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An Amelioration for the Sign Problem: Adiabatic Quantum Monte Carlo
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We introduce the adiabatic quantum Monte Carlo (AQMC) method, where we gradually crank up the in-
teraction strength, as an amelioration of the sign problem. It is motivated by the adiabatic theorem and will
approach the true ground-state if the evolution time is long enough. We demonstrate that the AQMC enhances
the average sign exponentially such that low enough temperatures can be accessed and ground-state properties
probed. It is a controlled approximation that satisfies the variational theorem and provides an upper bound for
the ground-state energy. We first benchmark the AQMC vis-a-vis the undoped Hubbard model on the square
lattice which is known to be sign-problem-free within the conventional quantum Monte Carlo formalism. Next,
we test the AQMC against the density-matrix-renormalization-group approach for the doped four-leg ladder
Hubbard model and demonstrate its remarkable accuracy. As a nontrivial example, we apply our method to the
Hubbard model at p = 1/8 doping for a 16 x 8 system and discuss its ground-state properties. We finally utilize
our method and demonstrate the emergence of U(1)2 ~ SU(2): topological order in a strongly correlated

Chern insulator.

Introduction.— Quantum Monte Carlo (QMC) is one of the
most powerful tools in computational physics [1H6]. It maps
an interacting problem into an ensemble over infinitely many
non-interacting problems through the Hubbard-Stratonovich
(HS) transformations [7]]. Every space-time realization of the
HS fields defines a path integral which can be evaluated ex-
actly. For fermionic models, it usually amounts to comput-
ing a determinant. The Metropolis-Hastings algorithm is then
employed to sample the HS fields according to their weights,
namely the corresponding path integrals [8} 9]]. These weights
are in general not positive definite and their signs can fluctu-
ate strongly. It has been shown that for a system with volume
V and at temperature 7" (sign) o< exp (—fV/T), where f
is a model-dependent constant with units of free energy den-
sity [10]]. Furthermore, the number of samplings required to
achieve a desired accuracy scales with the average sign (of the
weights) as 1/(sign)?. Therefore, except for a restricted class
of models which are guaranteed to have positive weights [11-
23], the sign problem limits the applicability of the QMC ap-
proach to high temperatures and small systems [[10, [24].
Since the sign problem is NP-hard [10] and does not have
a general solution, it can be at best alleviated [25H29]. In
this letter, we introduce the adiabatic quantum Monte Carlo
(AQMC) algorithm as a novel tool to mitigate the sign prob-
lem and boost the average sign exponentially. In this formal-
ism, we start with a trial density matrix and evolve it using
a time-dependent Hamiltonian with a gradually increasing in-
teraction strength. The adiabatic theorem guarantees that the
evolved density matrix will approach the true ground-state
provided the evolution time is long enough [30H33]]. The main
observation behind our method is that the average interaction
strength is lowered in this method compared to the conven-
tional QMC. It is empirically known that the aforementioned
constant f is linearly proportional to the (average) interaction
strength. Accordingly, the average sign will improve expo-
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nentially in the AQMC approach.

The idea of adiabaticity can be applied to all different types
of QMC, e.g., determinant QMC (DQMC) [8, 9], continu-
ous time QMC [34}[35]], constrained-path QMC [36], stochas-
tic series expansions [37], etc. Furthermore, it is extremely
straightforward to implement the AQMC by minimally mod-
ifying the available QMC codes. In the supplemental mate-
rial (SM), we have provided a simple implementation of the
AQMC algorithm in MATLAB which can be used to verify or
extend our results.

Algorithm.— To elaborate on the details of the AQMC, let
us study the nearest neighbor Hubbard model on the square
lattice with the following Hamiltonian:
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where (ij) denotes the nearest neighbor sites, ¢  the annihi-
lation operator of a spin o electron at site ¢, and 7; , = élT oCio
is the associated number operator. Throughout this letter,
we choose t; = 1. The above model is proven to be sign-
problem-free at half filling (1« = 0) on bipartite lattices due to
its time reversal (TR) and particle-hole (PH) symmetries [38].
However, finite doping |u| > 0 breaks the PH symmetry
and introduces sign problem [39]. Motivated by the adiabatic
theorem, we consider the following time-dependent auxiliary
Hamiltonian:
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and a trial (initial) wave-function |¥r) that has a non-
vanishing overlap with the true ground-state of Hys, |g),. The
adiabatic theorem states that the following relation holds pro-
vided Hy ;) has a finite gap throughout the evolution (which
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is always true for finite discrete systems), % (7) is a slowly
varying function and lim, _, 3/ % (1) = U:
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where, 7 stands for the (imaginary) time ordering. Since the
total electron number commutes with Hy, independent of %,
1/ (which enforces the electron density and is different from
() can be time-independent. It is straightforward to refor-
mulate the above relation using the density matrix formalism.
Defining pr = |g); (9|, we have:
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where, % (1) = % (3/2 — 7), and pr is a trial density ma-
trix (where at least one of its nontrivial eigenstates has a non-
vanishing overlap with |g),,). Obviously, a valid choice is
pr =1

The next step is to discretize the (imaginary) time axis and
split the evolution time, §/2 into N steps, which leads to the
following approximation of Eq.
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in which A7 = %, and % = % (IAT). After discretiza-
tion, we employ the second-order Trotter-Suzuki decomposi-

tion to rewrite the exponential factors as:
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where H[yl = aZ/l Zi (’fLin — %) (ﬁu, — %), and HK repre-
sents the quadratic part of Eqs. [[fand 2} We then apply the
Hirsch-Hubbard-Stratonovich transformation [7] to the Hub-
bard interaction after which:
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where cosh (\;) = e27%/2, The remaining steps are exactly
identical to the regular DQMC [40]].

In this letter, we make two different choices for the trial
density matrix: (I) pr = 1, and (Il) pr = e P7Hx e, a
free fermion thermal ensemble at temperature 1/Sr. Further-
more, we consider a bounded linear time dependence for the
instantaneous onsite couplings: % (7) = min (U, @/max%).
The convergence criteria for the AQMC is the flattening and
convergence of energy and other desired observables against
increasing /3 further.

Unlike a number of other powerful tools designed to mit-
igate the sign problem, e.g., constrained-path QMC [41]],
AQMC satisfies the variational theorem and therefore pro-
vides an upper bound for the ground-state energy. It is thus
a controlled approximation in the sense that increasing the
evolution/projection time, or optimizing the parameters of the
trial density matrix will increase the accuracy of the method
and will bring us closer to the true ground-state while never
crossing it. Moreover, for symmetry preserving trial density

matrices, AQMC is an unbiased method and respects the er-
godicity of the problem.

Benchmarking AQMC.— In the SM, we have benchmarked
the AQMC algorithm by studying two cases with known exact
results. We first compared its performance and accuracy with
the regular DQMC for the Hubbard model on the square lat-
tice at half filling, which is sign problem free, for a 16 x 2
square lattice subject to U = 4. As Fig. S6 of the SM
shows, the AQMC recovers the exact results for sufficiently
long evolution times (/3). To further validate our method, we
then considered the doped Hubbard model in the SM which
is known to suffer from the sign problem. There, we stud-
ied a 16 x 4 square lattice on a cylinder, for U = 4 and
at p = 1/8 doping . Fortunately, an accurate estimate of
the ground-state energy for this problem is available from the
DMRG approach. [42]. Again, our AQMC approach yields
exact results for 8 Z 10 where the energy (per site) converges
to £ = —1.0182 4 0.0003 (see Fig. S7). Besides these two
cases, in the SM, we have shown the superiority of our ap-
proach over the DQMC for other fillings, U values, lattice
geometries and system sizes.

Results.— In this section, with the help of AQMC, we study
two different strongly interacting models: (I) p = 1/8 doped
Hubbard model on a periodic 16 x 8 square lattice and demon-
strate the absence of superconductivity in the pure Hubbard
model (# = 0). (II) A highly interacting spin degenerate
Chern insulator where we prove an emergent topological or-
der identical to that of the bosonic 1/2 Laughlin state.

I.U = 4 and U = 8 Hubbard model at 1/8 doping on
a periodic 16 x 8 system.— This filling has been the sub-
ject of intense research in the past few decades. There are
numerous studies suggesting a plethora of various competing
phases for the Hubbard model at p = 1/8 doping level with
close energies including the d-wave superconductivity, and
stripe order phases [42H53]. Our method can conveniently
handle the system size and the boundary conditions consid-
ered here. Moreover, due to its enhanced average sign we can
achieve the ground-state properties. This can be verified from
Fig. [Ip, which indicates that the average energy for U = 4
nearly plateaus around E;, = —1.0305 & 0.0005. The regular
DQMC is obviously unable to reach beyond 5 = 5.4 due to
its appalling sign problem (see Fig. [Th). On the other hand,
DMRG is inapplicable for this system size and geometry. The
torus boundary conditions aside, IV, = 8 requires gigantic
bond dimensions for the convergence (as large as 10°) which
in currently unaffordable even on the best available computa-
tional facilities.

Our spin-spin correlation function clearly points towards
the stripe order formation. As Fig. [t shows, we evidence
a 7 phase shift in the correlations after |Az| = 4. This
correlation function is consistent with a magnetization of the
form (S, (z,y)) = mcos (Quz + Quy), where (Q4, Qy) =
(%, 1) 7. We have also plotted the superconducting (pair-pair)
correlation function P, (r) = (A, (i)T A, (i+r)) (averaged
over all possible i’s), where A, (i) = & 1¢i44. — G Givan
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FIG. 1: (a)-(b) Comparing the average sign and energy of the
regular DQMC and those of the AQMC (81 = 20) against 3
for a 16 x 8 periodic system subject to U = 4 Hubbard
interaction at p = 1/8 doping. (c)-(d) Magnetic and
superconducting correlation functions along the = axis
obtained via AQMC with 5 = 12, and 31 = 20 for the

16 x 8 sample at p = 1/8 and U = 4. The blue plots are in
normal-normal scale and depict Green’s functions and the red
ones are in normal-log scale and represent the absolute value
of the corresponding Green’s functions. The spin-spin
correlation function suggests a stripe order. In contrast, the
pair-pair correlation function is relatively much smaller at
long distances suggesting the absence of long-range
superconducting order.

From the log-normal plots, it is clear that P, is substantially
more suppressed than G at long distances. Thus, we con-
clude that the ground-state is not a superconductor [40]. This
is consistent with the growing agreement that for the pure
Hubbard model (¢ = 0), the stripe order wins the competi-
tion and the superconductivity is absent at this filling [54]].

We now apply the AQMC to U = 8. As Fig. 2]implies, the
AQMC outperforms the regular DQMC and achieves lower
energies. Moreover, when we assume no ordering in pr, and
start with a free Fermi surface as our trial (initial) state, the
energy versus /3 curve does not converge for (sign) > 0.1.
The lowest energy we obtain with this initial state is £ =
—0.755 4 0.002. For this state, similar to U = 4, the correla-
tion functions point toward the stripe order phase. However,
by modifying pr to reflect the observed ordering (which we
refer to as pr), the convergence to the true ground-state can
be achieved (with E = —0.759 + 0.002).

I1. Correlated Chern insulators.—As our second nontrivial
model Hamiltonian, we focus on a spin-degenerate staggered-
flux Chern insulator [55]] with strong onsite Hubbard attrac-
tion (U = —6) between electrons with opposite spins [40].
Here, the band-structure for spin up and down electrons con-
tains two nearly flat bands with Chern number C' = +1 for
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FIG. 2: AQMC U=8 results for an 16 x 8 system at p = 1/8
doping. pr denotes the free Fermi surface trial density
matrix, and p7- the optimized trial state with non-vanishing
stripe order parameters. (a)-(b) Comparing the average sign
and energy (versus /3) of the AQMC with that of the DQMC
methods. The AQMC can reach lower temperatures (/3°s) and
yields lower energies. (c) The spin-spin and pair-pair
correlation functions achieved via AQMC with p7 (blue) and
P (orange) trial states. In both cases, the pair-pair
correlation functions decay considerably faster at long
distances, implying a non-superconducting state. Although
p7 corresponds to a slightly lower energy state than pr, they
both consistently indicate the stripe order and belong to the
same phase.

the valence and conduction bands, respectively. The system
is at half filling, thus the valence band is fully occupied at
U = 0. This model has a severe sign problem due to the lack
of time-reversal symmetry [38} 140]. The fate of this model is
not fully settled yet [56162] although some evidences in favor
of topological order have been found. There are several possi-
ble ground-states for this model for strongly interacting case
including an s-wave superconductors [59, |62]], a charge/spin
density wave [61], and a nontrivial state with topological or-
der similar to that of v = 1/2 Laughline state [56458]]. In the
latter phase, the fundamental degrees of freedom are charge
g = 2e doublons (dr = c¢¢ 1cr,)), thus all spin-carrying op-
erators such as electrons are confined [40]. Furthermore, the
ground-state is two-fold degenerate on torus geometry, hosts
non-trivial chiral edge states described by a SU(2); = U(1)2
conformal field theory (CFT), and contains excitations with
fractional charge (g/2) and fractional statistics (7/2) [56].
Our results below, exclude the former two candidates and sup-
ports the topological order. To carefully uncover the nature of
the ground-state, we studied systems as large as 32 x 12 which
only thanks to the AQMC became achievable.

We first exclude the possibility of s-wave superconductiv-
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FIG. 3: The results of AQMC for a correlated spinful Chern
insulator (U = —6). The system size for each plot is
indicated. (a) The doublon-doublon, spin-spin, and
density-density correlation functions die off exponentially in
the bulk. The corresponding decay lengths are all less than a
unit cell. (b) The doublon-doublon correlators decay
algebraically as 1/r2"4 at the edge of the system

(hq =~ 0.95), for an edge created along the & + ¢ direction.
We obtain a nearly identical profile for the density-density
correlation function consistent with an emergent SU (2) edge
symmetry. (c) Edge spin-spin correlators decay exponentially
at long distances (with an enlarged decay length around 4
unit cells). (d) The many body Berry flux is nearly uniform
in the entire phase space and its integral, the Berry phase, is
fractional and equal to 0.987 in agreement with the
theoretical predictions for a v = 1/2 Laughline state. (e) For
ady =& =hc /2e, the total accumulated charge (relative
to the background charge) equals 0.502 (in units of 2e), while
in (f) the accumulated spin in negligible (s ot = 0.02) for
®; = —®| = he/2e. Note that only the left half space is
shown and fluxes are inserted around the center.

ity and CDW order by studying the bulk pair-pair, density-
density, and spin-spin correlation functions. As Fig. [3p sug-
gests, all correlation functions decay exponentially in the bulk
implying the absence of any symmetry breaking long range
order. Next, we study the previously mentioned two-point
correlators at the edge. For U(1); = SU(2); CFT, we ex-

pect the density-density and pair-pair correlation functions
to follow the same profile and both decay algebraically with
hg = h,, = 1 conformal dimensions, consistent with our re-
sults (see Fig. [Bb). On the other hand, the topological or-
der requires the spin degrees of freedom to be gapped even at
the edge [40] and as a result its correlators must decay expo-
nentially everywhere, consistent with our results in Fig. 3.
Another non-trivial fingerprint of the 1/2 Laughline state is
its fractional many body Chern number (Cyp = 1/2) [53].
The computation of Cyip involves applying twisted boundary
conditions along x and y directions, and evaluating the over-
lap between many body wavefunctions with different twist
angles [63]]. As a result, similar to the single particle calcu-
lations, we can define the Berry curvature whose integral over
the entire phase space determines the many body Chern num-
ber. In Fig. Bd we plot the Berry flux density which amounts
to total Berry phase 05 ~ 7. Hence Cyjp = g—ﬁ ~1/2.
Finally, theoretical considerations dictate that a quantum
flux of doublons, i.e., ® = he/q = he/2e will trap a nontriv-
ial anyon excitation (known as semions in the U(1)s phase)
with charge ¢/2 = e bound to the flux location. In terms
of the underlying microscopic degrees of freedom i.e., elec-
trons, this translates into three different choices: (a) @4 (r) =
®, (r) = hc/2e, ie., both electrons couple to the inserted
fluxes symmetrically.(b) &+ = 2® = hc/e, and & = 0. (c)
®, = 20 = hc/e, and &4+ = 0. In the U(1), topological
order spin degrees of freedom are gapped. Consequently, all
the above three choices will lead to the same spinless charge
e excitations, while in the non-interacting model, (a) is unac-
ceptable since the fluxes are quantized in unites of hc/e, (b)
will excite a spin up electron and (c) excites a spin-down elec-
tron. Therefore, the fractional excitations of U (1) topolog-
ical state (semions) are quite distinct from spinful electrons.
Instead, they are spinless fractionalized doublons with charge
q/2 = e. From the above discussion, we can conclude that
in U(1)2 topological order: (a) &1 = ®; = hc/2e excites
a semion with charge ¢/2 = e. (b) &4 = —®| = hc/2e
is a trivial spinless and charge neutral excitation. Now, let
us employ these two diagnostics. In Fig. 3, we considered
@, (r) = @ (r) = hce/2e flux insertions. As we see, the total
excess charge is quantized at ¢/2 = e and localized around
the inserted flux. More importantly, in Fig. [3f, we consid-
ered &4 (r) = —®, (r) = hc/2e flux insertion. We observe
that this corresponds to a neutral excitation with a negligible
accumulated spin, consistent with theory.
Discussion.—So far, we considered the simplest form of the
AQMC algorithm. Our trial density matrix was simply related
to the hopping Hamiltonian as pr = e #7Hx_ We can in
principle consider more general choices for pr (p%.), and re-
place Hy by a variational Hj with variational inputs, e.g.,
order parameters of relevant symmetry breaking phases and
optimize the ground-state energy with respect to them. An-
other direction to improve AQMC is to consider an interact-
ing trial density matrix by utilizing the variational QMC al-
gorithm [26]]. In this approach, we can reach the true ground-
state with shorter evolutions. Finally, the profile of % (1) can



be treated as a variational function. Although we applied the
AQMC to the Hubbard model within the DQMC framework,
it is not limited to them. We can apply it to other fermionic
or bosonic model Hamiltonians or implement it within other
QMC frameworks. Among those model Hamiltonians, in par-
ticular we would like to mention the multi-layer Hubbard
model and the partially flat band systems [64-66]. The aver-
age sign is already larger in these models and can be boosted
further using AQMC such that the ground-state properties will
be more accurately captured.
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SUPPLEMENTAL MATERIAL

In this supplemental material (SM), we first delve into the
details of the adiabatic quantum Monte Carlo (AQMC) al-
gorithm. Next, we compare the energy and average sign of
the AQMC with those of the standard determinant quantum
Monte Carlo (DQMC) for various system sizes, interaction
strengths, doping levels, and two different lattice geometries.
In section 3 of this SM, we benchmark the AQMC method
for two cases with known exact results to prove its accuracy
and reliability. In section 4, we present more results for the
Hubbard model at p = 1/8. In section 5, we argue that strong
attractions may lead to the emergence of a v = 1/2 Laughline
state from correlated Chern insulator. At the end, in section 6,
we provide a simple implementation of the determinant and
adiabatic quantum Monte Carlo in a single script in the MAT-
LAB environment.

1. DETAILS OF THE AQMC ALGORITHMS

Here we discuss the implementation of the AQMC algo-
rithm in more detail. It involves very similar computational
steps to a regular determinant quantum Monte Carlo (DQMC).

As it is discussed in the main text, the following expression
considered as an approximation to the true density matrix (and
becomes exact in the 8 — oo limit):

~ e_ATH””N .

U A . e_ATH%l pTe_ATH%l L

e—ATHoz/N .

(S
The expectation value of any physical operator (e.g., the
Green’s function) is obtained via the following relation:

Tr(Gpu)
G) = ———"=. (S2)
= )
After performing the Hubbard-Stratonovich (HS) transfor-
mation, it can be shown that the Green’s function for spin o
electrons can be written as

GIW, G7sign(Ws
<Ga> — Zs S S — < s.SIgn( )>’ (SS)

225 Ws (sign(Ws))
where the expectation values over the Hubbard-Stratonovich
field can be computed using Metropolis-Hastings sampling
algorithm with the acceptance probability of P(s — §) =

mj ,1) and GZ and W are given by

G =(I+Biy,n By BY--B)™', (84

min(

Ws = (det GI) 7! (det GY) 71, (S5)
where the B matrices are defined as

BlU _ e—A-rKe—dig(/\l(rsqy(l))7 (S6)

with
—t  if ¢ and j are nearest neighbors,
Kij=q-u ifi=j, ,  (ST)
0 otherwise
LN -1 ifI <N,
U =<0 ifN<I<N+N', (S8

L{U=(N+N") ifN+N <1
and cosh \; = eA7%/2_ The correlation functions other than
the fermionic Green’s function can be also found using the
Wick’s theorem which is valid for each Monte Carlo sampling
step.

In order to update Monte Carlo configuration and walk
through the Markov chain, we have to check whether the HS
spin at each space-time point would be flipped or not. To per-
form this update, we use the Sherman-Morrison update rule
which is more efficient than calculating the acceptance proba-
bility and the updated Green’s function from scratch and only
requires O(N?2) operations rather than O(N2) which is the
typical computational complexity of matrix manipulations.

Using Sherman-Morrison formulas, one can prove that the
following relations can be applied to find the acceptance ratio
and updated Green’s function with HS spin at time [ = 1 and
site ¢ flipped.

a’ (i) = e N7 1, (S9)
oy = 2 | ewa—an, 0
(i) = ———4— = a’(1)(1 - G3),
det(Go) ™! "
_ a’ (2
o —cs - YW 5 Gelas, s

To update HS spins at time [ = 2, we need to bring the B;
matrix the rightmost place of B3y, n/ -+ B, 1 B% - BY
This can be easily done by the following transformation,

Go(l+1) =BG ()[B7]! (S12)
Since the wrap up operation does not change the determinant,
Sherman-Morrison updating formulas are still allowed. By
repeating this “update-wrap up” process, one can sweep the
imaginary time direction and update all of the HS spins. After
each wrap up, the % gets shifted circularly (see Fig. () and
finally after a complete space-time sweep returns to its initial
form. Hence, physical measurements have to be done once
at the end of each space-time sweep where the %/ profile is
symmetric around L/2 (L = 2N + N’ is the total number of
time steps).

Furthermore, in order to decrease the Trotter error that
arises due to time discretization, one could employ second or-
der Trotter-Suzuki decomposition which is
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FIG. 4: Plots of %, for some different values of [, which
indicates the number of time slice shifts. For the sake of
clarity, here we have considered S = 0 (N’ = 0).

e—ATK—ATV — e_ATTKe_ATVe_ AEK + O(AT?)) (513)

and leads to an error of O(A73) rather than O(A7?).
Since, G is determined in terms of the product of O(é)
B matrices, its Trotter error would be O(A7?) in this
case. More specifically, the second order Trotter error is

O(A;j (2[V,[K,V]] + [K,[K,V]] )) Since the interaction
strength is about several times greater than the hopping ampli-
tude (¢ = 1 in our code), the latter commutator is negligible
compared to the former. Therefore, the Trotter error would be
proportional to % (7)?A73 at a single (imaginary) time step.
Basically, the overall error is obtained by integrating the errors
at single time steps over time. For the AQMC case in which
% (7) is a linear function, this error would be proportional to
O(BU?A7?%/3) which is three times smaller than the error for
the regular DQMC (% (7) = const.).

According to the Eq. (S4) which determines G in terms
of B matrices, it is easy to show that it is sufficient to modify

_ATK ATK

the Green’s function by G5 4 orger = €~ 2 Glstorder® 2 =
ATK

AT .
e~ "5 G7¢”T" in order to use the second order Trotter-
Suzuki decomposition for measuring physical quantities after
each space-time sweep.

2. A SYSTEMATIC COMPARISON BETWEEN AQMC AND
DQMC

Below, in Fig. [5| we have applied the AQMC algorithm to
U =4,6,8 and p = 1/8 for N, = N, = 8 square geome-
try. As we see, the AQMC ameliorates the sign problem for
all three cases, and achieves a lower energy than the standard
DQMC.

In Fig. [6] we have considered the following three different
system sizes: 4 x 4, 8 x 8, and 12 x 12. In every case, we
conclude that it can access a 3 larger the maximum [ avail-
able via the standard DQMC, results an exponentially larger
average sign in the same 3, and above all yields a lower en-
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FIG. 5: Comparing the AQMC with DQMC for U = 4,6, 8
at p = 1/8 doping (< n >= 0.875) for an 8 x 8 square
geometry.

ergy estimate and therefore has a larger overlap with the true
ground-state.

In Fig. we have considered the following three dop-
ing levels: p = 0.2,1/8,0.05 corresponding to < n >=
0.8,0.875,0.95 fillings, respectively. Again, for all fillings
our expectations are fulfilled.

In Fig. [8] we show that the triangular model which has
geometric frustration can be studied by our approach while in
the standard DQMC, it is not possible below 7" = 1/3 (beyond
f=3).

3. BENCHMARKING AQMC

In this section, we benchmark the AQMC algorithm by
studying two cases with known exact results. First, let us com-
pare its performance and accuracy with the regular DQMC
for the Hubbard model on the square lattice at half filling.
Since this situation does not suffer from the sign problem, we
can consider arbitrarily low temperatures and achieve the true
ground-state properties within the regular DQMC. To this end,
we consider a two-leg ladder with (N, N,) = (16, 2) dimen-
sions where electrons are coupled through U = 4. We define
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FIG. 6: Comparing the AQMC with DQMC for U = 4 at
p = 1/8 doping for 4 x 4,8 x 8, and 12 x 12 size.

the average energy per site as

E:i Uzmm_tlz oGa) | ®

(ij),o

where N, = N, N, denotes the number of sites. In Fig. Ep,
we have plotted the average energy at temperature 7' = 1/
for the DQMC for several temperatures down to 7' = 1/40
(in units of ¢1). We then consider the same 3 for the AQMC
first for B = 0 and then for 7 = 20. As Fig.[9clearly in-
dicates, all three methods yield the same ground-state energy
per site for large values of 5 within the statistical error bars.
For DQMC, we obtain £ = —0.7086 £ 0.0003(—0.7091 +
0.0003) at § = 20 (8 = 40). For 8r = 0, we achieve
E = —0.7085 £ 0.0003 for 8 = 20 and —0.7088 =+ 0.0003
for 5 = 40. On the other hand for S = 20, we obtain
E = —0.7092 + 0.0003 for both 5 = 20 and 8 = 40. Indeed,
Br = 20 is closely related to the projector QMC technique
which is known to reach the ground-state for lower values of /3
(compared to the regular DQMC). In Fig.[9] besides the aver-
age energy, we have also compared the single-particle Green’s
function (for spin-up electrons), G (r) = (¢j +Citr,1), SPin-
spin correlation function, Gy (r) = (s;.Si1r). and the pair
distribution function for spin-up electrons, G, ([r| > 0) =
(ni4Nitrq), and for r = AzZ. The results are fairly con-
sistent.

To further validate our method, we now focus on the doped
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FIG. 7: Comparing the AQMC with DQMC for
<n >=0.8,0.875,0.9 at U = 4 for an 8 x 8 square
geometry.
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FIG. 8: Comparing the AQMC with DQMC for the Hubbard
model above the Mott transition (U = 6) at half filling on an
8 x 8 triangular geometry.

Hubbard model which is known to suffer from the sign prob-
lem. Here, we consider (N, N,) = (16,4), U = 4, and
p = 1/8 on a cylinder geometry. Fortunately, an accurate es-
timate of the ground-state energy for this problem is available
from the DMRG approach. In Ref. [42], this and a number
of other related problems have been studied by considering
bond dimensions as large as M = 35000, and their finite
M results are then extrapolated to M = oo (more precisely
the zero truncation error limit) to extract the true ground-
state energy. Although for this particular case, the authors
have only reported their infinite M extrapolation results with
E, = —1.01841 for the ground-state energy per site, from
their other available extrapolations, we believe that for 16 x 4
system the average truncation error is about 10~° for M =
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FIG. 9: Comparing the AQMC and DQMC for a 16 x 2
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for several values of 3. (b)-(d) Pair-wise comparison for the
Green’s function, spin-spin correlation function and pair
distribution functions along the z direction at 5 = 40.
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FIG. 10: (a)-(c) Comparing the results of AQMC with those
obtained via DQMC and the exact result from DMRG’s
zero-truncation-error extrapolation for a 16 x 4 cylindrical
system at p = 1/8 doping with U = 4. (d) Local electron
density achieved from AQMC with 8 = 18, and S = 20.

35k. Therefore DMRG’s actual estimate at this bond dimen-
sion is indeed approximately ¥ = —1.0175 &+ 0.0005. Note
that such an enormous bond dimension will require weeks
of CPU-time on state-of-the-art supercomputers. In contrast,
we achieved £ = —1.0182 % 0.0003 using the AQMC (for
B =18, Br = 20) within a few hours on a personal computer.

In Fig. [I0h, we have plotted the average sign at a given 3

10

FIG. 11: Various correlation functions along the x axis
obtained via AQMC with 5 = 12, and 7 = 20 for the

16 x 8 sample at p = 1/8 and U = 4: (a) Green’s function of
spin up electrons, (b) Spin-spin correlations function, (c) and
(d) Superconducting (pair-pair) correlation function for x and
y bonds, respectively.

for the regular DQMC, as well as the AQMC for both S =
0, and Br = 20. As promised earlier, the average sign is
significantly higher in the AQMC. In Fig. [IOp, the average
energy as a function of /3 is presented for all three simulations.
Again, we can verify that the AQMC, especially for fr =
20, almost reaches the true ground-state energy (corroborated
via DMRG results extrapolated to M = oo [42]]) within the
statistical error bar of our samplings. On the other hand, due
to the severity of the sign problem, for the regular DQMC,
we could not draw any meaningful conclusion beyond 8 = 7
where (sign) ~ 0.1 and £ ~ —1.007 £0.005. Another useful
plot is the average sign as a function of average energy. In the
AQMC, we can probe ground-state properties before the sign
problem becomes uncontrollable. Finally, we have plotted the
electron density as a function of x which is similar to Fig. 6a
of Ref. [42] (though they have plotted it for a 32 x 4 cylinder).

4. MORE CORRELATION FUNCTIONS FOR 16 x 8
SYSTEM

We here provide more details about the U = 4, 16 x 8
system at p = 1/8 doping level. For the two-point correla-
tions, we have considered 8 = 12, S = 20 with about seven
million spacetime sweeps in total. We have measured the
spin-resolved Green’s function (Gy (r)), spin-spin (G (r))
and also the superconducting (pair-pair) correlation functions
(P (r) and P, (r)). The pair-pair correlations are related
to the following two pairing fields: A, (i) = & 1éi14, —
éi,iéi+i,’? and Ay (l) = éi,Téing,J, — éi’iéiJ’»Q’T. Accord-
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FIG. 12: Various correlation functions along the y axis
obtained via AQMC with 8 = 12, and Sr = 20 for the

16 x 8 sample at p = 1/8 and U = 4: (a) Green’s function of
spin up electrons, (b) Spin-spin correlations function, (c) and
(d) Superconducting (pair-pair) correlation function for  and
y bonds, respectively.

ingly, we define P, (r) = (A, (i)T Ay (i+71)), Py(r) =
(Ay (i)Jr Ay (i+r)). We employ the translation symmetry
and average over all possible i’s. Figs. [1]and [12] summarize
our results.

Our spin-spin correlation function clearly points towards
the stripe order formation. As Fig. shows, we evidence
a 7 phase shift in the correlations after |Az| = 4. While for
|Az| < 4, spins with odd (even) distances along the = axis
(and with identical y’s) have negative (positive) correlations,
we observe the opposite behavior for 4 < |Az| < 8. Another
exotic feature of the correlations is that they are all enhanced
near |Az| = 8, and grow with distance (rather than decay) for
5 < |Az| < 8. In contrast, correlation functions along the y
axis (c.f., Fig.[T2) behave normally and as expected.

5. EMERGENCE OF v = 1/2 LAUGHLINE STATE IN THE
CORRELATED CHERN INSULATORS

Now, we would like to elucidate how the topological order
can emerge from interacting Chern insulators. Our approach
is closely related to the parton construction of fractional quan-
tum Hall states. First, let us recall that the low energy descrip-
tion of a non-interacting Chern insulator is given by a Chern-
Simons gauge theory after integrating out the fermionic de-
grees of freedom. Thus, we have:

‘Ctot = ;CT + ﬁi,

1 e
EU:T,¢ = Eﬁuu}\au,o’aua)\,a - %dﬂ/)\a#,aauA)\,av (9)
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where A is the electron-magnetic (external/probe) gauge field,
and a,, is related to the current of spin-o electrons as follows:

g = %d’“ayam. (10)
The above Chern-Simons theory describes a system with
U(1) x U(1) symmetry, where the first U(1) denotes the
charge sector, and the second one the spin sector. The above
model does not have topological order, meaning that it has
a unique ground-state on the torus geometry (periodic sys-
tem), and contains only trivial (fermionic or bosonic) exci-
tations and does not support any anyon excitation. Now, let
us consider a strong onsite attraction between electrons with
opposite spins. Such a strong attraction will force the den-
sity and current of the two species to become equal at low
temperatures. This constraint can be enforced via imposing
aus (r) = auy(r) = b,. In other words, the interaction
gaps out the spin sector via Higgsing the spin gauge field:
asu (r) = a,q (r)—ay | (r) that can for example be achieved
through adding m2as ,a% term to the effective Lagrangian.
Implementing the a, ¢ (r) = a, | (r) = b, constraint in the
above effective Lagrangian, we arrive at:

2 A 2e VA
Leﬁ‘ = EG'M buayb)\ - %6# bH7UaVA)\,O'7 (11)

The above effective U(1)2 Chern-Simons theory describes
a liquid of charge ¢ = 2e constituents (doublons) with a on-
trivial topological order. Their Hall conductivity is 0,y =

%%, indicating the effective filling fraction (of doublons), v,
equals 1/2. Moreover, the ground-state of the above theory
has a two-fold degeneracy on the torus geometry, and con-
tains only two distinct excitations, namely: trivial (bosnic)
and semionic excitations. Hence, all other excitations (includ-
ing electrons) are confined (i.e., they are highly massive and
absent from the effective low energy description).

In our QMC study of this problem, we adopt the staggered
m-flux model which is a Chern insulator and has the following
tight binding form:

Ho = Z Zak (C:r“,k,aCAvk,U - CL,kJCA,k,g)

o=t k
30 3 (bl woomaes + huc), (12)
=1, k
where
ax = 2ty (cos k, —cos ky), (13)
and

b =t /4 14 ei(k:yfkl.)} T tyeim/A [efikw T eiky]
(14
To achieve the maximum flatness of the band-structure, we
consider ty/t; = v/2 (and t; = 1).
We fill the lower band of the model with spin up and spin
down electrons, respectively to achieve the half filling. Next,
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a6 . . . .
1 v E a we couple electrons via an onsite Hubbard attraction with

-2-AQMC (3 = o0)

37 - AQMC (3=c0) U = —6. Although our model is at half filling and subject
to an attractive interaction, it suffers from the sign problem
due to the lack of time-reversal symmetry (which is required
to guarantee the absence of sign problem in the regular un-
-4 doped Hubbard model). In Fig. [T3] we present the average
sign and energy of this model on an 8 x 8 cylinder.
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FIG. 13: Comparing the AQMC with DQMC for the
correlated Chern insulator model for U = —6 onan 8 x 8
cylinder were we impose a periodic (open) boundary
condition along the = (y) direction. The AQMC yields a
significantly boosted average sign and a slightly lower energy
estimate, which plateaus and must correspond to its true zero
temperature value.

6. MATLAB IMPLEMENTATION OF AQMC

Below, we provide a simple MATLAB implementation of the AQMC as well as DQMC algorithms. For Sp = 0, this is an
efficient and optimized code whose performance and speed are comparable to C++ and Fortran implementations. For S > 0,
to avoid unnecessary programming complications, we break S into Ny = /AT imaginary time steps, instead of a single
imaginary time step (i.e., Ny = 1, A7 = 7). The other choice, namely A7 = S will requires several modifications to the
code, but instead will reduce the CPU time significantly.

To run this code, copy the main script (marked in blue) and every function (marked in red) in separate MATLAB files. Next,
run the main script. In the main script, the user can tune several physical parameters. For example, the onsite Hubbard interaction
strength U, the inverse temperature 3 = 7!, chemical potential , the dimensions of the system along the x () direction, N,
({Vy), and the boundary condition along the = (y) axis can be altered easily. A number of other parameters can be tuned as well.
For example, the (imaginary) time steps A7, 51, %mnax, €tc can be determined by the user. For the regular DQMC, we just need
to set swich_adiabatic=0, and S = 0. For systems with more than about 50 sites, our code automatically employs the delayed
update method (which is based on the Sherman-Morrison-Woodbury identity) instead of the standard Sherman-Morrison update
rule for the Metropolis algorithm. It is significantly faster for large systems.

This code can be easily parallelized by running the Markov chains in parallel as they are entirely independent. This can be
achieved through the parfor command in the func_QMC function, and the user needs to uncomment the parpool() command (or
alternatively uses parpool(nw), where nw denotes the number of workers (CPUs) available on the computer) at the beginning of
the main script.

For the sake of convenience, our code computes the following two-point correlation functions as well: (cj ch7,,), <sz7isz7 j>,
(82,i52,j)» and (n; 415 +), provided swtch_correlation = 1. 7

eIttt eIt AN LITLLITLLILLLLLLILLLILLLILLLLLL9%S

Adiabatic & Determinent Quantum Monte Carlo
% Simple Matlab code for QMC study of 1D & 2D Hubbard model
E Main script

clc;
clear;

close all;
warning ’off’;

% parfor(); % only if parallelization is desired

OMC parameters

U = 4.0; % Hubbard interaction strength

mu i % chemical potential (@ half-filling: mu =0)

n_x # of sites along x direction
% # of sites along y direction

% boundary condition along x: 0 ——> open 1--> periodic
% boundary condition along y: 0 --> open 1--> periodic
inverse temperature: beta = 1/T

n_y =
bnd_x
bnd_y
beta = 4;
dtau = 1/10; % imaginary time steps

dk = 10; % stratification period (default = 10)

n_measurement = 5000; % number of measurement sweeps



n_warmup = round(n_measurement/5); % number of warmup (burn-in) sweeps
n_markov = 6; % number of independent markov chains
% 0 ——> only energy is computed
% 1 -—> 2-point correlations are also computed
swtch_correlation = 1;
% Adiabatic QMC parameters
swtch_adiabatic = 0; % 0--> regular DQMC 1--> adiabatic QMC
beta_trial = 4; % inverse temperature of trial density matrix
u_max = 4; % u(t) will eventually reach u_max (U) at tau = beta/2
if swtch_adiabatic ==

u_max = U;
end

% Hopping amplitudes

t_x = 1; % NN hopping along x axis

t_y = t_x; % NN hopping along y axis

% NNN hopping

hopping = hopping_matrix (t_x,t_y,t_xy,n_x,n_y,bnd_x,bnd_y);

% adding chemical potential term to enforce the desired electron density
hopping = hopping - muxdiag(ones(1l,n_x*n_y));

5 QMC algorithm

tic;

% func_QMC function contains the QMC algorithm’s main steps
[par_func_tmp,correlations_tmp] = func_OMC (swtch_adiabatic,beta_trial,u_max,...

hopping, beta, n_x,n_y,dtau, dk, n_markov, n_warmup, n_measurement, swtch_correlation);
elapsed_time = toc

% Measurements

% working on outputs of func_QMC to generate the desired expectation values

% in expectation_values_computation function

[correlations,measurements] = exp_val (par_func_tmp,correlations_tmp, ...
n_markov,U,mu,n_x,n_y, t_x,t_y,t_xy,bnd_x,bnd_y);

% Plots of two-point correlation functions

if swtch_correlation ==

x_axis = -round(n_x/2) in_x-round(n_x/2); % distance
% spin-spin correlation (z component)
figure(1);

cor = circshift (correlations{4}{1},-round(n_x/2),2);
plot (x_axis, [cor,cor(1l)],’-o’,’LineWidth’,2);
xlabel (“distance’);

ylabel ("G_{s,zz}");

title(’spin-spin correlation (z component)’);

% spin-spin correlation (x component)

figure (2);
corr = circshift (correlations{4}{2},-round(n_x/2),2);
plot (x_axis, [corr,corr(l)],’-d’,’LineWidth’,2);

xlabel (“distance’);
ylabel ("G_{s,xx}");
title(’ spin-spin correlation (x component)’);

% density-density correlation (for spin up electrons)

figure(3);
cor3 = circshift (correlations{4}{3}(1,:),-round(n_x/2),2);
plot (x_axis, [cor3,cor3(1)] ,’-o’,’LineWidth’,2);

xlabel (" distance’);
ylabel('G_{n}’);
title(‘pair distribution function’);

end
$%5%%% % %
$%%%% % %%%% $%5%% $%5%% $%5%% $%5%% %

function hopping = hopping_matrix (t_x,t_y,t_xy,n_x,n_y,bnd_x,bnd_y)

% constructing the matrix of hopping amplitudes for a 2D square lattice
dx = 1;
rx_max = dx; % range of hopping along x

if n_x 1
rx_max = 0;
end
dy = 1;
ry_max dy; % range of hopping along y
if n_y 1
ry_max = 0;
end

% hopping amplitudes from sit i to its nearest and next nearest neighbors
T= -[t_xy t_x  t_xy;

ty 0 t_y;

t_xy tex  t_xyl;

% hopping matrix
hopping = zeros (n_x#n_y);

for i =1 : n_x
for j =1 : n_y
% index of site r = (i,j)
r = (i-1)*n_y + 3;
fOor rx = -rx_max:rx_max
ii =i + rx;
if bnd_x ==

ii = I+mod(ii-1,n_x);



—ry_max:ry_max

j o+ ry;
if bnd_y 1

33 = l+mod(ji-1,n_y);
end
% index of site rr = (ii,3jj)
rr = (ii-l)*n_y + 33;

if 1i>0 && ii <=n_x
if 33 >0 && jj <=n_y
hopping (r, rr) T (rx+dx+1, ry+dy+1);
hopping (rr,r) = hopping(r,rr)’;
end
end

end
end
end
hopping = (hopping + hopping’)/2;

end
$%%%% % % %
$%%%% % % %

function [par_func_tmp,correlations_tmp]=func_QMC (swtch_adiabatic,beta_trial, ...
u_max, hopping, beta, n_x,n_y, dtau, dk, n_markov, n_warmup, n_measurement, swtch_corr)

warning ‘off’;

n_s = n_xsn_y; % total # of sites

n_tau = max(dk,2*round( (betatbeta_trial)/(2xdtau))); % # of time steps
dtau (beta + beta_trial)/n_tau; % time steps

L = round(beta/(2xdtau)); % # of time steps for the evolution period

u_vec = zeros(n_tau,1l);
for 1 = 1l:n_tau
if lsdtau <= beta/2

u_vec(l) = u_maxx(l - swtch_adiabatics(1-1)/L);
elseif lxdtau > (beta/2+beta_trial)
u_vec(l) = u_maxx(l - swtch_adiabaticx (n_tau-1)/L);

end
end
lambda = acosh(exp (u_vecxdtau/2));

% computing expm(-KdT), expm(KdT), expm(-KdT/2), & expm(KdT/2) where K is
% the kinetic term (hopping matrix)

[U0,D0] = eig (hopping);

DO_d = diag (DO);

B = UOxdiag(exp (-dtauxD0_d))«U0’ ;

B_root = UOxdiag (exp (-dtausD0_d/2)) U0’ ;
inv_B = UOxdiag(exp(dtauxD0_d))«U0’;
inv_B_root = UOxdiag(exp(dtauxD0_d/2))+U0";

num_samples_avg = zeros (n_markov,1);
sign_avg = zeros (n_markov,1);
GF_up_avg = cell (n_markov,1);
GF_dn_avg = cell (n_markov,1);
n_up_dn_avg = cell (n_markov,1);
two_point_corr_avg = cell(n_markov,1);

parfor count = 1l:n_markov

% to be used for Green’s function evaluation and space-time wrap

k_vec = zeros(l,n_tau);
k_vec(dk:dk:end) = 1;
k_vec(end) = 1;

% Initalization:

num_samples = 0;
sign_z = 0;

two_point_corr = cell(1,3);
n_up_dn = 0;

GF_up
GF_dn
form=1:3
two_point_corr{m} = 0 ;
end
% to be used for 2-point correlations
range_corr_x = l:n_x;
range_corr_y = l:n_y;

Ed

random initialization Hubbard-Stratonovich field config.

s = (2xrandi([0,1],n_tau,n_s)-1);

% h_up = lambdaxs, h_dn = -h_up = -lambdaxs

h = diag(lambda) *s;

% computing corresponding Green’s functions for up and down spin electrons
% computing B_s (1) := exp(-KdT)exp(-h_s (1)) for all 1 = 1:n_T

B_up_cell = cluster(B,inv_B,h,n_tau);

B_dn_cell = cluster (B,inv_B,-h,n_tau);

$ Using QR decomposition to stabilize B_L ... B_1

% to compute G = inv(Id + B_L ... B_1) for B = B_up or B_dn

[G_up,G_dn, log_det_G,sign_det_G] = initial_eval(B_up_cell,B_dn_cell,k_vec,n_tau);



% the sign of various HS field configs is needed for computing
% expectation values
sign_7_accumulated = sign_det_G;

% space-time sweeps:
for i_swp = 1:(n_warmup+n_measurement)
for 1 = 1: n_tau
% Green’s function update upon Hubbard-Stratonovich fields flip
% for large systems delayed update (Sherman-Morrison-Woodbury) is faster
than Sherman-Morrison update method
if n_s > 50
delayed_period = 32;
[G_up,G_dn, h,sign_2Z_accumulated tmp] = delayed update (G_up,G_dn,h,n_s,delayed _period);

o

else
[G_up, G_dn, h, sign_7_accumulated_tmp] = Sher_Mor (G_up,G_dn, h,n_s);
end
% sign_current = sign_prevssign_tmp
sign_Z_accumulated = sign_Z_accumulatedssign_Z_accumulated_tmp;

o

space time wrap up by one time-step
= circshift (h,-1,1);
_vec = circshift (k_vec,-1,2);

~ =

if k_vec(l) 1
% reevaluating the Green’s function from scratch
B_up_cell = cluster(B,inv_B,h,n_tau);
B_dn_cell = cluster(B,inv_B,-h,n_tau);
[G_up,G_dn,~, "] = initial_eval (B_up_cell,B_dn_cell,k_vec,n_tau);

else
% spacetime wrapping using already existing Green’s functions
h_tmp = h(n_tau,:);

% spin up

B_up_prev = Bxdiag (exp (h_tmp));
inv_B_up_prev = diag(exp (-h_tmp))+inv_B;
G_up = B_up_prev+G_up*inv_B_up_prev;

% spin dn
B_dn_prev = Bxdiag(exp(-h_tmp));
inv_B_dn_prev = diag(exp (h_tmp))«inv_B;
G_dn = B_dn_prev*G_dnxinv_B_dn_prev;

end

end

% Measurements for the current HS field config.

if i_swp > n_warmup
num_samples = num_samples + 1;

sign_Z = sign_Z + sign_Z%_accumulated;

% inv_B_root*G_up+B_root & inv_B_root*G_dnsB_root
% instead of G_up and G_dn are used to employ the
% 2nd order Trotter-Suzuki decomposition
GF_up_tmp = eye(n_s) - inv_B_root*G_up+B_root;
GF_dn_tmp = eye(n_s) - inv_B_root*G_dnsB_root;

% density profile for the current HS fields
n_up_tmp = diag (GF_up_tmp);
n_dn_tmp = diag (GF_dn_tmp);

% spin and total density for the current HS fields
sz_tmp = (n_up_tmp-n_dn_tmp)/2;
rho_tmp = (n_up_tmp+n_dn_tmp)/2;

% to compute average GF and <n_up n_dn>

GF_up = GF_up + GF_up_tmp*sign_z_accumulated;

GF_dn = GF_dn + GF_dn_tmpssign_z_accumulated;

n_up_dn = n_up_dn + n_up_tmp.*n_dn_tmpsign_7_accumulated;

% two-point correlation functions: spin-spin
% and density-density correlation functions along x axis
% namely: <O (x0,y0)0(x0+x,y0)>
if swtch_corr == 1
corr_tmp = cell(l,3);

corr_0 = cell(1,3);
form=1:3

corr_0{m} = 0;
end
count_tmp = 0;
for ix_1 = range_corr_x

for iy_1 = range_corr_y

r_1 (ix_1-1)#n_y + iy_1; % first coordinate of the correlation function

r_2 = n_y+[(ix_l:n_x) (1l:(ix_1-1))] - n_y + iy_1; % 2nd coordinate of the correlation function

% <sz(r_l)sz(rr_2)> computation

corr_tmp{1l} = (sz_tmp(r_1)+*sz_tmp(r_2)).’- (GF_up_tmp(r_1,r_2).+GF_up_tmp(r_2,r_1).")/4
~(GF_dn_tmp (r_1,r_2) . (GE_dn_tmp(r_2,r_1)).")/4;
corr_tmp{1} (1) = -n_up_tmp(r_1)*n_dn_tmp(r_1)/2 + (rho_tmp(r_1))/2;

% <sx(r_1)sx(r_2)> computation

corr_tmp{2} = -GF_up_tmp (r_1,r 2).*(GF_dn_tmp(r_2,r_1).’)/4 - GF_dn_tmp(r_1,r_2).x(GF_up_tmp(r_2,r_1).")/4;

corr_tmp{2} (1) = —-n_up_tmp(r_1)+n_dn_tmp(r_1)/2 +(rho_tmp(r_1))/2;

% <n_{up} (r_1)n_{up} (r_2)> computation

corr_tmp{3} = n_up_tmp(r_1)+n_up_tmp(r_2).’- (GF_up_tmp(r_1,r_2).*GF_up_tmp(r_2,r_1).");

corr_tmp{3} (1) = 0;

form=1:3

corr_0{m} = corr_0{m} + corr_tmp{m};
end
count_tmp = count_tmp + 1;
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end
end
form=1: 3
corr_0{m} = corr_0{m}/count_tmp;

form=1:3

two_point_corr{m} = two_point_corr{m} + corr_0{m}+sign_z_accumulated;
end
end

end
end
% <0> = <Osign(z)>/<sign(z)>
GF_up_avg{count} = GF_up/sign_z;
GF_dn_avg{count} = GF_dn/sign_2%;
n_up_dn_avg{count} = n_up_dn/sign_z;
for m = 1:3

two_point_corr_avg{count}{m} = two_point_corr{m}/sign_z;
end
num_samples_avg (count) = num_samples;

% average sign of fermion determinants, Z, where
% 2 = 1/(Det (G_up)Det (G_dn)) for a given Hubbard-Stratonvich field
sign_avg(count) = sign_Z/num_samples;

end

% expectation values for each Markov chain is stored in a cell structure
% for final statistical average in a separate function

correlations_tmp = cell(l,4);

correlations_tmp{l} = GF_up_avg;

correlations_tmp{2} = GF_dn_avg;

correlations_tmp{3} n_up_dn_avg;

correlations_tmp{4} = two_point_corr_avg;

% saving average spin and of number of samples related to partition
% function in another cell structure.
par_func_tmp = cell(l,2);

par_func_tmp{1} = num_samples_avg;
par_func_tmp{2} = sign_avg;

end

$%5%%%% %% % 5% % % % % %
$%5%%%% %% % % 5% % 5% % %% %%
function [B,inv_B] = cluster(B_k,inv_B_k,h,n_1)

% Here we compute B_s(l) = exp(-Kdt)exp(-h_s(l)), h_up = -h_dn = h

% We also compute inv(B_s (1)) = exp(h_s(1))exp (Kdt)

h = sparse(h);

B = cell(n_1,1);

inv_B = cell(n_1,1);
for 1 = l:n_1
h_tmp = h(l,:);

B{l} = B_kxdiag (exp (h_tmp));

inv_B{1l} = diag(exp(-h_tmp))~inv_B_k;
end
end
$%%%% % % %
$%5%%%% % % % %
function [G_p,G_m,log_det_G,sign_det_G] = initial_eval (B_up_hat,B_dn_hat,k_vec,n_1)

% Here we use startification & QR decomposition
% to compute the GF from scratch

% spin up:
[G_p, log_det_G_p, sign_det_G_p] = strat (B_up_hat,k_vec,n_1);

% spin down:
[G_m, log_det_G_m,sign_det_G_m] = strat(B_dn_hat,k_vec,n_1);

% log of asb val of det (G_up*G_dn)
log_det_G = log_det_G_p + log_det_G_m;
% sign of abs val of det (G_dn*G_dn)
sign_det_G = sign_det_G_pwsign_det_G_m;

end
£3333%%% $3%3%% 3 3 3 $3%3%% $3%3%% 3
$3533%5%% 33%
function [G,log_det_G,sign_det_G] = strat (B, k_vec,n_l)

% computing Green’s function via G = inv(Id + B_L...B_1) using QR

E3

decomposition for stabilization

% We also compute the sign and (log of ) abs value of GF’s determinant
Q=1;
D =1;
T =1;
i=1;

while i <= n_1

% stratification (i.e. multiplying dk B matrices directly
% (no QR is needed as long as dk is small e.g. dk = 8 or 10))
BO B{i};
i i +1;
while i <= n_l && k_vec(i) <1
BO = B{i}*B0;
i=1i+ 1;
end
c = (B0%Q)*D;

% QR decomposition to multiply c to the accumulated
% product of c (and as a result B matrices) up to the current point
[Q,R] = qr(c);

DO = sparse(diag(R));



inv_D = diag(1./D0);
D diag(D0);
T = (inv_D+R)*T;

end

% Using D, T, and Q we finally compute
% GF with special care (to avoid numerical instability)
D_diag = diag(D);

D_b = max(l,abs(D_diag)).*sign(D_diag);

D_s = min(1,abs (D_diag));

inv_D_b = diag(sparse(l./D_b));
D_s = diag(sparse(D_s));

al = inv_ D _b*(Q.”) + D_s=T;

a2 = inv_D_b;

a3 = (Q.7);

G = (alla2) » a3;

% computing log(det (abs(G))) as well as sign(det(G)) accurately
% and with special care (again to avoid numerical instabilities)
[L1,U1] = lu(al);

log_det_L1 = 0;

sign_det_L1 = sign(det (L1));
log_det_Ul = sum(log(abs (diag(Ul))));
sign_det_Ul = prod(sign(diag(Ul)));
log_det_al = log_det_Ll1 + log_det_Ul;
sign_det_al = sign_det_Llxsign_det_U1;

log_det_a2 = -sum(log(abs(D_b)));
sign_det_a2 = prod(sign(D_b));

log_det_a3 = 0;
sign_det_a3 = sign(det(a3));

sign_det_G = sign_det_alxsign_det_a2+sign_det_a3; % sign of det (G)

log_det_G = -log_det_al+log_det_a2+log_det_a3; % log of abs (det (G))

end

$%5%%%% %% % %% % % % % %
$3%%%%% T%%% SAEEEEEEEEEEEEEEEEEEEEEEEEEEEEE $5%%%%% $5%%%
function [G_up,G_dn,h,sgn_accumulated_tmp] = Sher_Mor (G_up,G_dn,h,n_s)

id = eye(n_s);
sgn_accumulated_tmp = 1;

for i = l:n_s
if h(l,i) "= 0

% ratio of 1/det (G_up)

alpha_up = exp(-2+h(1,i))-1;
r_up = l+alpha_up* (1-G_up(i,i));
% ratio of 1/det(G_dn)

alpha_dn = exp(+2+h(1,i))-1;
r_dn = l+alpha_dn«*(1-G_dn(i,1));

% total ratio

r = r_up+*r_dn;

% Hubbard-Stratonovic field flip acceptance based on Metropolis-Hastings algorithm
% & as a consequence Green’s function update based on the

Sherman-Morrison update formula

£ rand(1) <= abs(r)

e

% spin up GF update:

a_up = (id - G_up);
b_up = G_up;
G_up = G_up - (alpha_up/r_up)=*a_up(:,i)+b_up(i,:);

% spin dn GF update:

a_dn = (id - G_dn);
b_dn = G_dn;
G_dn = G_dn - (alpha_dn/r_dn)*a_dn(:,1)*b_dn(i,:);

% update h of accumulated sign of det

h(l,i) = -h(1,1);
sgn_accumulated_tmp = sgn_accumulated_tmp * sign(r);
end
end
end
end
$3%%%%%% 3 5 5 5 5 5 3 5 3
$%%%% %
function [G_up,G_dn,h,sgn_accumulated_tmp] = delayed update(G_up,G_dn,h,n_s,delayed _period)

% right update
id = eye(n_s);
sgn_accumulated_tmp = 1;

% right update

a_up = zeros(n_s,delayed_period);

b_up = zeros(delayed_period,n_s);
up = diag(G_up);

a_dn = a_up;

b_dn = b_up;

d_dn = diag(G_dn);

k= 1;
for i = lin_s
if h(1,i) "= 0

% ratio of 1/det (G_up)



alpha_up = exp(-2+xh(1,1))-1;
r_up = l+alpha_up+ (1-d_up(i));
% ratio of 1/det (G_dn)
alpha_dn = exp(2+«h(1,i))-1;
r_dn = l+alpha_dn« (1-d_dn(i));

% total ratio

r = r_upsr_dn;

% Hubbard-Stratonic field flip acceptance based on Metropolis-Hasting algorithm

% and as a consequence Green’s function update based on the
% Sherman-Morrison-Woodbury update formula
if rand(l) <= abs(r)

vl = 1:(k-1);

% spin up GF update:

a_up(:,k) = G_up(:,i)-id(:,i) + a_up(:,v1)+b_up(vl,i);
a_up(:,k) = (alpha_up/r_up)*a_up(:, k);
b_up(k,:) = G_up(i,:) + a_up(i,v1)=b_up(vl,:);

dup = d_up + a_up(:,k).xb_up(k,:).";

% spin dn GF update:

a_dn(:,k) = G_dn(:,1i) -id(:,i)+ a_dn(:,vl)*b_dn(vl, i);
a_dn(:,k) = (alpha_dn/r_dn)+a_dn(:,k);
b_dn(k,:) = G_dn(i,:) + a_dn(i,vl)+b_dn(vl,:);

d_dn = d.dn + a_dn(:,k).*b_dn(k,:).’

k = k+l;
h(l,i) = -h(1,i);

sgn_accumulated_tmp = sgn_accumulated_tmp * sign(r);

end

if k == delayed_period+l
G_up = G_up + a_up*b_up;
d_up = diag(G_up);

G_dn = G_dn + a_dnxb_dn;
d_dn = diag(G_dn);

vl = 1:(k-1);
G_up = G_up + a_up(:,vl)+*b_up(vl,:);
G_dn = G_dn + a_dn(:,v1)«*b_dn(vl,:);

end

$%5%%%% % 5% % %% % % % % %

299925233 2593252

function [correlations,measurements] = exp_val (par_func_tmp, ...
correlations_tmp, n_markov,U,mu,n_x,n_y,t_x,t_y,t_xy,bnd_x,bnd_y)

n_s = n_x*n_y; % number of sites

hopping = hopping_matrix(t_x,t_y,t_xy,n_x,n_y,bnd_x,bnd_y);% hopping matrix
% combining results of all Markov chains

GF_up_avg = correlations_tmp{1};

GF_dn_avg = correlations_tmp{2};

n_up_dn_avg = correlations_tmp{3};

two_point_corr_avg = correlations_tmp{4};

sign_avg = par_func_tmp{2};

energy_avg = zeros (n_markov,1);
for count = l:n_markov
% average ground-state E
energy_avg (count,1) = (Ussum(n_up_dn_avg{count})+...
trace (hopping+ (GF_up_avg{count }+GF_dn_avg{count})))/n_s;
end

energy_mean = 0;
sign_mean = 0
GF_up_mean
GF_dn_mean =
n_up_dn_mean 0;
two_point_corr_mean = cell(1,3);
for 1 = 1:3

two_point_corr_mean{l} = 0;
end

for count = l:n_markov
energy_mean = energy_mean + energy_avg(count,1);
sign_mean = sign_mean + abs(sign_avg(count,1));
GF_up_mean = GF_up_mean + GF_up_avg{count};
GF_dn_mean = GF_dn_mean + GF_dn_avg{count};
n_up_dn_mean = n_up_dn_mean + n_up_dn_avg{count};
for 1 = 1:3
two_point_corr_mean{l}=two_point_corr_mean{l}+...
two_point_corr_avg{count}{1};

end

energy_mean = energy_mean/n_markov;
sign_mean = sign_mean/n_markov;
GF_up_mean = GF_up_mean/n_markov;
GF_dn_mean = GF_dn_mean/n_markov;

n_up_mean = diag(GF_up_mean);
n_dn_mean = diag(GF_dn_mean);
n_up_dn_mean = n_up_dn_mean/n_markov;
for 1 = 1:3
two_point_corr_mean{l} = two_point_corr_mean{l}/n_markov;
end
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% saving results in a cell structure
correlations = cell(1,10);

correlations{1}{1} = sign_avg;
correlations{2}{1} = GF_up_mean;
correlations{2} {2} = GF_dn_mean;
correlations{3} = n_up_dn_mean;
correlations{4} = two_point_corr_mean;
correlations{5} = energy_avg;

% average density
n_mean = mean (n_up_mean)+mean (n_dn_mean) ;

% average kinetic energy
kin_energy = energy_mean -Usmean (n_up_dn_mean);

% average Hubbard interaction energy
int_energy = Usmean (n_up_dn_mean);

% normalized statistical error bar of DQMC calculations
err_bar = 10"2+std(energy_avg) /abs (mean (energy_avg));

% most important measurements
fprintf ('measurements=[density, energy, kin_energy, int_energy,err_bar,<sign>]');

measurements=[n_mean, energy_mean, kin_energy, int_energy, err_bar, sign_mean]
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