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Usually the quantum spin Hall states are expected to possess gapless, helical edge modes. Are
there clean, non-interacting, quantum spin Hall states without gapless, edge modes? We show the
generic, n-fold-symmetric, momentum planes of three-dimensional, stable Dirac semi-metals, which
are orthogonal to the direction of nodal separation are examples of such generalized quantum spin
Hall systems. We demonstrate that the planes lying between two Dirac points and the celebrated
Bernevig-Zhang-Hughes model support identical quantized, non-Abelian Berry flux of magnitude
2π. Consequently, both systems exhibit spin-charge separation in response to electromagnetic, π-flux
vortex. The Dirac points are identified as the unit-strength, monopoles of SO(5) Berry connections,
describing topological quantum phase transitions between generalized, quantum spin Hall and trivial
insulators. Our work identifies precise bulk invariant and quantized response of Dirac semimetals
and shows that many two-dimensional higher-order topological insulators can be understood as
generalized quantum spin Hall systems, possessing gapped edge states.

Introduction: The stable, three-dimensional, Dirac
semimetals (DSM) arising from accidental linear touch-
ing between two Kramers-degenerate bands at isolated
points in the Brillouin zone (BZ) are experimentally
relevant examples of gapless topological states [1–19].
The Dirac points of such systems, occurring along an
n-fold axis of rotation are protected by the combined
PT and the n-fold, discrete, rotational (Cn) symme-
tries, with n = 3, 4, 6 [1, 2], where P and T represent
space-inversion/parity (P) and time-reversal (T ) symme-
tries, respectively. Several materials like Na3Bi [1, 20–
23], Cd3As2 [2, 24–29], PdTe2 [30], β′-PtO2 [16, 19],
VAl3 [11], β-CuI [13], KMgBi [12, 19], PtBi2 [31], and
the magneto-electric (ME) compound FeSn [9, 32] can
host such Dirac points. Despite intensive theoretical re-
search on stable DSMs for almost ten years [1–16, 18, 19],
their bulk topological invariants are still unknown.

The simplest version of DSMs can be obtained by
stacking of Bernevig-Hughes-Zhang (BHZ) model [33] of
quantum spin Hall (QSH) effect along the direction of
nodal separation or the Cn-axis. Since the BHZ model
is a first order topological insulator (FOTI), support-
ing helical edge modes, the resulting DSM exhibits loci
of zero-energy surface states, also known as the helical
Fermi arcs. The total number of zero-modes is equal
to the total QSH conductivity of DSMs, determined by
∆kD/π, where ∆kD is the distance between the bulk
Dirac nodes. The spectroscopic and transport data of
many stable DSMs are usually interpreted based on the
existence of helical Fermi arcs [20–30, 32].

However, recent theoretical works have showed that
the generic, n-fold planes of DSMs are not described by
the BHZ model possessing U(1) spin-conservation law,
or closely related Z2 FOTIs [34]. Away from the mir-

ror planes, various crystalline-symmetry-preserving per-
turbations can gap out the helical edge modes. Using K-
theory analysis, the generic planes were found to be topo-
logically trivial [7]. Subsequently, various groups [17–19]
have identified these planes as higher-order, topological
insulators (HOTI) [35]. The distinction between FOTI
and HOTI is established by computing the nested Wil-
son loops of SU(2) Berry connections for the occupied va-
lence bands, under periodic boundary conditions. How-
ever, this difference only affects the physical properties
under open boundary conditions, such as the presence of
corner-states under Cn-symmetric open boundary condi-
tions.

Are there any common topological properties shared
by two-dimensional FOTI and HOTI under periodic
boundary conditions? What happens to the QSH effect of
the BHZ model, when the helical edge modes get gapped
out by crystal-symmetry-preserving perturbations? We
answer these two fundamental questions and identify the
stable bulk topology of DSMs by performing second ho-
motopy classification of non-Abelian Berry connections.

Challenge toward topological classification: The min-
imal model of a pair of two-fold, Kramers-degenerate
bands of PT symmetric systems is described by the
Hamiltonian H =

∑
k Ψ†(k)Ĥ(k)Ψ(k), where Ψ(k) is a

four-component spinor, and the Bloch Hamiltonian oper-
ator can be written as Ĥ(k) = N0(k)1 +

∑5
j=1 Nj(k)Γj

[36–39]. The magnitude of O(5) vector field N(k)
controls the spectral gap between conduction and va-
lence bands, N0(k) describes particle-hole anisotropy,
and Γj are five, mutually anti-commuting, 4 × 4 matri-
ces, such that {Γi,Γj} = 2δij . The topology of Bloch
wave functions are determined by the unit, O(5) vec-

tor field N̂(k) = N(k)/|N(k)|, representing the coset
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space SO(5)/SO(4) = S4, where S4 is the unit, four-
sphere. The diagonalizing matrix belongs to this coset
space and the gauge group for intra-band Berry’s con-
nection is given by Spin(4) = SU(2)× SU(2).

The vanishing of |N(k)| restores SO(5)-symmetry at

the Dirac points, which serve as singularities of N̂(k).
Whether the Dirac points are monopoles of Berry con-
nection, leading to the quantized Berry flux for generic
n-fold planes, can only be unambiguously determined by
performing second homotopy classification of the gauge
group. Since π2(S4) and π2(SU(2)) ≡ π2(S3) are triv-
ial, the homotopy analysis involves conceptual subtleties.
We will show that the form of Cn operator can be ex-
ploited to identify a pair of global spin-quantization axes
and reduce the redundancy of band eigenfunctions from
Spin(4) to U(1) × U(1), which allows second homotopy
classification.

Model : We substantiate these claims by considering a
model of C4-symmetric, magneto-electric DSMs, arising
from the hybridization between s and p orbitals, which
does not support any gapless surface states. We will
employ the following representation of gamma matrices
Γj=1,2,3 = τ1 ⊗ σj , Γ4 = τ2 ⊗ σ0, Γ5 = τ3 ⊗ σ0. The
ten commutators Γjl = [Γj ,Γl]/(2i), with j = 1, ..., 5 and
l = 1, ..., 5 serve as the generators of SO(5) and its double
cover group Spin(5). The 2 × 2 identity matrix τ0 (σ0)
and the Pauli matrices τj ’s (σj ’s), with j = 1, 2, 3 operate
on orbital/parity (spin) index. The relevant O(5) vector
is given by

N(k) = [tp sin kx, tp sin ky, td,1(cos kx − cos ky),

td,2 sin kx sin ky, ts(∆− cos kx − cos ky − cos kz)], (1)

where ts, tp, td,1, td,2 are four independent hopping pa-
rameters, and the dimensionless parameter ∆ controls
topological phase transitions. The phase diagram is
shown in Fig. 1(a). The DSMs (1 < |∆| < 3) interpo-
late between trivial insulators (|∆| > 3) and topological
insulators (|∆| < 1). We will focus on the parameter
regime 1 < ∆ < 3, with the Dirac points located at
kD = (0, 0,±kD), with cos(kD) = (∆ − 2). Away from
the high-symmetry locations kz = 0, π, the generic 4-fold
planes of DSMs [3], preserving both P and T symmetries
display identical form of N(k).

Gauge-invariant Berry curvature: The PT symme-
try is implemented by Γ24Ĥ

∗(k)Γ24 = Ĥ(k), and the
diagonalizing matrix U(k) must satisfy the constraints
U†(k)Ĥ(k)U(k) = |N(k)|Γ5, and U†(k)Γ24U

∗(k) =
Γ24. Hence, U(k) ∈ Spin(5)/Spin(4) has the general
form [38, 39],

U(k) =

[
cos θ(k)2 g+(k) i sin θ(k)

2 u(k)g−(k)

i sin θ(k)
2 u†(k)g+(k) cos θ(k)2 g−(k)

]
,(2)

where the first (last) two columns correspond to the
eigenfunctions of conduction (valence) bands. We have

parametrized S4 with a polar angle θ(k) and a four-
component unit vector n̂µ, with µ = 1, 2, 3, 4, such that

cos[θ(k)] = N5(k)
|N(k)| , and n̂µ =

Nµ(k)
|N(k)| sin[θ(k)] . The SU(2)

matrix u(k) = n̂4(k)σ0 + in̂j(k)σj describes the hy-
bridization matrix elements between two orbitals, while
two SU(2) matrices g±(k) describe gauge freedom in
selecting the eigenfunctions for conduction and valence
bands, respectively. From U(k) one finds the following
intra-band SU(2) connections

A+(k) = sin2 θ

2
g†+[−iu∇u†]g+ − ig†+∇g+,

A−(k) = sin2 θ

2
g†−[−iu†∇u]g− − ig†−∇g−, (3)

for the conduction and valence bands, respectively. For
notational compactness, we have suppressed the explicit
k-dependence of θ, u, and g±.

The C4 symmetry requires C4Ĥ(k)C†4 = Ĥ(k′), which
implements the constraint [U†(k′)C4U(k),Γ5] = 0, with
the rotated wave vector k′ = (−ky, kx, kz). For the or-
bital basis, C4 = eiθpσ3 ⊕ eiθqσ3 , with θp = π

4 (2p + 1),
θq = π

4 (2q + 1), and p = 2 mod 4 and q = 0 mod 4,
and the hybridization matrix u transforms as u(k′) =
eiθpσ3u(k)e−iθqσ3 . In the band basis, the transformed
rotation operator C′4(k) ≡ U†(k′)C4U(k) becomes

C′4(k) =
[
g†+(k′)eiθpσ3g+(k)

]
⊕
[
g†−(k′)eiθqσ3g−(k)

]
,

(4)

and the gauge choices g±(k) = σ0 and g±(k) = eiα±(k)σ3 ,
keep the spin quantization axes unaffected.

Any general choice of gauge specify a pair of local spin
quantization axes m̂±(k), according to g†±(k)σ3g±(k) =
m̂±(k) · σ. Once g±(k) are identified, U(k) only
exhibits residual U(1) × U(1) gauge freedom, corre-
sponding to the spin rotations about m̂±(k), i.e.,
g±(k) → g±(k) exp [iϕ±(k)m̂±(k) · σ]. Consequently,
the gauge group of intra-band Berry connection is given
by Spin(4)/[U(1) × U(1)], with the second homotopy
class

π2

(
Spin(4)

U(1)× U(1)

)
= π1(U(1)× U(1)) = Z× Z. (5)

Hence, the topology of n-fold planes and the Dirac points
are governed by a pair of integer invariants, and the Dirac
points can be identified as non-Abelian monopoles.

The Abelian projected Berry connections can be
obtained as Ā±(k) = 1

2Tr[A±(k)m̂±(k) · σ] =
1
2Tr[A±(k)g†±(k)σ3g±(k)], leading to

Ā+(k) =
1

2
sin2 θ

2
Tr[−iu∇u†σ3] +

i

2
Tr[g†+∇g+σ3],

Ā−(k) =
1

2
sin2 θ

2
Tr[−iu†∇uσ3] +

i

2
Tr[g†− ∇g−σ3].

(6)
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FIG. 1: Phase diagram and bulk topology of DSM models. (a) Gapless topological phases (DSM), interpolate
between a trivial/normal insulator (NI) and a topological insulator (TI), and topologically distinct phases are
separated by quantum critical points (blue dots). (b) and (c): For all topologically non-trivial 4-fold planes, the
three-component, unit vector n̂12(n̂34), defined by Eq. (10) displays skyrmion texture with winding number −1(0).
(d) The relative Chern number or the quantized flux of F̄ 12

xy (k) of Dirac semimetals for ∆ = 2. (e) The vector plots

of dipole configuration for Abelian projected magnetic fields B12
i (k) = 1

2εijlF̄
12
jl (k). The momentum components are

in units of π. The Dirac points act as a pair of unit-strength, SO(5) monopole and anti-monopole, where CR,12
jumps by ±1. (f) The average value of the relative Chern number 〈CR,12〉 per xy plane, as a function of ∆.

Consequently, the gauge-invariant, quantized Berry flux
can be determined from the Abelian field strength tensors
(or Berry curvatures) F̄ij,±(k) = ∂iĀj,±(k)− ∂jĀi,±(k).
For all smooth gauge transformations, such that the
spin quantization axes are topologically trivial, mean-
ing the gauge-fixing operators m̂±(k) · σ do not corre-
spond to fictitious two-band models of Chern insulators,
i/2Tr[g†±∇g±σ3] terms cannot contribute to the quan-
tized flux of F̄ij,±(k) or the relative Chern numbers for
4-fold planes, defined as

CR,±(kz) =
1

2π

∫
T 2

dkxdky F̄xy,±(k). (7)

Quantized Berry flux : Next, we perform explicit ana-
lytical calculations of Berry flux with the global gauge
choice g±(k) = σ0, corresponding to the spin quan-

tization axes m̂±(k) = (0, 0, 1). It is convenient to
define symmetric and anti-symmetric combinations of
Berry curvatures as F̄ 12

ij = (F̄ij,+ + F̄ij,−)/2, and F̄ 34
ij =

(F̄ij,+ − F̄ij,−)/2. These curvatures will be associated
with the diagonal, Cartan generators of SO(5) group,
namely Γ12 = τ0 ⊗ σ3 and Γ34 = τ3 ⊗ σ3, and can be ele-
gantly written as F̄ abij = sin(θab)[∂iθab∂jφab−∂jθab∂iφab],
where we have introduced two sets of spherical polar an-
gles (θ12(k), φ12(k)) and (θ34(k), φ34(k)), such that

tan[φab(k)] =
Nb(k)

Na(k)
, (8)

cos[θab(k)] = 1− [N2
a (k) +N2

b (k)]

|N(k)|[|N(k)|+N5(k)]
. (9)

The quantized flux of F̄ 12
ij and F̄ 34

ij can only exist if BZ
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FIG. 2: Non-perturbative signatures of quantum spin
Hall effect for topologically non-trivial planes of Dirac
semimetals. (a) Local density of states at the location
of an electromagnetic flux tube, as a function of energy
E (measured in units of hopping parameter tp) and the
strength of flux φ, and φ0 = hc/e is the flux quantum.
(b) The number of states vs. energy eigenvalues for
φ = φ0/2, showing the higher-order topological
insulators, described by the generic planes of Dirac
semimetals support two-fold degenerate, zero-energy
states.

two-torus can wrap around unit two spheres, defined by

n̂ab = (sin θab cosφab, sin θab sinφab, cos θab). (10)

Notice that Φ12
xy(kz) = 2πCR,12(kz) and Φ34

xy(kz) =

2πCR,34(kz) describe the flux of Abelian fields F̄ 12 and
F̄ 34, respectively.

For all topologically non-trivial 4-fold planes of C4-
symmetric DSMs described by Eq. (1), only θ12 inter-
polates between 0 and π, leading to the skyrmion con-
figuration for the unit vector n̂12, as shown in Fig. 1(b).
In contrast to this, θ34 does not interpolate between 0
and π, and the corresponding unit vector n̂34 is topolog-
ically trivial, as shown in Fig. 1(c). The quantization of
the relative Chern numbers, and their discontinuities at
the Dirac points are shown in Fig. 1(d). The monopole

numbers for the Dirac points at k = (0, 0,±kD,j) are de-
termined by N12(±kD,j) = limε→0[CR,12(kz = ±kD,j +
ε) − CR,12(kz = ±kD,j − ε)] = ±1, and N34(±kD,j) =
0. In Fig. 1(e), we illustrate the structure of Abelian
projected magnetic fields B12

i (k) = 1
2εijlF̄

12
jl (k), which

support dipole configuration. Using the kz-dependent
relative Chern numbers, we can also define the aver-
age relative Chern numbers per xy plane 〈CR,ab〉(∆) =
1
2π

∫ π
−π dkz CR,ab(kz), which is shown in Fig. 1(f). We

note that the stacked BHZ model with td,1 = td,2 = 0, the
stacked HOTI with td,2 = 0[35], and the stacked HOTI
with td,1 = 0 support identical quantized flux of F̄ 12

jl (k).
Hence, the relative Chern number acts as a topologi-
cal order parameter for various phases, controlling the
strength of generalized QSH effect, which can be seen in
the following manner.

Generalized QSH effect : Refs. 40–43 have identified
spin-charge separation as the non-perturbative signature
of QSH, which can survive as a genuine topological re-
sponse even in the absence of U(1) spin conservation law.
For the BHZ model (td,1/2 = 0) and closely related Z2

FOTI, supporting gapless edge modes, it was shown that
an electromagnetic π flux tube binds two-fold degener-
ate, zero-energy, mid-gap states. When both states are
occupied (empty), the Kramers-singlet, ground state car-
ries charge +e (-e). In contrast to this, the half-filling of
zero-modes corresponds to Kramers-doublet with charge
e = 0.

To demonstrate spin-charge separation for C4-
symmetric HOTI, we have computed the local density
of states in the presence of an electromagnetic flux tube,
oriented along the z-axis, for a system size 21 × 21, un-
der periodic boundary condition. The local density of
states at the location of flux tube is shown in Fig. 2(a) as
a function of energy and the strength of flux φ. The
calculations were performed with hopping parameters
ts = tp = td,1 = td,2, kz = π/2, and ∆ = 1.5. The
low-energy states for φ = φ0/2 i.e., π-flux are shown
in Fig. 2(b), providing clear evidence for the existence
of two-fold degenerate, mid gap states at zero-energy.
All topologically non-trivial planes of DSMs can support
such mid-gap states (which may or may not be at zero
energy), and their total number corresponds to ∆kD/π.
Therefore, the relative Chern number provides a unified
theoretical framework for describing generalized QSH ef-
fect of Kramers-degenerate FOTI and HOTI, irrespec-
tive of the presence or absence of gapless edge-modes and
corner-localized states.
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