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Signatures of Ultrafast Reversal of Excitonic Order in Ta;NiSes
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In the presence of electron-phonon coupling, an excitonic insulator harbors two degenerate ground
states described by an Ising-type order parameter. Starting from a microscopic Hamiltonian, we de-
rive the equations of motion for the Ising order parameter in the phonon coupled excitonic insulator
TasNiSes and show that it can be controllably reversed on ultrashort timescales using appropriate
laser pulse sequences. Using a combination of theory and time-resolved optical reflectivity measure-
ments, we report evidence of such order parameter reversal in TasNiSes based on the anomalous
behavior of its coherently excited order-parameter-coupled phonons. Our work expands the field of
ultrafast order parameter control beyond spin and charge ordered materials.

Exploring new pathways to optically switch Ising-type
electronic order parameters is a major theme of current
ultrafast science. In recent years, a variety of out-of-
equilibrium protocols have been developed for rapidly
switching ferromagnetic [1-3], ferrimagnetic [4-6], anti-
ferromagnetic [7-9], and ferroelectric [10-12] order pa-
rameters. However, far less is understood about the
mechanisms for switching more exotic order parameters
that are not of magnetic and charge dipolar type.

A particularly interesting case is the excitonic insula-
tor (EI), a strongly correlated electronic phase realized
through condensation of bound electron-hole pairs [13].
The free energy landscapes of the complex electronic or-
der parameter and the real lattice order parameter of
an EI are typically characterized by a Mexican hat with
continuous U(1) symmetry and a parabola, respectively
[Fig. 1(a)]. However, strong electron-phonon coupling
(EPC) induces a tilting of both the lattice and electronic
potentials [14-18], reducing the U(1) symmetry to a dis-
crete Zs Ising-type symmetry. Like in magnetic or charge
dipole ordered ferroic materials, this leads to two degen-
erate ground states characterized by order parameters of
equal magnitude but opposite phase [Fig. 1(b)].

There is currently no experimental method to switch
nor directly measure the phase of an EI order parame-
ter on ultrashort timescales. An alternative strategy is
to measure the phase of the coupled structural order pa-
rameter. However, existing time-resolved x-ray and elec-
tron diffraction techniques are not phase sensitive. Opti-
cal phase-resolved second harmonic generation measure-
ments [12, 19, 20] have been used to measure the phase of
structural order parameters in noncentrosymmetric fer-
roic materials [21-24], but all known EI candidates are
centrosymmetric [25, 26]. The possible presence of 180°
EI domains further complicates such measurements be-
cause domain averaging would cause overall signal can-
cellation.

In this Letter, we demonstrate via theory and experi-
ment a pathway to optically switch an EI order parameter
and to probe this reversal through a coherent EI order-

parameter-coupled phonon (OPCP). The time evolution
of the coupled EI and structural order parameters fol-
lowing impulsive laser excitation are derived from mod-
eling a prototypical system Ta;NiSes, which we assume
to harbor an EI phase, with an elementary spinless two-
band Hamiltonian. Our simulations reveal that the EI
order parameter is stably reversed above a critical laser
fluence, identifiable indirectly via a saturation of the co-
herent OPCP amplitude. Using time-resolved coherent
phonon spectroscopy measurements, we experimentally
verify this scenario and also demonstrate how switching
can be controlled through the relative timing between
successive laser excitation pulses.

The quasi-one-dimensional (1D) direct band-gap semi-
conductor TasNiSes is reported to undergo an EI transi-
tion at a critical temperature T, = 328 K [26, 27], accom-
panied by a weak orthorhombic-to-monoclinic structural
distortion due to EPC [16]. Impulsive laser excitation be-
low T, has been shown to coherently excite at least five
distinct Raman-active phonons with frequencies near 1,
2, 3, 3.7, and 4 THz. The 1, 2, and 4 THz modes are
sensitive to the EI transition at T, [18, 28-30] and thus
constitute the OPCPs, while the 3 and 3.7 THz modes
are reportedly not coupled to the EI order parameter and
thus serve as a control.

The low energy electronic structure of TasNiSes con-
sists of a conduction band with Ta 5d orbital character
and a valence band with Ni 3d-Se 4p hybridized orbital
character. The EI instability is well captured by a 1D
spinless two-band Hamiltonian with EPC [31-34] [Fig.

1(e)l;

H =" (excror + prvitor) + Y [VeiTeTo;
p i (1)

+wobi i + g(b;T + bi)(eiTvi +vifey)],

where ¢;T, ¢, and v, T, v;, are the fermionic creation and
annihilation operators for conduction and valence band
electrons with momentum £k, respectively, and bt b
are the bosonic creation and annihilation operators for
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FIG. 1: Schematic of the electronic and structural free energy
landscapes (a) without and (b) with EPC. In the latter case,
pulsed excitation can drive the system between two degener-
ate ground states. (c¢) Schematic of the 1D spinless two-band
model. Red (blue) circles on each site ¢ denote Ta 5d con-
duction band (Ni 3d valence band) states. The microscopic
parameters discussed in the main text are defined pictorially.

an OPCP mode of energy wqy at site i. The conduc-
tion and valence band dispersions are given by ¢, =
£+ 2J.sin (ka/2)? and py, = —5 —2J,sin (ka/2)?, re-
spectively, where 2J,. and 2J, are their bandwidths and
A is the band gap [33, 34]. An on-site interband electron-
electron interaction term V drives the excitonic pairing,
and an EPC term g couples the electronic and phononic
subsystems. These microscopic parameters have been ex-
perimentally determined [33, 34].

From Eq.(1), we derive the equations of motion for
the EI and structural order parameters, defined as ®; =
{citv;) and X; = <biT +b;), respectively, in two steps. We
first derive the exact expression for the nonequilibrium
free energy functional of ® and X in the Keldysh path
integral framework, where we include the light excitation
via Peierls substitution. Then we obtain the equations
of motion as the saddle point of the free energy, ignoring
population in the conduction bands, spatial fluctuations
of the order parameter field, and higher-order contribu-
tions O(®%) (see Supplemental Material [35]),

i0,® = [-D(V —iqA)? + m+ U|®]*]® +2¢'X, (2)

2g%w
82X = —(wo? + 220

)X — 2gwo Re(®). (3)
Here D is an effective diffusion coeflicient, ¢ is the elec-
tron charge, A is the light vector potential, ¢’ is the renor-
malized EPC coefficient for the electronic channel, and m

and U are the second- and fourth-order expansion coef-
ficients of the electron-electron interaction term, respec-
tively. These parameters are all functions of J., J,,, A, g,
and V [35]. We further introduce two phenomenological
constants v, and 7,5 to account for damping of electronic
and structural modes due to thermal fluctuation, whose
values can be experimentally determined [35].

We first present a qualitative picture of how order pa-
rameter reversal occurs in our model. In equilibrium
the electronic potential V(®) = im®? + 1U®* + 29/ X @
has either a tilted parabolic (m > 0) or tilted Mexican-
hat (m < 0) form capturing the absence or presence of
exciton condensation. For homogeneous optical excita-
tion, one can ignore spatial derivatives of ®. For pulsed
excitation with infrared light, whose frequency well ex-
ceeds the electronic Higgs-Goldstone [33, 46] and OPCP
mode frequencies, one can also average out the fast os-
cillations of the perturbation and retain only its Gaus-
sian envelope. Under these conditions one can make the
simplification m(t) = —D(V — igA)? + m 2f(t) + m,
where f(t) = aF exp(—‘“na(if)tz). Here o is the tem-
poral width of the Gaussian pulse, « is a positive con-
stant scaling factor that can be calculated analytically
[35], and F' is the pump fluence, the only tunable pa-
rameter in our model. In the EI phase (m < 0), opti-
cal excitation therefore acts to instantaneously increase
m(t). The subsequent reduction of the EI order param-
eter, which occurs on a timescale much shorter than
27 Jwp, results in a sudden shift in the lattice poten-
tial V(X) = Zwo?X? + 2gwo Re(P) X due to EPC [35],
launching coherent oscillations through displacive excita-
tion. In the low fluence regime, where the phonon oscil-
lation amplitude is small enough such that X does not
change sign, the direction of tilt of both V(®) and V(X)
remains unchanged and so no switching occurs. However,
above a critical fluence F,, where the phonon oscillation
amplitude becomes large enough to change the sign of X,
the tilting of both potentials is reversed and the system
can relax into the switched state.

Numerical simulations of our model using experimen-
tally determined material parameters for TagNiSe; and
o = 100 fs were carried out in the EI phase [35]. Figure
2 displays simulation results for F' slightly greater than
F.. At the moment of excitation ¢ = 0 [Fig. 2(b)], there
is an instantaneous change in V(®) from Mexican-hat
to parabolic form caused by the light-induced enhance-
ment of m(t). The EI order parameter evolves rapidly to
the new potential minimum with overdamped dynamics
and is quenched within the pulse duration. This leads
to a rapid shift in V(X), launching coherent oscillations
of the underdamped OPCP, which shakes the electronic
potential via EPC at the phonon frequency. Once the
pulsed excitation is over, V(®) recovers a Mexican-hat
form. However, as X crosses zero within the first half
period of oscillation [Fig. 2(c)], the tilting of V(®) is re-
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FIG. 2: Simulation results of V(®) and V(X) (defined in main text) for F' > F. with experimentally determined parameters
[35]. Snapshots of the potential landscapes (solid lines) and the electronic and structural order parameters (circles) are shown
(a) in the equilibrium state (reproduced as dashed lines in (b)-(d)), (b) at the moment of excitation, (c¢) during transit into the
reversed state, and (d) in the reversed state before equilibration, where both potentials are modulated at the phonon frequency

(red arrows). Axes’ scales are the same in all panels.

versed with respect to the pre-pumped (¢ < 0) case [Fig.
2(a)], sending ® toward the new minimum on the nega-
tive side. As ® crosses zero, the tilt of V(X) is also re-
versed due to EPC, thus pushing X to the new minimum
on the positive side. The system then continues to oscil-
late about the reversed minima at the phonon frequency
until the OPCP is damped out [Fig. 2(d)]. Note that
this model treats light as a coherent drive without con-
sidering heating- and cooling-induced changes in m(t).
However, accounting for the latter merely shifts F. [35].

In lieu of probing the phase of X and ®, we propose
that the reversal can be identified via the pump fluence
dependence of the OPCP amplitude. We solve Egs. (2)
and (3) to obtain the time evolution of ® and X and
then define the OPCP amplitude by its peak height in
the fast Fourier transform (FFT) of X. A conventional
Raman-active phonon is coherently launched through ei-
ther displacive excitation or impulsive stimulated Raman
scattering (ISRS) [47, 48] with an amplitude that is lin-
early proportional to F. For F' < F,, the amplitude of
an OPCP also scales linearly with F'. In this regime the
structural order parameter simply oscillates about the
initial potential minimum and thus behaves like a con-
ventional phonon. But once the initial displacement of
V(X) is large enough to enable escape to the opposite
minimum (F > F.), the amplitude ceases to grow. Or-
der parameter reversal is thus marked by a saturation in
the amplitude versus fluence curve.

We argue that experimental evidence for this phe-
nomenon already exists in published studies of TasNiSes.
Werdehausen et al. [28] performed ultrafast optical reflec-
tivity measurements at 7' = 120 K using a pump photon
energy of 1.55 eV and observed clear coherent oscilla-
tions of the 1 THz OPCP as well as the uncoupled 3
THz phonon (ISRS). The pump fluence dependence of
these two mode amplitudes is reproduced in Fig. 3. The
3 THz mode scales linearly with F', consistent with its
assignment as a conventional phonon. In contrast, the

1 THz mode scales linearly with F' only at low fluences
and then saturates above ~0.4 mJ/cm?, consistent with
an order parameter reversal. By overlaying our simula-
tion results [35] atop these experimental curves, we find
close agreement (Fig. 3).

Our theory also predicts that the exciton condensate
should be transiently quenched [m(t) — 0] above a criti-
cal fluence F' = F* where the condition f(t) = |m| is sat-
isfied. Egs. (2) and (3) do not constrain F** to coincide
with F, and our simulation shows that F™* is clearly lower
than F, in TasNiSes (Fig. 3). Recently Tang et al. [30]
performed time- and angle-resolved photoemission spec-
troscopy (tr-ARPES) measurements on TasNiSe; at T =
30 K and tracked the dynamics of the charge gap, a mea-
sure of ®, immediately after pumping with 1.77 eV light
polarized perpendicular to the chain direction (equivalent
geometry to Ref. [28]). They found that the instanta-
neous gap size decreases linearly with increasing pump
fluence and saturates above 0.29 mJ/cm?, which was in-
terpreted as the point where ® transiently collapses. The
fact that this fluence is lower than 0.4 mJ/cm?, and is ex-
pected to be even lower if the experiment were conducted
at 120 K, is consistent with our theory.

The dynamical nature of the order parameter reversal
process suggests that it can be controlled not merely by
the total pump energy deposited, but also by its distri-
bution in time. To show this, we consider a situation
where the sample is pumped by two identical pulses sep-
arated by time dt, with individual fluences F' < F, but
2F > F,.. For 0t — 0 the system is effectively pumped
by a single pulse exceeding F,. and so reversal occurs,
while for ¢t — oo, the system relaxes back to the initial
ground state before the second pulse arrives and so no re-
versal occurs. To qualitatively understand the behavior
at intermediate t values where the system is still dynam-
ically evolving when the second pulse arrives, we recall
that in the single pulse case, switching occurs once the
OPCP amplitude is large enough to change the sign of
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FIG. 3: Experimental pump fluence dependence of the 1 THz
(red circles) and 3 THz (blue circles) coherent phonon ampli-
tudes in TapNiSes reproduced from Ref.[28]. Simulation re-
sults for an OPCP (red line) and a conventional ISRS phonon
(blue line) are overlaid and horizontally scaled (a ~ 700) to
match the experimental data. Vertical dashed lines mark the
calculated F. and F*. The non-monotonic behavior of the
OPCP amplitude just above F,. arises from strong feedback
between ® and X immediately after excitation [35].

X. Therefore, in the two-pulse case, switching possibly
occurs if coherent oscillations of the OPCP induced by
the first pulse can be sufficiently amplified by the second
time-delayed pulse.

Previous studies have shown that impulsively and dis-
placively excited conventional Raman-active phonons can
be coherently amplified (suppressed) by a second pump
pulse when §t is an integer (half-integer) multiple of the
phonon period [49-54], dubbed in-phase (IP) and out-
of-phase (OP) pumping respectively. Therefore we sim-
ulated the effects of both IP and OP pumping on the
order parameters of TagNiSe; using the same material
parameters as before. We chose to simulate the OPCP
at wo/2m = 2 THz rather than at 1 THz because recent
tr-ARPES data show that the most pronounced modu-
lations of the valence band maximum occur at 2 THz,
suggesting strong coupling to ® [18]. As shown in Fig.
4(a), pumping by a single pulse with F slightly less than
F, causes a rapid but incomplete reduction of &, fol-
lowed by a slower recovery back to its original value on a
timescale set by the damping of the 2 THz phonon. For
the two-pulse case, OP pumping of the 2 THz phonon
similarly leads to partial suppression of ® without re-
versal, but reversal is achieved with IP pumping. This
phenomenon is again manifested through an unconven-
tional behavior of the OPCP. As shown in Figs. 4(b)
and (c), OP pumping leads to suppression of the 2 THz
phonon amplitude relative to the single pump case, re-
sembling a conventional phonon because the oscillation
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FIG. 4: Simulated time evolution of (a) Re(®) and (b) X fol-
lowing single-pulse pumping (black) and two-pulse OP (blue)
and IP (red) pumping of the 2 THz phonon using F' = 0.96F,
and the same microscopic parameters as in Figs. 2 and 3.
The calculated instantaneous electronic potential is displayed
at several select times. (c¢) Normalized FFT of the traces
shown in (b). Each curve is normalized by the peak value
of the single-pulse pumping curve. (d) Reflectivity transients
measured from TazNiSes under the same pumping conditions
used in the simulations. Curves are vertically offset for clarity.
(e) Normalized FFT of the traces shown in (d).

is around the initial potential minimum. But, in contrast
to conventional behavior, IP pumping does not lead to
further amplification once X is excited to the opposite
minimum.

To verify this prediction, we performed transient opti-
cal reflectivity measurements on TayNiSes single crystals
[35] using two identical pump pulses (o = 80 fs) with
variable §t. The light was polarized perpendicular to the
chain direction and the fluence of each pulse was tuned
slightly below F,. to match our simulations. We chose a
pump photon energy of 1 eV to enhance the 2 THz os-
cillations [35]. Figure 4(d) shows the fractional change
in reflectivity (AR/R) versus time for both IP and OP
pumping of the 2 THz phonon, as well as for pumping



with only a single pulse. All three curves exhibit fast (~1
ps) exponential decay following pump excitation, corre-
sponding to the charge relaxation process. Oscillations
from the beating of several coherently excited phonons
are also clear. A FFT of the data shows the most pro-
nounced peaks at 2, 3, and 3.8 THz [35]. A focus on the 2
THz mode reveals that OP pumping strongly suppresses
its amplitude relative to the single-pump case whereas IP
pumping does not amplify it [Fig. 4(e)], in quantitative
agreement with our simulations [Fig. 4(c)]. In contrast,
strong amplification occurs for the 3 and 3.8 THz modes
[35], consistent with their uncoupled nature.

Our field theory description of the EI order parameter
goes beyond the phenomenological time-dependent Lan-
dau theory [55-58] in that it allows the order parameter
to explore the tilted Mexican-hat potential in the com-
plex plane and can be naturally linked to microscopic
parameters of the underlying lattice model. While more
details including extension beyond the mean-field limit
(V #0), temperature dependence with T' > 0, diffusion
perpendicular to the surface [57], time-dependent damp-
ing [55], and anharmonic phonon coupling [59] can be
added to refine the simulations, our minimal microscopic
theory already captures the most salient physics and ex-
perimental features. These ideas and dynamical proto-
cols apply not only to excitonic insulators, but also to any
system featuring a continuous-symmetry-breaking elec-
tronic order parameter induced by coupling to a struc-
tural order parameter, such as a charge ordered system
coupled to a Peierls distortion or an orbital ordered sys-
tem coupled to a Jahn-Teller distortion. Therefore the
OPCP behavior revealed here may be a general finger-
print of electronic order parameter switching.
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I. DERIVATION OF THE MICROSCOPIC
DYNAMICAL EQUATIONS

In order to connect the dynamics of the OPCP and
the exciton condensate with the microscopic description
of TasNiSes, we start from a commonly used two-band
semiconductor Hamiltonian with spinless fermions [1-4]
and inter-band interactions,

H= Z(ekc;ﬁck + Ukkavk) + Z(VCiTCiviTvi
k i (1)
+uwob; by + g(bi" + ) (c;tv; +vifey))

The bands are formed by the quasi-one-dimensional lat-
tice and 7, k are the corresponding lattice sites and mo-
mentum. Each operator and parameter is defined in the
main text. We also set i = 1 for simplicity.

The equations of motion for the complex exciton or-
der parameter ®; = (c;rvi> and the real lattice displace-

ment X; = (bI + b;) can be obtain by expressing Eq. (1)

Cambridge, MA 02139

in terms of a nonequilibrium path integral (i.e. in the
Keldysh framework) and introducing ® as a dynamic,
bosonic Hubbard-Stratonovich field. This allows one to
integrate out the fermionic modes and derive the equa-
tions of motion for ®, X via saddle point equations.

In a path integral approach, the partition function Z
corresponding to the Hamiltonian in Eq. (1) is formally
obtained from a field integral of the form

Z:/D[{Eivcivalﬁvhb;{abia(b;(7¢)i}]€is7 (2)

where D represents the common field integral measure
and ¢;,c;,0;,v; are independent Grassmann fields, rep-
resenting the fermion modes in conduction and valence
bands, and b}, b;, ®}, ®; are complex fields, correspond-
ing to the phonon and exciton condensate modes. The
Keldysh action S is obtained in the canonical way [5] and
reads as S = Sf+ S, with the fermion part

o1
M, 161,m
lmt T

lmt

and the boson part

b

—1 c,l,t

Sb*Z/ edtr 0g.1.6) By <bq,l7t> (4)
 @abase+ Bt

Here, U, = (c1,1,4, C2,1,t, V1,1t V2,1,¢) is the fermion spinor
in Keldysh space and each field carries an index triplet
(i,1,t), which labels Keldysh component i (i = 1,2 for
Grassmann fields and i = ¢,q for complex fields), lat-
tice site [ and time ¢t. The matrices B,C,W are the
Keldysh space Green’s function for phonons, conduction
band, and valence band. They are diagonal in frequency
and momentum space

o 0 W — € — 11
Chw = (w — e +in 2intanh(w/27T) ) ®)

and W . s identical with e, — py. Also,

-1 _ 0 w—wy — N
Brw = ( w—wp +in 2intanh(w/27) (6)



with n — 0. The matrix M, + describes the local cou-
pling of the fermions to the exciton and phonon fields

My = [1 (V®eis+ 9Xeis) + 02 (Vg + QXq,l,t)] .
7

The fermion part St is quadratic in Grassmann fields
and integration according to Grassmann calculus yields
the formal expression

S¢ = —iTr (log [1 — CMW M*] Z

r (CMW M*)"

(8)

where the trace includes the sum over Keldysh indices
and lattice sites and an integral over time. In order
to eliminate the phonon field from the nonlinear ac-
tion Sf, one performs a polaron-type shift ®./,;; —
D@e/qit — ¥ Xe/q,¢- For small exciton field amplitudes
Eq. (8) can be expanded up to fourth order in the ﬁelds
(n < 2) and in powers of derivatives. The equations of
motion for the exciton condensate and the displacement,
which are represented by the classical fields ®¢; ¢, Xc 1+
are obtained via the saddle-point equations (and their
complex conjugates)

5S 48
Sbgre 0Dy

3\H

—0. 9)

This yields the equations of motion by further intro-
ducing the perturbation of light via Peierls substitution,
which is argued to work better for an electronically lo-
calized system [4], and assuming the lattice constant d =
1:

i20,® = (—D(V — iqA)® + i+ T|9[?)® + %"X, (10)

2 2 29%wo
h*X = —(wp” + ———)X — 2gwo Re(P), (11)
with the parameters D,m, U, Z depending on integrals
over Green’s functions and therefore on the band struc-
ture of the material and the temperature T of the system.
Assuming a band gap A and kT < A, i.e. negligible
population in the conduction bands, we can write out
these parameters

m=1— 2V : (12)
VAR +2J, + A)
s 2
D= L — (13)
VAR + 2], + A)
gy (2Tt 20,2 ). 14)
VAR + 2], + A)

b <2<3<Jc ) AU+ ) + 2A2>> Ve, (15)
VAR, + 27, + A)

The equations in the main text are obtained via m =
m/Z, U =U/Z, D = D/Z, ¢ = g/(ZV), and [ =
Dq2A2/Z CYFGXp( 41112t2)-

Also, we can obtain real valued equations of motion
by defining ® = ¢ + in. To characterize the dephas-
ing of the phononic and electronic channels, we also add
phenomenological decaying terms to both branches. It
is straightforward to add a —2v,,0;X term to the struc-
tural dynamical equation and y,; can be determined ex-
perimentally. For the complex electronic order parame-
ter, on the other hand, we rewrite the order parameter
dynamical equation as followed:

i0,® = ((=D(V —igA)* +m+U|2[)® +2¢' X)(1 — i),
(16)
Here . is dimensionless. It expresses the ratio of de-
phasing dynamics due to a non-zero temperature to the
coherent dynamics of the order parameter. Both dynam-
ics are generated by the same effective free energy func-
tional. It determines the dephasing time of the electronic
Higgs/Goldstone oscillations as validated in Section II.
Also, we ignore the spatial diffusion and the phonon
frequency shift due to an order of magnitude estimate
g ~ weLV. With all of the above rectifications we have:

06 = (fAm+U(*+02))n—ve(f+m+U(6*+10))p+2¢'X),

(17)

0in = —(f+m+U(*+1°))p—29' X e (f+m+U (¢2?n2)))77,
18
0°X = —wo?X — 29wo9 — 279pn0i X. (19)

We then construct the initial conditions for the above
equations, which guarantee that X is static and ® re-
mains real and static before the light excitation:

Blmo = 0L L0 2 (20)

Nlt=0 = 0. (21)

8,5X|t:0 = O7 (22)

29 [4gg'/wo —m
X|pmg = — 22/ 20— 23
|t70 wo U ? ( )

After establishing the equations and the initial condi-
tions, we can numerically solve the differential equations
and trace the dynamics of the complex electronic order
parameter ® and the real structural order parameter X
[Fig. S1], as well as the dynamical free energy land-
scapes. By taking the fast Fourier transform (FFT) of
X in the time interval from 0 ps to 20 ps with different
pumping fluence values, we obtain the order-parameter-
coupled phonon (OPCP) amplitude versus fluence curves
[Fig. S2].
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FIG. S1: Simulated time evolution of the electronic and lattice order parameters in the (a)-(d) overdamped (vy.=1) and (e)-(h)
underdamped (v7.=0.1) cases. In each case, data are shown with fluences below and above the critical fluence, and the model
parameters are set to wo/(27) = 2 THz, g = 2 THz, V = 60 THz, A = J. = J, = 40 THz, and 7,, = 0.3 THz. (a),(e) Time
evolution of the real part of the electronic order parameter. (b),(f) Time evolution of the imaginary part of the electronic order
parameter. (c),(g) Time evolution of the lattice order parameter. (d),(h) Trajectory of the electronic order parameter.

To simulate the two-pulse pumping situation, one sim-
ply adds another f term to Eq. (17) and (18) that is
identical to the first, except that this f term is centered
at the time when the second pulse arrives at the sample.
The initial conditions are the same. Here we apply a
FFT to X in the time interval between the arrival of the
second pulse and 20 ps thereafter. We thus obtain the
OPCP amplitude versus fluence at different time delays
[Fig. S5].

II. DETERMINATION OF THE MICROSCOPIC
PARAMETERS

From our experiment we get wo/(27) = 2 THz. The
chosen microscopic parameter values in Ref.[3, 4] repro-
duce the equilibrium band structure qualitatively well,
therefore we adopt these and set ¢ = 2 THz, V' = 60
THz, A = 40 THz, J. = J, = 40 THz, m = —17 THz,
U = 132 THz, D = 13.3 THz, and ¢’ = 0.83g. The Higgs
mode frequency —2m = 34 THz qualitatively matches
the gap size A [6]. The corresponding fast oscillation
is beyond the time resolution of our experimental setup,
and hence cannot be resolved. The phonon dephasing
time we measured is approximately 3 ps, thus v, =~ 0.3
THz. This set of parameter choices is self-consistent but
may not be unique. We also demonstrate that the spe-
cific choice of the above microscopic parameters does not
change the main conclusion of this paper, i.e. the rever-
sal of the EI order [Fig. S2(b)]. We simulate our incident
light as a ¢ = 100 fs Gaussian irradiating the sample at
t = 0. The pump fluence F' is thus the only tunable
parameter.

There is uncertainty in the determination of the elec-
tron decay rate .. Recent theories have demonstrated

that the electronic system can oscillate in an amplitude
(Higgs) and phase (Goldstone) mode around the tran-
sient free energy minimum [3], but there is no experimen-
tal evidence of such modes so far. A large 7, describes the
overdamped case where the electronic subsystem adia-
batically evolves into the transient free energy minimum,
while a small 7, captures the underdamped case where ®
explores a larger region of the Mexican-hat potential via
rapid oscillations of the Higgs and the Goldstone modes
upon light excitation [Fig. S1(h)]. We demonstrate that
the nature of the electronic decay, whether overdamped
or underdamped, does not change our main finding, i.e.
the reversal of the EI order and the concurrent anomalous
phonon amplitude dependence. We simulated the afore-
mentioned two cases using either v, = 1, which typically
characterizes an overdamped scenario with no oscillation
[Fig. S1(a)-(d)], or 7. = 0.1, which describes the under-
damped case [Fig. S1(3)-(h)]. With . = 0.1, the rapid
Higgs/Goldstone oscillation clearly damps out in 0.25 ps.
Despite the distinction in ., the dynamics of ® and X
are comparable qualitatively at times longer than 0.25
ps after the light excitation. The clear reversal when the
pump fluence is higher than the critical fluence is real-
ized independent of the value of .. Further, alteration
of the electron dephasing rate has a minimal affect on
the reversal critical fluence [Fig. S2(a)]. Since an inves-
tigation of the behavior of the Higgs/Goldstone mode is
beyond the scope of this work, we only simulate with the
overdamped case hereafter.
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FIG. S2: Fluence dependence of the OPCP with various choices of the microscopic model parameters. (a) OPCP amplitude
versus fluence with different electronic decay times. The red curve corresponds to the overdamped case (7. = 1) and the yellow
curve corresponds to the underdamped case (. = 0.1) with g = 2 THz, V = 60 THz, A = J. = J, = 40 THz. The black curve
characterizes the ISRS/DECP amplitude versus fluence. (b) OPCP amplitude versus fluence in the overdamped case (. = 1)

with different choices of g, V, A, J¢, Jy.

(c) OPCP amplitude versus fluence in the overdamped case with or without considering

the depopulation time of the electrons, with the same model parameters as in (a).

III. DIFFERENCE BETWEEN THE
CALCULATED AND EXPERIMENTAL
CRITICAL FLUENCE

In Section I, we defined f2aF exp (—412722’&2). To get
the value of the simulated critical fluence F,. in real
units, we explicitly write out the scaling factor o =
8Dq?d?(1—R)
h2wpn?cego !
tion I, ¢ is electron charge, d is the lattice constant, R is
the reflectance, h is the reduced Planck’s constant, wyp
is the pump light frequency, c is the speed of light, €q
is the vacuum permittivity, o is the pulse duration. Our
model predicts that F,. should be smaller when the pump
polarization is parallel to the chain direction because d
is smaller and R is larger in this geometry. This is con-
sistent with the data reported in Ref. [6].

We obtained a simulated F. ~ 6 mJ/cm? under the
same reported experimental conditions [6], which needs
to be scaled down by 16 times to match the real exper-
imental F.. There are several possible factors that give
rise to this discrepancy. First, our model is an elementary
model with a simplified two-band structure. There are
also uncertainties in the determination of the parameters
Jey, Ju, A, g, and V. It is especially hard to determine
g and V from experiment because they are not directly
reflected in band structure measurements. Even though
the chosen parameter values in Ref.[3, 4] are claimed to
reproduce the experimental data well in Ref. [7], we find
the band dispersions displayed in several other ARPES
papers differ subtly, giving rise to an uncertainty in the
determination of the parameters [8-11]. In Fig. S2(b)
we show several OPCP amplitude versus pumping flu-
ence curves obtained using different sets of parameter
choices. It is clear that F, changes with the value of the
microscopic parameters, but the qualitative trend stays
the same.

where D is the parameter defined in Sec-

Second, F, is temperature-dependent. Increasing tem-
perature makes the bandwidth and bandgap smaller and

the Mexican-hat minimum shallower, both of which pro-
mote the order-parameter switch, thereby decreasing F..
Our simulation corresponds to 7" = 0 K case, and there-
fore gives an upper bound of F,. As shown in Ref. [6], a
100 K increase in the temperature can make F,. several
times smaller. As such, it is possible that F,. at finite
temperature is much smaller than 0 K. To give an accu-
rate estimate, a temperature dependent model needs to
be considered.

Third, transient heating effects are not accounted for
in our model. For pump photon energies above the in-
sulating gap, which is the case in our experiment, there
will be finite absorption leading to transient heating of
the electronic subsystem. This will contribute towards
quenching the electronic potential in a similar manner to
coherent electric field driving. Therefore neglecting tran-
sient heating effects will cause F, to be over-estimated.
On the other hand, this approximation may be more re-
alistic for the case of sub-gap pumping where absorption
is suppressed.

Taken altogether, these three factors lead us to con-
clude that our microscopic model and the correspond-
ing simulation qualitatively reproduce the experimen-
tal observation. We also emphasize that regardless of
the choice of parameters, the anomalous behavior of an
OPCP is well reproduced in all simulations, demonstrat-
ing our conclusions are robust against the specific value
of the parameters.

IV. ULTRAFAST HEATING AND SUBSEQUENT
COOLING

We note that ultrafast heating and subsequent cool-
ing in both the electronic and structural channels upon
pumping are not considered in our coherent-drive micro-
scopic model. We demonstrate here that ignoring the
heating and the subsequent cooling does not change the
major conclusions.



We first consider the electronic channel. Upon pump-
ing, the electrons are excited into the conduction bands
and the effective electronic temperature increases dra-
matically. The ultrafast heating of the electrons is ac-
companied by the transient restoration of higher sym-
metry, i.e. Mexican hat becomes parabolic, producing a
qualitatively similar effect to that imparted by our co-
herent driving model. In both cases, one can determin-
istically engineer the final state through pumping. In
our model we introduce light perturbation via a coherent
Peierls phase, implying an immediate relaxation to lower
symmetry as soon as the pulse excitation is over. Al-
though this theoretical treatment is extensively utilized,
in reality hot electrons will thermalize with the lattice
through EPC with a characteristic depopulation time of
1 ps in TasNiSe; as measured by time-resolved optical
and electron spectroscopy [6-10, 12]. This implies the
higher symmetry exists beyond the time duration of the
pulse. To take this depopulation time into account, we
simulate the pulse as a 1 ps exponential decay convolved
with a Gaussian. The dynamics of the order parameters
are very similar to the dynamics in the coherent quench
case, except for the fact that the order parameters reach
their stable states after longer time (1-2 ps) due to ther-
malization. We show the OPCP fluence dependence with
thermalization in Fig. S2(c). Compared with the co-
herent quench case, the switch to the counterpart state
occurs at a slightly lower fluence but the trend is the
same. Therefore, we conclude here that the heating and
cooling of the electrons do not influence our major con-
clusion that the switch is achievable by increasing fluence
and observable via the OPCP fluence dependence.

To estimate the lattice heating, we use the formula
AT = % to calculate the lattice effective tempera-
ture increase, where R is the reflectance, p is the density,
C is the specific heat capacity, and ¢ is the optical pene-
tration depth for the pump photon energy (1 eV) [13, 14].
Our experiments were performed at 80 K with a pump
fluence of 0.5 mJ/cm?. Using these values, we obtain a
temperature increase of 15 K. Therefore, the lattice tem-
perature is far below T, after pumping and the lattice
temperature induced change of band structure is negligi-
ble. Thus, the lattice heating can also be ignored.

V. NON-MONOTONIC BEHAVIOR OF THE
OPCP AMPLITUDE VERSUS FLUENCE ABOVE
THE CRITICAL FLUENCE

As depicted in Fig. S2, the OPCP amplitude as a
function of pump fluence shows a non-monotonic behav-
ior when F' > F,. The amplitude of the “oscillation”
and the fluence where they emerge are dependent on the
specific values of the microscopic parameters. This be-
havior arises from the strong feedback between the elec-
tronic and structural order parameter dynamics immedi-

ately after excitation. Because ® always responds more
rapidly than X, the subtle mismatch of the time when
the two order parameters cross zero will influence the
phonon amplitude.

We take the case with overdamped dynamics as an
example. In such a case, ® relaxes into the potential
minimum instantaneously, while X takes a longer time to
settle into the minimum depending on the phonon damp-
ing rate. When the pump fluence just surpasses F, once
the pump excitation is over and X starts to approach
zero from the negative side, Re(®) does not cross zero
but exhibits a partial regression back to the initial state
[Fig. S1(a) and (c)]. This incomplete return to the initial
state in turn tilts the phonon potential in the opposite
direction as X is evolving, thus exerting resistance to the
phonon and decreasing the phonon amplitude. However,
as the pump fluence further increases, X crosses zero
more quickly and the aforementioned temporal mismatch
between X and ® crossing zero will be smaller, leading to
a slight increase of the phonon amplitude. This explains
the non-monotonic behavior that occurs just above F, in
Fig S2(a). After careful examination of the dynamics of
both channels at each pump fluence, we find that this
temporal mismatch occurs twice as the pump fluence is
increased, yielding the two “dips” above F. in the over-
damped cases [Fig. S2(a) and (b)]. The “dips” finally
disappear after the pump fluence is high enough so that
® directly crosses zero without returning partially back
to the initial state. Thereafter X and ® will not expe-
rience any mismatch and the phonon amplitude shows a
smooth monotonic dependence on fluence.

The non-monotonic behavior is stronger for the under-
damped case because ® undergoes Higgs/Goldstone os-
cillations [Fig. S2(a)]. The feedback between the two
channels thus also lasts longer, creating more compli-
cated dynamics. In addition to the mismatch between
the time when X and ® cross zero as discussed in the
overdamped case, the order parameters can now also os-
cillate back-and-forth between the minima on either side
of zero [Fig. S1(e)-(h)]. This makes the final state more
sensitive to pump fluence compared to the overdamped
case. In other words, the order parameter is more sus-
ceptible to reversal upon small changes in pump fluence,
leading to sharper modulations of the phonon amplitude.

We also note that in the overdamped case where we ac-
count for electronic heating and cooling, increasing pump
fluence will induce a greater number of reversals back
to the initial state within one phonon period (0.5 ps),
and the oscillations in Fig. S2(c) actually stem from
these back-and-forth reversals. In contrast, the reversal
only occurs once in the overdamped coherent pumping
case. This discrepancy reveals that the long-time dy-
namics of the coupled system is strongly influenced by
the dynamics immediately after the excitation. While
these differences lead to quantitatively different long time
behaviors, they do not alter the main conclusion of this



work, i.e. the observation of the first reversal and the
non-monotonic behavior of the OPCP amplitude versus
fluence above F..

VI. ISRS/DECP PHONON SIMULATION

As mentioned in the main text, conventional Raman
active phonon modes are launched through the impulsive
stimulated Raman scattering (ISRS) or displacive excita-
tion of coherent phonons (DECP) mechanisms. Several
references have discussed and summarized the disparities
between and the unification of these two mechanisms [15-
18]. We simulated conventional ISRS/DECP phonons
using the simplified formula from [19]:

02X = —wpn®X — 27,,0,X + F(t) (24)

where in the displacive case, F(t) = D(t) and in the
impulsive case F(t) = F§(t). Convolving with the

11n(2)
D 1+4-erf (4/ Tt)

Gaussian-envelope pulse we have F'(t) = 5
for the DECP case and F(t) = Fexp(—w) for the

0-2
ISRS case, where D and F' are normalized fluences. The
dynamics for both cases are generally the same except for
a /2 phase shift. As shown in Fig. S2(a), the amplitude
of the ISRS/DECP-launched phonon has a linear fluence

dependence.

VII. EXPERIMENT AND FITTING DETAILS

Single crystals of TagNiSes were grown by chemical va-
por transport reaction. First, a powder of Ta;NiSe; was
synthesized by the solid-state reaction from a stoichio-
metric mixture of its elements. They were sealed in an
evacuated quartz tube and heated at 900 °C for 5 hours.
Next, the powder (around 2 g) and chunks of iodine (50
mg) were loaded in a sealed quartz tube, which was put
in a two-zone furnace. The temperature for the growth
sides were kept at 875 °C and 800 °C respectively for one
month. The samples were cleaved along the (010) direc-
tion immediately before the experiment to obtain a fresh
and smooth surface.

For double-pump experiments, the sample tempera-
ture was fixed at 80 K. In the experimental setup, a
Ti:sapphire amplified laser operating at 1 kHz produces
800 nm pulses with 40 fs time duration. A small portion
of the power is used as the probe. The remainder seeds
an optical parametric amplifier (OPA) and generates near
infrared light tuned to 1200 nm with a duration of 80 fs,
which is used for the the pump pulse(s). The fluence of
each pump was set to ~0.5 mJ/cm?, which is around F,
at 80 K, considering the temperature dependence of F
[6]. Our simulation further substantiates that the fluence
is slightly below F. as shown later. The polarizations of
both pulses were set to be perpendicular to the (100) axis
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FIG. S3: Transient reflectivity in response to both a single
pump (black) and two pumps (other colors). In the double-
pump data, the delays between the two pumps are set to
be either in-phase (IP) or out-of-phase (OP) with a certain
phonon, as indicated in the legend. Each curve is vertically
offset for clarity.

of the sample, since pumping with a parallel polarization
was reported to generate phonons less efficiently [6].

Transient differential reflectivity curves with double-
and single-pump are shown in Fig. S3. All curves exhibit
a clear beat pattern. The quick rise upon the arrival of
the pump and the ensuing exponential decay (~ 1 ps)
characterize photocarrier generation and recombination
respectively, in agreement with previous results [6, 12].
The beat pattern indicates the coexistence of multiple
coherent phonons. Three phonons centered at around 2
THz, 3 THz and 3.8 THz are identified after taking the
fast Fourier transforms (FFT) of the transient reflectivity
data, as depicted in Fig. S4. The reported 1 and 4 THz
phonons are missing [9, 10, 12].

To test whether we are able to amplify or suppress the
different observed phonons, we excite the sample with
two pump pulses with the time delay between them tuned
to be either in-phase (IP) and out-of-phase (OP) with
each phonon respectively. As such, there are six con-
figurations in total. Note that when the time delay is
IP with the 2 THz phonon, it is nearly OP with the 3
THz phonon. Similarly, when the time delay is IP with
the 3.8 THz phonon, it is nearly OP with the 2 THz
phonon. Therefore, two configurations are redundant
and we executed the double-pump experiment using 4
different fixed delays between the two pumps. The cor-
responding double-pump FFT spectra are displayed in
Fig. S4, together with the single pump FFT spectrum.
In Fig. S4(b), it is demonstrated that when the time
delay between the two pump pulses is resonant with the
3 THz phonon, the 3 THz phonon amplitude is ampli-
fied by almost two times. Simultaneously, the 3.8 THz
phonon is slightly enhanced because this time delay is
also partially IP with its period, while the 2 THz phonon
is suppressed due to the nearly OP time delay. Similar
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FIG. S4: FFTs of experimental double- and single-pump
transient reflectivity data taken on pristine and 5% S-alloyed
TasNiSes. All FFTs are taken in the time interval between 0
ps and 8 ps. (a - e) FFT spectra of the traces shown in Fig.
S3. The black dots correspond to the spectrum of the single
pump excitation, shown in each panel as a reference, while
the dots of other colors indicate the spectra of the double-
pump data. The solid lines correspond to the Lorentzian fits.
(f) Single-pump FFT spectrum for a 5% S-alloyed TasNiSes
(cyan) with the data on the pristine sample as a reference
(black).

analysis can be used to interpret the 3.8 THz IP and OP
pumping cases in Fig. S4(c) and S4(d). However, an
anomalous behavior is observed in the 2 THz IP pump-
ing configuration as shown in Fig. S4(a). Although the
3 THz phonon is suppressed due to the OP time delay,
and the 3.8 THz phonon is amplified due to nearly IP
pumping, the 2 THz phonon is not enhanced.

The reported 1 THz OPCP [6] is missing in our single-
pump spectrum. Fig. S4(e) displays the FFT spectrum
of the 1 THz IP pumping. 1 THz IP pumping should
be nearly IP with all the phonons, but only the 3 THz
and 3.8 THz phonon are amplified. There is still no 1
THz phonon after pumping resonantly with it, and the
enhancement of the 2 THz phonon is negligible, echoing
the 2 THz IP double-pump results. Similar results were
reproduced at different spots on two samples. This fur-
ther demonstrates the 2 THz phonon is an OPCP unlike
the 3 THz and 3.8 THz phonons.

We also conducted coherent phonon spectroscopy mea-
surement on 5% S-doped TasNiSes. The FFT spectrum
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FIG. S5: FFT spectra of the 2 THz phonon obtained from
(a) experiment and (b) simulation of the microscopic model
at time delays equal to 2.14 X Torg. (green, corresponds to
the 1 THz IP pumping), 1 X Torm. (red, corresponds to the
2 THz IP pumping), 0.7 X Torm. (blue, corresponds to the
3 THz IP pumping), and 0.54 x Torm. (yellow, corresponds
to the 3.8 THz IP pumping). The single pump results are
displayed as a reference. Each curve is vertically offset for
clarity and normalized by the peak value of the single pump
FFT.

shows a much weaker 2 THz phonon than the undoped
case, but similarly intense 3 THz and 3.8 THz phonons,
as shown in Fig. S4(f). This observation is further evi-
dence that the 2 THz phonon is coupled to the EI order
while the 3 and 3.8 THz phonons are not, since S-doped
TagNiSes exhibits weaker EI order with a lower T, [14].

In principle we can fit the time traces with damped
oscillations superposed atop an exponentially decaying
background:

AR

R

t
— Aexp (~ ) +O+Y Biexp (~——) cos (vit + )

Tph,i
(25)

where A denotes the electronic background amplitude
due to photocarrier generation with a decay time 7y, and
C characterizes the long heat escape time. B;, Tphi, Vi,
¢; are the amplitude, lifetime, frequency and phase of
the ith phonon respectively. Here i runs from 1 to 3
corresponding to 2, 3 and 3.8 THz phonons.

Equivalently, we can also fit the peaks in the FFT spec-
trum. A damped oscillation in the time domain trans-
forms into a Lorentzian in the frequency domain. Thus,
we can fit the FFT data with three Lorentzians with the
same definition of the corresponding parameters as de-
fined above:

K3

B;
2 T () (26)



(@) 5. (b)
g 3 THz IP Exp. g 304 © — 38THzIPExp.
2 ® — 3 THz OP Exp. E] o — 3.8 THz OP Exp.
£ 204 @ — single Pump Exp. E_ ® — Single Pump Exp.
£
< 15 :
i e
w w
- 1.0 °
8 I
® 0.5 ®
z p— o z
" ‘ 3I4 3I6 3I8 4I0 4I2
2.6 2.8 3.0 3.2 . A . 1 .
©) 25, _ (d) 55, _
g 3 THz IP Sim. 3 ® — 3.8 THz IP Sim.
3 ® — 3 THz OP Sim. E] ® — 3.8 THz OP Sim.
E_ 204 @ — Single Pump Sim. é_ 204 o — Single Pump Sim.
< 1.5 < 1.5
- -
'y 'S
[ w
- 1.04 - 1.04
g g
T 0.5 T 0.5
Z 0.0 Z 0.0
2.6 238 3.0 3.2 T T T j

34 36 38 40 42
FFT Frequency (THz) FFT Frequency (THz)

FIG. S6: FFT spectra of the (a) 3 THz and (b) 3.8 THz
phonons obtained from experimental data with IP and OP
pumping. FFT spectra of the (c) 3 THz and (d) 3.8 THz
phonons obtained from simulation results with IP and OP
pumping. The single pump result is displayed in each panel
(black) as a reference. Each curve is normalized by the peak
value of the single pump FFT.

VIII. DETAILED COMPARISON OF
DOUBLE-PUMP EXPERIMENT AND
SIMULATION

Here we present a detailed comparison between exper-
iment and simulation of the complete pump time-delay
dependence of the 2 THz phonon in the double-pump
scheme. We zoom in on the 2 THz phonon FFT peak at
the aforementioned five different time delays as shown in
Fig. S5(a). Note that the time delays are expressed as
multiples of the 2 THz phonon period (Torp.). We sim-
ulated the time evolution of X upon two-pulse excitation
using the same time delays as in our double-pump exper-
iment and obtained a FF'T spectrum for each delay. The
simulation results using a pump fluence F' = 0.96F, per
pulse reproduce the experimental data well [Fig. S5(b)].
Simulation with pump fluence F' > F fails to reproduce
the experimental data even qualitatively.

As a comparison, the 3 THz and 3.8 THz phonons
exhibit enhancement with IP pumping and suppression
with OP pumping, resembling the ISRS simulation very
well [Fig. S6] and thus demonstrating their uncoupled
nature. Also note that the measured frequency of all
three phonons after double-pumping redshifts compared
with the single-pump case due to higher net pump-
ing fluences [Fig. S5 and Fig. S6]. This softening
may come from carrier-excitation-induced lattice soften-
ing and phonon anharmonicity [20-22], which are ignored

in our microscopic model and unrelated to the main re-
sults.
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