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We propose the construction of thermodynamic ensembles that minimize the Rényi free energy,
as an alternative to Gibbs states. For large systems, the local properties of these Rényi ensembles
coincide with those of thermal equilibrium, and they can be used as approximations to thermal
states. We provide algorithms to find tensor network approximations to the 2-Rényi ensemble. In
particular, a matrix-product-state representation can be found by using gradient-based optimization
on Riemannian manifolds, or via a non-linear evolution which yields the desired state as a fixed
point. We analyze the performance of the algorithms and the properties of the ensembles on one-
dimensional spin chains.

I. INTRODUCTION

From the point of view of thermodynamics, thermal
states describe the equilibrium properties of a system.
Given a Hamiltonian H, the Gibbs state

ρG =
1

ZG
e−βH , ZG = Tr e−βH (1)

describes the state of the system at a given temperature
1/β. On the other hand, thermal states arise from the
principle of maximum entropy [1, 2]: for a given energy,
the thermal ensemble is the one that maximizes the von
Neumann entropy SG(ρ) = −Tr(ρ log ρ). Equivalently,
this can be formulated as the minimization of the free
energy

FG(ρ) = Tr(Hρ)− 1

β
SG(ρ), (2)

so that

ρG(β) = arg min
ρ�0

Tr ρ=1

FG(ρ), (3)

for some fixed value of β. To keep the notation light,
we do not explicitly write the dependence of ρG on this
parameter. One should keep in mind that the minimum
is taken with respect to density operators, i.e. positive-
semidefinite operators ρ � 0 with a chosen normalization,
typically Tr(ρ) = 1. This optimization is not very conve-
nient in practice, since the entropy SG is often difficult
to compute, as it requires information about the entire
spectrum of ρ. In a quantum many-body setting, this
would require diagonalizing an exponentially large oper-
ator, because of the inherent tensor product structure of
the Hilbert space.

In the quantum many-body setting, numerical ap-
proaches to thermal equilibrium do not try to explicitly
solve the optimization above, but resort to different ap-
proaches to approximate Eqs. (1). Monte Carlo meth-
ods use sampling to estimate very efficiently the physical
properties from Eqs.(1), but they encounter difficulties in
scenarios where a sign problem appears, as can happen

for fermionic models or frustrated systems. A different
approach is based on tensor networks (TNs), where the
total state corresponds to the contraction of low-rank
tensors and allows for a local description of the physics.
This is motivated by the fact that thermal states for a
local Hamiltonian obey an area law for the mutual in-
formation [3, 4], and hence there is strong theoretical
evidence that a tensor network description should be ef-
ficient at approximating thermal states [4–8].

In practice, TNs are extremely successful for studying
thermal equilibrium. In one spatial dimension, matrix
product states (MPSs) can be used to construct a repre-
sentation of the (mixed) Gibbs state [9–13] or, combined
with sampling, to construct minimally-entangled thermal
states [14, 15]. Alternatively, the partition function can
be represented as a two-dimensional TN, and its contrac-
tion can be approximated using tensor renormalization
group approaches, for instance, as originally proposed in
Refs. [16–18]. The algorithms can also be generalized for
two-dimensional systems [19–21].

In this paper, we study alternative thermodynamic en-
sembles that, instead of the von Neumann entropy, max-
imize the α-Rényi entropy [22],

Sα(ρ) =
1

1− α log Tr ρα (4)

at a fixed energy. In the limit α → 1, Sα reduces to the
von Neumann entropy. By replacing the von Neumann
entropy in Eq. (2) by a Rényi entropy, we define the Rényi
free energy:

F
α

(ρ) = Tr(Hρ)− 1

βα
Sα(ρ). (5)

We would like to stress that, in general, the extremizer ρα
of this function is not the thermal ensemble. However, as
we will show in Sec. II, this ensemble nonetheless repro-
duces all local expectation values in the thermodynamic
limit. The parameter βα is not, in general, related to
the conventional inverse temperature β, but should be
treated as a constant for the optimization.

From a TN perspective, the definition in Eq. (5) of-
fers the possibility of directly performing a minimiza-
tion, since the Rényi entropies in Eq. (4) are efficiently
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computable—at least for small integer values of α. In
this paper, we analyze the properties of such ensembles,
in particular, how they approximate the thermal prop-
erties, and present several variational algorithms which
can be used to compute them.

For practical purposes, we will often consider the most
convenient case α = 2, for which Eq. (5) becomes

ρR := arg min
ρ�0

FR, FR(ρ) = Tr(Hρ) +
1

βR
log Tr ρ2,

(6)
where the subscript R represents α = 2. In other words,
optimizing Eq. (6) is equivalent to finding the most
mixed state at a chosen energy. In applied mathemat-
ics, the optimization of such a function is known as a
non-linear semi-definite programming and can be tack-
led with interior-point methods. However, in many-body
quantum physics, the dimension of ρ increases exponen-
tially with the system size, making such approaches im-
practical for large systems.

This paper is organized as follows. In Sec. II, we pro-
vide an analytical solution to Eqs. (6), expressed in the
eigenbasis of the Hamiltonian. Since the eigenbasis of a
many-body system is not always accessible, we propose
an optimization strategy based on uniform MPSs, to ap-
proximate the purification of ρR directly in the thermo-
dynamic limit. This non-linear optimization can be accel-
erated using state-of-the-art techniques [23] by restricting
it to the Grassmann manifold. This is discussed in detail
in Sec. III A, and accompanying numerical experiments
to benchmark the algorithm are presented. Moreover, we
present an alternative technique, based on a non-linear
evolution of the density operator in Sec. III B, which flows
toward the desired ensemble. To conclude, we discuss
possible developments in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Maximal Rényi ensemble

We now show the analytical form of the extremizer of
Eq. (5), which has been previously derived for classical
distributions [24–26]. We can use this result in the quan-
tum case, noticing that the state that minimizes Eq. (5)
must be diagonal in the energy eigenbasis {|Ek〉} and
thus its eigenvalues are equivalent to a probability distri-
bution.

To find the coefficients {pk} in the density operator
ρ =

∑
k pk |Ek〉 〈Ek|, ρ � 0 which maximizes the Rényi

entropy Eq. (4) under the constraints Tr ρ = 1 and
Tr(Hρ) = Ē, we introduce the Lagrange multipliers βα

and γα. The functional L is then

L(ρ) =
1

1− α log
∑
k

pαk

− γα
(∑

k

pk − 1

)
− βα

(∑
k

Ekpk − Ē
)
. (7)

At the stationary point, the parameter γα can be elim-
inated [24], and we obtain the maximal Rényi ensemble
(MRE)

ρα =
1

Zα
ΠE⊥

(
1− βα

α− 1

α
(H − Ē)

) 1
α−1

ΠE⊥ , (8)

where Zα is a normalization factor and ΠE⊥ is a pro-
jector onto the eigenvalues below a cutoff energy E⊥ :=

α
β(α−1) + Ē [27]:

ΠE⊥ = Θ(E⊥ −H),

Zα = Tr

[
ΠE⊥

(
1− βα

α− 1

α
(H − Ē)

) 1
α−1

]
, (9)

where Θ(·) is the Heaviside function.

Figure 1. (a) Distribution p(E) of the maximal Rényi and
Gibbs ensembles for different values of α for the Ising model
in Eq. (21), with longitudinal and transverse fields, respec-
tively, hx = 0.5 and hz = −1.05 and system size N = 10
(PBC). The mean energy Ē is fixed at −1/4 of the width of
the spectrum. (b) The same distributions weighted with the
corresponding density of states D(E), from the approxima-
tion in Ref. [28]. Below, the von Neumann (c) and 2-Rényi
(d) entropies for the canonical (solid line) and 2-Rényi (dashed
line) ensembles are compared at a given mean energy density,
for the same system size and Hamiltonian. In both cases,
the asymptotic behaviors limβ→0 SG = limβR→0 SR = N log 2
and limβ→±∞ SG = limβR→±∞ SR = 0 are recovered. The
branch with negative (positive) mean energy density corre-
sponds to a β > 0 (β < 0), corresponding to a solution with a
projector onto energies below (above) the cutoff energy E⊥.
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To illustrate the behavior of Eq. 8, we show in Fig. 1
some characteristics of the different ensembles in a par-
ticular finite case. In Figs. 1(a) and 1(b), we show the
distribution of ρ relative to the eigenbasis. The MRE has
a distinctive cutoff energy, beyond which the distribution
is zero and therefore fairly different from the case of the
canonical ensemble. However, in a many-body system,
we have to consider that the density of states is not uni-
form but becomes increasingly peaked in the middle of
the spectrum. Then the distributions, weighted by the
density of states, become much more similar, as seen in
Fig. 1(b).

Another way of visualizing the relation between the
canonical and the Rényi ensembles is to compare their
entropies for the same mean energy Ē. In Figs. 1(a) and
1(b), we explicitly show the comparison of von Neumann
and 2-Rényi entropies for the ensembles that maximize
each of them over the whole energy range for a small
system size. While the behavior is qualitatively similar,
both ensembles only coincide in the limiting cases Ē = 0,
when the state is maximally mixed (corresponding to the
Gibbs ensemble at infinite temperature β = 0) and Ē =
Emin (Emax), when the ensemble reduces to the ground
(maximally excited) state, corresponding to β → +∞
(−∞).

Figure 2. (a), (b) Von Neumann and 2-Rényi entropies
of ρR as a function of mean energy density, for the (classi-
cal) Ising model with hx = 1/2, hz = 0. Since there is no
visible difference in the curves for ρG, only the largest size
(N = 500) is shown. Oscillations at finite size are due to
the fact that the eigenvalues correspond to only a number of
discrete energies. The von Neumann entropy density of the
Rényi ensemble approaches that of the Gibbs ensemble, as the
system size increases. The two ensembles, however, exhibit a
difference at intermediate values of the energy density when
comparing their 2-Rényi entropy. (c) Comparison of β and
βR as a function of the mean energy density for the largest
size. The correspondence is discussed further in Sec. III A 1.

To study the behavior at large system sizes, we chose
to study an exactly solvable case, the results of which are
in Fig. 2. For this Hamiltonian, the density of states be-
comes Gaussian and the arguments in Appendix A hold.
While we expect that local observables for both ensem-
bles coincide as the system size increases, the same does
not need to hold for non-local quantities, such as the en-
tropies. It is interesting to notice that the Rényi ensemble

has a von Neumann entropy which approaches the Gibbs
state, and hence will have a free energy—see Eq. (2)—
which increasingly approaches its maximal value. How-
ever, the same cannot be said for the Rényi free energy
introduced in Eq. (5).

B. Equivalence of local observables

We now consider a one-dimensional quantum system
described by a local Hamiltonian H, an operator in the
complex Hilbert space H. This total Hilbert space is
formed by the tensor product of N local Hilbert spaces:

H =

N⊗
n=1

Hn . (10)

The Hamiltonian is restricted to be ` local, i.e. it can
then be written in the form

H =

N∑
n=1

hn, (11)

where each hn acts non-trivially only on sites n, . . . , n+
`−1, and has finite operator norm. Additionally, we will
assume that almost all local terms satisfy ‖hn‖op > 0,
such that the spectrum of H is extensive. We mostly
consider infinitely large systems, but, when considering
finite systems, we specify either open boundary condi-
tions (OBC) or periodic boundary conditions (PBC).

In this setting, it is straightforward to see that the
density of states

D(E) = δ(H − E) (12)

has a variance which scales as O(
√
N). For specific mod-

els, such as strictly one-local Hamiltonians, it can be
shown that D(E) becomes Gaussian in the thermody-
namic limit. Under the assumption of a Gaussian density
of states, we can then compute the variance of the energy
when we take into account the energy distribution of the
ensemble. In the case of the 2-Rényi entropy, it turns
out that this can be computed exactly. As described
in Appendix A, in both cases the variances 〈(∆H)

2〉G
and 〈(∆H)

2〉R scale as O(N). Hence, if we think about
the normalized energy spectrum, both distributions will
be increasingly peaked around the same Ē = 〈H〉 with a

standard deviation O(1/
√
N) for large N . Hence, the ex-

pectation values of local observables become equivalent
in the thermodynamic limit. This derives from the cor-
respondence between microcanonical and canonical en-
sembles [29]. While there exist counterexamples to this
correspondence, a sufficient condition for it to hold is
that the energy per site converges to a constant [30, 31].
Note that while this argument has been carried out for
a Gaussian density of states, we believe that it can be
extended to the general case as long as the Hamiltonian
is local.
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As a final note, we wish to remark that, at least in the
case of α = 2, we find a correspondence βR → β which
holds in the thermodynamic limit. This holds asymp-
totically for large βR and the range of validity of this
approximation increases with system size. Hence, the βR
for which the Rényi ensemble has the same energy den-
sity Ē as a Gibbs ensemble turns out to be the same as
the inverse temperature β. This can be shown in the
case of a Gaussian density of states (see Appendix A),
and is observed numerically in both integrable and non-
integrable models (see Sec. III A). This is somewhat sur-
prising, since a priori there is no connection between the
parameters describing the two different ensembles. From
a practical point of view, however, this correspondence is
convenient to approximate a thermal ensemble, since we
may as well take βR to be the inverse temperature.

III. VARIATIONAL ALGORITHMS FOR
APPROXIMATING THE RÉNYI ENSEMBLE

In this section, we introduce two different possibili-
ties to numerically obtain the Rényi ensemble in Eq. (8).
Although we have a closed form for the exact solution,
its use in a many-body setting is impractical because it
would require knowledge of the full energy eigenbasis or
of the projector in Eq. (8). This motivates the formu-
lation of methods compatible with TN techniques. In
Sec. III A, we explore how uniform MPSs can be used
to form a purification which represents the density ma-
trix, and its individual tensors can be optimized directly
by using techniques from Riemannian optimization. In
Sec. III B, instead, we propose a non-linear evolution
which has Eq. (8) as a fixed point, so any arbitrary state
can be brought to the desired one by simulating this evo-
lution for a sufficient amount of time.

A. Minimization on the MPS manifold

The optimization problem in Eqs. (6) can be restricted
to the manifold of states described by some class of tensor
networks. In particular matrix product states (MPS) are
arguably the most effective ansatz to represent ground
states of local, gapped Hamiltonians in one dimension [5,
32–34]. We consider a uniform MPS, which written in
the conventional diagrammatic notation, is

|Ψ(A)〉 = A

sn−2

A

sn−1

A

sn

A

sn+1

A

sn+2

=
∑
~s

Tr (. . . Asn−1AsnAsn+1 . . . ) |~s〉 . (13)

Hence, given a local basis {~s} = {s1, . . . , sN}s=1,...,d,
each A is a rank-3 tensor with a physical index of di-
mension d and two virtual indices contracted with the
neighboring tensors, each with dimension D [35–37]. In

this section, we focus on uniform MPS for simplicity, but
the method can be applied to finite MPSs as well.

A natural generalization of MPS for quantum-
mechanical operators is a matrix product operator
(MPO) [9, 10, 38], which is composed of rank-4 tensors
contracted sequentially,

O = . (14)

The issue with this construction is that it is hard to en-
sure positivity (if the tensors are over the field C or R),
which is a necessary and physical property for objects
like density operators. The problem is that positivity is
a global property, which cannot be captured in the lo-
cal tensors [39–41]. Although an MPO ansatz has been
used successfully to approximate the stationary points of
dissipative dynamics [42, 43], it is problematic for a vari-
ational method since there is no way to vary the local
tensors without compromising positivity.

An alternative is to introduce a locally purified state [9,
39, 44], which guarantees the positivity of the operator
for any local tensor. The construction goes as follows.
One considers a pure state, where each site has twice the
degrees of freedom, which we call system and ancilla, so
the local tensor is

A = A

sys anc

. (15)

By tracing out the ancillary degrees of freedom, we obtain
a ladder-like TN, which represents the density matrix
ρ = Tranc |Ψ〉 〈Ψ|, or, graphically:

ρ = . (16)

Shaded boxes represent complex conjugation. It is sim-
ple to see that this TN is positive semidefinite by con-
struction. The price to pay is that we have introduced
a non-linearity in ρ with respect to the local tensors As,
so even if the objective function is quadratic in ρ, as in
Eqs. (6), it will be quartic in the local tensors. Hence we
cannot use linear algebra to iteratively optimize the local
tensors, as in the case of the density matrix renormaliza-
tion group (DMRG) [36]. Nonetheless, we can consider
the problem in Eq. (6) a non-linear optimization over the
tensors of an MPS.

The parametrization of the state in Eq. (13) has an in-
herent redundancy, since we can perform a gauge trans-
formation on the virtual degrees of freedom of the form
As 7→ XAsX−1, for any invertible matrix X. This gauge
redundancy of the MPS parametrization allows us to
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choose the tensors to fulfill the left-gauge condition:

Ā

A

= ,

Ā

A

%=% .

(17)
For the rest of this paper, we will often not draw the
ancillary degree of freedom, but implicitly assume it is
part of the physical leg of each tensor. The tensor % is the
(positive-semidefinite) right fixed point of the transfer
matrix, which encodes the Schmidt values [36]. Hence,
we can view the tensor A as a linear map from the right
virtual leg to the left virtual and physical legs, which is
isometric. We will use W : CD 7→ Cd × CD to denote
this specific mapping. Alternatively, we can think of W
as a matrix, so we can use the notation W †W = 1 to
unambiguously specify the isometricity condition.

Hence we can restrict a generic optimization of an
MPS to the optimization of tensors over the Stiefel man-
ifold [45],

St(n, p) =
{
W ∈ Cn×p|W †W = 1

}
. (18)

In reality, since there is a unitary freedom remaining in
Eq. (17)—namely, As 7→ U†AsU—one can restrict the
manifold even further to the Grassmann manifold. The
Grassmann manifold should be understood as a quotient
manifold, namely all W satisfying the isometricity con-
dition up to a basis rotation, and it is often denoted as
Gr(n, p) = St(n, p)/U(p) [45].

To optimize a generic function f(A): Gr(Dd,D) → R
using any gradient-based optimization, we must be able
to compute the gradient with respect to the parameters in
A and project it onto the tangent space of the Grassmann
manifold. The optimization of differentiable functions
on Riemannian manifolds has been the object of exten-
sive studies in mathematics and recently these techniques
have been applied to TNs [23]. For the self-containedness
of this paper, we summarize the key ingredients of this
optimization in Appendix B.

For our application, the objective function is given by
Eqs. (6). For the uniform MPS of Eq. (13), it reduces to

fR :=
FR
N

= ε+
1

βR
log η, (19)

where ε = Tr(Hρ)/N is the energy per site and η =(
Tr ρ2

)1/N
is the purity per site. Both these terms are

computable with standard TN routines in polynomial
time, for uniform MPSs as well as finite MPSs. The
gradient of Eq. 19 with respect to A is

∂fR
∂A

=
∂ε

∂A
+

1

βRη

∂η

∂A
. (20)

As for Eq. (C1), both these quantities ∂ε/∂A and ∂η/∂A
are simple to obtain, as described in Appendix C. We

thus use this gradient information to perform the opti-
mization on the Riemannian manifold using the l-BFGS
algorithm [46, 47]. An open-source implementation of the
non-linear optimization in Julia is available online [48].

To conclude, we note that gradient methods cannot
guarantee in any way convergence toward the global mini-
mum, but only some local minimum. While Eqs. (6) have
a unique solution in the cone of the positive operators,
the same cannot be said on a uniform MPS manifold of
fixed bond dimension.

1. Numerical experiments

For our numerical experiments, we consider the Ising
model:

H = −
∑
k

(
σxkσ

x
k+1 + hzσ

z
k + hxσ

x
k

)
. (21)

When the parallel field vanishes (hx = 0), the model is
integrable, and local observables and correlations have a
closed form [49, 50]. We use this model to perform the
optimization of Eqs. (6) as described in Sec. III A. The
parameter βR is fixed to different values in the interval
βR ∈ [0, 2], and the uniform MPS is optimized until the
gradient is sufficiently small [51].

The results of the optimization are shown in Fig. 3,
where we plot some local observables such as the mag-
netization 〈σzi 〉 and next-neighbor correlation Γa,b =
〈σai σbi+1〉 − 〈σai 〉 〈σbi+1〉 as a function of the mean energy
density of the ensemble. By increasing the bond dimen-
sion, we increase the number of the free parameters, and
the numerical results converge toward the thermal ones.
Additionally, the comparison of the thermal observables
by setting βR = β is shown in Fig. 4. Up to βR . 2,
we observe that there is a correspondence between the
two ensembles at βR = β. For βR & 2, the optimization
of Eq. (19) converges to the ground space exactly, espe-
cially at small bond dimensions. To study the physics of
low temperatures, it is therefore more convenient to reex-
press the optimization problem in Eqs. (6) by introducing
a Lagrange multiplier:

ρ∗ = arg min
ρ�0

{
Tr ρ2 +

λ2

2

(
Tr(Hρ)− Ē

)2}
. (22)

The gradient (see Appendix C) can be modified accord-
ingly, and the non-linear optimization can be performed
in a similar way. This objective function gets rid of the
dependence on βR, and one can directly choose an energy
to target, since limλ→∞ Tr(Hρ∗) = Ē. However, if one
wishes to explore the behavior of some observable with
respect to Ē, it is not necessary to perform the extrapo-
lation with λ → ∞, but a finite λ is sufficient to obtain
an energy in the vicinity of the desired value [52].

We also wish to remark that the method is completely
general and does not depend on whether the system is in-
tegrable or not. To complete our benchmarks, we present
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Figure 3. Magnetization (a) and next-neighbor correlation Γz,z (b) versus the mean energy density for the Ising model with
hx = 0, hz = 3/2, for different bond dimensions D. The dotted line corresponds to the exact results with the same mean energy
density. In (c) and (d), the absolute errors to the exact solution are compared. No spontaneous symmetry breaking can occur
at finite temperature in one-dimensional systems with local interactions—we therefore explicitly enforce the Z2 symmetry in
the tensors.

0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

β

〈H
〉/
N

D = 4

D = 8

D = 12

D = 16

exact

Figure 4. Average energy from Fig. 3 choosing βR = β.

in Fig. 5 a comparison in the case where a parallel field
is introduced, making the system non-integrable. In this
case, exact results are not known, but our results are
compared to those of an MPS approximation to the Gibbs
state purification obtained with a traditional imaginary
time evolution method [9, 53]. Since the model does not
have a finite-temperature phase transition, the method
will behave similarly for any value of the fields. If one
chooses hx = 0 and hz = 1, we expect that the required
bond dimension increases when β → ∞, as the critical
ground state is approached [54–57]. In this regime, the
cost function in Eq. (6) will be dominated by the en-
ergy term. Hence the algorithm is reduced to an energy
minimization, and we expect it to behave equivalently to
other variational methods, such as the one proposed in
Ref. [23].

B. Non-linear evolution

In Ref. [58], the authors introduced a non-linear evolu-
tion for approximating the thermal ensemble with Gaus-

sian states. Here we generalize this idea for the Rényi
entropies, which gives rise to an evolution that is effi-
ciently computable with TN techniques. We consider a
non-linear evolution of a density operator ρτ which de-
pends on a real parameter τ

ρ̇τ :=
∂ρτ
∂τ

= −1

2
{Jτ −〈Jτ 〉 , ρτ} . (23)

The operator Jτ can be chosen such that the fixed point
of this evolution gives rise to the MRE. For example, the
choice

Jτ ρτ = βRH +
2

Tr ρ2
τ

ρτ (24)

gives rise to the same density operator as Eq. (6). The
proof follows similarly from Ref. [58], and it is sufficient
to show that the operator Jτ in Eq. (24) satisfies the
following criteria:

Tr ρτ = 1, ∀τ ∈ R trace conservation, (25a)

ρτ � 0, ∀τ ∈ R positivity conservation, (25b)

∂fR(ρτ )/∂τ ≤ 0 free-energy decrease. (25c)

Hence, choosing an appropriate density operator ρ0 and
integrating Eq. (23) over a sufficiently long interval, we
obtain the solution to Eqs. (6), since its value can only
decrease with time. There is no guarantee of reaching the
global minimum—and indeed any eigenstate of H does
not evolve under Eq. (23)—but a random choice of the
initial state should be sufficient in most cases.

We present some numerical experiments on small sys-
tem sizes in Fig. 6, where the energy eigenbasis is avail-
able. In all cases, the numerically integrated density op-
erator converges to the ensemble in Eq. (8). The evolu-
tion is discretized by expanding Eq. (23) to first order:

ρτ+δτ ≈ e−
δτ
2 (Jτ −〈Jτ 〉)ρτe

− δτ2 (Jτ −〈Jτ 〉). (26)
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Figure 5. (a)–(d) Different observables as a function of the mean energy density for the nonintegrable case with hx = 0.5,
hz = −1.05. The dotted line corresponds to the results given by the iTEBD algorithm.

Figure 6. 2-Rényi entropy of the maximal Rényi ensemble
obtained with the analytic solution (solid lines) and nonlinear
evolution (points). Results are for the Ising model (OBC) in
Eq. (21) with longitudinal and transverse fields, respectively,
hx = 0.5 and hz = −1.05. We also show numerical results for
N = 20 (triangles) obtained using the non-linear evolution
with MPS.

If the time step is chosen to be sufficiently small, then this
evolution will converge to the desired fixed point. This
is witnessed by the fact that the Rényi entropy reaches
the theoretical maximum for each mean energy, as shown
in Fig. 6. As a proof of concept, we also perform the
integration using MPSs, in particular, using the TDVP
scheme [59, 60] to update the state at each time step. In
practice, however, we observe that the time step required
to obtain accurate results scales unfavourably with the
system size, and we have yet to fully understand if the
evolution becomes ill-conditioned for large system sizes.
Notwithstanding, it is possible that different integration
schemes allow for large time steps without compromising
the stability of the evolution. We leave this as a venue
for future work.

IV. OUTLOOK

In this paper, we have introduced an approach to com-
pute thermal expectation values. Instead of attempting

to approximate the minimum of the free energy, we con-
struct an ensemble that maximizes the 2-Rényi entropy
for the same mean energy, and—in the thermodynamic
limit—reproduces local observables of the corresponding
Gibbs ensemble.

We have shown that this ensemble can be efficiently
approximated using TNs and have presented variational
algorithms to obtain such an approximation. It is possi-
ble to work directly in the thermodynamic limit and use
an MPS representation of the ensemble, which optimizes
the objective function in Eqs. (6). Despite the simple
form of this function, the optimization is non-linear and
must be tackled with gradient-based methods. The fun-
damental reason is that the positivity constraint in TNs
is highly non-local, and one way of enforcing it is via a
purification. The convergence can be accelerated with
techniques from manifold optimization, but a fundamen-
tal limitation is the high contraction cost. Indeed, for
a purification of bond dimension D, the time complex-
ity involved in computing the purity (see Appendix C)
is O(D5), which is significantly higher than the typical
O(D3) for other popular MPS algorithms, such as time
evolution or ground-state search. Coincidentally, the for-
mer is the same leading cost of the original formulation of
DMRG with PBCs [61]. Although the time complexity
is higher, we observe that a moderate bond dimension
captures well the ensemble and its local properties, both
in integrable and nonintegrable models.

As an alternative to gradient-based optimization, we
also propose an alternative method based on a non-linear
evolution of the density operator. Under this evolution,
the objective function in Eqs. (6) is monotonically de-
creasing, and hence flows to the MRE.

Despite these limitations, we believe more efficient
cost functions could be devised. Additionally, the ideas
outlined here could be applied to other wave-function
ansätze. For example, in recent works [62–65], neural net-
works have been optimized with variational Monte Carlo
to describe the steady state of dissipative dynamics. Such
techniques could be adapted to perform the optimization
described in this paper.
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Québec, Canada (2003).

[31] R. S. Ellis, H. Touchette, and B. Turkington, Thermo-
dynamic versus statistical nonequivalence of ensembles
for the mean-field Blume–Emery–Griffiths model, Phys-
ica A: Statistical Mechanics and its Applications 335,
518 (2004).

[32] F. Verstraete and J. I. Cirac, Matrix product states rep-
resent ground states faithfully, Phys. Rev. B 73, 094423
(2006).

https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevX.11.011047
https://doi.org/10.1103/PhysRevB.73.085115
https://doi.org/10.1007/s00220-006-0030-4
https://doi.org/10.1007/s00220-006-0030-4
https://doi.org/10.1103/PhysRevB.91.045138
https://doi.org/10.1103/PhysRevB.91.045138
https://doi.org/10.1103/PRXQuantum.1.010304
https://doi.org/10.1103/PRXQuantum.1.010304
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevB.72.220401
https://doi.org/10.1103/PhysRevB.95.161104
https://doi.org/10.1103/PhysRevX.8.031082
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevB.86.245101
https://doi.org/10.1103/PhysRevB.90.035144
https://doi.org/10.1103/PhysRevB.90.035144
https://doi.org/10.1103/PhysRevLett.122.070502
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.1103/PhysRevLett.93.130601
https://doi.org/10.1103/PhysRevLett.93.130601
https://doi.org/10.1109/eeei.2014.7005859
https://doi.org/10.1109/eeei.2014.7005859
https://doi.org/10.1088/1751-8113/47/33/335201
https://doi.org/10.1088/1751-8113/47/33/335201
https://doi.org/10.1016/j.physa.2003.11.028
https://doi.org/10.1016/j.physa.2003.11.028
https://doi.org/10.1016/j.physa.2003.11.028
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1103/PhysRevB.73.094423


9

[33] M. B. Hastings, An area law for one-dimensional quan-
tum systems, J. Stat. Mech. 2007, P08024 (2007).

[34] Y. Huang, Computing energy density in one dimension,
arXiv:1505.00772 (2015).

[35] F. Verstraete, V. Murg, and J. Cirac, Matrix product
states, projected entangled pair states, and variational
renormalization group methods for quantum spin sys-
tems, Adv. Phys. 57, 143 (2008).
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nacio Cirac, Purifications of multipartite states: Limita-
tions and constructive methods, New J. Phys. 15, 123021
(2013).

[40] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera,
and J. Eisert, Locality of temperature, Phys. Rev. X 4,
031019 (2014).

[41] G. De las Cuevas, T. S. Cubitt, J. I. Cirac, M. M. Wolf,
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2-Rényi ensembles, assuming the density of states is a

https://doi.org/10.1088/1742-5468/2007/08/P08024
https://arxiv.org/abs/1505.00772
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1088/1367-2630/15/12/123021
https://doi.org/10.1088/1367-2630/15/12/123021
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevLett.116.237201
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/b98874
https://doi.org/10.1007/b98874
https://github.com/giacomogiudice/RenyiOptimization.jl
https://github.com/giacomogiudice/RenyiOptimization.jl
https://doi.org/10.1103/PhysRev.127.1508
https://doi.org/10.1016/0031-8914(67)90235-2
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevB.78.024410
https://doi.org/10.1103/PhysRevLett.102.255701
https://doi.org/10.1103/PhysRevLett.102.255701
https://doi.org/10.1103/PhysRevB.86.075117
https://doi.org/10.1103/PhysRevB.86.075117
https://arxiv.org/abs/1303.0741
https://doi.org/10.1103/PhysRevLett.125.180602
https://doi.org/10.1103/PhysRevLett.125.180602
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://doi.org/10.1103/PhysRevLett.93.227205
https://doi.org/10.1103/PhysRevLett.93.227205
https://doi.org/10.1103/PhysRevB.99.214306
https://doi.org/10.1103/PhysRevLett.122.250502
https://doi.org/10.1103/PhysRevLett.122.250502
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevLett.122.250503
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1103/PhysRevB.97.045145
https://doi.org/10.1103/PhysRevB.97.045145


10

0.0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0.0
(a)

Ē
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Figure 7. (a) The energy density of the MRE as a function of the parameter βR, for increasing system sizes. For clarity,
in all plots we set σ2 = 1. In the high-temperature limit (Ē → 0), the behavior Ē = βN/2 (dotted line) indicates that
βR ≈ 2β. However, as the system size is increased, at non-zero energy density the equation of state approaches Ē = βN ,
which is analogous to the Gibbs ensemble. Hence, in the limit of N → ∞ we can identify βR ≈ β. This can be understood
in (b), for which βR ≈ max(E⊥/N, 0) + O(1/

√
N). (c) Taking the derivative ∂(Ē/N)/∂βR, we identify a fast-varying regime,

corresponding to E⊥ < 0, and a second regime at E⊥ > 0 where the derivative is close to −1.

Gaussian of the form

D(E) = exp

(
− (E − Emid)2

2σ2N

)
, (A1)

where N is the system size and σ is a constant indepen-
dent of N . Additionally, without loss of generality, let us
assume it is centered at Emid = 0.

For local Hamiltonians as Eq. (11), it was shown that
the density of states weakly converges to a Gaussian
in the thermodynamic limit, as a consequence of Lya-
punov’s central limit theorem [66–68]. As an alternative
proof, one can take a an ancillary copy of the system,
and consider the state |Ξ〉, which is the tensor product of
maximally entangled pairs between system and ancilla:

|Ξ〉 =
⊗
n

1√
|Hn |

|Hn |∑
i=1

|i〉sys |i〉anc . (A2)

In the doubled system, the state |Ξ〉 is a product state,
and one can apply directly the Theorem in Ref. [66] to
obtain the desired result.

However, the rate of convergence to the central limit
theorem is larger than O(1/

√
N), and one should take

into account the finite-size corrections when computing
expectation values. Hence, we can think of Eq. (A1) as a
toy model of actual local Hamiltonians, and derive results
under this assumption.

For the Gibbs ensemble, we have that the partition
function is

ZG =

∫ +∞

−∞
e−βED(E) dE. (A3)

This leads to

〈H〉G = − ∂

∂β
logZG = −βσ2N, (A4a)

〈(∆H)
2〉G =

∂2

∂β2
logZG = σ2N. (A4b)

Naturally, these results hold only in the region around the
peak of the Gaussian, and break down when one tries to
take the limit of β →∞.

For the 2-Rényi distribution, we cannot use the trick
of deriving the partition function with respect to β, since
we cannot interpret it as a generating function. We can
however express everything in terms of the truncated mo-
ments:

Φm :=

∫ E⊥

−∞
EmD(E) dE. (A5)

The upper integration limit is related to the mean en-
ergy and βR as E⊥ = Ē + 2

βR
. These moments enjoy a

recurrence relation of the form Φm+2 = σ2∂Φm/∂σ. Ad-
ditionally, Φ1 is analytical because the integrand is the
derivative of a Gaussian. This allows us to establish the
identities

Φ2 = σ2NΦ0 + E⊥Φ1, (A6a)

Φ3 =
(
2σ2N + E2

⊥
)

Φ1. (A6b)

By dividing the partition function by β/2, we can then
compute the mean energy for this ensemble as

〈H〉R =
E⊥Φ1 − Φ2

E⊥Φ0 − Φ1
= −σ2N

Φ0

E⊥Φ0 − Φ1
. (A7)

Equating this result to Ē allows us to express Φ0 in terms
of Φ1:

Φ0 =
Ē

ĒE⊥ + σ2N
Φ1. (A8)

Using this last relation, we can write the variance as

〈(∆H)
2〉R = ĒE⊥ + 2σ2N − Ē2 = 2σ2N +

2Ē

βR
. (A9)
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For the Gibbs ensemble, notice that β and Ē are
collinear, Ē = −βσ2N . At infinite temperature (Ē = 0),
we have trivially β = βR = 0. Expanding ρG around
β = 0, we obtain ρG ≈ 1 − βH. Comparing this with
the form of the MRE, we can easily conclude that in
this limit βR ≈ 2β. However, one should take into ac-
count the thermodynamic limit. Indeed, as shown in
Fig. 7, at non-zero Ē, increasing the system size leads
to an equation of state which asymptotically approaches
Ē = −βRσ2N . This is due to the fact that the cutoff E⊥
becomes proportional to βR. Indeed, at E⊥ = 0, one has
that βR(E⊥ = 0) = O(1/

√
N). The point E⊥ = 0 also

corresponds to a stationary point of ∂Ē/∂βR. Taking
derivatives, one obtains a relation between Ē and β only

∂Ē

∂βR
=

∂Ē

∂E⊥

∂E⊥
βR

=
σ2N

β2
R

1 + 2 Ē
βRσ2N

1 + Ē
βRσ2N

. (A10)

As the system size is increased, the derivative converges
toward a constant, as shown in Fig. 7. This allows us
to conclude that, for a Gaussian density of states and
βR � 1/

√
N , we have βR ≈ β.

Appendix B: Technical details on Grassmann
manifolds

The gradient of a function on a Riemannian manifold
belongs to the tangent space of the manifold itself. A
generic tangent vector to a uniform MPS is a linear com-
bination of the partial derivative with respect to the sin-
gle tensor. This can be seen as a vector embedded in
Hilbert space, composed of an (infinite) sum of MPS vec-
tors

|∆(B)〉 = B
∂

∂A
|Ψ(A)〉

=
∑
n

A A B A A

n. . . n− 1 n+ 1 . . .

(B1)

where the sum runs over all physical sites.
A tangent vector parametrized by a tensor B has an in-

herent gauge freedom to it. The explicit transformation
that leaves the vector invariant is Bs 7→ Bs+XAs−AsX,
for any D ×D matrix X. Indeed, the set of derivatives
|∂µΨ(A)〉 form an overcomplete basis. Hence, by intro-
ducing the orthogonal complement of A [23], such that

A

Ā

+

A⊥

Ā⊥

= (B2)

we can parametrize the tangent vectors as

B = A⊥ Z , (B3)

where Z is a D(d− 1)×D matrix. This parametrization
arises quite naturally if one considers the tangent vectors
to be embedded in the original Hilbert space. In this
case, the choice of Eq. (B3) corresponds to imposing or-
thogonality of the tangent space, 〈Ψ(A)|∆(B)〉 = 0. We
remark that Eq. (B3) is exactly the parametrization of
the tangent space for Grassmann manifolds, as derived
traditionally [45].

Hence we can consider the problem Eq. (6) as an op-
timization of a tensor A over the Grassmann manifold.
One particularity arises from the choice of metric in the
tangent space. In Riemannian manifold optimization,
one usually chooses the Euclidean metric [45]:

〈∆1(B1)|∆2(B2)〉Eucl = Re Tr(B†1B2)

= Re

Z̄1

Z2

. (B4)

However, this is not the most natural choice in this set-
ting, since the underlying physical Hilbert space pre-
scribes the metric

〈∆1(B1)|∆2(B2)〉Hilb ∝ Re Tr(B†1B2%)

= Re

Z̄1

Z2

% . (B5)

Note that, as opposed to Eq. (B4), this metric depends
on the current point |Ψ(A)〉 of the manifold. In practice,
we notice that the choice of the metric is not very im-
portant for the optimization, and the Euclidean metric
poses the advantage of not having to invert a potentially
ill-conditioned fixed point % when projecting onto the
manifold. Additionally, the use of the Euclidean metric
is not necessarily deleterious since, compared to Eq. (B5),
it will magnify the importance of small Schmidt values of
the state |Ψ(A)〉. In Ref. [23], the authors have proposed
a non-linear preconditioner that acts as a compromise
between these two metrics. Regardless of our choice, the
metric allows us to project arbitrary Hilbert space vec-
tors onto the tangent space. The projection operator for
the Euclidean metric in Eq. (B4) reads [69]

PA(Y ) =

A

Ā−

Y

Y . (B6)
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For the optimization of a generic function f(A):
Gr(Dd,D) → R, we can compute the gradient ∇f(A)
without taking into account the isometricity condition
and then projecting onto the tangent space [45]. This
projected gradient grad f(A) := ∇f(A), can be consid-
ered the direction of steepest ascent on the manifold,
while its magnitude can be used as a convergence cri-
terion.

The last ingredient necessary for a gradient descent al-
gorithm is defining a retraction. Loosely speaking, we
need to define a curve on the manifold such that we can
move in a direction specified by a tangent vector by a step
size α. Hence a retraction RA(α∆) can be any smooth
curve such that the it (i) starts at A, RA(0) = A and (ii)
is consistent with dR(α∆)/dα = ∆. Different choices of
retraction exist, but the most natural choice is a retrac-
tion that follows the manifold geodesics, i.e., the shortest
path that connects two points on the manifold. Remark-
ably, the geodesic retraction on a Grassmannian manifold
relative to the Euclidean metric is known and is relatively
efficient to compute [69]: Given some point A, the retrac-
tion of some tangent vector ∆ = A⊥Z [see Eq. (B3)] is

RA(α∆) = eαQA, (B7)

where

Q =
(
A A⊥

)(0 −Z†
Z 0

)(
A†

A⊥
†

)
. (B8)

This constitutes the bare minimum to define a gradient
descent algorithm on the Grassmann manifold. In prac-
tice, the convergence of gradient descent can be very slow,
and, in Euclidean space, several methods that just use
first-order information. For example, conjugate gradient
adjusts the gradient with the previous search direction,
and quasi-Newton methods—notably l-BFGS [46, 47]—
uses the previous iterations to create a low-rank approx-
imation of the inverse Hessian. To adapt these methods

to optimization on manifolds, it is sufficient to define a
vector transport, a way of transporting a tangent vector
at a previous point of the manifold to the current one.
In other words, for a retraction A′ = RA(∆), a vector
transport T∆(Ω) maps a tangent vector Ω at A to a tan-
gent vector at A′. A typical way of defining transport is
via differentiated retraction, i.e.,

T∆(Ω) =
d

dα
RA(∆ + αΩ)

∣∣∣∣
α=0

. (B9)

Using Eq. (B7), we obtain

Tα∆(Ω) = eαQΩ. (B10)

Appendix C: Calculation of the gradient

For simplicity, we assume that the Hamiltonian is two-
local and hn = h ∀N , but the algorithm can be readily
generalized to a non-trivial unit cell and any Hamiltonian
which has an MPO form [70]. Once the leading fixed
point % is computed, the energy density reduces to the
following network:

ε = h % . (C1)

To compute the derivative ∂ε/∂Ā of Eq. (C1) it is useful
to define the left and right environments corresponding
to the geometric sum of the terms in the Hamiltonian
over each half-infinite chain:

HL = h (1− E)P , HR = %h(1− E)P , E = .

(C2)
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The notation (1−E)P = (1−E+ |%〉〉〈〈1|)−1 is used to denote the geometric where the divergent part—corresponding
to the leading eigenpair—is subtracted [70]. Hence the gradient ∂ε/∂Ā, without accounting for the constraint is

∂ε

∂Ā
= HL % + h % + h % + HR . (C3)

When computing the purity, we can retain the leading eigenvalues and eigenvectors of the transfer element of ρ2:

ΣL = η ΣL , ΣR = η ΣR , ΣRΣL = 1. (C4)

This is by far the costliest computational step relative to the bond dimension D, since it scales as O(D5), as opposed
to the other steps which are all O(D3). The gradient ∂η/∂Ā becomes

∂η

∂Ā
= ΣRΣL + ΣRΣL . (C5)

We can then put together Eq. (C3) and Eq. (C5) to obtain the gradient ∂fR/∂Ā in Eq. (20). To compute the gradient
on the Grassmann manifold, we must then project the unconstrained gradient using Eq. (B6).
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