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Abstract. We consider motion of an overdamped Brownian particle subject to

stochastic resetting in one dimension. In contrast to the usual setting where the

particle is instantaneously reset to a preferred location (say, the origin), here we

consider a finite time resetting process facilitated by an external linear potential

V (x) = λ|x| (λ > 0). When resetting occurs, the trap is switched on and the

particle experiences a force −∂xV (x) which helps the particle to return to the resetting

location. The trap is switched off as soon as the particle makes a first passage

to the origin. Subsequently, the particle resumes its free diffusion motion and the

process keeps repeating. In this set-up, the system attains a non-equilibrium steady

state. We study the relaxation to this steady state by analytically computing the

position distribution of the particle at all time and then analysing this distribution

using the spectral properties of the corresponding Fokker-Planck operator. As seen

for the instantaneous resetting problem, we observe a ‘cone spreading’ relaxation with

travelling fronts such that there is an inner core region around the resetting point that

reaches the steady state, while the region outside the core still grows ballistically with

time. In addition to the unusual relaxation phenomena, we compute the large deviation

functions associated to the corresponding probability density and find that the large

deviation functions describe a dynamical transition similar to what is seen previously

in case of instantaneous resetting. Notably, our method, based on spectral properties,

complements the existing renewal formalism and reveals the intricate mathematical

structure responsible for such relaxation phenomena. We verify our analytical results

against extensive numerical simulations.
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1. Introduction

Stochastic resetting is a mechanism that interrupts an ongoing process at random times

and resets it to some pre-determined state only to recommence all over again [1].

Such tendencies are only natural and appear in many search processes e.g., animal

foraging [2, 3], randomized computer search algorithms [4, 5], facilitated diffusion [6],

and single molecular search processes such as backtracking by RNA polymerases [7],

motor driven intracellular transport [8], cytoneme based search of morphogen [9] and

enzymatic reactions [10, 11]. Beyond search strategies, the notion of resetting has also

been found ubiquitously in several other contexts e.g., in population dynamics [12],

queuing system [13], extreme and catastrophic events [14–16].

Systematic theoretical study of resetting in the physics literature started with the

canonical Evans-Majumdar model for diffusion with stochastic resetting [17] and since

then the subject has been a focal point of recent studies. Simply put, resetting brings

a particle back to a preferred location persistently thus putting it into an effective

confinement. This generates a non-zero probability current in the system and eventually

a non-equilibrium steady state is attained [18–25]. Steady state properties under

resetting have also been studied in a wide spectrum of stochastic processes namely

anomalous diffusion [26,27], underdamped process [28], random acceleration process [29],

scaled Brownian motion [30], continuous time random walk [31, 32], Lévy flights [33],

telegraphic process [34], run and tumble motion [35,36] and others [37–41]. Steady state

properties under resetting were also studied in many-body interacting systems such as

fluctuating interface [42], spin system [43] and exclusion process [44, 45].

Another hallmark property of resetting is to expedite the completion of a first

passage process which otherwise would hinder e.g., resetting renders the mean first

passage time finite for a diffusive search process [17,18,23]. Regularization by resetting

happens by taking advantage of the large stochastic fluctuations in the underlying first

passage processes and this property was extensively studied in diffusive systems [46–54],

generic stochastic processes [55–59] and nonlinear dynamical systems such as chaotic

Lorenz system [60]. Resetting has also been studied in the context of stochastic

thermodynamics [61–66], large deviation [38,67] and in quantum systems [68].

Majority of the studies to date in the field assumed the resetting process to take zero

time [1]. However, in practice, getting from one place to another for the particle always

takes non-zero time. This idea has recently been augmented with a series of theoretical

studies which attempted to account for such realistic situations. To be more specific,

in the set-up of diffusion with resetting, the particle is reset/returned to the origin at

a finite time making use of various deterministic protocols e.g., returns with a constant

or space dependent velocity [3,69–73], constant or space dependent acceleration [72,73],

and returns with finite time [74]. This intuition also stems from the first experimental

case study of the resetting phenomena [75] (also see [76] which followed after) where it

was shown why it is only natural to consider resetting processes with non-instantaneous

returns.
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Our motivation to the current paper complements the idea of deterministic return

protocols with the stochastic ones since in reality, a deterministic driving is never perfect

and will always be accompanied by uncontrollable random fluctuations. Taking these

facts into account, we recently have proposed the idea of stochastic resetting followed

by stochastic return in [77] (also see another recent study [78] that proposes similar

ideas of diffusion with stochastic returns using intermittent resetting potentials). To

illustrate the set-up, let us again consider the Brownian particle which diffuses in one

dimension until a random resetting time. At that very moment, an external potential

centered at the resetting location, is turned on and the particle starts experiencing a

force towards the potential minimum (i.e., the resetting location). Once the particle

hits the resetting location for the first time, the trap is switched off immediately, and

the particle resumes its diffusing motion. Thus, motion of the particle can viewed as

a compound process which is a superposition of the exploration and return phase. In

Ref. [77], we focused on the steady state and discussed shapes and forms of the position

density in each phase analytically for different choices of external confining potentials.

In this paper, we go beyond the steady state analysis to study the time dependent

problem in whole generality. We provide a comprehensive method to compute the exact

time dependent density, and then apply the framework to a set-up where a Brownian

particle is returned to the origin using a linear trap potential i.e., V (x) = λ|x| ( λ > 0).

We first provide the exact form of the position density and then study its large time

relaxation behaviour.

Often relaxation of a system to a stationary state is described by the exponential

relaxation through spectral representation of the Fokker-Planck operator where the

relaxation occurs homogeneously over the full available space with uniform rate.

In contrast, for the canonical diffusion with instantaneous resetting model, it was

demonstrated using the renewal structure that the relaxation to the steady state occurs

in-homogeneously [21]. More elaborately, it was shown that as time progresses an inner

core region around the resetting point reaches the steady state, while the region outside

the core is still transient. The boundaries of the core region are seen to grow with

time linearly [21]. In this paper we show that a similar ‘cone spreading’ type relaxation

with travelling fronts also occurs in the case of resetting with stochastic return using a

linear trap. We find that details of the core e.g., the speed of its boundaries depends

on the relative strength between the resetting rate r and the potential λ. We solve

the Fokker-Planck equation using Laplace transform method which reveals the spectral

properties of the operator. Analysing the spectral properties through inverse Laplace

transform we study the relaxation to the steady state at large time. This approach

does not only complement the existing renewal formalism but also proves to be effective

where a renewal framework is less tractable. The current problem at our hand exactly

depicts such a scenario.

Finally, Finally, we analyse the large deviation property of the particle’s position

density. For the instantaneous case, the large deviation function (LDF) was studied

in [21] where it has been described to demonstrate a dynamical transition in the density
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with time when looked at a fixed position. In the present case of non-instantaneous

resetting, we also find a similar dynamical transition described by appropriate LDFs.

In particular, we find that the position density satisfies a large deviation form with

an explicit LDF. The form of the LDF depends on the relative strength between the

resetting rate r and the potential strength λ. In each case, the LDF can be interpreted

to describe a dynamical transition occurring at a fixed position similar to what one

observes in the instantaneous case [21].

The structure of the paper is organized as follows. In Sec. 2, we briefly introduce

the model and discuss the governing Fokker-Planck equations for the process. In Sec.

3, we sketch out the method to solve these equations in Laplace space. Sec. 4 contains

the exact results for the probability density function of the particle at all times. Next

in Sec. 5, we compute the probability for the system to be in the two phases. Sec. 6 is

dedicated to the detailed computation of the relaxation of the total density to its steady

state. We summarise our paper in Sec. 7. Some details of the calculations are reserved

for the Appendix.

2. Model

We consider motion of a Brownian particle interrupted by stochastic resetting in one-

dimension. We refer the uninterrupted motion of the particle as the exploration or

diffusive phase. Resetting occurs at a rate r and at each resetting event, we switch

on a trap that creates a potential V (x) centered (i.e., has its global minimum) at the

resetting location xr. Thus, after every resetting event the particle experiences a force

F (x) = −∂xV (x) which facilitates the particle to return to the resetting location. This

motion will be referred as the return phase. The return phase persists until the particle

hits the resetting location for the first time and at that moment the trap is switched

off. This marks the end of the return phase, and the particle resumes its motion in the

(diffusive) exploration phase. In what follows, we will set the resetting location as the

origin xr = 0 without loss of any generality.

Let x(t) be the position of the particle at time t. The evolution of the particle in

the subsequent time interval dt depends on which phase the particle is in. If the particle

is in the exploration phase then within time interval dt, a resetting event can occur with

probability rdt and if so happens the external potential is switched on, and the particle

starts moving in the force field. Otherwise, the particle continues to perform the free

diffusion with probability (1 − rdt). On the other hand if at time t the particle is in

the return phase then it moves in force field until it reaches the origin where the free



Resetting with stochastic return through linear confining potential 5

diffusion starts again. The evolution can be written as following:

In exploration phase

x(t+ dt) =

[
x(t) +

√
2D dW (t), with prob. (1− rdt)

x(t) + F (x(t))dt+
√

2D dW (t), with prob. rdt

In return phase

x(t+ dt) = x(t) + F (x(t))dt+
√

2D dW (t),

(1)

where dW (t) =
´ t+dt
t

dt′η(t′) with η(t) being a zero-mean Gaussian white noise and D

is the diffusion constant.

In each realization, the particle starts from the origin in the exploration phase, and

has multiple switching between the two phases along a long trajectory of duration t.

Thus at any observation time, the particle can be found at random in either of the two

phases. Let ρD(x, t) and ρR(x, t) denote the probability density functions of finding the

particle at position x at time t in the exploration and return phase respectively. Thus,

the probability density function for the compound process at time t is given by [77]

ρ(x, t) = ρD(x, t) + ρR(x, t), (2)

which is normalized
´ +∞
−∞ dx ρ(x, t) = 1. On the other hand, the individual phase

densities are normalized to the time dependent probabilities to be in each of the

phases. To be specific, pD(t) =
´ +∞
−∞ dx ρD(x, t) and pR(t) =

´ +∞
−∞ dx ρR(x, t) are the

time dependent probabilities to find the particle in the exploration and return phases

respectively, with the normalization pD(t) + pR(t) = 1.

In a recent work [77], a general framework has been developed to describe stochastic

processes under stochastic returns. Following this formalism, and translating to our set-

up, we get the following coupled Fokker-Planck (FP) equations for the densities

∂tρD(x, t) = −∂xJD(x, t)− rρD(x, t) + δ(x)JR(0, t), (3)

∂tρR(x, t) = −∂xJR(x, t) + rρD(x, t)− δ(x)JR(0, t), (4)

where JD(x, t) = −D∂xρD(x, t) and JR(x, t) = F (x)ρR(x, t)−D∂xρR(x, t) are the fluxes

in the exploration and return phases respectively. Note here, JR(0, t) = JR(0−, t) −
JR(0+, t) is the net flux of returning particles those enter at the origin from the negative

and positive side, and immediately switch their motion to the exploration phase. Since

all the particles initially start their motion in exploration phase (which is free diffusion),

we have

ρD(x, 0) = δ(x) , ρR(x, 0) = 0. (5)

Interestingly, the return phase density can be written as a sum of the densities ρ+
R(x, t)

and ρ−R(x, t) which describe the particles returning from x > 0 and x < 0, respectively,

such that [77]

ρR(x, t) = ρ−R(x, t)Θ(−x) + ρ+
R(x, t)Θ(x), (6)
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where Θ(x) represents the Heaviside step function. This decomposition is only natural

since the returning particles can either be in the positive or negative x and switching

between them is possible only via the exploration phase. Thus, the origin acts as an

effective absorbing boundary for the return probability densities such that

ρ±R(0, t) = 0. (7)

Furthermore, since the probability can not get accumulated at infinity at any time for

motions in both phases, we have the natural boundary conditions

lim
x→±∞

ρD(x, t) = 0, (8a)

lim
x→±∞

ρ±R(x, t) = 0. (8b)

Finally, the exploration phase must be continuous at the origin implying

ρD(0+, t) = ρD(0−, t). (9)

We now proceed to solve the set of time dependent equations (namely Eqs. (3) and

(4)) along with the initial conditions in Eq. (5) and boundary conditions in Eqs. (7)-(9)

discussed above.

3. Solution of the master equations

In the previous section, we have presented the FP Eqs. (3) and (4) that govern

the motion of particles in the exploration and the return phase. To solve them, we

first perform the following Laplace transforms ρ̃D,R(x, s) =
´∞

0
dt e−st ρD,R(x, t) and

j̃(s) =
´∞

0
dt e−st JR(0, t) on both sides of Eqs. (3) and (4) and get

D
∂2ρ̃D(x, s)

∂x2
− (s+ r)ρ̃D(x, s) + δ(x)

[
1 + j̃(s)

]
= 0, (10)

D
∂2ρ̃R(x, s)

∂x2
− ∂[F (x)ρ̃R(x, s)]

∂x
− sρ̃R(x, s) + rρ̃D(x, s)− δ(x)j̃(s) = 0, (11)

where we have used the initial conditions ρD(x, 0) = δ(x) and ρR(x, 0) = 0. Using the

boundary conditions from Eq. (8a), the solution of Eq. (10) can be easily found as

ρ̃D(x, s) = A(s) exp

[
−
√
s+ r

D
|x|
]
, for −∞ < x <∞, (12)

where A(s) is a s-dependent constant. To compute A(s), we integrate both sides of Eq.

(10) over [−ε, ε] around x = 0 and finally take the ε → 0 limit. This provides us the

following jump condition

D

[
∂ρ̃+

D(x, s)

∂x

∣∣∣
x→0+

− ∂ρ̃−D(x, s)

∂x

∣∣∣
x→0−

]
= −[1 + j̃(s)], (13)
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where the superscripts ± indicate the solutions in the positive and negative sides of the

origin. Substituting ρ̃±D(x, s) from Eq. (12) into Eq. (13), we find

A(s) =
1 + j̃(s)

2
√
D(r + s)

, (14)

where j̃(s) is still unknown and has to be determined from the return phase density

as we will show now. Integrating both sides of Eq. (11) over a small region across the

origin x = 0, we arrive at the second discontinuity condition

D

[
∂ρ̃+

R(x, s)

∂x
− ∂ρ̃−R(x, s)

∂x

]
x=0

= j̃(s). (15)

Hence, using Eqs. (11) and (15), we can now solve for j̃(s) which, in turn, gives A(s),

although we still need to find ρ̃±R(x, s).

The formalism presented so far provides a framework to compute the densities in

Laplace space. Naturally, this framework can easily be applied to any set-up concerning

an arbitrary confining potential V (x) exerted by the trap. Here, we consider the

trap to be linear so that V (x) = λ|x| with λ > 0. This results in an external force

F (x) = −λ sgn(x), where sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0 and equal

to 0 for x = 0. Using this expression of force in Eq. (11), we write the following two

differential equation for positive and negative x regions

D
∂2ρ̃+

R(x, s)

∂x2
+ λ

∂[ρ̃+
R(x, s)]

∂x
− sρ̃+

R(x, s) + rA(s) e−
√

s+r
D
x = 0, for x > 0, (16)

D
∂2ρ̃−R(x, s)

∂x2
− λ∂[ρ̃−R(x, s)]

∂x
− sρ̃−R(x, s) + rA(s) e

√
s+r
D
x = 0, for x < 0. (17)

Using the boundary conditions ρ̃±R(±∞, s)→ 0 (from Eq. (8b)) and ρ̃±R(0, s) = 0 (from

Eq. (7)), we arrive at the full solution for the returning density

ρ̃R(x, s) =
rA(s)

λαs − r
(
e−αs|x| − e−µs|x|

)
, for −∞ < x <∞, (18)

with

µs =
λ+
√
λ2 + 4sD

2D
and αs =

√
s+ r

D
. (19)

We now substitute ρ̃R(x, s) and A(s) from Eqs. (18) and (14), respectively, into Eq.

(15) to find

j̃(s) =
r(αs − µs)
µsr − α2

sλ
, (20)

which, in turn, results in

A(s) =
λαs − r

λ(r + 2s)− r
√

4Ds+ λ2
=

λ
√
s+ r − r

√
D√

D(λ(r + 2s)− r
√

4Ds+ λ2)
. (21)
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Therefore, Eqs. (12) and (18) along with the explicit expression for A(s) provides

us the full solutions for the master equations (3) and (4) in the Laplace space. The

normalization condition for the joint density
´ +∞
−∞ dx ρ̃(x, s) = 1/s also follows trivially.

Having fully solved the FP equations in Laplace space, the steady state density

can be readily obtained by making use of the final value theorem which states ρss(x) =

lims→0[sρ̃(x, s)]. Applying this to Eqs. (12) and (18) along with Eq. (21), we find

ρss
D(x) =

α0pD
2

e−α0|x|, (22)

ρss
R(x) =

rpD
2(λ− α0D)

(
e−α0|x| − e− λ

D
|x|
)
, (23)

for −∞ ≤ x ≤ ∞ where pD = limt→∞ pD(t) = α0λ
α0λ+r

is the steady state probability

for the system to be in the exploration phase and recall that α0 ≡ αs=0 =
√

r
D

is the

typical inverse distance traveled by the particle in the exploration phase [77]. Note

that the functions in Eqs. (22) and (23) correspond to the right eigenfunctions of the

Fokker-Planck operator with the largest eigenvalue which is zero. The steady state flux

at the origin can be computed similarly and this gives

JR(0,∞) = lim
s→0

[sj̃(s)] =
rλ

α0D + λ
, (24)

which is consistent with JR(0,∞) = JR(0−,∞) − JR(0+,∞) as defined in Sec. 2. For

λ� α0D, one essentially reaches the limit of instantaneous resetting where flux due to

resetting is JR(0,∞) = r, as expected [17]. For more details on the properties of steady

states we refer the readers to Ref. [77]. In the following, we go beyond steady states and

study time dependent solutions of the FP equations in (3) and (4) to understand the

approach to the steady state. First, we present exact solutions for the time dependent

propagators in the next section.

4. Time dependent density ρ(x, t)

The position distribution functions in time domain can be obtained by performing the

inverse Laplace transform so that

ρD,R(x, t) =
1

2πi

ˆ Γ+i∞

Γ−i∞
ds est ρ̃D,R(x, s), (25)

which is expressed in terms of the Bromwich integral [80]. Here, the integration is done

along the imaginary axis (vertical contour through Re(s) = Γ) in the complex-s plane

such that all the singularities lie on the left of it. We first recall the densities in the

exploration and return phases from Eqs. (12) and (18)

ρ̃D(x, s) =
(λ
√
s+ r − r

√
D)[λ(r + 2s) + 2r

√
D
√
s+ β]

4λ2
√
Ds(s− γ)

e−
√
s+r|z|, (26)

ρ̃R(x, s) =
r[λ(r + 2s) + 2r

√
D
√
s+ β]

4λ2s(s− γ)

(
e−
√
s+r|z| − e−

√
β|z| e−

√
s+β|z|

)
, (27)
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where we have used Eq. (21) and defined

z =
x√
D
, β =

λ2

4D
, γ =

r2

4β
− r. (28)

It is easy to see that ρ̃D,R(x, s) have three singularities for r 6= β: one pole at s = 0

and two branch points at s = −r and s = −β. Naturally when r = β, we have

one pole at s = 0 and one branch point at s = −r = −β. Moreover, substituting

s by 1/u, one can see that there is one more branch point at infinity which we

choose to be at s = −∞ for both cases. Looking at the expressions in (26)-(27)

at a first glance, it seems that there is a pole also at s = γ for both ρ̃D and ρ̃R,

however it turns out to be a removable singularity. To see this, we first note that

s− γ = D
λ2

(λαs − r)(λαs + r). The factor (λαs − r) gets cancelled with the first factor

term in the numerator in Eq. (26). On the other hand, for ρ̃R(x, s), the cancellation

happens differently for r > β and r < β. In the former case, note from Eq. (27) that

e−
√
s+r|z| − e−

√
β|z| e−

√
s+β|z| = (s− γ)g1(γ) +O((s− γ)2), which essentially eliminates

the factor s− γ in the denominator and thus removing the pole at s = γ. In the latter

case, this cancellation is done by the factor term in the numerator in Eq. (27). Taking

into account the structure of these singularities in details, we now proceed to perform

the integrals in Eq. (A.3) using Bromwich contours (see Fig. A1) for r 6= β and r = β

cases separately in the next subsections.

It is worth noticing that the parameters r and β are associated to two different

time scales in the system. The first time scale τres = r−1 comes from the resetting

events which provides the relaxation time for the density to reach steady state in case

of instantaneous resetting [1]. On the other hand, β = λ2

4D
provides the relaxation time

scale τpot = β−1 for the particle to reach steady state in absence of any resetting events.

In presence of both, these two times scales compete and naturally we get the following

two cases: r = β and r 6= β. In the next sections we will observe relaxation terms with

prefactors e−rt and e−βt appearing naturally in the expressions of in ρD,R(x, t).

4.1. Case 1: r = β

In this case, the branch points s = −r and s = −β coalesce with each other, and

thus, we now have one pole at s = 0 and two branch points at s = −r and s = −∞
(hence one branch cut). We construct a contour as shown in Fig. A1 and perform the

integral by considering the contributions from the branch cuts and the pole. We follow

the steps described in Appendix A and collect the contributions from the pole and the

branch cuts. After making some simplifications we get the following expressions for the

densities in the exploration and return phases:

ρD(x, t) = ρssD (x) +
1

4πλ2

ˆ ∞
0

dy
e−t(r+y)

(r + y)(r + γ + y)

[
λr2 sin (

√
y |z|)

+

√
y

D

(
2r2D + λ2r + 2λ2y

)
cos (
√
y |z|)

]
, (29)
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ρR(x, t) = ρssR (x)− r

4πλ2

ˆ ∞
0

dy
e−t(r+y)(1− e−

√
r|z|)

(r + y)(r + γ + y)

[
2r
√
Dy cos (

√
y |z|)

+ λ(r + 2y) sin (
√
y |z|)

]
, (30)

where z = x/
√
D and steady state densities ρss

D,R(x, t) are given in Eqs. (22) and (23).

We verify these expressions against numerical simulations in Fig. 1. Although the

results presented above are exact, they do not provide much insights. Moreover, it is

difficult to quantify from these expressions how the densities relax to their corresponding

steady states. In Sec. 6, we will analyze these expressions to understand the relaxation

behaviour.

4.2. Case 2: r 6= β

In this case, there are three branch points: s = −r, s = −β, s = −∞, and one pole

at s = 0. We refer to Appendix A for details of these Laplace inversions to obtain

expressions of the densities. Since these expressions are quite lengthy, we prefer to

present them in the Appendix A (see Eqs. (A.7-A.10)). In Fig. 1, we compare the

expressions for the densities in the exploration and the return phases given in Eqs. (A.7-

A.10), against numerical simulations for both r > β and r < β. We observe excellent

agreement between the two in each case.

5. Probability to be in the exploration and return phases

Before we get into the relaxation of the density ρ(x, t), it is imperative to study simple

quantities to get some insights. To this end, in this section, we study the probability

for the particle to be in the exploration phase. This quantity was formally defined in

Sec. 2. We recall here for brevity

pD(t) =

ˆ +∞

−∞
dx ρD(x, t). (31)

Since the particle starts in the exploration phase, we have pD(0) = 1 and then the

probability decreases with time and finally saturates to a steady state value (< 1) at

large time. In this section, we obtain an exact expression for pD(t). For simplicity, we

will consider the case when r = β but the other cases also can be computed following

the same procedure. To begin with, we integrate ρ̃D(x, s) given in Eq. (26) over the

entire real space, and we obtain

p̃D(s) =
2
√
s+ r −√r

(2s+ r)
√
s+ r −√r(s+ r)

, (32)

where we have used the condition λ =
√

4Dr that comes from r = β limit. The

probability pD(t) can be obtained using the inverse Laplace transform

pD(t) =
1

2πi

ˆ Γ+∞

Γ−i∞
ds est p̃D(s). (33)
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Figure 1. Comparison of analytical results for density functions ρD(x, t), ρR(x, t) and

ρ(x, t) = ρD(x, t) + ρR(x, t), with the same obtained from numerical simulation. First,

second, and third-column, respectively, correspond to three different cases: r < β,

r = β, r > β. Solid curves are the analytical results given in Eqs. (A.7-A.10) whereas

the circles are obtained from numerical simulation for 108 realizations. In each plot,

dashed curves indicates the steady state densities given in Eqs. (22) and (23). Common

parameters used in these plots are D = 0.5, dt = 10−3, t = 15.

Clearly, we can see from Eq. (32) that the integrand of the above equation has one pole

at s = 0 and one branch point at s = −r. Therefore, we consider the contour shown

in Fig. A1 with the branch points s
(1)
b and s

(2)
b coalescing at s = −r. Following similar

steps of calculation as shown in Appendix A, we finally get

pD(t) =
2

3
+
r3/2e−rt

π

ˆ ∞
0

dy
e−yt√

y(r + y)(r + 4y)
. (34)

where the integral can be computed easily. The full expression for pD(t) is given by

pD(t) =
2

3
+

1

3

[
2e−

3rt
4 erfc

(√
rt

2

)
− erfc

(√
rt
)]

, (35)

where erfc(u) = 2√
π

´∞
u

dt e−t
2

is the complementary error function. The probability to

find the particle in the return phase at time t is then simply given by pR(t) = 1− pD(t).
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Figure 2. Probability of the system in the exploration phase with time. Solid line

is the analytical result shown in Eq. (35) while circles are obtained using numerical

simulation for 105 realizations. The parameters for the simulation are r = β = 0.1,

D = 0.5, and dt = 10−3.

At large time, we see that pD(t), relaxes exponentially as e−rt to its steady state

value 2/3 for r = β. Note here that pD(∞) is nothing but the fraction of time spent in

the exploration phase in steady state such that

pD(∞) =
1/r

1/r + 〈τ(x)〉 , (36)

where 1/r and 〈τ(x)〉 are the mean times spent in the exploration and return phases

respectively. In [77], it was shown that 〈τ(x)〉 = 1
αλ

, which upon plugging to Eq. (36)

yields the value as expected. In Fig. 2, we show the comparison of the analytical result

Eq. (35) with the numerical simulation for r = β = 0.1 and they show a very good

agreement. Setting the stage, we now delve deeper to understand the relaxation of the

probability densities. This is done in the next section.

6. Relaxation to the steady state

Presence of resetting affects the stochastic dynamics of a particle in many different

ways. For example, a free Brownian particle under resetting mechanism reaches a steady

state which in absence of resetting is described by a Gaussian propagator with variance

growing linearly with time. Moreover, the relaxation properties to the steady state is

also unusual compared to the equilibration of the same particle in a confining potential

in the absence of resetting. In the context of instantaneous resetting of a free Brownian

particle, it has been shown that at a given large time t the probability density ρ(x, t) as

a function of x exhibits two markedly different phases: an inner core which has already

reached the steady state and an outer core which is still explicitly time dependent [1,21].

The boundaries that separate these two regions grow linearly with time. Physically,

these two regions are created by two groups of trajectories: ones that have encountered
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zero (almost zero) resetting events up to the observation time t and the ones that

have undergone many resetting events. The former group contributes to the outer

region and the latter group contributes to the inner core region of the density function.

Such ‘cone spreading’ relaxation with travelling fronts is studied and observed in few

other stochastic dynamics with instantaneous resetting e.g., underdamped Brownian

particle [28], interface dynamics [21], random acceleration process [29] and resetting

occurring with time dependent rate [23].

Notably, in all these resetting systems the relaxation properties are studied using the

renewal approach. However, in many problems it might be difficult to follow the renewal

approach analytically. In such cases one would require to rely upon the master equation

approach where the relaxation is usually described through spectral decomposition.

In this section, we demonstrate how the above mentioned ‘cone spreading’/‘traveling

boundary’ type relaxation behavior can be understood also from the master equation

approach. We first discuss the limit λ → ∞ (more precisely, λ � α0D) which

corresponds to the well studied instantaneous resetting scenario and recover the existing

results. Subsequently, we extend our analysis to the non-instantaneous resetting case,

(i.e., finite λ) and provide new insights that emerge due to the finite duration of return

events.

6.1. Instantaneous resetting

We start with the case of instantaneous resetting. Taking the limit λ→∞ in Eqs. (26)

and (27), we find

ρ̃R(x, s) =0, (37)

ρ̃D(x, s) =
1

2s

√
s+ r

D
e−
√
s+r|z|. (38)

Since the return events are instantaneous, ρD(x, t) is essentially the total density

function. Hence, in the following we drop its subscript D. To get ρ(x, t) we perform the

inverse Laplace transform using the following Bromwich integral

ρ(x, t) =
1

2πi

ˆ Γ+i∞

Γ−i∞
ds est ρ̃(x, s), (39)

where Γ is the vertical contour passing through Γ = Re(s) of the complex s-plane (see

Fig. A1 in Appendix A). We notice that ρ̃(x, s) in Eq. (38) has two branch points at

s = −r and s = −∞, and a pole at s = 0 and they all lie to the left of the vertical

contour Γ. Following the steps sketched in Appendix A, we finally obtain

ρ(x, t) =
α0

2
e−
√
r|z| +

e−rt

2π
√
D

ˆ ∞
0

dy

√
y e−yt

y + r
cos (|z|√y) , with z =

x√
D
, (40)

where the first term is the contribution from the pole and the second term gets

contribution from the branch cut (−∞,−r]. Further, we make a change of variable
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y = w2 and extend the limit of integration on the entire real line by writing cos(w) =
eiw−e−iw

2
which yields

ρ(x, t) =

√
r

D

e−
√
r|z|

2
+

e−rt

2π
√
D
KA(0)√

r (x, t), where, (41)

KAa (x, t) =

ˆ +∞

−∞
dw
A(w)

w − ia e
−tw2+iw|z|, with z =

x√
D

and, (42)

A(0)(w) =
w2

w + i
√
r
. (43)

Note that Eq. (41) provides the exact density function at all time. Also note that

the first term in Eq. (41) is the steady state density ρss(x) of the Brownian particle

under instantaneous resetting [17]. The second term provides the relaxation to this

steady state. To understand this relaxation better and in detail, we now analyze the

integral in Eq. (42) at large t. For that we extend this integral in the complex w plane

and perform the integral on the closed contour C as shown in Fig. B1. Performing the

saddle point integral as sketched in Appendix B, we evaluate KA√
r
(x, t) and obtain the

following approximate expression of the second term in Eq. (41) for large t:

e−rt

2π
√
D
KA(0)√

r (x, t) = −e
−
√
r|z|

2

√
r

D
Θ(|z| −

√
4rt) +

e−rt−
z2

4t

2π
√
D

KA
(0)

z

(√
r − |z|

2t
, t

)
, (44)

where, KA
(0)

z (b, t) ≈ A(0)

(
ib+ i

|z|
2t

)
etb

2
[
iπ sgn(b) erfc(|b|

√
t)
]

+ ψ(0)

√
π

t
, (45)

with ψ(0) = i
b

[
A(0) (i|z|/2t)−A(0) (ib+ i|z|/2t)

]
. The first term in Eq. (44) appears

for |z| >
√

4rt and interestingly, it is exactly same as the first term in Eq. (41) but

with opposite sign. As a result the steady state form for ρ(x, t) serves as the dominant

contribution for |x| ≤
√

4Drt and thus creating a core region which expands in time

with a speed
√

4Dr on both sides of x = 0 [21]. Outside this region, ρ(x, t) is explicitly

time dependent. Performing further simplifications and keeping the dominant order

terms in the large t limit, we get the following simpler and more explicit asymptotic

form for the density as

ρ(x, t) ≈ 1

2

√
r

D
e−
√
r|z|Θ(

√
4rt− |z|) +

e−rte−z
2/4t

√
4πDt

[
z2

z2 − 4rt2
−

√
rt

|z| −
√

4rt

]
+
α0

4
sgn(|z| − 2

√
rt) e−

√
r|z| erfc

( ||z| − 2
√
rt|√

4t

)
,

(46)

where recall z = x/
√
D. This expression clearly describes the ‘cone spreading’ relaxation

behaviour with travelling fronts, first observed using renewal approach in Ref. [21].

In this reference the relaxation to the steady state is interpreted as a dynamical

transition occurring in the system when observed at a fixed spatial point. The transition

was further characterised by non-analytic properties of an appropriate large deviation

function (LDF) [21]. Looking at the large t asymptotic of the different terms in Eq. (46)



Resetting with stochastic return through linear confining potential 15

it is easy to see that the density in the large t limit satisfies a large deviation principle

(for a review on large deviation principle, see Ref. [79])

ρ(x, t) � e−tΦ(x/t), i.e. Φ
(
v =

x

t

)
= − lim

t→∞

ln ρ(x, t)

t
where, (47)

Φ (v) =

{√
r
D
|v|, for |v| < v∗

r + v2

4D
, for |v| ≥ v∗,

with v∗ =
√

4Dr. (48)

The non-analytic structure of the large deviation function Φ(v) at v = v∗ is interpreted

as a dynamical transition. This transition mentioned above is manifested as follows: at

a fixed spatial point x, the LDF is quadratic at short time when |v| > v∗. On the other

hand, as time increases, v decreases and eventually crosses v∗ from above. In this case,

the LDF changes from the quadratic to a linear form as in [21].

While renewal approach clearly depicts the physical mechanism behind this unusual

relaxation behaviour, our analysis reveals that mathematically this transition happens

exactly when the saddle point hits the pole, i.e., when w∗ = w+ which gives |z∗| = t
√

4r

i.e., |x∗| = t
√

4Dr [see Fig. B1]. In a broader sense, our approach identifies a connection

between the structure of the singularities in propagator in Laplace space and the

relaxation behaviour of the particle.

6.2. Non-instantaneous resetting

We now turn our attention to the non-instantaneous resetting. Recalling from Sec. 4,

there are three different regimes r < β, r = β and r > β for which the exact time

dependent densities were obtained in Sec. 4. In the following, we discuss the relaxation

properties for these cases separately using the saddle point method applied in the

previous section. In each case, we will write the total density ρ(x, t) = ρD(x, t)+ρR(x, t)

in the form of Eq. (41) i.e., the steady state part ρss(x) plus relaxation parts which are

in the form of integral in Eq. (42).

6.2.1. Case I (r = β): In this case, the densities in the exploration and return

phases were already obtained in Eqs. (29) and (30). Adding these two densities and

simplifying, we find that the we total density ρ(x, t) can be written in the form of

Eq. (41) as

ρ(x, t) = ρss(x) +
e−rt

8π
√
D
KA(1)√

r (x, t), with (49)

A(1)(w) =

w

(
3rw + 4w3 − ir3/2 +

√
r(e−

√
r|z| − 1) [

√
rw − i(r + 2w2)]

)
(w + i

√
r)
(
r
4

+ w2
) , (50)

and KAa (x, t) is defined in Eq. (42). As done for the instantaneous case we follow the

calculations in Appendix B to compute KA(1)√
r

(x, t) and find an approximate expression
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Figure 3. Comparison of the densities ρ(x, t) obtained using saddle point calculation

in Eq. (54) and computing the integrals numerically in Eq. (52) for r < β. We observe

that the distribution within an inner core region (inside the dashed vertical lines given

by x = ±
√

4Drt) has reached steady state while the outer region is still in the transient

state. These two regions are separated by a travelling front which moves ballistically.

Parameters used in this plot are: D = 0.5, r = 0.3 and β = 0.8 i.e., λ = 1.2649.

of ρ(x, t) at large t given by

ρ(x, t) ≈ ρss(x)Θ(t
√

4r − |z|) +
e−rt−

z2

4t

8π
√
D
KA

(1)

z

(√
r − |z|

2t
, t

)
, (51)

where KAz (b, t) is given in Eq. (45). A simple observation of the above equation conforms

a similar ‘cone spreading’ type relaxation behavior of the density to the steady state.

After analysing the different terms in Eq. (51), in this case also, one observes that

the total density ρ(x, t) satisfies a large deviation form. Interestingly, in this case, the

LDF is same as that of the instantaneous resetting given in Eq. (48).

6.2.2. Case II (r < β): Adding the right hand sides of Eqs. (A.7) and (A.8),

and performing some tedious manipulations we write the total density ρ(x, t) =

ρD(x, t) + ρR(x, t) in the following form

ρ(x, t) = ρss(x) +
ie−rt

4π
√
D(
√
r + γ −√r)

[
KA(2)√

r (x, t)−KA(2)√
r+γ(x, t)

]
+

ire−
√
β|z|−βt

4πλ2(
√
β + γ −√β)

[
KA(4)√

β (x, t)−KA(4)√
β+γ(x, t)

]
− re−rt

πλ(
√
r + γ −√r)Im

[
i
(
J A(3)√

r (x, t)− J A(3)√
r+γ(x, t)

)]
,

(52)
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where γ 6= 0 and the A(i)(w) functions are given in Appendix C and KAa (x, t) is defined

in Eq. (42). In this case we have encountered a new type of integral of the form

J Aa (x, t) =

ˆ ∞
0

dw
A(w)

w − ia e
−tw2+iw|z|, with z =

x√
D
. (53)

This integral is similar to KAa (x, t) except that the integration range is now restricted

to [0,∞]. One can follow a similar procedure as done for KAa (x, t) to compute J Aa (x, t)

for large t. In Appendix D we evaluate this integral using saddle point method and get

an approximate expression for large t given by Eq. (D.14). Evaluating this expression

for A(3)(w) and KAa (x, t) from Eq. (D.14) for A(2)(w) and A(4)(w), we insert them in

Eq. (52) to get an approximate expression for the density ρ(x, t) in the large t limit

ρ(x, t) ≈
Eq. (52) with large t approximations of KAa (x, t) and J Aa (x, t)

are inserted from Eqs. (B.11) and (D.14) respectively.
(54)

From the presence of the Θ functions in the expressions of KAa (x, t) and J Aa (x, t) in

Eqs. (B.11) and (D.14) respectively, one can see the appearance of many travelling

fronts. However, after some manipulations one can see from the relaxation part of the

density in Eq. (52) that one gets an equal and opposite contributions of the steady

state part from terms with Θ(|x| −
√

4Drt), which gets manifested as ‘cone spreading’

relaxation as seen in case of r = β in Sec. 6.2.1. Such a relaxation is demonstrated in

Fig. 3 where we provide a comparison between the saddle point result in Eq. (54) and

the one from direct numerical evaluation of the integrals in Eq. (52). We observe nice

agreement between them.

To understand the large deviation behaviour of the density ρ(x, t) in this case, one

should look at the large t asymptotic of the integrals of the form KAa (x, t) and J Aa (x, t)

in Eq. (52). Before proceeding, we first note that the total contribution coming from

these integrals with a =
√
r + γ and a =

√
β + γ [i.e. the total contributions from the

second terms in the square brackets in Eq. (52)] is very small because the contributions

from the poles at w = i
√
r + γ and w = i

√
β + γ should cancel each other. Only the

contributions from saddle points survive. This can also be verified by evaluating them

in Mathematica. This cancellation is expected due to the following observation: recall

that these extra poles, in fact, originate from the pole s = γ, which appears while

performing the inverse Laplace transform of ρ̃D(x, s) and ρ̃D(x, s) given in Eqs. (26)

and (27). Moreover recall from sec. 4 (see the paragraph after Eq. (28)) that s = γ is a

removable singularity. Hence, the total contributions of these poles at w = i
√
r + γ and

w = i
√
β + γ from the integrals of the form KAa (x, t) and J Aa (x, t) in Eq. (52) should

cancel each other and the net sum would be zero. Keeping this in mind and finding the

leading contributions of the other three integrals (with poles at w = i
√
r and w = i

√
β)

and the saddle point contributions from all the integrals in Eq. (52), we find that for

large t, the total density ρ(x, t) satisfies a large deviation form with a LDF which is,

interestingly, once again same as that of the instantaneous case given in Eq. (48). Here

too, one observes the same dynamical transition similar to the previous cases.
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Figure 4. Comparison of the densities ρ(x, t) obtained using saddle point calculation

in Eq. (57) and computing the integrals numerically in Eq. (55) for r > β. We observe

that the distribution within an inner core region (inside the dashed vertical lines given

by x = ±√4Dβt)) has reached steady state while the outer region is still in the

transient state. This two regions are separated by a travelling front which moves

ballistically. Parameters used in this plot are: D = 0.5, r = 0.6 and β = 0.4 i.e.,

λ = 0.8944.

6.2.3. Case II: r > β In this case, the total density is obtained by combining

Eqs. (A.9)-(A.10) and after some manipulations and rearrangements, we get

ρ(x, t) = ρss(x) +
ie−rt

4π
√
D(
√
r + γ −√r)

[
KA(2)√

r (x, t)−KA(2)√
r+γ(x, t)

]
+

ire−
√
β|z|e−βt

4πλ2(
√
β + γ −√β)

[
KA(4)√

β (x, t)−KA(4)√
β+γ(x, t)

]
− re−rt

πλ(
√
r + γ −√r)Im

[
i
(
J A(3)√

r (x, t)− J A(3)√
r+γ(x, t)

)]
+

re−rt

πλ(
√
r + γ −√r)

[
JA(3)
√
r,
√
r−β(x, t)− JA(3)

√
r+γ,

√
r−β(x, t)

]
,

(55)

for γ 6= 0, where the A(i)(w) functions are given in Appendix C. The functions KAa (x, t)

and J Aa (x, t) are defined in Eqs. (42) and (53) respectively. We also define the following

integral on real line segment [0, ζ] for ζ > 0 as

JAa,ζ(x, t) =

ˆ ζ

0

dv
A(iv)

v − a e
tv2−v|z|, with z =

x√
D
. (56)

This integral naturally appears while evaluating the integral J Aa (x, t) in Appendix D.

For A(w) = A(3)(w) we analyse this integral in Appendix E where it can be seen using

Eq. (E.2) that, a part of the contribution from third line of Eq. (55) is same to the

terms coming from the fourth line but of opposite sign yielding some cancellations and
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Figure 5. Plots of the LDF Φ(v) of the density as given in Eq. (58) (dashed lines) for

three choices of r and β. The symbols are obtained from the (saddle point) approximate

expressions of the density ρ(x, t) presented in Eqs. (54) and (57). The diffusion constant

used to prepare these plots is D = 0.5.

hence further simplifications [see discussions around Eqs. (E.2) and (E.3)]. Note that

the above calculations are done assuming γ 6= 0. One can do a similar calculation for

γ = 0 i.e. r = 4β and evaluate the integrals using the saddle point method as used in

other cases.

Accumulating all the terms we, for large t, get

ρ(x, t) ≈
Eq. (55) with large t approximations of KAa (x, t), J Aa (x, t) and

JAa,ζ(x, t) are given in Eqs. (B.11), (D.14) and (E.2) respectively.
(57)

In this case also, many travelling fronts appear due the presence of the Θ functions in

the expressions of KAa (x, t) and J Aa (x, t) in Eqs. (B.11) and (D.14) respectively. Once

again, after some manipulations one can see from the relaxation part of the density in

Eq. (55) that one gets an equal and opposite contributions of the steady state part from

terms with Θ(|x| − √4Dβt), which gets manifested as ‘cone spreading’ relaxation as

seen in case of r < β in Sec. 6.2.2. Such a relaxation is demonstrated in Fig. 4 where

we provide a comparison between the saddle point result in Eq. (57) and the one from

direct numerical evaluation of the integrals in Eq. (55). Here too we observe a nice

agreement.

Finally we discuss the large deviation behaviour of ρ(x, t) in this case. To get the

LDF in this case we follow the same procedure as done in the previous section 6.2.2.

We find that, unlike the previous cases, in this case the LDF can be different from the

instantaneous case. In particular, for β < r < 4β we find the same LDF as in Eq. (48).

But for r ≥ 4β we get a different LDF.
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Below we summarize the explicit forms of LDF for all values of r and β:

Φ (v) =



[√
r
D
|v|, for |v| < v∗

r + v2

4D
, for |v| ≥ v∗,

for 0 < r ≤ 4β,


2
√

β
D
|v|, for |v| < v∗1

(2
√
βD+|v|)2

4D
, for v∗1 ≤ |v| < v∗2√

r
D
|v|, for v∗2 ≤ |v| < v∗

r + v2

4D
, for |v| ≥ v∗

for 4β ≤ r ≤ (3 + 2
√

2)β,


2
√

β
D
|v|, for |v| < v∗1

(2
√
βD+|v|)2

4D
, for v∗1 ≤ |v| < v∗3

r + v2

4D
, for |v| ≥ v∗3

for r ≥ (3 + 2
√

2)β > 0.

(58)

where v∗ =
√

4Dr, v∗1 =
√

4Dβ, v∗2 =
√

4D(
√
r − √β +

√
r −√4rβ) and v∗3 =√

D(r−β)/
√
β. Note that for r = 4β the points v∗1 and v∗2 coincide. On the other hand,

for r = (3 + 2
√

2)β, the three points v∗, v∗2 and v∗3 coincide. The above expressions for

the LDF in different ranges are plotted in Fig. 5. Similar to the instantaneous case, the

LDF associated to the density ρ(x, t) for finite λ also exhibits dynamical phase transition

at a fixed spatial point as described in Ref. [21].

7. Summary

In this paper, we have studied motion of a Brownian particle under stochastic resetting

with finite time return. The return dynamics is facilitated by a linear trap whose

minimum is located at the resetting position. The return time is stochastic and it also

depends on the position of the particle at the time of resetting. Realizing the fact

that motion of the particle can be decomposed into two phases namely the exploration

and return phases, we construct Fokker-Planck equations for each phase with suitable

boundary conditions. We go beyond the steady state limit, and compute exact time

dependent forms of the position density. This also allows us to study the temporal

relaxation of the densities at large time, and we show that depending on the relative

strength between the resetting rate and potential, different variants of the relaxation

forms are found. We have shown that the density has travelling boundaries which

separate two regions: an inner core which has already relaxed to the steady state, and

an outer core which is still at transient. An important thing to note that the speed at

which the boundary between the cores moves depends on the ratio of the resetting rate

and strength of the potential.

It is worth stressing that in this paper we have taken the master equation approach

to discuss the relaxation properties which, to the best of our knowledge, was only shown
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before using the renewal formalism for the instantaneous resetting. While the latter

approach in the current set-up is still a far-off, the master equation formalism allows

us to make a connection between the singularities in the densities in Laplace space and

their relaxation properties. We benchmark this approach first for the instantaneous

case, and then employ it in the case of non-instantaneous stochastic returns.

Computation of time dependent distributions for a stochastic process in the

presence of resetting is rather limited unlike that of the non-equilibrium steady state. In

this paper, we have provided a systematic way to compute these probability densities.

Various physical limits can be reached from our formulation – thus, we believe that the

methods shown here can be very useful to compute propagators and study relaxation

in other resetting systems. Finally, we mention that one interesting future direction

would be to study the effect of non-instantaneous stochastic return on the first passage

problems.

8. Acknowledgement

We thank Carlos A. Plata for many fruitful discussions. DG acknowledges the support

from the University of Padova through “Excellence Project 2018” of the Fondazione

Cassa di Risparmio di Padova e Rovigo. AP gratefully acknowledges Raymond and

Beverly Sackler postdoctoral fellowship and Ratner Center for Single Molecule Science

at the Tel Aviv University for funding. AK would like to acknowledge support of the

Department of Atomic Energy, Government of India, under project no.12-R&D-TFR-

5.10-1100 and the support from DST, Government of India grant under project No.

ECR/2017/000634.

Appendix A. Inverse Laplace transform of Eqs. (26) and (27)

In this section, we provide details of inverse Laplace transforms of Eqs. (26) and (27)

to get the densities in the exploration and return phases as given in Eqs. (A.7-30). We

start by recalling ρ̃D,R(x, s) below as

ρ̃D(x, s) =
λ(r + 2s) + r

√
4D
√
s+ β

4Ds(λ
√

(s+ r)/D + r)
e−
√
s+r|z|, (A.1)

ρ̃R(x, s) = r
λ(r + 2s) + r

√
4D
√
s+ β

4λ2s(s− γ)

(
e−
√
s+r|z| − e−

√
β|z| e−

√
s+β|z|), (A.2)

where z = x√
D

, β = λ2

4D
, and γ = −r+ r2

4β
. Following the Bromwich integral formula and

the residue theorem, the inverse Laplace transform of ρ̃D,R(x, s) can be formally written

as

ρD,R(x, t) =
1

2πi

ˆ Γ+i∞

Γ−i∞
ds est ρ̃D,R(x, s), (A.3)
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Figure A1. Bromwich contour for inverse Laplace transform in the complex s−plane.

Two branch point singularities at s
(1)
b and s

(2)
b < s

(1)
b < 0 and a pole at s = 0.

The pole is indicated by cross and branch points are shown by filled circles. Zigzag

curves represent the branch cuts that connect the branch points to the branch point

at s = −∞.

where the vertical contour passes through Re(s) = Γ in the complex s-plane such that

all the singularities lie to left of it (see e.g., Fig. A1). Both the functions ρ̃D,R(x, s) have

a simple pole at s = 0 and three branch points: s = −r, s = −β and s = −∞.

To compute the Bromwich integral in (A.3) in this case, we consider the contour

integral
1

2πi

¸
C ds est ρ̃D,R(x, s) along the contour C shown in Fig. A1. It is

straightforward to see that it has the value

1

2πi

˛
C
ds est ρ̃D,R(x, s) = Residue[s = 0], (A.4)

The integral along the contour C in Fig. A1 can be decomposed in the following manner

1

2πi

ˆ
C
ds est ρ̃D,R(x, s) =

=
1

2πi

[ˆ
AB

+

ˆ
BC

+

ˆ
CD

+

ˆ
DE

+

ˆ
EF

+

ˆ
FG

+

ˆ
GH

+

ˆ
HI

+

ˆ
IJ

+

ˆ
JA

]
ds est ρ̃D,R(x, s).

= Residue[s = 0]

(A.5)

Note that the inverse Laplace transform in Eq. (A.3) is actually the integral over the

part ‘AB’ on the contour. In the limits of R→∞ and ε1,2 → 0, one can show that the

integrals along the chords ‘BC’, ‘DE’, ‘FG’, ‘HI’ and ‘JA’ vanish. Hence, we get

ρD,R(x, t) =
1

2πi

ˆ
A

B = Residue[s = 0]− 1

2πi

[ˆ
CD

+

ˆ
EF

+

ˆ
GH

+

ˆ
IJ

]
, (A.6)
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where the integrals along ‘CD’, and ‘EF’ are performed on the negative real axis above

the branch cut whereas the integrals along ‘GH’, and ‘IJ’ are performed below the branch

cut. Writing these integrals in terms of real integration variables and performing some

manipulations, we get the following expressions for ρD(x, t) and ρR(x, t) for different

choices of r and λ (equivalently β).

Appendix A.1. r < β

For the density ρD(x, t) in the exploration phase, we get

ρD(x, t) = ρssD (x) +
1

4πλ2
√
D

ˆ β−r

0

dy
e−t(r+y)

(r + y)(r + γ + y)

×
[
r
(
λ− 2

√
D(κ− y)

)
+ 2λy

] [
λ
√
y cos (

√
y |z|) + r

√
D sin (

√
y |z|)

]
+

1

4π
√
Dλ2

ˆ ∞
0

dy
e−t(β+y)

(β + y)(β + γ + y)

[{
2Dr2√y + λ2(2(β + y)− r)√κ+ y

}
× cos

(
|z| √κ+ y

)
− rλ

√
D
{

2
√
y(κ+ y) + r − 2(β + y)

}
sin
(
|z|√κ+ y

) ]
,

(A.7)

where recall z = x/
√
D and κ = β − r > 0. On the other hand for the density in the

return phase, we get

ρR(x, t) = ρssR (x)

+
r

4πλ2

ˆ β−r

0

dy
e−(r+y)t

(r + y)(r + γ + y)

[{
2r
√
D(κ− y)− λr − 2λy

}
sin (
√
y |z|)

]
+

r

4πλ2

ˆ ∞
0

dy
e−t(β+y)

(β + y)(β + γ + y)

[
2r
√
Dy
{
e−
√
β|z| cos (

√
y |z|) (A.8)

− cos
(
|z|√κ+ y

)}
− λ[r − 2(β + y)]

{
e−
√
β|z| sin (

√
y |z|)− sin

(
|z| √κ+ y

)} ]
,

where z = x/
√
D and the densities in the steady state are given in Eqs. (22) and (23).

Appendix A.2. r > β

Similar prescription also applies for r > β. Following the steps described above, we find

ρD(x, t) = ρssD (x) +
1

2πλ2

ˆ Λ

0

dy
r
√
Dy e−t(β+y)e−|z|

√
Λ−y

(β + y)(β + γ + y)

(
r − λ

√
Λ− y
D

)

+
1

4πλ2

ˆ ∞
0

dy
e−t(r+y)

(r + y)(r + γ + y)

[
cos (
√
y |z|)

(
2r2
√
D(Λ + y) + λ2r

√
y

D
(A.9)

+ 2λ2y

√
y

D

)
+ λr sin (

√
y |z|) {−2

√
y(Λ + y) + r + 2y}

]
,

ρR(x, t) = ρssR (x) + +
r

4πλ2

ˆ Λ

0

dy
e−t(β+y)

(β + y)(β + γ + y)

[
2r
√
Dy
{
e−
√
β|z| cos (

√
y |z|)
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A B

CD

0

Figure B1. Closed contour C for the integral (B.2). w∗ and w+, respectively, are the

saddle point and pole, and both of them are function of a variable z. The horizontal

path through the saddle point w∗ is the steepest decent path.

− cosh
(
|z|
√

Λ− y
)}

+ e−
√
β|z|λ[2(β + y)− r] sin (

√
y |z|) + 2r

√
Dy sinh

(
|z|
√

Λ− y
)]

− r

4πλ2

ˆ ∞
0

dy
e−t(r+y)

(r + y)(r + γ + y)

[
2r
√
D(Λ + y) {cos (

√
y |z|) (A.10)

−e−
√
β|z| cos

(
|z|
√

Λ + y
)}

+ λ(r + 2y)
{

sin (
√
y |z|)− e−

√
β|z| sin

(
|z|
√

Λ + y
)}]

,

where z = x/
√
D and Λ = −κ = r − β > 0.

Appendix B. Evaluation of the integral KAa (x, t) appearing in Eq. (42)

In this section, we evaluate the integral of the form

KAa (x, t) =

ˆ +∞

−∞
dw
A(w)

w − ia e
−tw2+iw|z|, a > 0, (B.1)

where z = x/
√
D. To compute the above integral, let us consider the following integral

over a closed contour C as shown in Fig. B1 in the complex plane:
˛
C
dw
A(w)

w − ia e
−tw2+iw|z| = 2πi Residue[ia] Θ(|z| − 2at)

= 2πi A(ia) ea
2t−a|z|Θ(|z| − 2at),

(B.2)

where we have assumed that A(w) does not have any singularity inside the contour C.
We choose this particular contour because, as can be easily seen that, the horizontal

line parallel to the real axis passes through the saddle point w∗ = i|z|
2t

and is actually

the steepest-descent path. It is easy to identify that the desired integral KAa (x, t) in

Eq. (B.1) corresponds to the integral
´
AB

. Since, in the R→∞, the integrals
´
BC

and´
DA

go to zero, we get KAa (x, t) =
´
AB

= 2πi Residue[ia] Θ(|z| − 2at)−
´
CD

. Hence

KAa (x, t) = 2πi A(ia) ea
2t−a|z| Θ(|z| − 2at) + e−

z2

4t KAz

(
a− |z|

2t
, t

)
, (B.3)
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where KAz (b, t) =

ˆ ∞
−∞

dw
A (w + i|z|/2t)

w − ib e−tw
2

. (B.4)

The integral KAz (b, t) in the above equation can be evaluated for large t using saddle

point method [80, 81]. However, we need to be careful when the saddle point w∗ = 0

is close to the pole at w+ = ib. To proceed, one needs to separate the singular and

non-singular part of the integrand. For this we rewrite

KAz (b, t) = A
(
ib+ i

|z|
2t

) ˆ ∞
−∞

dw
e−tw

2

w − ib +

ˆ ∞
−∞

dw ψ(w) e−tw
2

, (B.5)

where ψ(w) =
A (w + i|z|/2t)−A (ib+ i|z|/2t)

w − ib . (B.6)

Note that now the function ψ(w) does not have any singularity since A(w) is an analytic

function on the upper half plane. Following [80, 81], we evaluate the first integral by

defining

Lf (b, t) =

ˆ ∞
−∞

dw
e−tw

2

w − ib , such that, (B.7)

KAz (b, t) = A
(
ib+ i

|z|
2t

)
Lf (b, t) +

ˆ ∞
−∞

dw ψ(w) e−tw
2

. (B.8)

Note that the function Lf (b, t) satisfies the following differential equation

dLf
dt

= b2Lf (t)− ib
√
π

t
, (B.9)

which can be solved with boundary condition Lf (∞) = 0. We get,

Lf (b, t) = ibetb
2

ˆ ∞
t

dτ e−τb
2

√
π

τ
= iπetb

2

sgn(b) erfc(|b|
√
t). (B.10)

On the other hand the integral in Eq. (B.8) for large t can be evaluated straightforwardly

using Laplace method and one gets a contribution ψ(0)
√

π
t

in the leading order. The

next order terms can be found easily by expanding ψ(w) in a Taylor series around w = 0.

Collecting both the contributions, we finally get an explicit expression of KAz (b, t) at

large t. Inserting this expression in Eq. (B.3) one gets an explicit expression of KAa (x, t)

as

KAa (x, t) = 2πi A(ia) ea
2t−a|z| Θ(|z| − 2at) + e−

z2

4t KAz

(
a− |z|

2t
, t

)
,

where, KAz (b, t) ≈ A
(
ib+ i

|z|
2t

)
etb

2
[
iπ sgn(b) erfc(|b|

√
t)
]

+ ψ(0)

√
π

t
,

(B.11)

with ψ(0) = i
b

[A (i|z|/2t)−A (ib+ i|z|/2t)].

Appendix C. Explicit forms of A(i)(w) functions

Here, we present the explicit forms for the A(i) functions which were introduced in the

main text

A(2)(w) =
w2(2w2 + r)

(w + i
√
r)(w + i

√
r + γ)

, (C.1)
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Figure C1. Closed contour C for the integral (D.1). The saddle point is located at
i|z|
2t , while the semi-circular integral contributes for |z| ≥ 2at.

A(3)(w) =
w2
√
w2 + r − β

(w + i
√
r)(w + i

√
r + γ)

, (C.2)

A(4)(w) =

√
4r2Dw2 − iλw(2β + 2w2 − r)
(w + i

√
β)(w + i

√
β + γ)

. (C.3)

Appendix D. Evaluation of the integral J Aa (x, t) appearing in Eq. (53)

In this section, we evaluate the integral of the form

J Aa (x, t) =

ˆ ∞
0

dw
A(w)

w − ia e
−tw2+iw|z|, with z =

x√
D
, (D.1)

and a > 0. To compute the above integral, we consider the following integral over a

closed contour C as shown in Fig. C1 in the complex plane:

˛
C
dw
A(w)

w − ia e
−tw2+iw|z| = 0, (D.2)

where we have assumed that A(w) does not have any singularity inside the contour C.
It is easy to identify that the desired integral J Aa (x, t) in Eq. (D.1) corresponds to the

integral
´
AB

. Since, in the R→∞, the integral
´
BC

goes to zero, we get

J Aa (x, t) =

ˆ
AB

= −
ˆ
γ

−
ˆ
DA

−
ˆ
CD

=
1

2

‰
w=ia

+

ˆ
AD

+

ˆ
DC

, (D.3)

where the integral
´
AD

represents integral along AD. The integrals on the small circle

around w = ia can be evaluated easily and one gets

1

2

‰
w=ia

= iπA(ia)ea
2t−a|z| Θ(|z| − 2at). (D.4)
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On the other hand, the integral
´
AD

on AD is exactly the integral JAa,ζ(x, t) defined in

Eq. (56) with ζ = |z|/2t and is written explicitly as

JA
a,
|z|
2t

(x, t) =

ˆ |z|
2t

0

dv
A(iv)

v − a e
tv2−v|z|. (D.5)

Note that this is an integral over v within the finite range [0, |z|/2t] on the real line.

Collecting all the contributions in Eq. (D.3) explicitly, we get

J Aa (x, t) = iπA(ia)ea
2t−a|z| Θ(|z| − 2at) + JA

a,
|z|
2t

(x, t) + e−
z2

4t JAz

(
a− |z|

2t
, t

)
, (D.6)

where, JAz (b, t) =

ˆ ∞
0

dw
A
(
w + i |z|

2t

)
w − ib e−tw

2

. (D.7)

We now proceed to evaluate the integral JAz (b, t) in the above equation for large t using

saddle point method in similar way as done in Appendix B. Once again we need to be

careful when the saddle point w∗ = 0 is close to the pole at w+ = ib. To proceed,

one needs to separate the singular and non-singular part of the integrand. For this we

rewrite

JAz (b, t) = A
(
ib+ i

|z|
2t

) ˆ ∞
0

dw
e−tw

2

w − ib +

ˆ ∞
0

dw ψ(w) e−tw
2

, (D.8)

where, ψ(w) =
A (w + i|z|/2t)−A (ib+ i|z|/2t)

w − ib . (D.9)

We evaluate the first integral by defining

Lh(b, t) =

ˆ ∞
0

dw
e−tw

2

w − ib , such that, (D.10)

JAz (b, t) = A
(
ib+ i

|z|
2t

)
Lh(b, t) +

ˆ ∞
0

dw ψ(w) e−tw
2

. (D.11)

Note that the function Lh(b, t) satisfies the following differential equation

dLh
dt

= b2Lh(t)−
ˆ ∞

0

dw (w + ib) e−tw
2

= b2Lh(t)−
(

1

2t
+
ib

2

√
π

t

)
,

(D.12)

which can be solved with boundary condition Lf (∞) = 0. We get,

Lh(b, t) = etb
2

ˆ ∞
t

dτ e−τb
2

(
1

2τ
+
ib

2

√
π

τ

)
=
etb

2

2

[
Γ(0, tb2) + iπsgn(b) erfc(|b|

√
t)
]
, (D.13)

where Γ(0, z) =
´∞
z

du e−u

u
is an incomplete Gamma function. On the other hand the

second integral in Eq. (D.11) for large t can be evaluated straightforwardly using Laplace

method because the function ψ(w) in Eq. (D.9) does not have any singularity for A(w)



Resetting with stochastic return through linear confining potential 28

being analytic function on the upper half plane. Hence from the second integral one

gets a contribution ψ(0)
2

√
π
t

at large t. Now, collecting both the contributions, we finally

get an explicit expression of JAz (b, t) at large t. Inserting this expression in Eq. (D.6)

one gets an explicit expression of J Aa (x, t) as

J Aa (x, t) = iπA(ia)ea
2t−a|z| Θ(|z| − 2at) + JA

a,
|z|
2t

(x, t) + e−
z2

4t JAz

(
a− |z|

2t
, t

)
,

where,

JAz (b, t) ≈ A
(
ib+ i

|z|
2t

)
etb

2

2

[
Γ(0, tb2) + iπ sgn(b) erfc(|b|

√
t)
]

+
ψ(0)

2

√
π

t
,

(D.14)

with ψ(0)) = i
b

[A (i|z|/2t)−A (ib+ i|z|/2t)] and JA
a,
|z|
2t

(x, t) is defined in Eq. (D.5).

Appendix E. Remarks on the integral JA(3)

a,
|z|
2t

(x, t) defined in Eq. (D.5)

Since in Eqs. (52) and (55), we require to evaluate J Aa (x, t) for A(w) = A(3)(w), we

here rewrite the function JA
a,
|z|
2t

(x, t) [given in Eq. (D.5)] with A = A(3)(w) for r < β and

r > β. For r < β, the integral JA(3)

a,
|z|
2t

(x, t) reads

JA(3)

a,
|z|
2t

(x, t) = i

ˆ |z|
2t

0

dv
v2
√
v2 + β − r

(v − a)(v +
√
r)(v +

√
r + γ)

etv
2−v|z|, (E.1)

where we have used the expression of A(3)(w) in Eq. (C.2). Note that in this case

JA
a,
|z|
2t

(x, t) is purely imaginary and hence will not finally contribute in Eq. (52).

On the other hand for r > β, we rewrite the integral as

JA(3)

a,
|z|
2t

(x, t) = i

ˆ |z|
2t

min(
√
r−β, |z|

2t
)

dv
v2
√
v2 + β − r

(v − a)(v +
√
r)(v +

√
r + γ)

etv
2−v|z|

+

ˆ min(
√
r−β, |z|

2t
)

0

dv
v2
√
r − β − v2

(v − a)(v +
√
r)(v +

√
r + γ)

etv
2−v|z|.

(E.2)

It is clear from the above equation and Eq. (D.14) that the contribution of the form

JA(3)

a,ζ (x, t) from terms like J Aa (x, t) in the third line of Eq. (55) gets partly cancelled

with the fourth line of Eq. (55) and the remaining contribution in the form JA(3)

a,ζ (x, t)

is given by:

Combined contribution of the form JA(3)

a,ζ (x, t) from the 3rd and 4th line in Eq. (55)

=

ˆ √r−β
min(

√
r−β, |z|

2t
)

dv
v2
√
r − β − v2

(v − a)(v +
√
r)(v +

√
r + γ)

etv
2−v|z|. (E.3)

Note that the above integral has to be performed on a real line segment and is non zero

only for |z| < 2t
√
r − β. This integral can again be computed using saddle point method

as discussed in previous sections because β + γ > 0 for r > β (recall r + γ = r2/(4β)

from Eq. (28)).
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