating from thermal
nonequilibrium (see the rotational probability currents
in steady state in Refs. [3, 9, 10]). Studies of such bi-
ological nonequilibrium systems through Brownian dy-
namics have expanded our understanding of fluctuation-
dissipation theorem [11–13], fluctuation theorems [14–17]
and the thermodynamic uncertainty relation [18–22].

The choice of Brownian dynamics may be appropriate
in describing such systems because it reduces simulation
cost when long-time configurational dynamics are the
main interest and short-time movements do not change
the results significantly. However, the development of the
related theory and experiments is moving our concern to
faster motions that could result in crucial differences. Ob-
servation of short-time dynamics have become available
at greater time resolutions so that we are able to exam-
ine a number of theoretical results based on Langevin
dynamics, where the memory effect caused by the iner-
tia of a particle is relevant [23–26]. Moreover, systems
in low-density environments (e.g., rarefied gas [23]) or at
large scales such as flocks of birds [27], schools of fish [28],
vibrobots [29], and various mesoscale organisms [30–32]
should be addressed by Langevin dynamics including the
inertial term to more realistically catch their characteris-
tics. Normally, Langevin dynamics correspond to larger
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masses, lower frictions, and shorter time scales compared
to Brownian dynamics.

Though Brownian dynamics is an overdamped limit of
Langevin dynamics, neglecting the inertial term is not
always successful even in longer time scales. There have
been reports that the overdamped approximation fails in
a spatially inhomogeneous temperature field [33, 34] or
in the presence of a magnetic field [35–38]. While stud-
ies to explain the inertial effects have shown that inertia
qualitatively changes the system dynamics of a motility-
induced phase separation [39] as well as the dynamical
states and translational motion of a self-propelled parti-
cle [40–44], the effects of inertia on rotational motion and
system energetics have been less considered; thus, how in-
ertia affects the dynamics and energetics of a wider range
of nonequilibrium systems, including the Brownian gyra-
tor, still remains unclear.

In this paper, we investigate inertial effects on the
dynamics and energetics of the Brownian gyrator [45],
which is a two-dimensional (2D) model treating the ro-
tational motion of a particle in contact with two differ-
ent heat baths and in an anisotropic harmonic potential.
This model is widely used not only because it is exactly
solvable but also because it can be interpreted as a bead-
spring model of an internally driven assembly in biologi-
cal systems [3, 46, 47]. However, the absence of the iner-
tial term in Brownian dynamics bears some critical lim-
itations. First, even though the concept of the Brownian
gyrator has been realized (as the overdamped limit) in re-
cent experiments with stochastic electronic and colloidal
systems [48–52], it is still possible to further develop the
idea to more general experiments where the particle has
considerable mass. In that case, there is lack of research
with which to compare the results. Regarding the rota-
tional motion of a particle in nonequilibrium steady state
(NESS), a curl of probability currents and a cycling fre-
quency of the Brownian gyrator has been studied [53–
56], but most related reports have not considered particle
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inertia. In this respect, including the inertial term, i.e.,
adopting Langevin dynamics, will be beneficial for clari-
fying the actual rotational motion of a particle in NESS.
Our results here reveal that consideration of inertia re-
markably changes the probability density of the particle
and its rotational motion. Further, we derive the relation
between the energetics and the rotational motion in the
underdamped regime and show that energetic quantities
can be inferred from dynamical properties.

This paper is organized as follows. Section II intro-
duces the Brownian gyrator and its nonequilibrium fea-
tures through Brownian dynamics, which we call the
overdamped model. Section III describes how the iner-
tial term in Langevin dynamics changes the system dy-
namics mainly concerning the rotational motion, which
we call the inertial model. Section IV clarifies how the
stochastic energetics relates to rotational motion in the
underdamped regime.

II. OVERDAMPED MODEL

A. Tilted PDF and rotational motion

In the overdamped model, we consider a particle mov-
ing in a 2D plane with the position x ≡ (x1, x2)T

and neglect the inertial term. The particle undergoes an
anisotropic harmonic potential, U(x) = 1

2x
T ·U ·x where

U =
(
k u
u k

)
with u < k, and it contacts with two different

heat baths at temperature T1 and T2 (< T1); see Fig.
1(a). Then, the Langevin equation for this model can be
written as

γẋ(t) = −∇xU(x(t)) + ξ(t), (1)

where γ is the Stokes friction coefficient and ξ ≡ (ξ1, ξ2)T

is a Gaussian white noise satisfying 〈ξi(t)〉 = 0 and
〈ξi(t)ξj(t′)〉 = 2γTiδijδ(t − t′). The angle bracket 〈·〉
stands for the ensemble average. We set Boltzmann’s con-
stant kB = 1 and all parameters are dimensionless. The
anisotropic potential and the different heat baths may be
equivalently thought of as a simple shear flow [57] and an
additional Gaussian white noise in one direction [50].

To obtain the probability density function (PDF)
and the probability current, we consider the associated
Fokker–Planck equation given by

∂p(x, t)

∂t
= −∇x · jx(x, t), (2)

where the probability current jx(x, t) is defined by

jx(x, t) = −
[

1

γ
∇xU(x) + D · ∇x

]
p(x, t). (3)

Here, the diffusion matrix is given as D ≡ 1
γ

(
T1 0
0 T2

)
. The

first term on the right-hand side of Eq. (3) is the drift
current determined by potential U(x), and the second
term is the diffusion current of the system [58].

(a) (b)

Drift current

Diffusion current

T1

T2

U(x) -0.07 0.00-0.07 0.00 0.07-0.07 0.00 0.07-0.07 0.00 0.07

FIG. 1. (a) Schematic diagram of a Brownian gyrator with an
angular current x × jx(x) (colored contour). An anisotropic
harmonic potential U(x) is shown as gray contour lines, and
the black line indicates a numerically generated trajectory of
the particle. (b) Top and bottom panels show angular current
contributions of the drift and diffusion currents, respectively.
By adding these two currents, the particle undergoes a ro-
tational motion in a 2D plane. A positive angular current
represents clockwise rotation, and the small arrows indicate
the local directions of the averaged currents. A color-bar of
colored contours is given in the top panel. The parameters are
fixed as k = 3/2, u = 1/2, T1 = 5, T2 = 1, and γ = 1.

We calculate the steady-state PDF p(x) using the
method in Appendix A. The covariance matrix in the
steady-state Cxx for x defined as 〈xxT 〉 is given by

Cxx =
1

2k(k2 − u2)

(
2T1k

2+(T2−T1)u
2 −(T1+T2)ku

−(T1+T2)ku 2T2k
2+(T1−T2)u

2

)
,

(4)
and p(x) is

p(x) =
1

2π
√

det Cxx

exp

(
−1

2
xT · C−1xx · x

)
. (5)

Inserting p(x) into Eq. (3), we can easily obtain the prob-
ability current jx(x). When T1 6= T2 and u 6= 0, jx(x)
has a non-zero value, which implies that the system is in
NESS. The rotational property of jx(x) is represented
as an angular current, denoted as x× jx(x) in Fig. 1(a),
where x × jx(x) ≡ x1jx,2(x) − x2jx,1(x). This current
can be divided into drift and diffusion parts as seen in
Fig. 1(b); hence, we demonstrate that the resulting ro-
tational motion arises from the combined effects of these
two angular currents.

One of the features of NESS is a tilted PDF compared
to the equilibrium state whose shape is determined by a
potential. For example, when our system is in equilibrium
(T1 = T2 = T ), the inverse of the covariance matrix
is given by C−1xx = 1

T U. In this case, the principal axes
of the PDF and the aspect ratio of the variances along
the principal axes (σ1/σ2) coincide with the values of
potential U. However, in NESS, the PDF is tilted to a
higher temperature axis (i.e., x1–axis) compared to the
equilibrium state, as shown in Fig. 2(a), and thus the
PDF cannot fully cover the potential. In other words, the
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(a) (b)

FIG. 2. (a) Positional PDFs p(x) with mass m = 0, 5, and 50 from left to right. A harmonic potential U(x) is shown as
gray contour lines and the PDFs are plotted as colored contours. Here, the principal axes of the PDFs and potential U(x) are
indicated by black arrows and white dotted lines, respectively. (b) Analytical results of the slope of the minor principal axis
(tanφ) and the aspect ratio of the variances along the principal axes (σ1/σ2) of the PDF as a function of mass m. Dotted lines
indicate the asymptotic lines in the limit of m→∞. The other parameters are fixed as k = 3/2, u = 1/2, T1 = 5, T2 = 1, and
γ = 1.

principal axes of C−1xx do not coincide with the principal
axes of U in NESS.

The NESS is characterized by a non-zero probabil-
ity current that rotates around the center. To quantify
this rotational motion, we set the specific angular mo-
mentum as jθ(x, t) ≡ x(t) × ν(x, t), where the mean
local velocity conditioned on x is ν(x, t) ≡ 〈ẋ|x, t〉 =
jx(x, t)/p(x, t) [17]. This term, jθ(x, t), is related to the
stochastic area tensor [49, 52] as well as the probability
angular momentum [59], which have been proposed as
measures of the violation of detailed balance. The mean
of specific angular momentum 〈jθ〉ss can be evaluated as

〈jθ〉ss = 〈x× ν(x, t)〉ss =
u

kγ
(T2 − T1), (6)

where 〈·〉ss denotes the ensemble average in the steady
state. In Eq. (6), 〈jθ〉ss is proportional to u(T2 − T1),
which means that the rotational motion is caused by two
effects: temperature difference and anisotropy of the po-
tential. Since the rotational motion of a particle reflects
that the system is in NESS, we can confirm that two dif-
ferent temperatures and an anisotropy of potential are
the sources of the nonequilibrium state.

III. INERTIAL MODEL

A. Steady-state PDF: Approaching equilibrium

To investigate the effects of inertia on a particle in
NESS, we consider the Brownian gyrator in an under-
damped regime, called the inertial model. The Langevin
equation of a particle of mass m is given by

ẋ(t) = v(t),

mv̇(t) = −∇xU(x(t))− γv(t) + ξ(t),
(7)

where the velocity v ≡ (v1, v2)T . The PDF p(x,v, t) in
the inertial model satisfies the Fokker–Planck equation

associated with Eq. (7) written as

∂p(x,v, t)

∂t
= −∇x · jx(x,v, t)−∇v · jv(x,v, t), (8)

where the probability currents are given as

jx(x,v, t) = vp(x,v, t),

jv(x,v, t) = −
(

1

m
U · x+

1

m
Γ · v + D · ∇v

)
p(x,v, t).

(9)

Here, Γ ≡
( γ 0
0 γ

)
and D ≡ γ

m2

(
T1 0
0 T2

)
are 2 × 2 matrices

related to the dissipation due to friction and the diffusion,
respectively. The steady-state PDF p(z) is obtained as

p(z) =
1

2π
√

det C
exp

(
−1

2
zT · C−1 · z

)
, (10)

where the state vector z ≡ (x1, x2, v1, v2)T and the co-
variance matrix C ≡ 〈zzT 〉ss. The complete expression
of C is given in Appendix A.

Integrating the PDF of Eq. (10) over v, the change of
positional PDF with m is illustrated in Fig. 2(a). Com-
pared with the overdamped model (leftmost), the PDF
with inertia is less tilted, and its elliptical shape becomes
more circular as m increases. To quantify this asymp-
totic behavior of the PDF, we take two measures: the
slope of the minor principal axis of the PDF (tanφ) and
the aspect ratio of the variances along the principal axes
(σ1/σ2). In evaluating tanφ, φ is the tilt angle between
the minor principal axis and the x1-axis, as shown in
Fig. 2(b). The variances along the principal axes denoted
as σ1 and σ2 (> σ1) are obtained by the eigenvalues of
the covariance matrix of x.

Figure 2(b) plots the analytical results of the tanφ and
σ1/σ2 measures as a function of m. They converge to 1
and (k− u)/(k+ u) in the limit of m→∞, respectively,
where the convergent values are equal to the values of po-
tential U. From the fact that the tilted PDF is one piece
of evidence for the NESS, these reflect that the system
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(a)

(b)

FIG. 3. (a) Systematic torque M (upper) and the mean of
specific angular momentum 〈jθ〉ss (lower) as a function of
mass m with u = 1/2. Both vanish in the limit m → ∞.
(b) |〈jθ〉ss| as a function of u. In both figures, solid (dotted)
lines represent the analytical results of the inertial model with
m = 5 (the overdamped model). Squares represent Langevin
simulation results. The parameters are fixed as k = 3/2, T1 =
5, T2 = 1, and γ = 1.

approaches equilibrium from the NESS as the inertia be-
comes significant. This result is not surprising because
the diffusion matrix D is inversely proportional to m2,
and hence the diffusion effects caused by the tempera-
ture difference are also diminished with m.

B. Specific angular momentum and its fluctuation:
Non-monotonic behaviors

In the inertial model, the specific angular momentum is
defined as jθ(x,v, t) ≡ x(t)×v(t). The mean, 〈jθ〉ss, can
be obtained using the covariance between x and v in C,
but it is also possible using the relation with a systematic
torque M which the particle exerts on the potential as

〈jθ〉ss = − 1

γ
M, (11)

where M ≡ 〈x×∇xU(x)〉ss [45]. This relation has been
shown in the overdamped system in Ref. [46], but a proof
with inertia has been absent. We derive this relation in
the inertial model in Appendix B. Using Eq. (11), 〈jθ〉ss
in the inertial model is obtained as

〈jθ〉ss = − 1

γ
M =

u

γ
〈x22 − x21〉ss =

γu(T2 − T1)

kγ2 + u2m
. (12)

Here, 〈jθ〉ss is determined by the difference between the
two variances, i.e. how much the positional PDF is tilted.
Thus, the tilted PDF and the rotational motion of the

particle are not separate but highly related phenomena.
This relation gives us not only a simpler calculation but
an important feature for measuring 〈jθ〉ss. In the under-
damped regime, measuring the velocity field is necessary
for a full description of the Langevin dynamics. Never-
theless, 〈jθ〉ss can be estimated by experimentally given
quantities and measurements of the variances of displace-
ments from a positional trajectory of a particle without
knowledge of the velocity field.

We take into account two parameters, m and u, to de-
scribe how and to what extent the system dynamics are
changed with the inertial term since u is a controllable
parameter in experiments and has a crucial role in keep-
ing the NESS in our system. Figure 3(a) represents 〈jθ〉ss
and M as functions of m and shows that they vanish as
m increases, similarly with the tilted PDF. The vanishing
behavior of 〈jθ〉ss has been revealed in the form of a de-
creasing cycling frequency with increasing m in Ref. [55].
This result can be intuitively understood by considering
the ensemble-averaged moment of inertia of the particle,
Iθ, which is derived as

Iθ ≡ m〈x21 + x22〉ss = m
k(T1 + T2)

k2 − u2 . (13)

Iθ is directly proportional to m as expected; accordingly,
finding the rotational motion is more difficult for large
m. The interesting point is that, in this case, the depen-
dence of 〈jθ〉ss on u is qualitatively changed from the
overdamped model as follows: |〈jθ〉ss| in the overdamped
model has a monotonic dependence on u, whereas |〈jθ〉ss|
with finite inertia is maximized at a specific value of u and
becomes smaller as u approaches k, as shown in Fig. 3(b).
For m = 0, how strongly the two different heat baths are
coupled only determines the magnitude of the rotational
motion, and thus the monotonic dependence on u is nat-
ural. However, when we consider the inertial term, Iθ is
more significant at high u because of the large radial vari-
ance 〈x21 + x22〉ss, and this makes the rotational motion
difficult to perform. As the combined effects of the two
coupled heat baths and Iθ, 〈jθ〉ss of the inertial model
shows a non-monotonic behavior with u in contrast to
the overdamped model.

As the next step to grasp how inertia affects the
stochastic dynamics of rotational motion, we consider the
fluctuation of jθ(t), which is defined as

Dθ ≡ lim
t→∞

t

2

(
〈jθ(t)2〉 − 〈jθ(t)〉2

)
. (14)

The fluctuation with finite inertia, denoted by Dθ, can
be explicitly derived as

Dθ = Dth
θ +Dneq

θ , (15)

where

Dth
θ =

2γT1T2
kγ2 + u2m

,

Dneq
θ =

γu2(γ4 + u2m2 + 5kγ2m)

2(kγ2 + u2m)3
(T1 − T2)2.

(16)
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(a) (b)

(c) (d)

Region II

Region I

FIG. 4. (a) Fluctuation of specific angular momentum Dθ
with m = 5 (solid) and Dθ,0 (dashed) as functions of u. T1 = 5
(red upper line) and 2 (blue lower line). (b) Top, bottom: Dθ,u
and u∗ as a function of χ ≡ T1/T2 with m = 5, respectively.
The dashed dotted line in the bottom panel indicates the
limit of u∗. (c) Dθ as a function of mass m with u = 1/3 and
T1 = 1–5 from blue (lower) to red (upper). (d) Contour plot of
Dθ,m for 0 < u/k < 1 and χ > 1. Region I (II) indicates where
Dθ is maximized at m = 0 (the non-zero m∗). In the figure,
lines and squares represent analytical and Langevin simula-
tion results, respectively. The other parameters are fixed as
T2 = 1, k = 3/2, and γ = 1.

To simplify the expressions, Dθ,0 denotes the fluctuation
in the overdamped model, which is given by

Dθ,0 =
2T1T2
kγ

+
u2(T1 − T2)2

2k3γ
. (17)

The detailed method is written in Appendix C. We di-
vided Dθ into two terms, Dth

θ and Dneq
θ . Here, Dth

θ is
strictly positive in any condition, but Dneq

θ appears only
in a nonequilibrium state (T1 6= T2 and u 6= 0).

As can be seen in Fig. 4(a), Dθ has an obviously dif-
ferent curve from Dθ,0 along u; while Dθ,0 monotonically
increases with u, Dθ decreases as u approaches k. This
difference comes from the fact that Iθ becomes large as u
approaches k so that the variance of the rotational mo-
tion should be small at large u. The remarkable point is
that Dθ is maximized at a non-zero u∗, which means the
stability of rotation is minimized at this specific u.

Furthermore, in a certain range of u, Dθ exceeds
Dθ,0 under a specific condition, that is χ > χc, where
χ ≡ T2/T1 (> 1) and the critical temperature ratio is
denoted by χc. To obtain the analytical expression of χc,
we expand Dθ as

Dθ = Dθ,0 +Dθ,uu
2 +O(u4), (18)

where

Dθ,u =
5(T1 − T2)2 − 4T1T2

2k2γ3
m. (19)

When Dθ,u is positive, Dθ increases more rapidly than
Dθ,0 near u = 0. Thus, χc is obtained as

χc =
7 + 2

√
6

5
. (20)

Figure 4(b) plots Dθ,u (top) and u∗ (bottom) as a func-
tion of χ. Note that the minimum value of χ for non-zero
u∗ is denoted by χ∗u, which is less than χc. Actually, χc
is the upper bound of χ∗u, where

χ∗u = 1 +
2
(

1 +
√

6 + γ2/km
)

5 + γ2/km
. (21)

Here, χ∗u has a value in the range (1, χc) according to
the value of γ2/km. Thus, Dθ is maximized at the non-
zero u∗ and exceeds Dθ,0 for χ > χc at the same time.
The dashed dotted line in the bottom panel of Fig. 4(b)
indicates the limit of u∗ given by

u∗ <
γ

m

√√
γ4 + 9kγ2m+ 21k2m2 − 4km− γ2. (22)

If the limit from Eq. (22) is larger than k, u∗ < k
due to the existence condition for steady state (see Ap-
pendix A).

A similar behavior is also observed along m, as can
be seen in Fig. 4(c). Dθ is maximized not at m = 0 but
at an optimal mass m∗ under a specific condition, which
means the stability of rotation can be minimized at this
specific mass. To obtain the condition for the non-zero
m∗, we expand Dθ near m = 0 as

Dθ = Dθ,0 +Dθ,mm+O(m2), (23)

where

Dθ,m =

(
(5k2 − 3u2)(T1 − T2)2 − 4k2T1T2

)
u2

2k4γ3
. (24)

Since Dθ,m should be positive for the non-zero m∗,
Dθ can be separated into two regions, as illustrated in
Fig. 4(d), where Dθ,m has a negative (positive) value
in region I (II) and thus Dθ decreases (increases) as
m increases. Intriguingly, Eq. (23) matches Eq. (18) for
u2 � k2, i.e. Dθ,mm ' Dθ,uu

2. This correspondence
leads to similar non-monotonic behaviors of Dθ along u
and m as well as reveals the condition χc at the boundary
of regions I and II, as indicated in Fig. 4(d).

While we analytically showed that Dθ has increasing
parts with u and m under specific conditions, it is not
easy to clarify what induces these behaviors through the
expression of Dθ alone. To explain the origin of the non-
monotonic curves, we divide Dθ into four terms as

Dθ ' lim
t→∞

t

2
(Cov(r4, ω2) + 〈ω〉2ssVar(r2)

+ 〈r2〉2ssVar(ω) + Cθ),
(25)
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. Langevin simulation results of four terms, 〈ω〉2ssVar(r2), Cov(r4, ω2), 〈r2〉2ssVar(ω), and Cθ, with ∆t = 10−3 and t = 103.
(a–d) The four terms as a function of u with T1 = 6 and m = 0 (gray triangles) or m = 10 (black squares). Right (left) tick
marks indicate the value for m = 0 (m = 10). (e–h) The four terms as a function of m with u = 1/2 and T1 = 2–12 from blue
(lower) to red (upper). Dashed (solid) lines are simulation (analytical) results and eye guides. The other parameters are fixed
as k = 3/2, T2 = 1, and γ = 1.

where the cycling frequency is defined as ω ≡ (x ×
v)/r2, Cov(r4, ω2) ≡ 〈r4ω2〉ss − 〈r4〉ss〈ω2〉ss, and Cθ ≡
〈r2〉2ss〈ω〉2ss−〈r2ω〉2ss. Here, we neglect Var(r2)Var(ω). Be-
cause only Cθ is calculable and determined independent
of time, we measure the other terms by Langevin simu-
lations with time step ∆t = 10−3 and total simulation
time t = 103. Figure 5 depicts the Langevin simulation
results for 〈ω〉2ssVar(r2), Cov(r4, ω2), 〈r2〉2ssVar(ω), and
Cθ. Although the magnitudes of Cov(r4, ω2) and Cθ are
much larger than the others, we should consider all terms
since the true behavior of Dθ will not be revealed if we
neglect any of the terms.

Let us firstly discuss Dθ in terms of u. The divergence
of 〈r2〉ss in the limit of u→ k results in large magnitudes
of all terms as u approaches k, as shown in Fig. 5(a–d).
This increase at large u is a common property between
the inertial and overdamped models. The main discrep-
ancy between the two models, though, is that there are
local optimum points at specific u caused by 〈ω〉ss. Since
the inertia of the particle shifts the peak of 〈ω〉ss to lower
u (see Fig. 7 in Appendix B), we find curved shapes of
〈ω〉2ssVar(r2), Cov(r4, ω2), and Cθ. We note that 〈r2〉ss
is proportional to T1 + T2 whereas 〈ω〉ss increases with
|T1 − T2|. Therefore, when |T1 − T2| is not sufficiently
large, the curved shapes do not appear and the crossover
between 〈r2〉ss and 〈ω〉ss leads to the non-trivial behavior
of Dθ with u, as indicated in Fig. 4(a).

It is more complicated to describe the behavior ofDθ in
terms of m since Dθ is determined by the joint effects of
several factors. As 〈ω〉ss and Var(ω) become smaller with
m, 〈r2〉2ssVar(ω) and Cθ monotonically decrease with m,
as shown in Fig. 5(g,h). In the case of 〈ω〉2ssVar(r2), Iθ
has a role to resist changes in rotational motion, and this
induces an increase of radial variance Var(r2) with m [40].
Thus, 〈ω〉2ssVar(r2) has a curved shape as illustrated in
Fig. 5(e). Cov(r4, ω2) has a negative value due to the el-
liptical shape of the rotational motion (Figs. 1 and 2),

but because the elliptical shape becomes circular and
the magnitude of 〈jθ〉ss decreases with increasing m, the
magnitude of Cov(r4, ω2) approaches zero (i.e. increases),
as shown in Fig. 5(f). Therefore, we can conclude that the
increases of Var(r2) and Cov(r4, ω2) along with the de-
crease of 〈ω〉ss together produce the non-trivial curves of
Dθ with m.

IV. STOCHASTIC ENERGETICS: RELATION
TO SPECIFIC ANGULAR MOMENTUM

To this point we have focused on how inertia affects
the system dynamics of a Brownian gyrator, i.e., a tilted
PDF and a specific angular momentum. In the present
section, we analytically calculate energetic quantities and
show that the system dynamics is highly related to the
system energetics. Using this relation, it is possible to
infer the behavior of energetic quantities through acces-
sible variables in an underdamped regime. In models with
multiple heat baths, such as a Brownian gyrator, estima-
tions of the energetic quantities using the stochastic area
tensor [52] and the cycling frequency [46] have been re-
ported, but they are restricted to the overdamped regime.
Therefore, we extend the previous studies to the under-
damped regime and additionally calculate the fluctua-
tions of the energetic quantities in this section.

To calculate the mean current of the absorbed heat,
let d̄Qi denote the absorbed heat from the environment
along xi over time interval dt. Then the absorbed heat is
written as

d̄Qi = (−γvi(t) + ξi(t)) ◦ dxi(t), (26)

where dxi(t) is the evolution of xi(t) over dt and ◦ denotes
the Stratonovich product [60]. Using the Langevin equa-
tion with finite inertia [Eq. (7)], d̄Qi can be expressed in
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(a)

(b)

FIG. 6. (a) Mean heat current 〈Q̇1〉ss as a function of u.

〈Q̇1〉ss is plotted for m = 0–10 with T1 = 5. The solid gray
lines darken as m increases. (b) Fluctuation of heat DQ as a
function of u. DQ is drawn with T1 = 2, 4, 6, and 8 from blue
(lower) to red (upper) with m = 5. Solid and dashed lines
represent the inertial and overdamped models, respectively.
The other parameters are fixed as T2 = 1, k = 3/2, and
γ = 1.

different ways such as d̄Qi = (mv̇i(t) +∇xiU(x))◦dxi(t).
Thus, we obtain the absorbed heat d̄Qi as follows [61]:

d̄Q1 = d

(
1

2
mv21 +

1

2
kx21 +

1

2
ux1x2

)
− u

2
(x1v2 − x2v1) dt,

d̄Q2 = d

(
1

2
mv22 +

1

2
kx22 +

1

2
ux1x2

)
+
u

2
(x1v2 − x2v1) dt.

(27)

Since the change of internal energy defined as dE = d̄Q1+
d̄Q2 = d

(
mv2/2 + U(x)

)
cannot affect the steady-state

average, the mean heat currents in the steady state are
given by

〈Q̇2〉ss =
u

2
〈x1v2 − x2v1〉ss

=
u

2
〈jθ〉ss =

γu2(T2 − T1)

2(kγ2 + u2m)
,

(28)

where 〈Q̇2〉ss = −〈Q̇1〉ss, which reflects the energy con-
servation law; more specifically, the energy absorbed from
the hot bath is equally dissipated to the cold bath. In our
system, 〈Q̇1〉ss is positive due to T1 > T2. Additionally,
the exchanged heat between the two heat baths is pro-
portional to 〈jθ〉ss and vanishes at u = 0. These tenden-
cies imply that an anisotropic potential connects the two
different heat baths and converts the rotational motion
of the particle to heat that is exchanged between the

baths. This exchanged heat increases the total entropy
production, which is defined by the sum of the system
and medium entropy productions. The total production
rate in the steady state 〈Ṡ〉ss is obtained by

〈Ṡ〉ss = −〈Q̇1〉ss
T1

− 〈Q̇2〉ss
T2

=

(
1

T1
− 1

T2

)
u

2
〈jθ〉ss =

γu2(T2 − T1)2

2T1T2 (kγ2 + u2m)
.

(29)
Because the system entropy production rate vanishes in
steady state, 〈Ṡ〉ss coincides with the medium entropy

production rate, 〈Ṡm〉ss. Total entropy production can
be used to quantify the violation of detailed balance and
has a positive value in a NESS. Here, 〈Ṡ〉ss ≥ 0 and
the equality is satisfied when u = 0 or T1 = T2, that
is the condition for the NESS of our system. As shown
in Eqs. (28) and (29), 〈Q̇i〉ss and 〈Ṡ〉ss are proportional
to 〈jθ〉ss. Note that we only need the variances of the
positional trajectory of the particle to measure 〈jθ〉ss.
Therefore, the system energetics can be easily obtained
from only the positional trajectories without observing
the velocity fields.

Next, let us evaluate the fluctuations of the energetic
quantities, which is necessary to understand the stochas-
tic properties of the energetics or to design a reliable heat
engine. Fluctuation of absorbed heat DQi is defined as

DQ = DQ1
= DQ2

= lim
t→∞

t

2

(
〈Q̇1(2)(t)

2〉 − 〈Q̇1(2)(t)〉2
)
.

(30)
As indicated in the equation, DQ1

and DQ2
are the same

since the absorbed heats are symmetrically coupled by u.
The relation between DQ and Dθ can be obtained as

DQ =
u2

4
Dθ. (31)

The detailed calculation is written in Appendix C. In the
same way, fluctuation of the medium entropy production
DSm is given by

DSm =

(
1

T1
− 1

T2

)2
u2

4
Dθ. (32)

Thus, DQ and DSm are also proportional to Dθ, similar
to the result with the mean currents.

According to Eqs. (28), (29), (31), and (32), we know
that the mean current and the fluctuations of heat and
medium entropy production have the same curves as
〈jθ〉ss and Dθ as a function of m: 〈Q̇1〉ss and 〈Ṡ〉ss be-
come smaller with increasing m, and DQ and DSm are
maximized at m∗ and exceed the overdamped ones in
region II as depicted in Fig. 4(d). Despite these similari-
ties not only with m but also other parameters, only the
dependence on u differs, as shown in Fig. 6(a) and (b).

〈Q̇1〉ss and DQ are not typically maximized at moderate
u, while their magnitudes increase with u in contrast to
Dθ. Nonetheless, some important features still remain.
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First, |〈Q̇1〉ss| is sufficiently smaller than the value from
m = 0, ∂DQ/∂u decreases as u increases, and most inter-
estingly, DQ exceeds the fluctuation of the overdamped
model at the same condition as Dθ, which is χ > χc.

Although we do not consider external force in this pa-
per to simplify the situation, we can extend our result
to a system with applied external force. To extract work
from the Brownian gyrator, we must exert an external
force in the opposite direction of the rotation of the par-
ticle. When we choose a linear non-conservative force
Fext(x(t)) = K(x2,−x1)T with a constant K [21, 22, 62],

the work current Ẇ (t) is written as

Ẇ (t) ≡ Fext(x(t)) · ν(t) = −Kjθ(t). (33)

Thus, investigating jθ(t) is equivalent to investigating the
applied work current.

V. CONCLUSIONS

In our work, we have examined how Langevin dynam-
ics describes the rotating particle of the Brownian gyra-
tor by explicitly considering the inertia of the particle,
in contrast to its description with Brownian dynamics.
Several NESS features of the Brownian gyrator (such as
a tilted PDF, rotational motion, and entropy production
by the heat current between the two heat baths) distin-
guish the inertial model from the overdamped model, i.e.
Langevin dynamics from Brownian dynamics.

From the analytic solution of the Fokker–Planck equa-
tion and the simulation of each model, we have shown
that the inertia plays an important role in resisting
the breakdown of the detailed balance and reducing
the nonequilibrium effects. For instance, in the inertial
model, the distortion and tilt of the positional PDF de-
crease and vanish with increasing mass, starting from the
case of the overdamped model. The mean of specific an-
gular momentum jθ, selected as the measure of the rota-
tional motion and proportional to the systematic torque,
also shows similar behavior.

The most salient feature of our Langevin dynamics de-
scription is the non-monotonic behavior of the measure
for the rotational motion, which cannot be found through
Brownian dynamics. In the inertial model, the mean of
jθ has a non-monotonic behavior along u. This is because
the anisotropy u initiates the rotational motion while the
averaged moment of inertia, increasing with u, has a con-
trary role in resisting the rotational motion. Next, the
fluctuation of jθ has non-monotonic behaviors along u
and m. Intriguingly, we have found that the fluctuation of
jθ with inertia is larger than the value of the overdamped
model in some specific conditions. These non-monotonic
behaviors of the rotation-related quantity appear only in
the inertial model. It will be interesting work, therefore,
to check whether other nonequilibrium systems have sim-
ilar non-monotonic features or not.

Considering this intrinsic difference between the two
descriptions, i.e. inertial and overdamped models, even

in a long time limit, it is necessary to choose Langevin
dynamics rather than Brownian dynamics except under
the special condition of negligible mass compared to fric-
tion. Brownian dynamics may be inadequate to study
the Brownian gyrator in experiment, where the particle
is not so tiny that it is controllable and observable.

For the successful experimental observation of the in-
ertial effects including the non-monotonic behaviors, the
two terms of the denominator of Eq. (12) should be com-
parable so that u2m/kγ2 is on the order of ∼ O(1). Con-
sidering recent experimental achievements [50, 63, 64],
this condition is actually difficult to attain in a typical
liquid environment due to high viscosity. Instead, one
may realize this condition in a low-density environment.
For instance, the condition is satisfied if we consider an
optically trapped particle in a gas with optical trapping
stiffness k ∼ 1pN/µm [50], viscosity η ∼ 1-10µPa · s
(γ ∼ 10−8–10−7g/s) [64], and the mass of the particle
in the range from 10−13g to 10−11g, comparable to a
polystyrene or silica particle with a diameter of 1 µm.
Then we could see the interesting non-monotonic behav-
iors by adjusting the anisotropy u (with the same order as
k) and the mass m in the possible range via optical tweez-
ers. For related experiments in a liquid environment, it
will be necessary to strengthen the optical trapping stiff-
ness k or u, which might be challenging.

Finally, we have clarified how the system energetics is
associated with the system dynamics in the underdamped
regime. We have shown that the mean current and fluc-
tuation of heat currents and entropy production could be
inferred using the dynamic characteristics of the system.
For example, by observing the tilted angle of the posi-
tional PDF or the rotational motion of the particle, it is
possible to infer how much energy is exchanged or how
much total entropy production increases.

We expect our results to be helpful in studying the
dynamic properties of various systems with motion influ-
enced by inertia, such as insects, microflyers, and other
mesoscale organisms [32]. Moreover, our results will pro-
vide practical ways to investigate various biological sys-
tems from an energetic perspective or to quantify the vi-
olation of detailed balance. In many experimental cases,
detailed information is frequently unknown, and it is dif-
ficult to estimate the energetics directly. The dynamic
characteristics can be adequate measures in such systems
for estimating the energetics or inferring their behaviors,
as also claimed in Refs. [46, 52]. Particularly, jθ will be
a useful tool for measuring the energetics of tractable
nonequilibrium systems because jθ is directly associated
with them and can be evaluated using experimentally
accessible quantities and positional trajectories.

As future work, various models in NESS such as the
N bead-spring model or self-propelled particles can be
considered to study the inertial effects and the relation
between the dynamics and the energetics of the system.
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Appendix A: Steady-state probability density

To obtain the steady-state PDF p(x,v), let z ≡
(x1, x2, v1, v2)T be a state vector. Then we can rewrite
Eq. (7) as

ż(t) = −F · z(t) + η(t), (A1)

where F =
(

0 −I
−A/m Γ/m

)
, 0 (I) is a 2 x 2 null (identity) ma-

trix, and A and Γ are drift and friction matrices, respec-

tively. η is a Gaussian white noise satisfying 〈ηi(t)〉 = 0
and 〈η(t) · η(t′)T 〉 = 2δ(t− t′)Dz where Dz = ( 0 0

0 D ) and
D is a diffusion matrix. In our system, A ≡ −

(
k u
u k

)
, and

Γ ≡
( γ 0
0 γ

)
and D ≡ γ

m2

(
T1 0
0 T2

)
as mentioned in Sec. III.

Since our system assumes an Ornstein–Uhlenbeck pro-
cess, the steady-state PDF takes a Gaussian form as
p(z) ∝ exp [−(1/2)zT · C−1 · z] where C is the covariance
matrix of the state vector z in the steady state defined
as 〈zzT 〉ss. The covariance matrix C is given by

C = F−1(Dz + Q), (A2)

where Q is an antisymmetric 4 x 4 matrix that can be
uniquely determined by

FQ + QFT = FDz − DzFT . (A3)

Here, Q is non-zero in the NESS, which implies the vio-
lation of the detailed balance [65, 66]. Solving Eq. (A3)
and inserting the result into Eq. (A2), we obtain

C =


2k2γ2T1+u2(km(T1+T2)+γ2(T2−T1))

2(k2−u2)(kγ2+u2m)
−u(T1+T2)

2(k2−u2)
0 − uγ(T1−T2)

2(kγ2+u2m)

−u(T1+T2)

2(k2−u2)

2k2γ2T2+u2(km(T1+T2)+γ2(T1−T2))

2(k2−u2)(kγ2+u2m)

uγ(T1−T2)

2(kγ2+u2m)
0

0
uγ(T1−T2)

2(kγ2+u2m)

2kγ2T1+u2m(T1+T2)

2m(kγ2+u2m)
0

− uγ(T1−T2)

2(kγ2+u2m)
0 0

2kγ2T2+u2m(T1+T2)

2m(kγ2+u2m)

 . (A4)

For the existence of a steady state, F should be positive-
definite. This condition provides the existence condition
for steady state u2 < k2. Otherwise, the particle diverges
from the potential.

Appendix B: Relation between the systematic
torque and the specific angular momentum

Here we derive the relation between the systematic
torque and jθ(t) in Eq. (11) in the underdamped regime.
The systematic torque M that the particle exerts on the
potential U(x) can be expressed as

M ≡ 〈x×∇xU(x)〉ss

=

∫
dx

∫
dv 〈x×∇xU(x)|x,v〉ssp(x,v)

= −
∫
dx x× A · xp(x),

(B1)

where x × A · x = x1(A · x)2 − x2(A · x)1. Solving the
Lyapunov equation FC + CFT = 2Dz, we can obtain the
following equations:

CTxv + Cxv = 0, (B2)

Cvv +
1

m
ACxx −

1

m
ΓCTxv = 0, (B3)

and

1

m

(
ACxv + CTxvA

)
=

1

m
(ΓCvv + CvvΓ)− 2D, (B4)

where the covariance matrix C is denoted by

C ≡
(

Cxx Cxv

CTxv Cvv

)
. (B5)

Using Eqs. (B2) and (B3), we can express the drift matrix
A by the covariance matrix, that is,

A = −mCvvC−1xx + γCTxvC−1xx. (B6)

Inserting Eq. (B6) into Eq. (B1), the systematic torque
is written as

M = −γ
∫
dx x× CTxvC−1xx · xp(x)

+m

∫
dx x× CvvC−1xx · xp(x).

(B7)

The first term on the right-hand side can be rearranged
into a function of 〈jθ〉ss as follows:

− γ
∫
dx x× CTxvC−1xx · xp(x)

= −γ
∫
dx x× 〈v|x〉p(x) = −γ〈jθ〉ss.

(B8)
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In the second row of Eq. (B8), we use the local averaged
velocity 〈v|x〉 = CTxvC−1x·x ·x [67]. To evaluate the second
term on the right-hand side of Eq. (B7), let us consider a
linear transformation x′ = B·x where B is a non-singular
matrix. Then, the covariance matrix in the transformed
coordinates C′xx can be given by C′xx = BCxxBT [68]. If
we consider the specific coordinates that satisfy C′xx =
I, the second term on the right-hand side of Eq. (B7)
vanishes:∫

dx x× CvvC−1xx · xp(x)

=

∫
dx

(
−x2 x1

)
CvvC−1xx

(
x1
x2

)
p(x)

=
1

det B

∫
dx′ (−x′2 x′1

)
C′vv

(
x′1
x′2

)
p(x′) = 0,

(B9)

since C′vv is a symmetric matrix. Consequently, we ob-
tain the relation as

M = −γ〈jθ〉ss. (B10)

It is also possible to calculate the cycling frequency by
using the relation in the same way as in Ref. [46, 47]. We
can express the conditional average 〈v|x〉 in another way
as 〈v|x〉 = Ω·x, where Ω is a matrix of frequencies defined
as Ω ≡ CTxvC−1xx [68]. In the transformed coordinates, the
matrix of frequencies is given by

Ω′ =

(
0 −α
α 0

)
, (B11)

since Ω′ is skew-symmetric. Thus, the eigenvalues of Ω
can be obtained by λ = ±iα where α is a real number.
Then, 〈jθ〉ss can be calculated as

〈jθ〉ss =

∫
dx x× Ω · xp(x)

=
1

det B

∫
dx′ x′ × Ω′ · x′p(x)

=
α

det B
〈x′21 + x′

2
2〉ss = 2

α

det B
.

(B12)

Using the fact that α is equal to the cycling frequency
〈ω〉ss defined as ω(t) = (x(t) × v(t))/r(t)2 [47], the cy-
cling frequency can be calculated as

〈ω〉ss =
〈jθ〉ss

2
√

det Cxx

=
γu(T2 − T1)

√
k2 − u2√

(u2m+ kγ2)
2

(T1 + T2)2 − γ4(k2 − u2)(T1 − T2)2
.

(B13)

Here, we used det B =
√

det C′xx/ det Cxx to derive
Eq. (B13). As illustrated in Fig. 7, the magnitude of 〈ω〉ss
decreases with m and the peak of 〈ω〉ss is shifted to lower
u as m increases because Iθ becomes larger as m and u
increase.

0 0.5 1.0 1.5

u

0

0.3

0.6

|〈ω
〉 ss

|

m =0

m =1

m =5

m =10

FIG. 7. Magnitude of averaged cycling frequency 〈ω〉ss as a
function of u. |〈ω〉ss| is plotted for m = 0, 1, 5, and 10. The
other parameters are T1 = 5, T2 = 1, k = 3/2, and γ = 1.

Appendix C: Mean and fluctuation of energetic
quantities

In this section, we present how to calculate the fluc-
tuations of jθ, absorbed heat, and medium entropy pro-
duction using the scaled cumulant generating function
(SCGF). We follow the same procedure as in Refs. [21,

22, 69]. Because the work current Ẇ (t) is proportional
to jθ(t), we calculate the mean current and fluctuation
of work instead of calculating the values of jθ(t) directly.

When we apply an external force defined by
Fext(x(t)) = K(x2,−x1)T , the extracted work, absorbed
heat, and medium entropy production over time τ are
given by

W (τ) =

∫ τ

0

W · z(t) ◦ dz(t),

Q1(2)(τ) =

∫ τ

0

Q1(2) · z(t) ◦ dz(t),

(C1)

and

Sm(τ) = −
∫ τ

0

(
Q1

T1
+

Q2

T2

)
· z(t) ◦ dz(t) (C2)

where the matrices W and Q1(2) are defined as

W =

 0 K 0 0
−K 0 0 0

0 0 0 0
0 0 0 0

 , (C3)

Q1 =

k u−K 0 0
0 0 0 0
0 0 m 0
0 0 0 0

 , (C4)

and

Q2 =

 0 0 0 0
u+K k 0 0

0 0 0 0
0 0 0 m

 . (C5)
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They are dynamical observables due to the dependence
on the trajectory over time τ . Thus, the SCGF of work
is written as

λ(h) = lim
τ→∞

1

τ
ln 〈exp (hW (τ))〉

= 〈Ẇ 〉ssh+DWh
2 +O(h3),

(C6)

with a real valued h. Here, the mean current and fluctua-
tion of work are denoted as 〈Ẇ 〉ss and DW , respectively.
It is known that λ(h) is the largest eigenvalue of the tilted
operator given by

L† = −zT · FT · (∇z + hW · z)

+ (∇z + hW · z)
T · Dz · (∇z + hW · z) ,

(C7)

with ∇z ≡ ∂/∂z. Equation (C6) can be derived from the
fact that the quantity 〈exp (hW (t))〉 has a semi-group
property and is governed by tilted operator [Eq. (C7)].
This is the so-called Feynman–Kac formula [69]. Assum-
ing that the left eigenfunction g(z, h) of λ(h) is Gaussian
as g(z, h) = exp

(
−(1/2)zT · G(h) · z

)
with a symmetric

matrix G(h), the SCGF can be expressed as

λ(h) = (L†(h)g(z, h))/g(z, h)

= tr {Dz[hW − G]}+ zT · FT (G− hW) · z
+ zT · (hW − G)TDz(hW − G) · z.

(C8)

Comparing the coefficients, we can obtain

λ(h) = tr {Dz[hW − G(h)]}, (C9)

and

FT (hW − G) + (hW − G)TF = 2(hW − G)TDz(hW − G).
(C10)

To solve Eq. (C10), we expand G(h) near h = 0 as

G(h) = G1h+ G2h
2 +O(h3). (C11)

Here, the constant term of G(h) is zero since λ(h) = 0
with g(z, h) = 1 [69]. Inserting Eq. (C11) into Eq. (C10)
and comparing the coefficients of h and h2, the mean
current and fluctuation of work are obtained by

〈Ẇ 〉ss = tr {Dz(W − G1)} = tr {FCWa}, (C12)

and

DW = − tr {DzG2} = tr {FCWaC(WT − G1)}, (C13)

where Wa =
(
W −WT

)
/2 is a skew-symmetric matrix.

We used the Lyapunov equation FC + CFT = 2Dz to
derive Eqs. (C12) and (C13).

Since the work done by the external force Fext is pro-
portional to jθ(t), we can calculate the mean and fluctu-
ation of jθ(t) as

〈jθ〉ss ≡ lim
K→0

−〈Ẇ 〉ss
K

, Dθ = lim
K→0

DW

K2
. (C14)

In the same way, the mean current and fluctuation of the
absorbed heat and medium entropy production can also
be obtained by using the matrix defined in Eqs. (C4) and
(C5).
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T. S. Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl,
E. Shen, et al., Information transfer and behavioural in-
ertia in starling flocks, Nat. Phys. 10, 691 (2014).

[28] Y. Katz, K. Tunstrøm, C. C. Ioannou, C. Huepe, and
I. D. Couzin, Inferring the structure and dynamics of in-
teractions in schooling fish, Proc. Natl. Acad. Sci. U.S.A.
108, 18720 (2011).

[29] L. Giomi, N. Hawley-Weld, and L. Mahadevan, Swarm-
ing, swirling and stasis in sequestered bristle-bots, Proc.
R. Soc. A. 469, 20120637 (2013).

[30] D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen, and
H. Flyvbjerg, Cell motility as persistent random motion:
theories from experiments, Biophys. J. 89, 912 (2005).

[31] J. Rabault, R. A. Fauli, and A. Carlson, Curving to fly:
Synthetic adaptation unveils optimal flight performance
of whirling fruits, Phys. Rev. Lett. 122, 024501 (2019).

[32] D. Klotsa, As above, so below, and also in between:
mesoscale active matter in fluids, Soft matter 15, 8946
(2019).

[33] R. Benjamin and R. Kawai, Inertial effects in büttiker-
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