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In this work, we study the topological properties and magnon Hall effect of a three-dimensional
ferromagnet in the ABC stacking honeycomb lattice, motivated by the recent inelastic neutron
scattering study of CrI3. We show that the magnon band structure and Chern numbers of the
magnon branches are significantly affected by the interlayer coupling Jc, which moreover has
a qualitatively different effect in the ABC stacking compared to the AA stacking adopted by
other authors. The nontrivial Chern number of the lowest magnon band is stabilized by the
next-nearest-neighbour Dzyaloshinskii-Moriya interaction in each honeycomb layer, resulting in the
hopping term similar to that in the electronic Haldane model for graphene. However, we also find
several gapless Weyl points, separating the non-equivalent Chern insulating phases, tuned by the
ratio of the interlayer coupling Jc and the third-neighbour Heisenberg interaction J3. We further
show that the topological character of magnon bands results in non-zero thermal Hall conductivity,
whose sign and magnitude depend on Jc and the intra-layer couplings. Since the interlayer coupling
strength Jc can be easily tuned by applying pressure to the quasi-2D material such as CrI3, this
provides a potential route to tuning the magnon thermal Hall effect in an experiment.

PACS numbers:

I. INTRODUCTION

Magnons, the low-energy collective excitations of
interacting localized spins, serve as the elemental
magnetic carrier in insulating magnets1–3. Magnons
have been demonstrated to form a macroscopic coherent
state by quasiequilibrium Bose–Einstein condensation,
and can propagate spin information much further than
spin current in metals4–9. For its potential applications
in spintronics field, the topological nature and transport
properties of magnons in quantum materials has been
one of the subjects of intense interest. Motivated by the
Dirac dispersion of electron states in graphene, linear
crossings of magnon bands in honeycomb ferromagnets
have been called “Dirac magnons”10,11. In analogy
with the electronic Haldane model12, gapping out these
Dirac points can result in nonzero Chern number of the
magnon bands13–15, achieved by introducing the second
neighbor Dzyaloshinskii-Moriya (DM) interaction on the
honeycomb lattice 16,17. The topological nature of the
magnon bands in turn results in a nontrivial contribution
to the thermal Hall effect 13–15. In analogy with the
quantum Hall effect of electrons, the magnon thermal
Hall effect has thus become one of the most fascinating
phenomena with a series of recent theoretical18–24 and
experimental19,25–29 studies.

The magnon thermal Hall effect was first
predicted theoretically18 in the kagome and
pyrochlore ferromagnets with a nearest-neighbor
(NN) Dzyaloshinskii-Moriya (DM) interaction16,17 and
discovered experimentally19 in Lu2V2O7. Subsequently,
it has been found that the motion of magnon wave
packet along the edge is responsible for the magnon Hall
effect with the analytical relation between its magnitude
and the Berry curvature of magnon bands20,21,30.
Two-dimensional (2D) magnon thermal Hall effect has

been studied in detail on several lattices, including
kagome18,25–28, Lieb29 and honeycomb13–15. However,
there has been comparatively little study to date of the
magnon thermal Hall effect in the three-dimensional
(3D) case.

As we shall demonstrate in this work, one can view
the 3D topological magnons in a layered honeycomb
ferromagnet as a bosonic analog of 3D electronic
topological Weyl semimetals, which have been an active
research area (see e.g. Refs. [31–34] for early works,
as well as a review [35] and references therein). In
electronic Weyl semimetal with broken time-reversal
symmetry, the pair of Weyl points can in principle
be moved in the Brillouin zone, resulting in either
an ordinary insulator (when the Weyl points merge)
or in a 3D quantum anomalous Hall insulator (when
the Chern band is fully occupied)34,36. Thus, one
can view Weyl semimetal as an intermediate gapless
phase between these two insulating phases. In this
paper, we show that an analogous intermediate gapless
phase, this time not electronic but magnonic in
nature, appears naturally in honeycomb ferromagnets
with spin-orbit coupling, separating two topological
insulating phases with different Chern numbers of the
magnon bands. We refer to this gapless phase as
a topological Weyl magnon conductor. We note that
while the appearance of Weyl magnon points has been
addressed in previous theoretical works motivated largely
by pyrochlore frustrated magnets37–49, the emphasis
was rather on the bulk-boundary correspondence and
the manifestations of the chiral anomaly under the
application of the electric field gradient45,46. In this work,
by contrast, we focus on the effect of the Weyl magnons
on the thermal Hall conductivity and in particular
formulate the appearance of the gapless Weyl phase
as an intermediate phase between two magnon Chern
insulators. This finding motivates the search for different
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topological phases and phase transitions between them in
various 3D magnetic insulators. A recent experimental
observation of topological Dirac magnons in a 3D
collinear antiferromagnet Cu3TeO6

41,42 may serve as an
experimental platform for observing the topological Weyl
magnons.

A recent inelastic neutron scattering on CrI3

characterized the spin-wave excitations in this material,
with the indication that low-lying magnon bands
may be topological50. The bulk CrI3 undergoes
ferromagnetic ordering of localized Cr spins below the
Curie temperature Tc = 61 K, with spins oriented
along the easy c-axis51–53. The lattice structure is
ABC-stacked honeycomb lattice (see Fig. 1) and the
experimental determined parameters show that there is
a non-negligible interlayer coupling Jc, as well as the
3rd neighbor intra-layer interaction J3. We note that
previous theoretical work on 3D honeycomb lattice46,54

has adopted the AA stacking instead. As we shall
demonstrate, the ABC stacking leads to qualitatively
different conclusions regarding the topological properties
of the magnon bands and the associated thermal Hall
effect, directly applicable to CrI3.

In this work, we study the topological properties
and magnon thermal Hall effect of 3D insulating
ferromagnets with ABC-stacked honeycomb planes.
Focusing on the case of CrI3 for concreteness, we
adopt a three-dimensional spin-3/2 Heisenberg model
with 2nd nearest-neighbor DM interactions, using the
experimentally determined exchange constants50. We
show that the interlayer coupling Jc and the 3rd NN
Heisenberg interaction J3 lead to several different gapped
and gapless phase, depending on the ratio of J3/Jc.
Notably, we find topological Weyl magnon conductor
sandwiched between two Chern magnon insulating
phases. We obtain the analytical formula of thermal Hall
conductivity κxy in two limits of very low and very high
temperature, both of which are accessible in CrI3 due
to the relatively low value of the exchange couplings (of
the order of J1 ∼ 2 meV). Importantly, we demonstrate
that the phenomenology of thermal Hall response in a
magnon Weyl conductor is qualitatively different from
the fermionic Weyl semimetal in that κxy does not scale
linearly with the distance between the magnon Weyl
points at any realistic temperature (except at very high
temperatures of the order of magnon bandwidth). This is
to be juxtaposed with electronic Weyl semimetals where
the Hall response at low temperatures is linear in the
separation between the Weyl points32,33.

We further investigate the sign change of the magnon
thermal conductivity, which we show could be used to
infer information about the topology of magnon bands.
In the low temperature limit, we observe the sign switch
of the thermal Hall effect upon varying the 3rd neighbor
coupling, explained by the sign switch of Berry curvature
at the Γ point. This analytical finding is corroborated by
numerical calculations of κxy over a wide temperature
range. Intriguingly, in a certain parameter regime, we

also find the sign change of the thermal Hall effect
upon varying the interlayer coupling Jc, opening up the
possibility of a uniaxial stress-induced control of κxy. We
believe that this provides a route to tuning the magnon
thermal Hall effect in CrI3 and related layered materials
such as CrGeTe3

55, and our results offer new guidance
for experiments.

This paper is organized as follows. In Sec. II, we
introduce the spin model of ABC-stacked honeycomb
lattice and its representation in the linear spin wave
theory. The boundary of a gapless Weyl magnon phase
is established, alongside the Chern insulating phases.
In Sec. III, we compute the Berry curvature, Chern
number, and their behavior in the gapped and gapless
phases. In Sec. IV, we derive the analytical results of
thermal Hall κxy at low and hign temperature limit,
complemented with numerical calculations across the
entire temperature range. We identify the sign change of
thermal conductivity upon varying J3 and Jc in Sec. V,
and draw conclusions.

II. LATTICE STRUCTURE AND SPIN MODEL

A. CrI3 lattice structure and Hamiltonian

The ferromagnetism of CrI3 is due to Cr3+ ions, which
form a network of honeycomb layers. The layers are
stacked against each other by van der Waals interactions,
with the structure becoming rhombohedral (space group
R3̄, no. 148) below 90 K. The lattice structure
can be approximated as ABC stacking of honeycomb
layers in the z direction, as shown in Fig. 1(a). The

primitive translation vectors are ~a1 = (
√

3a, 0, 0), ~a2 =

(−
√

3a/2, 3a/2, 0) and ~a3 = (0, a, c). For simplicity, we
set a = c = 1 in what follows as this does not affect
qualitatively our conclusions.

x

y

z
(a)

(b)

FIG. 1: (a) Lattice structure of CrI3, in one layer the 1st,
2nd and 3rd nearest neighbor Heisenberg interactions are J1
(black), J2 and (red) J3 (green), Jc (blue) is the interlayer
coupling. ~a1, ~a2 and ~a3 are primitive translation vectors; (b)
DM interaction D between next nearest neighbor.
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We use S = 3
2 Heisenberg Hamiltonian to model this

system, following the inelastic neutron scattering study
where the model parameters have been determined by
fitting the linear spin-wave spectra50:

H = −
∑
〈ij〉,l

Jij ~Si
l
· ~Sj

l
+
∑
〈〈ij〉〉,l

~Dij · (~Si
l
× ~Sj

l
)

− Jc
∑
〈ll′〉,〈ij〉

~Si
l
· ~Sj

l′

−K
∑
i,l

(Sl,zi )2,
(1)

where indices l and l′ run over the layers and Jij describes
the intra-layer interactions: first, second and third
nearest neighbor coupling, J1, J2 and J3. The second
term is the Dzyaloshinskii-Moriya interaction, with the

bond-dependent ~Dij vectors determined by Moriya’s

rules: ~Dij = Dvij ẑ, with vij = +1 (−1) for clockwise
(anti-clockwise) direction, respectively, as shown in
Fig. 1(b). The third term describes the interlayer
nearest neighbor coupling Jc between adjacent layers,
and the last term captures the single-ion Ising anisotropy
responsible for the easy axis of Cr3+ spins. Previous
theoretical and experimental studies have established
that the DM interaction between next-nearest neighbors
leads to the topological Chern magnon bands in a 2D
honeycomb lattice, resulting in a non-trivial thermal hall
effect13,14.

B. Linear spin wave expansion

We analyze the spin Hamiltonian in Eq. (1) using the
linear spin wave expansion. Owing to the single-ion Ising
anisotropy on Cr3+ site, we choose the z direction to
be along the easy axis (parallel to the crystallographic c
axis). Then, the spin operators are expressed using the
standard Holstein–Primakoff transformation:

S+
i =

√
2S − a†iaiai,

S−i = a†i

√
2S − a†iai

Szi = S − a†iai.

(2)

with S = 3
2 . After transforming into momentum space

and retaining only bilinears of bosons, the Hamiltonian

can be expressed as H =
∑
~k b
†
~k
· H(~k) · b~k, where

b†~k
= (b†

A~k
, b†
B~k

). The Hamiltonian matrix can be written

succinctly as

H(~k) = h0(~k)σ0 + hx(~k)σx + hy(~k)σy + hz(~k)σz, (3)

where σi’s are the Pauli matrices in the sublattice (A,B)

space. The explicit expressions for the coefficients hi(~k)
can be found in Appendix A.

The resulting energy spectrum is given by

ελ(~k) = h0(~k) + λ

√
hx(~k)2 + hy(~k)2 + hz(~k)2, (4)

where λ is −1 (+1) for the lower (upper) magnon band,
respectively. The resulting band structure obtained with
the experimentally detetemined fitting parameters50 is
shown in Fig.2. The band gap in the magnon spectrum
is given by

∆ε(~k) = 2

√
hx(~k)2 + hy(~k)2 + hz(~k)2. (5)

(a) (b)

FIG. 2: Band structure with experiment fitting parameters
J1 = 2.01 meV, J2 = 0.16 meV, J3 = −0.08meV, Jc = 0.59
meV, D = 0.31 meV, K = 0.22 meV. (a) 2D plot of two bands
for ky = 0, kz = 0, (b) 3D plot of two bands at kz = 0.

C. Parameter range of gapped and gapless phases

The Dzyaloshinskii–Moriya interaction, which breaks
inversion symmetry, is the key factor in endowing
the magnon bands in honeycomb ferromagnets with
nontrivial topology13. In the absence of the DM
interaction, the magnon energy spectrum is gapless.
The presence of arbitrarily small 2nd-neighbor DM
interaction D 6= 0 results in a complex phase factor
to the corresponding magnon hopping term, in direct
analogy to the electronic Haldane model12, and opens
up a gap in the spectrum of 2D honeycomb model
relevant for a monolayer CrI3. It is well established
that the resulting magnon bands have a nontrivial Chern
number13,14. However, as we demonstrate below, the
presence of the interlayer spin coupling Jc between the
ABC-stacked layers results in a number of topologically
non-trivial phases, some of them gapless and some of
them retaining the gap in the magnon spectrum.

Consider first the condition for the gapless spectrum

in Eq. (4), which translates into three equations hx(~k) =

hy(~k) = hz(~k) = 0. For the purely 2D monolayer model,
the gapless condition is only sarisfied at an isolated point
J3/J1 = 1/3. However when interlayer coupling Jc is
introduced, the gapless phase is found for a range of J3

values (see Appendix A):

1

3
− |Jc|

3J1
<
J3

J1
<

1

3
+
|Jc|
3J1

, (6)

provided the interlayer coupling is not too large: 0 <
Jc
J1
≤ 1

8 (−5 + 3
√

17) ≈ 0.921. This gapless phase is
flanked on either side by fully gapped magnon insulators
which, as we show in the next section, have nontrivial
Chern numbers. We note paranthetically that the
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model also admits other gapless solutions, however they
correspond to unphysically large values of Jc or J3 and
are therefore discarded in what follows.

III. BERRY CURVATURE AND CHERN
NUMBER

The momentum space Berry curvature is given by the
standard expression

Ωnαβ(~k) = −2Im
∑
m 6=n

〈
P~kn|v̂α|P~km

〉 〈
P~km|v̂β |P~kn

〉
(εn(~k)− εm(~k))2

, (7)

where v̂α = ∂H(~k)/∂kα and the pair of indices α 6=
β = {x, y, z} define a set of two-dimensional planes in
k-space in which the Berry curvature is computed. P~kn
is the eigenvector corresponding to the eigenvalue εn(~k)

of matrix H(~k). In the ferromagnetic case, Eq.(7) can be
transformed (see e.g. Ref. [13,14])

Ωnαβ(~k) = −2Im

〈
∂

∂kα
P~kn|

∂

∂kβ
P~kn

〉
. (8)

For the layered system such as CrI3, one can consider
them as a stack of two-dimensional xy-planes, for which
the Chern number can be computed for any fixed value
of kz ∈ [0, 2π] as an integral of the corresponding Berry
curvature over the 2D section of the Brillouin zone:

FIG. 3: The minimum translationally invariant region in
reciprocal space parallel to kx-ky plane, which has an area
of three times that of the first 2D Brillouin zone. By the
rotational symmetry, the integral over the dashed area is
equivalent to the integral over the first Brillouin zone in
Eq. (9).

Cλ(kz) =
1

2π

∫
BZ

d~k‖ Ωλxy(~k‖, kz), (9)

where the index λ = ±1 denotes the two magnon bands
given by Eq. (4). In the case of ABC stacking, the
minimum translation invariant region in reciprocal space
parallel to (kx, ky) plane is a hexagon shown in Fig. 3. It
contains the area three times that of the first 2D brillouin
zone. After considering 120◦ rotation symmetry, the 2D

integration over dk‖ (at a fixed value of kz) is over the 1st
Brillouin zone, equivalent to the dashed area in Fig. 3.

The integrand can be rewritten in the following
convenient form:

Ωλxy(~k) = λ(
∂φ

∂ky

∂ hz

∆ε

∂kx
− ∂φ

∂kx

∂ hz

∆ε

∂ky
), (10)

with tanφ =
hy

hx
. The resulting Chern number for the

lower band C− turns out to depend sensitively on the
value of J3 and is shown in Fig. 4(a). The two gapped
phases (A and E in Fig. 4(a)) both have non-trivial Chern
numbers and are separated by the gapless phase, whose
boundaries were derived above in Eq. (6). We note that
the gapless Weyl magnon phase exists in a finite range
of parameter J3, and three separate phases (B,C and D)
can be distinguished, whose nature will be discussed in
the section III B below. By contrast, in the case of the
monolayer (Jc = 0), the gapless phase is limited to a
single value of J3, as shown in Fig. 4(b). We analyze all
the topological phases in detail below.

A B C D E

GappedGapped Gapless

GappedGapped

(a)

(b) (or monolayer)

FIG. 4: Topological phases and Chern number of the lower
magnon band C− as functions of J3. (a) In the case of finite
interlayer coupling Jc > 0, the gapped phase A has Chern
number C−(kz) = 1 for all kz, whereas phase E has C− = −2.
Points J3 = J31, J34 mark the boundaries of the gapless phase,
where the Weyl points annihilate one another in pairs. The
magnon band is gapless in phases B, C, and D, which are Weyl
magnon phases with different dependence of planar Chern
number C−(kz) on kz. At J3 = J32, J33, two Weyl points with
opposite charges cross through the same kz plane without
annihilating each other (see section III B for details). (b) In
the case of vanishing interlayer coupling Jc = 0 relevant for
monolayer, the two gapped phases on either side of J3c = J1/3
have the same Chern number C− as the phases A and E above,
respectively.

A. Gapped phases

In the gapped phases A and E in Fig. 4, the spectral
gap between the two magnon bands does not close with
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E E

(a) (b)

(c) (d)

FIG. 5: Band structure with experiment fitting parameters
J1 = 2.01 meV, J2 = 0.16 meV, Jc = 0.59 meV, D = 0.31
meV and K = 0.22 meV. (a) 2D plot of two bands at ky = 0,
kz = π for J3 = 0.12J1. (b) Same as (a) for J3 = 0.5J1. (c)
(d) Density plot of the Berry curvature for these two cases.

varying kz, and the Chern number is well defined and
remains the same for all kz. In phase A J3 < J31 =
(J1 − Jc)/3, the Chern number of lower band C− = 1.
For large values of J3 > J34 = (J1 + Jc)/3 in phase E,
C− = −2. The magnon band structure and the Berry
curvature of these two gapped phases are shown in Fig.5.

B. Gapless phases

In the gapless phase realized when J31 ≤ J3 ≤ J34,
the xy Chern number in Eq. (9) is well defined almost
everywhere in the Brillouin zone with the exception of six
kz planes which house the monopoles or anti-monopoles
of the Berry curvature. These points serve as the sources
or sinks of the Berry curvature, with topological charge
+1 and −1, respectively. The behaviour of them with
J3 changing can be found in Appendix B. In the phases
B, C, and D, these six gapless points are localized at
six distinct values of kz, and as a result, the Chern
number of the lower magnon band C±(kz) jumps by
±1 when kz cross each of these planes. For example,
the case of phase B is shown in Fig. 6. This is in
direct analogy with electronic Weyl semimetals, where
the Chern number is non-zero in any plane between a
pair of Weyl points, and jumps to zero upon crossing the
Weyl point 32,33. For this reason, we dub the monopoles
of the Berry curvature in the layered ferromagnet Weyl
magnons and refer to the corresponding gapless phase as
a Weyl magnon conductor. Of course the original concept
of Weyl fermions56 refers to the solution of the massless

Dirac equation in (3+1)D, and the usage of the term
when applied to bosons may be deemed objectionable;
nevertheless, the parallels are also very clear – the role
of spin in Weyl spinors is played by the sublattice label
(A, B) in the magnon case, the spectrum is linear in both
cases, and the Weyl points appear in pairs with equal but
opposite chirality, just like in electronic Weyl semimetals.

The discovery of Weyl magnons in layered
ferromagnets is one of the key novel results of the
present work. This identification raises a natural
question – is there an analog of a transport coefficient
in the magnon case, such that one can associate the
jump of the Chern number upon crossing the Weyl
point with a plateau transition of the corresponding
(anomalous) Hall effect, as is the case for electronic Weyl
semimetals32,33? The answer is “almost,” in a sense
that the nontrivial Chern number of the magnon bands
results in a generically non-zero value of the thermal Hall
conductivity. At the same time, the crucial difference
with the electronic case is that the chemical potential for
magnons lies at zero energy, meaning that in the limit
of zero temperature, the magnon occupation number is
zero and the thermal Hall effect vanishes. This difference
notwithstanding, there are measurable consequences of
the magnon topology at any finite temperature, which
we shall analyze now.

(a) (b)

0

1

1

_ _
_+ +

+

FIG. 6: Inside the phase B J31 < J3 < J32, we sketch (a) Weyl
points in k space, (b) the Chern number of lower magnon
band C−(kz), which varies with kz and is non-zero only for
the planes in-between the pairs of Weyl points.

IV. TOPOLOGICAL THERMAL HALL EFFECT

With the choice of coordinate system where
ferromagnetic layers lie perpendicular to the z
direction, as in the convention we have followed,
the nontrivial Berry curvature in (xy) plane will
result in a nonvanishing value of the transverse (Hall)
component of the thermal conductivity κxy, which
quantifies the generation of a transverse energy flux jQx
upon the application of a temperature gradient ∂yT :
jQx = −κxy∂yT . The magnon contribution to the κxy is
found to be20,21,23,30

κxy = − k2
BT

(2π)3~

∫
BZ

d~k
∑
n

c2(fn(~k))Ωnxy(~k), (11)
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where c2(x) = (1 + x)(ln( 1+x
x ))2 − (lnx)2 − 2Li2(−x),

where Li2(x) is the polylogarithm function of order 2

and fn(~k) = nB(En(~k)) ≡ (eEn(~k)/kBT −1)−1 is the Bose
function of magnons at temperature T . The minus sign
in front of the integral in Eq. (11) can be understood from
the semiclassical theory in Refs. [20,21], which shows
that κxy originates from the magnon edge current, which
carries a minus sign relative to the Berry curvature of the
band.

One can view the above expression as an integral of the

Berry curvature weighted by the prefactor c2(fn(~k)). It
is the energy dependence of this prefactor that makes the
value of κxy not quantized, and it is only in the special
limit of perfectly flat magnon band En(k) = E0 separated
by a large gap ∆ε � kBT that quantization can be
achieved57, up to a constant prefactor nB(E0). We note
parenthetically that there may be other, non-magnonic
contributions to the anomalous thermal Hall effect in
insulators, such as for instance due to phonons that are
coupled to a chiral quantum spin liquid58, however these
effects are not subject of the present work and are absent
in CrI3 and related layered ferromagnets.

In general, the expression in Eq. (11) must be
evaluated numerically, however an analytical solution can
be found in two limits: that of very low temperatures
compared to the magnon dispersion kBT � |J |, and
in the opposite limit of very high temperatures. Note
that in the case of CrI3 where J1/kB ∼ 20 K, both
limits are within experimental reach. In this section, we
first summarize the analytical solutions in these limits,
before turning to the numerical analysis at intermediate
temperature in the following section.

A. kBT � |J | limit

At temperature low compared to the magnon
bandwidth kBT � |J |, the behavior of the function

c2(fn(~k)) ≈ (βEn(~k))2e−βEn(~k) means that κxy in
Eq. (11) is dominated by the lowest energy in the magnon
dispersion (here β ≡ (kBT )−1). The contribution far
from the minimum energy point of the lowest magnon
band is thus negligibly small.

We assume that J3 is positive (ferromagnetic in our
notation of Eq. (1)) or if negative, not too large compared
to |J1|. In fact, Eq. (12) shows that in the range of
J3 > − 1

4J1 − 3
2J2, Γ = (0, 0, 0) point of the lower band

is the minimum energy point, as is the case in CrI3 (see
dispersion in Fig. 2).

Then, expanding the energy and Berry curvature near
the Γ point, we find

Ω(~k, Jc, δ) = −A(J1, J3, Jc) ·D · δ · (k2
x + k2

y)2

+B(J1, J3, Jc) ·D · (k2
y − 3k2

x)kykz,

E(~k, Jc, J3) = 3K +
1

2m‖
(k2
x + k2

y) +
1

2mz
k2
z ,

(12)

where A is a positive function that depends on J1, J3

and Jc, δ = J3 − J1/8, m‖ = 4/(9(J1 + 6J2 + 4J3)),
mz = 2(3J1 + 3J3 + Jc)/(9(J1 + J3)Jc). The second

term in Ω(~k, Jc, δ) is an odd function of kz and does
not contribute when integrating over all kz. Finally, κxy
becomes

κxy = − k2
BT

(2π)3~

∫
BZ

d3kΩ(~k, δ)
E2

(kBT )2
exp

(
− E

kBT

)
=

9AK2

(2π)3~T
·D (J3 − J1/8) exp

(
− 3K

kBT

)
× (2kBTm‖)

3

∫
d2k′‖k

′4
‖ exp(−k′2‖)

×
√

2kBTmz

∫
dk′z exp(−k′2z),

(13)
where k′‖ = k‖/

√
2kBm‖T and k′z = kz/

√
2kBmzT .

In the limit of T � |J |, Tm‖ → 0, which allows
us to replace the upper limit of the integral over k′‖
by infinity. The result of integration thus becomes a
constant independent of T . As for the integral over k′z, its
values can be computed in two limiting cases: Jc � kBT
and the monolayer limit Jc � kBT . This integral can be
written as∫

dk′z exp(−k′2z) =

√
π

2
erf

(
2π√

2kBmzT

)

=


√
π

2
, Jc � kBT ;

2π√
2kBmzT

, Jc � kBT,

(14)

where erf(x) is the error function.
Collecting all T -dependent terms, we conclude that the

temperature dependence in the low temperature limit is

κxy (kBT � |J |) ∝ exp

(
− 3K

kBT

)
×

{
T

5
2 , Jc � kBT ;

T
3
2 , Jc � kBT,

(15)
In CrI3, Jc/kB ∼ 6 K, whereas the Ising anisotropy
K/kB ∼ 2 K, and one can in principle measure both
exponents in Eq. (15) .

We notice that in Eq. (13) the sign of κxy only depends
on J3 in T � |J | limit. Thus, we expect a sign change
of thermal conductivity at a value of J3 = J1/8, which
is due to the sign change of the Berry curvature at the Γ
point.

B. |J | � kBT < kBTc limit

It is interesting to investigate the behavior of thermal
conductivity in our model in the high temperature limit
compared to the magnon bandwidth, kBT � |J |. In the
case of CrI3, the magnon bandwidth is about 10 meV (see
Fig. 2), and given the value of the Curie temperature
Tc = 61 K, this limit may not be pertinent, however
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in other materials with higher Tc, it may be worthy of
investigation.

At high temperatures T � |J |/kB , the Bose function

can be approximated by fn(~k) ≈ kBT/E(~k). The
thermal Hall conductivity then becomes

κxy = − k2
BT

(2π)3~

∫
BZ

d~k
∑
n

Ωn(~k)(−En(~k)

kBT
)

=
kB

(2π)3~

∫
BZ

d~k
∑
n

Ω+(~k)∆ε(~k),

(16)

which shows that in the high temperature limit, κxy
is independent of T and its value depends on the gap
∆ε between the two branches in the magnon spectrum.
Shown in Fig. 7 as a color plot is the behaviour of κxy as
a function of couplings J3 and Jc. The dashed line marks
the position of zeros κxy = 0 where it changes sign.

Gapless

FIG. 7: Thermal hall conductivity κxy varying with J3 and Jc
in the high temperature limit. The dashed line corresponds
to κxy = 0.

C. Effect of Weyl points on thermal conductivity

It was established in Sec. III that a series of
topological phase transitions occurs upon increasing
the 3rd-neighbour coupling J3, accompanied by the
development of Weyl points in the magnon spectrum
inside the gapless phase that exists for a range of J3

values: J1−Jc
3 < J3 < J1+Jc

3 . It is natural to ask how
the presence of these Weyl points affects the thermal Hall
response.

1. Low temperature regime

First, in the low-temperature limit, we showed that
the value of κxy(T ) is entirely determined by the Berry
curvature expansion near the lowest-energy point (Γ) in

the lower branch of the magnon spectrum. As such,
the closing of the gap between the two branches, which
occurs at much higher energies (of the order of & 3J1)
and away from the Γ points, is not expected to affect the
thermal conductivity. Indeed, the analysis of Eq. (13)
shows that the sign of thermal conductivity is determined
by sgn(J3/J1−1/8) and does not depend on whether the
system is in the gapless regime 1

3−δc < J3/J1 <
1
3 +δc or

not, where we denoted δc = Jc/(3J1). In other words, the
closing of the magnon spectral gap, accompanied by the
appearance of the Weyl points, does not affect thermal
conductivity in the low-temperature regime T � 4J
(in the case of CrI3, for T . 80 K, given the magnon
bandwidth of ∼ 10 meV, see Fig. 2).

Note that this behavior is in stark contrast with
that of electronic Weyl semimetals, where the electrical
Hall conductance is proportional to the distance in
k-space between the pairs of Weyl points32,33: σxy ∝
e2

h (|∆k|/π)). This is because in the electronic case, the
Fermi function replaces the bosonic function c2(f(k)) in
the expression for Hall conductivity, and the integration
over k‖ is performed over all the occupied bands. An
alternative way to explain this is that only those values of
kz between the Weyl points are associated with the chiral
edge mode in the real-space xy plane that contributes to
the electronic Hall conductivity. In the bosonic case, by
contrast, even though the chiral edge modes do exist,
they are situated at energies of order J1 where the
bulk gap opens up in the magnon spectrum, and not at
zero energy where the chemical potential for bosons lies.
This is why the presence of these chiral modes does not
manifest itself in the Hall response until the temperature
becomes comparable to the magnon bandwidth, as we
shall see shortly.

2. Intermediate and high-temperature regime

At finite temperatures of the order of the magnon
bandwidth, one expects both branches of the magnon
spectrum to contribute to the thermal conductivity.
Indeed, the analysis of the high-temperature regime in
Eq. (16) manifests that the gap closing ∆ε(kzi) = 0 at
the Weyl points means that only the set of planes kz
between the pairs of Weyl points contribute to κxy. Here,
we denoted the kz-momentum positions of Weyl points
by kz = kzi, where i = 1...6.

For concreteness, we choose to focus on the gapless
phases B and C (see Appendix B). The distance between
the planes of Weyl points |∆kz| is plotted in Fig. 8 (a) for
these two phases. We now plot the thermal conductivity
κxy against the Weyl-point separation |∆kz| at three
different temperatures T = 0.1J1, 2J1 and T → ∞ in
Fig. 8 (b), (c) and (d). The left (right) panel is for phase
B (phase C) respectively.

We fit the data in Fig. 8 using

κxy(∆kz, T ) = κ(0) + κ(1)|∆kz|+ κ(2)|∆kz|2 (17)
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for a fixed temperature, and the results are summarized
in Table I.

In phase C, at intermediate temperature T = 2J1 and
in the high-temperature limit, we find κ(1)�κ(2) � κ(0),
so that we can approximate κxy ∝ |∆k|, proportional
to the separation between the Weyl points, which is the
regime explored in Ref. 54 on the example of a stacked
kagome antiferromagnet. In phase B, by contrast, the
behaviour of κxy(∆kz) is more non-linear, although it
can still be approximated as roughly κxy ∝ |∆k| at
sufficiently high temperatures.

B

B

B

B

C

C

C

C

(a)

(b)

(c)

(d)

FIG. 8: (a) The spacing |∆kz| in kz-space between the
planes containing pairs of magnon Weyl points, plotted as a
function of the model parameter J3/J1. In-between the pairs
of Weyl points, the Chern number in Eq. (9) C−(kz) = +1
(−1) in phase C (phase B), respectively. (b) Thermal hall
conductivity κxy plotted against |∆kz| inside the gapless
phase B (left panel), and C (right panel) at temperature
T = 0.1J1. (c) Same as (b) at T = 2J1. (d) Asymptotic
behavior of κxy vs. |∆kz| as T →∞.

Returning to the comparison with low-temperature
behaviour analyzed in the previous subsection, we also
plotted κxy vs. |∆kz| at low temperature T = 0.1J1 in
panel (b) of Fig. 8. In that case, thermal conductivity
is dominated by the constant term κ(0) which originates
from the low-energy contribution to Eq. (11) near the
bottom of the band and does not depends, to first

TABLE I: Fitting result of κ(0)+κ(1)|∆k|+κ(2)|∆k|2 in phases
B and C at T = 0.1J1, T = 2J1 and T → ∞. In phase C at
T = 2J1 and T → ∞, κ(1) � κ(2) � κ(0), which means that
κxy ∝ |∆k|.

Phase T κ(0) κ(1) κ(2)

B 0.1J1 6.14× 10−9 −4.62× 10−10 −7.72× 10−10

C 0.1J1 6.13× 10−9 1.34× 10−10 −1.67× 10−9

B 2J1 1.00× 10−2 −3.78× 10−1 2.21× 10−1

C 2J1 9.17× 10−3 3.65× 10−1 −2.04× 10−2

B � J1 1.85× 10−2 1.06 6.78× 10−1

C � J1 1.67× 10−2 1.04 1.34× 10−1

approximation, on the separation between the Weyl
points. In order to see how this picture evolves as
temperature is raised, it is useful to write down the
thermal conductivity as

κxy(T ) =

∫
dkz
2π

κ2D
xy (kz, T ), (18)

and plot the partial contribution of the 2D quantity κ2D
xy

as a function of kz. At low temperatures, the dominant
contribution comes from near the bottom of the band
(kz = 0 in CrI3). However at high temperatures, all
values of kz generally contribute (not just between the
Weyl planes), as shown in Fig. 9 for T = 2J1. Thus
even in the high temperature limit, κxy is not generally
expected to scale linearly with |∆kz|.

We conclude that the phenomenology of thermal
conductivity in a magnon semimetal is drastically
different from its fermionic counterpart. Nevertheless,
the appearance of the Weyl points upon increasing J3

does result in the eventual change of the Chern number
of, say, the lower magnon branch from C− = +1 to
C− = −2, and it is this change in the sign of the Berry
curvature that leads to the sign change of κxy in Eq. (16)
at high temperatures. Indeed, Fig. 7 shows that the
pronounced sign change of thermal conductivity occurs
near or in the gapless regime 1

3 − δc < J3/J1 <
1
3 + δc

(denoted by solid lines in Fig. 7) where the Weyl points
appear.

Having established the two limits of low and high
temperature, respectively, we now investigate the
behavior and sign change of thermal Hall conductivity
at intermediate range of temperatures.

V. SIGN CHANGE AND TEMPERATURE
DEPENDENCE OF THERMAL CONDUCTIVITY

As we have already remarked in the previous section,
the thermal conductivity changes sign as a function of
J3 in both the low- and high-temperature limits. In
this section, we investigate the sign change behavior
further and show the numerical results of evaluating
κxy in Eq. (11) with varying temperature and coupling
constants J3 and Jc. For concreteness, we set all the
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FIG. 9: Chern number of the lower band C−(kz) (red) and 2D
thermal Hall conductivity κ2D

xy (kz) (blue) vs. kz at T = 2J1,
Jc = 0.59 meV and J3 = J31 + Jc/20 (inside phase B).

(i)

(ii)

(iii)

(a) (b)

(i)

(ii)

(iii)

FIG. 10: Thermal hall conductivity κxy varying with kBT (a)
at J3/J1 = −0.04, 0.2, and 0.4. (b) κxy varies with kBT and
J3 at Jc = 0.59 meV.

other coupling constants equal to the experimentally
determined values50 for CrI3: J1 = 2.01 meV, J2 = 0.16
meV, K = 0.22 meV and D = 0.31 meV.

A. Temperature evolution of κxy as a function of J3

The thermal Hall conductivity κxy varies with
temperature for different values of J3 is shown in
Fig. 10(a) where Jc = 0.59 meV is kept constant
(experimentally determined for CrI3

50). The full picture
of κxy varying with T and J3 is shown as a color plot in
Fig. 10(b). The black dashed line marks the position of
zeros κxy(T, J3) = 0 where it changes sign. If we extend
this line to T → 0 limit, it arrives at J3L = J1/8. In the
limit of high temperatures T > J1/kB ≈ 20K, the sign
switch occurs at the value of J3H/J1 = 0.288.

The variation of κxy can be divided into three regimes
as T grows:
(i) J3 < J3L, κxy remains negative while its magnitude
grows with temperature;
(ii) J3L < J3 < J3H , κxy first switches its sign to
negative, then increases in magnitude;

(a)

(b)

(c)

(d)

FIG. 11: Thermal hall conductivity κxy varying with Jc (a)
at kBT = 0.5J1, J1 and 5J1. (b)-(d) κxy varies with J3 and
Jc at kBT = 0.5J1, J1 and 5J1. The dashed lines corresponds
to κxy(J3, Jc) = 0.

(iii) J3 > J3H , κxy remains positive and grows.

B. Temperature evolution of κxy as a function of
interlayer coupling

Varying the magnitude of the 3rd-neighbor coupling
J3 may not be easily achievable in a given compound,
however the value of the interlayer coupling Jc should be
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susceptible to the uniaxial strain applied along the c-axis
in these van der Waals coupled layered ferromagnets.
We therefore investigate the behaviour of κxy varies
with Jc shown in Fig. 11(a) (while maintaining J3/J1 =
0.3). The full picture of κxy varing with both J3 and
Jc is shown as color plots in Fig. 11(b)-(d) at several
temperatures kBT = 0.5J1, kBT = J1, and kBT = 5J1.
In all cases, the dashed line marks the position of zeros
of κxy where it changes sign.

As temperature approaches 0, this line becomes
vertical (i.e. independent of Jc) at a fixed value of
J3 = J1/8, as was inferred earlier in Sec. IV from
Eq. (15). However at higher temperatures, a degree of
tunability of the sign of κxy can be achieved by varying
Jc, provided J3 is initially close to the position of the
dashed line. Importantly, this line is not fixed but itself
moves to the right upon increasing temperature, and this
allows a realistic chance of zeroing-in on the sign change
of κxy by varying the uniaxial strain and temperature of
the material.

VI. CONCLUSIONS

In this work we investigate the topological properties
of the spin-wave excitations in the layered honeycomb
lattice ferromagnets, motivated in particular by the
recent neutron scattering experiment on CrI3

50. While
the presence of anomalous thermal Hall effect due
to 2nd-neighbour Dzyaloshinskii-Moriya interaction is
well established in the 2D monolayer regime, here we
address the effect of the interlayer coupling in the
3D layered ferromagnets, adopting the ABC stacking
of layers realized in CrI3. We find that this affects
qualitatively the topological properties of the model,
resulting most notably in the intermediate gapless phase
upon increasing the 3rd neighbour coupling J3 in the
plane. This gapless phase, which only exists for finite
interlayer coupling Jc harbours three pairs of Weyl
points where the two magnon branches cross linearly.
Each pair of Weyl points carries equal and opposite
monopole charges, acting as sources and sinks of the
Berry curvature in the reciprocal space. In complete
analogy with Weyl semimetals, we find that this Weyl
magnon “conductor” is an intermediate phase between
two topological “insulating” phases. Unlike the electronic
case however, where these phases are the trivial band
insulator and the topological Chern insulator, the two
magnon branches have non-trivial Chern numbers on
either side of the gapless phase: C− = +1 on the
left (for J3/J1 < 1/3 − δc) and C− = −2 on the
right (for J3/J1 > 1/3 + δc). This sign change of the
Berry curvature manifests itself also in the sign of the
thermal Hall effect κxy(T ), which we compute in different
temperature regimes.

In the low-temperature regime T � |J |, we obtain an

analytical result κxy(T→0) ∼ T
5
2 exp(− 3K

kBT
), where K is

the Ising anisotropy constant. In the opposite limit of

high temperatures, higher than the magnon bandwidth,
κxy approaches a constant value, whose sign switches
upon increasing J3 according to the change in sign of the
Chern number of the magnon branches, as noted above.
Interestingly, the presence of the Weyl points in the
intermediate gapless phases goes essentially unnoticed
in the low-temperature limit which is dominated by the
Berry curvature at the bottom of the dispersion, away
from Weyl points. By contrast, at finite temperatures
comparable to |J |, κxy is sensitive to the development of
the Weyl points.

Finally, we investigate the dependence of κxy on the
interlayer coupling Jc. Similar to a previous work14, κxy
will be suppressed while Jc increasing. But a significant
difference is that thermal hall effect may change sign as
Jc changes. As shown in Fig.11 (b), the curve marking
the position of zeros κxy(J3, Jc) = 0 is not vertical at
finite temperature, meaning that a constant J3 vertical
line may intersect with it in one point. It means that in
the range of J3 where this curve appears, changing the
interlayer coupling Jc will lead to a sign switch of κxy.
This is a new phenomenon which can be experimentally
probed by applying a uniaxial strain to the sample along
the c-axis perpendicular to the layers. Given the van
der Waals nature of the coupling between the layers,
even a moderate amount of uniaxial strain may result
in significant changes of the interlayer spin coupling Jc.
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Appendix A: The boundary of gapless phase

After the Holstein Primakoff transformation and
transforming into momentum space, the Hamiltonian

matrix H(~k) is

H(~k) = h0(~k)σ0 + hx(~k)σx + hy(~k)σy + hz(~k)σz, (A1)
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FIG. 12: Chern number of lower band C−(kz) varying with kz
in different J3 region. In phases B, C and D, the boundaries of
different color are kz planes where gapless points are located.
At the critical values J3 = J31, J32, J33, J34, the dashed lines
correspond to the planes where a pair of gapless points are
located at the same value of kz, and their monopole charges
cancel out – as a result, they do not lead to the change of the
Chern number.

where

h0(~k) = 3J1S + 6J2S + 3J3S + 2KS +Hz + JcS

− 2SJ2(2 cos(

√
3kx
2

) cos(
3ky
2

) + cos(
√

3kx)),

hx(~k) = −J1S(2 cos(

√
3kx
2

) cos(
ky
2

) + cos(ky))

− J3S(2 cos(
√

3kx) cos(ky) + cos(2ky))− JcS cos(ckz),

hy(~k) = −J1S(2 cos(

√
3kx
2

) sin(
ky
2

)− sin(ky))

− J3S(−2 cos(
√

3kx) sin(ky) + sin(2ky))− JcS sin(ckz),

hz(~k) = 2SD(2 sin(

√
3kx
2

)(cos(

√
3kx
2

)− cos(
3ky
2

))).

(A2)

In the gapless case hx(~k) = hy(~k) = hz(~k) = 0. After

eliminate kz by using hx(~k) = hy(~k) = 0, we obtain

Jce
ikz =− J1(ei

1
2 (
√

3kx+ky) + ei
1
2 (−
√

3kx+ky) + e−iky )

− J3(ei(
√

3kx−ky) + ei(−
√

3kx−ky) + ei2ky ).
(A3)

Another equation hz(~k) = 0 gives

sin(

√
3

2
kx)(cos(

√
3

2
kx)− cos

3

2
ky) = 0. (A4)

In the first BZ, the three solutions are

kx = 0, ky = ±
√

3

3
kx, (A5)

which are obviously equivalent under 120◦ rotation
symmetry. So we can choose kx = 0, take the square of
modulus of Jce

ikz , then the equation Eq.(A3) becomes

(4J1J3 + 8J2
3 )Y 2 + (4J2

1 + 12J1J3)Y

+(5J2
1 + J2

3 + 2J1J3 − J2
c ) = 0,

(A6)

where Y = cos 3
2ky. The solutions are

Y1,2 =
1

2J3(J1 + 2J3)
(−J2

1 − 3J1J3 ± (J4
1 + J3

1J3 − 3J2
1J

2
3

− 5J1J
3
3 − 2J4

3 + J1J3J
2
c + 2J2

3J
2
c )

1
2 ).

(A7)
The constrains of coupling constants are −1 < J3/J1 < 1
and 0 < Jc/J1 < 1. And we need at least one solution in
the range (−1, 1). Combination of above equations and
inequations gives

(1) 0 <
Jc
J1
≤ 1

8
(−5 + 3

√
17), − 1 <

J3

J1
< −1 +

Jc
3J1

;

(2) 0 <
Jc
J1
≤ 1

8
(−5 + 3

√
17),

1

3
− Jc

3J1
<
J3

J1
<

1

3
+

Jc
3J1

;

(3)
1

8
(−5 + 3

√
17) <

Jc
J1

< 1,
1

3
− Jc

3J1
<
J3

J1
< x∗,

(A8)
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where (−5 + 3
√

17)/8 ≈ 0.921 and x∗ is the second root
of

2x4 + 5x3 + (3− 2J2
c )x2 + (−1− J2

c )x− 1 = 0. (A9)

Because usually J3 and Jc are much smaller than J1, we
can only consider the solution

1

3
− Jc

3J1
<
J3

J1
<

1

3
+

Jc
3J1

. (A10)

The boundary of gapless phase are given by J31/J1 =
1/3− Jc/3J1 and J34/J1 = 1/3 + Jc/3J1. What’s more,
if we set Jc = 0, this solution becomes J1 = 3J3, which
is the same as the gapless case of monolayer model.

Appendix B: The behaviour of Weyl points with J3
changing

After solving the equations of gapless condition

hx(~k) = hy(~k) = hz(~k) = 0, there are 6 gapless points
with kz = ±kz0, ±(−kz0 + 2π/3) and ±(kz0 + 2π/3)
for 0 ≤ kz0 ≤ π/3. In gapless phase, C−(kz) changes
to C−(kz) ± 1 across the kz planes which contains one
gapless point. Analogous to Weyl semimetal, these pairs

of gapless points are Weyl points. If two Weyl points with
opposite charge live in the same kz plane, C−(kz) keeps
unchanged after cross it. This case appears at kz0 = 0

and π/3. Bring it back into hx(~k) = hy(~k) = hz(~k) = 0
it gives the phase boundaries J3 = J32, J33 in gapless
phase.

As J3 increasing, we can devide the process into 5
topological phases:

• J3 < J31, the system is gapped, C−(kz) = +1;

• J31 < J3 < J32, the system is gapless, 6 planes
with Weyl points separates 6 regions alternating
with C−(kz) = +1 and C−(kz) = 0;

• J32 < J3 < J33, the system is gapless, 6 planes
with Weyl points separates 6 regions alternating
with C−(kz) = −1 and C−(kz) = 0;

• J33 < J3 < J34, the system is gapless, 6 planes
with Weyl points separates 6 regions alternating
with C−(kz) = −1 and C−(kz) = −2;

• J34 < J3, the system is gapped, C−(kz) = −2.

Fig. 12 shows the variation of lower band Chern
number C−(kz) along kz with increasing J3.
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