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A computationally efficient workflow for obtaining the low-energy symmetric tight-binding Hamil-
tonians for twisted multilayer systems is presented in this work. We apply this scheme to twisted
bilayer graphene at the first magic angle. As initial step, the full-energy tight-binding Hamiltonian
is generated by the Slater-Koster model with parameters fitted to ab-initio data at larger angles.
Then, the low-energy symmetric four-band and twelve-band Hamiltonians are constructed using
the maximum-localization procedure subjected to crystal and time-reversal-symmetry constraints.
Finally, we compute extended Hubbard parameters for both models within the constrained random
phase approximation (cRPA) for screening, which again respect the symmetries. The relevant data
and results of this work are freely available via an online repository. Our workflow, exemplified in
this work on twisted bilayer graphene, is straightforwardly transferable to other twisted multi-layer
materials.

I. INTRODUCTION

The discovery of correlated insulating states and super-
conductivity in twisted bilayer graphene (TBG) [1–3] has
rapidly opened the field of twistronics with stacked van
der Waals materials. In TBG at the so-called first magic
twist angle 1.05◦, nearly flat bands around the Fermi
level emerge, which is the key ingredient for strongly-
correlated states to emerge in an otherwise weakly-
correlated material [1, 4–8]. The observation of a cor-
related insulator in close proximity to superconductivity
further leads one to believe that the superconductivity is
of an unconventional nature.

For a theoretical investigation of the phenomena ob-
served in TBG, two ingredients are essential: (1) a faith-
ful description of the low-energy band structure and (2)
the form and approximate strength of the relevant inter-
actions. However, performing ab-initio calculations—a
standard procedure for finding effective models, such as
tight-binding (TB) models—is challenging as the unit cell
at the magic angle of 1.05◦ contains about twelve thou-
sand atoms, which is prohibitively large for such first-
principles calculations. While ab-initio calculations to
obtain the full bandstructure were carried out in Ref. [9],
the required computational cost places strong constraints
on the pseudopotentials and the computational flow.
Therefore, simplified schemes for the derivation of effec-
tive models in twisted heterostructures are highly desir-
able.

The simplest approach to describe the (non-
interacting) electronic states of TBG is given by the so-
called continuum theory or k · p approximation [10–13].
Starting from the linearly dispersing Hamiltonian of indi-
vidual graphene sheets and adding interlayer couplings,
the resulting models give a reasonable approximation to
the electronic energy dispersion of TBG at arbitrary an-
gles. In addition, the models respect the D6 symme-
try group which protects the Dirac points [14]. Even
though the k·p method is straight forward to implement,
the resulting models ignore quantitative microscopic de-

tails, which may alter the qualitative nature of electronic
states, including their symmetry or topology.

Another approach is to directly start from a micro-
scopic TB model as an approximate but compact repre-
sentation of the full, experimentally realistic Hamiltonian
in a basis of localized Wannier orbitals. For graphene, the
orbital character of states near the Fermi level is dom-
inated by pz orbitals, which remains true in TBG. For
fixed orbital shape and orientation, the standard method
for obtaining the hopping parameters of the TB Hamil-
tonian is to assume the Slater-Koster (SK) analytic form
with standard values for the SK parameters [11, 15–19].
While this approach allows one to describe systems with
unit-cell sizes relevant for small twist angles, the fixed
choice of SK parameters restricts the overall accuracy of
the scheme.

In this work, we consider a compromise between accu-
racy and computational cost. Instead of computing the
ab-initio TB model at the magic angle, we first optimize
the SK parameters according to the ab-initio TB param-
eters calculated at larger twist angles. The resulting SK
parameters are then used for a TB description for TBG
at smaller twist angles. In other words, the SK analytic
form is used to extrapolate ab-initio information from
larger angles to smaller angles. This procedure allows
for a significant reduction in computational cost due to
the smaller unit cells. We verify the consistency of our
approach by comparing the SK parameters obtained us-
ing different twist angles. Note that this scheme can also
be applied to other twisted multi-layer materials.

The full TB description is not directly amenable to-
wards a many-body analysis due to the huge number
of degrees of freedom stemming from the large unit cell
close to the magic angle. Therefore, the next step is to
construct a minimal, non-interacting low-energy Hamil-
tonian, which describes the few relevant bands near the
Fermi level. We build the low-energy TB Hamiltonians
from the SK bandstructures, using the projection method
adopted in the Wannier90 software [20]. Since the flat
bands of TBG are isolated from others, and a good trial
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orbital set to initiate the procedure is known [21], a four-
band TB model can, thus, be easily obtained.

Even at the magic angle the gap between the flat bands
to other bands is small (experimentally, ∼ 35 meV [14])
compared to, for example, the phonon bandwidth (∼ 200
meV [22]). Thus, to study electron-phonon interactions
it is desirable to include additional bands close to the
Fermi level. Without a gap separating these additional
bands from the rest of the spectrum, the Wannierization
requires an appropriate ‘disentanglement’ step to sepa-
rate the Hilbert space of the desired energy range from
that of the rest of the band structure. This construc-
tion of a low-energy Hamiltonian is non-trivial, though
recently, a solution was proposed requiring a multi-step
projection procedure to obtain a good Wannier basis [23].
In this work, we report an alternative and simpler pro-
cedure to obtain a twelve-band low-energy Hamiltonian,
using the standard routines available in the Wannier90
package [20], and a simple modification of the code to in-
clude time-reversal (TR) symmetry. We further provide
the Wyckoff positions and symmetry representations of
Wannier orbitals required for stable convergence of the
crystal-symmetry related Wannier90 subroutines and the
Wannierization procedure itself.

Note that two possible configurations of commensurate
unit cells for TBG exist: The unit cells possess either
D3 or D6 symmetry, obtained by rotating AA-stacked
graphene sheets around carbon centers or hexagon cen-
ters, respectively. In the latter case, a Wannier ob-
struction was reported, which would hinder the construc-
tion of a four-band tight-binding Hamiltonian with well-
defined symmetry transformation of the basis Wannier
functions due to the fragile topological nature of the flat
bands [14, 24–26]. In the D3-symmetric case, which we
focus on in this article, no such obstruction exists even in
the single-valley theories, and a well-localized, symmetric
four-band TB model can be obtained [27].

To provide not only the single-particle Hamiltonian but
also electron-electron interactions, we further require the
form of the extended Hubbard parameters [11, 17, 18, 28].
To take into account electronic screening, we make the
constrained random phase approximation (cRPA), in
which the considered low-energy manifold is excluded
from the screening process. We compute these param-
eters for both a four-band and twelve-band low-energy
model, and discuss the symmetry constraints they obey.

The remainder of this article is organized as follows:
In Sec. II, the full workflow to construct a low-energy
effective tight-binding model starting from the extrac-
tion of the SK parameters to the projection to four and
twelve bands is described. Section III describes the cRPA
calculation and Sec. IV shows the results, while Sec. V
concludes our work.

FIG. 1. The figure gives a workflow for creating TB Hamil-
tonians for TBG. The first line describes the process of cre-
ating the full energy range SK Hamiltonian using a 21.79◦-
TBG DFT calculation with subsequent Wannierization (see
Sec. II A) followed by an SK parameter fit. The resulting SK
bandstructure for magic-angle TBG is further Wannierized
(second line) to give the low-energy TB Hamiltonians (third
line).

II. CONSTRUCTION OF TIGHT-BINDING
MODELS

In this section, we describe our workflow of construct-
ing tight-binding models for TBG. We start from ab-
initio data at a large, commensurate twist angle (θ =
21.79◦) to construct a TB model via a procedure known
as Wannierization. The resulting hopping amplitudes are
fitted using the SK analytic form. These fitted SK pa-
rameters can then be used to construct the TB model at
the magic angle, thus allowing us to bypass the expensive
step of Wannierizing ab-initio data at the magic angle.
Finally, having obtained the TB model at the magic an-
gle, a second Wannierization step is used to obtain the
low-energy (four-band and twelve-band) TB Hamiltoni-
ans. The full scheme is depicted in Fig. 1. In the rest of
the section, we give a detailed explanation of each step
in the procedure.

A. Wannierization procedure

We first discuss the Wannierization, the process of cre-
ating a TB Hamiltonian, which describes a desired man-
ifold of given Bloch states. If the desired set of J bands
is isolated from other bands at all points in the Brillouin
zone, the procedure proceeds simply by finding the set
of J maximally-localized Wannier orbitals |wnR〉 related
to the original Bloch function via a Fourier and unitary
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transformation,

|wnR〉 =
1

NBZ

∑
k

e−ikR
J∑

m=1

Uk
mn|ψmk〉

=
1

NBZ

∑
k

e−ikR|φnk〉, (1)

where the k sum runs over NBZ momenta in the Brillouin
zone, Uk

mn are unitary matrices, which mix the Bloch
states at each k, and R are the unit cell position vectors
with the so-called home unit cell located at the origin
(R = 0). The Uk

mn matrices are chosen such that the
spread

Ω =

J∑
n=1

[
〈wn0|r̂ · r̂|wn0〉 − |〈wn0|r̂|wn0〉|2

]
(2)

is minimized. Here r̂ is the position operator. The spread
Ω can be decomposed into two positive-definite compo-
nents

Ω = ΩI + Ω̃, (3)

where ΩI is gauge-independent while Ω̃ is gauge-
dependent. When the target bands are isolated, only the
gauge-dependent part needs to be minimized since the
gauge-independent part is invariant under unitary trans-
formation. Technically, this minimization is achieved us-
ing a steepest descent algorithm, for which one needs to
compute the gradient

Gk = dΩ̃/dWk, (4)

where the antihermitian dWk generates the infinitesimal
gauge transformation as Uk

mn = δmn + dWk
mn [20, 29].

At each iteration, the unitary transformation is updated
according to

Uk → Uk exp[αGk] (5)

with step variable α ≤ 1.
In the case of entangled bands [30], i.e., when the target

set of bands is not energetically separated from other
bands in the entire Brillouin zone, the above procedure
has to be augmented with a disentanglement step. This
step ensures that at each k point the smoothest set of J

Bloch wavefunctions |ψ̃nk〉 is selected from a larger set of
size Jk ≥ J [20],

|ψ̃nk〉 =

Jk∑
m=1

V k
mn|ψmk〉. (6)

Here, V k are Jk × J semi-unitary matrices ([V k]†V k =
11), chosen such that the gauge-invariant spread ΩI com-

puted on {|ψ̃nk〉} is minimized. Technically, this re-
sults in an iterative procedure, where at each iteration

the mismatch of Hilbert subspaces, span{|ψ̃nk〉} and

span{|ψ̃nk′〉}, where k′ runs over all momentum points
nearest to k, is minimized for all k.

In this work, we use an additional restriction in the dis-
entanglement procedure [30]: in Sec. II E we choose an
energy range within which the original Bloch manifold
must be exactly reproduced. This energy range is called
the inner, or frozen window of the disentanglement pro-
cedure. In this case, the manifold of Bloch states within
the frozen window is fixed and always contained in

span{|ψ̃nk〉}.
Due to the non-convex nature of the optimizations, the

initialization of the various iterative procedures plays a
critical role. This initialization is achieved by choosing
a set {|ωn〉} of trial orbitals. Given the trial orbitals,
the initial value of the matrices Uk and V k can then
be defined in the following way. First, one expands the
projection above back onto the Hilbert space of interest

|φ̄nk〉 =

J or Jk∑
m=1

Amnk|ψmk〉, (7)

where

Amnk = 〈ψmk|ωn〉. (8)

Next, by orthonormalizing, we obtain a set of Bloch

states, in the sense of |φnk〉 or |ψ̃nk〉 from Eqs. (1)
and (6), respectively:

|φnk〉 =

J∑
m=1

S
− 1

2

mnk|φ̄mk〉 (9)

=

J or Jk∑
m=1

(AkS
− 1

2

k )mn|ψmk〉, (10)

where Smnk = 〈φ̄mk|φ̄nk〉 = A†kAk. The matrices

(AkS
− 1

2

k )mn then serve for initialization of Uk
mn and V k

mn

in the maximum-localization and disentanglement algo-
rithm, respectively. When the trial orbitals are chosen
appropriately, this initial guess for Uk

mn is often used for
TB model construction, i.e., without performing maxi-
mum localization. In Sec. II E, we make use of such a
one-step procedure after obtaining a converged disentan-
gled manifold.

After obtaining the Uk and V k matrices, the TB
Hamiltonian can be constructed by rotating the initial
eigenvalues as UkÊk[Uk]† or UkV kÊk[V k]†[Uk]† in the

entangled-bands case. Here, Êk is the matrix with the
energy eigenvalues on the diagonal, and zero entries oth-
erwise. Then, the subsequent (inverse) Fourier transform
to real space gives the desired set of hopping parame-
ters tn1n2

(R), such that the translationally invariant TB
Hamiltonian in second quantized form reads

Ĥ =
∑
n1 n2

∑
R1R2

tn1n2
(R2 −R1)ĉ†n1R1

ĉn2R2
, (11)

where ĉnR (ĉ†nR) are second quantized operators, which
create (annihilate) a Wannier orbital |wnR〉 (see Eq. (1))
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located at position rnR = R + τn with τn being the
position of orbital |wnR〉 within the unit cell.

B. Crystal symmetry constraint

The Wannierization procedure defined above preserves
neither crystal nor TR symmetries. For the procedure to
respect these symmetries, we place a constraint on the
matrices Uk and V k during the maximal-localization and
disentanglement procedures, respectively [20, 31].

To simplify the notations, we restrict ourselves to
working with the point group G only, which is possible
in TBG by choosing the unit cell appropriately. In the
space of Bloch states the symmetry representation ma-
trix d̃gmn(k) for a point group element g ∈ G is defined
through

ĝ|ψnk〉 =

J∑
m=1

d̃gmn(k)|ψm,Sgk〉, (12)

where the action of g in euclidean space is expressed as
gr = Sgr. On the other hand, the corresponding Wan-
nierized states |φnk〉 have to obey a similar transforma-
tion rule

ĝ|φnk〉 =

J∑
m=1

Dg
mn(k)|φm,Sgk〉, (13)

with desired symmetry representation matrices Dg
mn(k),

which are block diagonal, and each block corresponds to a
site-symmetry-induced irreducible representation deter-
mined from the chosen orbital configuration of the TB
model. The exact definitions of d̃gmn(k) and Dg

mn(k) can
be found in Ref. [31]. It can be shown that for a point
group operation gk in the little group Gk—the subgroup
of G which leaves a given k unchanged—the following
relationship holds [31]

UkDg
k (k) = d̃ gk (k)Uk (14)

for the matrices Uk from Eq. (1) (exactly the same equa-
tion must hold for the V k matrices from Eq. (6) in the
entangled-bands case). Starting from the initial guess,
this equation is solved iteratively to ensure that the sym-
metry condition holds. Note, that Eq. (14) can only be
satisfied if the irreducible representations of original and
the targeted Wannierized Bloch manifolds [31] are com-
patible in the targeted energy window.

In the subsequent steepest descent optimization of
the maximum localization procedure, the gradient Gk in
Eq. (4) is replaced by

Gsym
k =

1

|Gk|
∑
gk∈Gk

Dg
k (k)Gk[Dg

k (k)]†, (15)

where |Gk| is the order of the little group Gk, in or-
der to preserve the equality (14) at every iteration. One

only needs to solve Eq. (14) on an irreducible wedge of
momentum points, while Uk at other momentum points
is constructed by applying the symmetry transforma-
tions. A similar approach is used at the disentanglement
step [20, 31].

C. Time-reversal symmetry constraint

In spinless systems with TR symmetry, a real ba-
sis of maximally-localized Wannier orbitals is guaran-
teed to exist. While Wannier90 code usually manages
to find such real Wannier orbitals, this is generally not
guaranteed. Particularly in TBG, this symmetry tends
to be broken when constructing low-energy TB mod-
els. The TR-symmetric four-band low-energy model can
be obtained by considering a set of complex TR-related
pairs as trial orbitals [32], and skipping the maximum-
localization procedure. Either when using maximum lo-
calization or an odd number of such complex orbitals
at some sites (as in our twelve-band model below), the
TR symmetry can not be fixed explicitly by available
software, and therefore can be broken in the resulting
TB Hamiltonian. In this work, we implement a scheme,
which allows for explicit TR symmetry constraint in
both disentanglement and maximum-localization steps,
involving only a minor modification of Wannier90 code,
and requiring no additional input.

First, we fix the arbitrary phase of eigenvectors of the
original band structure to satisfy the TR symmetry con-
straint. Neglecting the spin degrees of freedom, this is
achieved by only taking eigenvectors in the irreducible
wedge of k points with respect to the TR operator and
constructing the eigenvectors at −k point via

|ψ−k〉 = T |ψk〉, (16)

where the TR operator T = K, the complex conjugation.
If the unitary matrices Uk and V k satisfy the condition

Bk = [B−k]∗, (17)

where Bk corresponds to either Uk or V k, the result-
ing Wannier orbitals will be real. This condition can be
satisfied by the substitution

Bk → 1

2
(Bk + [B−k]∗). (18)

However, the operation in Eq. (18) breaks unitarity (for
Uk) or semi-unitarity (for V k) of the matrices, which has
to be restored with an “orthonormalization” subroutine
available within the Wannier90 software.

Interestingly, it is only necessary to make the replace-
ment Eq. (18) in the final iteration of the maximum local-
ization procedure. In this way, the replacement does not
significantly affect the spread of the resulting Wannier
orbitals and also preserves the crystal symmetries, dis-
cussed in Sec. II B, accurately. On the other hand, for the
disentanglement procedure, it is necessary to apply the
substitution at every iteration. Further details regarding
the symmetrization are provided in the appendix.
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D. Slater-Koster parametrization

The hopping amplitudes of a TB Hamiltonian are of-
ten well described by the SK analytic form [33]. The
analytic structure depends only on the geometric config-
uration, character of basis orbitals, and a set of fitting
parameters. This approach was successfully applied to
TBG by considering carbon’s pz orbitals only with the
following analytic form for the hopping amplitudes in the
corresponding TB model [11, 15–19]:

tij(Rj −Ri) = tπ(rij)

[
1−

(
zij
rij

)2
]

+ tσ(rij)

(
zij
rij

)2

,

tπ(r) = t0π exp [qπ(1− r/rcc)] ,
tσ(r) = t0σ exp [qσ(1− r/dab)] , (19)

where rij = |rij | = |rjRj
− riRi

|, zij is the z component
of rij , rcc is the in-plane carbon-carbon bond length, and
dab is the interlayer distance. The SK parameters t0π, t0σ,
qπ and qσ, are typically fixed to −2.7 eV, 0.48 eV, 3.14
and 7.43, respectively.

Due to its analytic form, the SK approach can be di-
rectly applied to handle the atomic relaxations specific to
TBG. In this work, we consider only out-of-plane corru-
gations [34], in which the distance between layers varies
from daa in AA stacked regions to dab in AB stacked re-
gions. Here, AA (AB) stacking refers to regions where the
same (opposite) sublattice atoms of the two graphene lay-
ers align. We use a smooth interpolation between these
values, such that at the atomic site r, we have an inter-
layer separation

d(r) = d0 + 2d1[cos(b1r) + cos(b2r) (20)

+ cos({b1 + b2} r)],

where d0 = (daa + 2dab)/3, d1 = (daa − dab)/9 with
daa = 3.6 Å and dab = 3.35 Å [11, 34], see Fig. 4. Al-
though the average magnitude of the in-plane and out-
of-plane relaxations are similar in magic-angle TBG, our
model of out-of-plane-only lattice corrugations yields a
bandstructure very similar to the fully DFT-relaxed crys-
tal structure of Ref. [35]. As the corrugations generated
by Eq. (20) preserve the symmetries, we use this model
in all our calculations. A comparison of different crys-
tal structures and their corresponding electronic bands
is shown in the Appendix D.

E. Extraction of hopping parameters from ab-initio
calculation for TBG

Usually, the SK parameters defining the hopping am-
plitudes in Eq. (19) are fixed to the values given in
Sec. II D. However, this places a clear restriction on the
accuracy of the resulting model. Therefore, we propose
to Wannierize ab-initio data at larger twist angles and
use the resulting hopping amplitudes to extract the SK
parameters. We assume that the parameters extracted

at large twist angles are still a good approximation for
smaller angles. This way, we do not have to perform
the expensive Wannierization using ab-initio data at the
magic angle.

We start by rewriting the TB Hamiltonian to distin-
guish between the in-plane (‖) and out-of-plane (⊥) hop-
ping terms,

Ĥ =
∑
ij

RiRj

[
t
‖
ij(Rj −Ri)Θ(z′ij)

+ t⊥ij(Rj −Ri)Θ(−z′ij)
]
ĉ†iRi

ĉnjRj ,

(21)

where z′ij = 1
2dab − |zij | and Θ denotes the Heaviside

step function. The argument of the Heaviside step func-
tion allows to distinguish in-plane hopping with finite z-
component from purely out-of plane components in the
case of corrugated layers.

The TB parameters can then be obtained from the ab-
initio calculations by Wannierization of the DFT Bloch
manifold, as discussed in Sec. II A. Following Eq. (19),
the hopping coefficients tij depend on the displacement
rij connecting the corresponding sites.

Since the vertical component of rij is small for in-
plane hoppings, especially at small distances due to
the long-wavelength nature of atomic corrugations, one
may assume that the corresponding in-plane hopping
amplitudes are only of π-type and identical to those
in single-layer graphene (SLG). Furthermore, the weak
van der Waals forces of the interlayer coupling should
only have a minor effect on the in-plane Hamiltonian of
each individual layer of TBG. Still, we use the standard
SK parametrization for the in-plane TB Hamiltonian in
TBG, and find that together with our new out-of-plane
parameterization (below) it produces the right band-
structures with the crystal structure defined in Eq. (20)
and the DFT-relaxed crystal structure from Ref. [35] (see
Appendix D for more details) [36]

For the computation of the out-of-plane hopping am-
plitudes t⊥ij(Rj −Ri), we follow a different path: Since
the number of non-equivalent matrix elements of this
type is very large at small twist angles, our approach is
to (i) perform the Wannierization at larger twist angles
(smaller unit cell), (ii) get the list of all possible out-of-
plane hopping amplitudes for this case, and (iii) fit this
data to the SK analytic expression. We apply this scheme
to TBG at the largest and the second-largest commensu-
rate twist angles θ = 21.79◦ and θ = 13.17◦, respectively.
Finally, the resulting analytic expression for t⊥ij(Rj −Ri)
is used to construct the full TB Hamiltonian for TBG at
arbitrary commensurate twists.

Since the maximum-localization procedure shifts, in
general, the final Wannier-orbital centers from their orig-

inal positions, we skip this step, i.e., the spread Ω̃ given
in Eq. (3) is not minimized, and the corresponding Uk

matrices are to be defined as described at the end of
Sec. II A. In addition, the disentanglement was done with
the frozen window technique. The choice of the frozen
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FIG. 2. Frozen windows (between dashed horizontal lines) for
Wannierization of the DFT bandstructures for single layer and
twisted bilayer graphene at 21.79◦ respectively. The resulting
Wannier-interpolated bandstructures (solid lines) and original
DFT ones (dots) are also shown. The derived TB model for
SLG was used in additional studies of Appendix D and is
placed here for a visual comparison.

window in both calculations is shown in Fig. 2 with re-
spect to the original DFT bandstructure. The Wannier-
ized bandstructure is also shown in that figure.

F. Low-energy models

The SK Hamiltonian described above is still large
(∼ 105 × 105 matrix per k point), but can be exactly di-
agonalized as a non-interacting problem. Accounting for
interactions, however, increases the computational costs
exponentially. For many-body calculations, a smaller
basis set is highly desirable. The most natural way to
achieve such a smaller basis set is to perform a further
Wannierization of the non-interacting TB Hamiltonian
for TBG, such that the resulting model only contains
bands close to the Fermi level. Unlike for the construc-
tion of the ab-initio TB models above, we use a maximum
localization procedure subjected to the crystal and time-
reversal-symmetry constraints for the construction of the
low-energy models. The specific details on the choice of
trial-orbital configurations are described in two sections
below.

1. Four-band Hamiltonian

Since the four flat bands of magic angle TBG are iso-
lated from all other bands, the Wannierization to a four-
band model is straight forward. It is known [32] that a
good trial orbital set, {|ωn〉} in Eq. (8), is obtained by
taking linear combinations of the Bloch wavefunctions
at the Γ point and truncating with Gaussians centered
at the AB or BA site. In addition, we impose the crys-
tal symmetry constraint on the Wannierization procedure
as discussed in Sec. II B. In contrast to Ref. [32], where
complex orbitals are obtained, our target symmetry rep-
resentation matrices are obtained by assuming that the
Wannier functions transform as real px,y atomic orbitals
located at AB and BA sites of the TBG unit cell. Real

orbitals are obtained by adding the constraint of time-
reversal symmetry as described in Sec. II C. Following an
earlier study in Ref. [11], we justify this choice by the
correct irreducible representations of the Bloch bands at
the Γ and K points in the Brillouin zone under the D3

symmetry group (which we exclusively deal with in this
article).

2. Twelve-band Hamiltonian

Given the small (computed as ∼ 25meV) band gaps
between the flat bands and the rest of the band struc-
ture, the inclusion of at least the next eight bands may
be relevant for many-body physics. The problem, how-
ever, is that some of these additional bands are entangled,
i.e., degenerate or crossing, with higher or lower bands.
Therefore, an additional disentanglement step is needed
to construct a smooth manifold of Bloch states in mo-
mentum space for subsequent maximum localization.

Reference [23] proposed a multistep projection scheme
for constructing the trial set of orbitals. The main dis-
advantage of this scheme is that one has to work with
a valley-projected bandstructure, which is generally not
the result of ab-initio calculations. Secondly, the num-
ber of resulting Wannier orbitals is strongly constrained.
Two orbitals are needed for flat bands and three orbitals
are needed for each lower and upper lowest-energy (non-
flat) subset of bands. As a result, one can work with
either 2, 5 or 8 bands per valley.

The approach we shall take, on the other hand, is not
subject to such restrictions. We simply choose a trial
orbital set {|ωn〉}, which has a good overlap with the
wavefunctions of the SK bandstructure close to the Fermi
level, and delegate the search for the optimal Wannier
orbitals to the Wannierization procedures described in
Sec. II A with crystal and time-reversal symmetry con-
straints, using the Wannier90 code. In particular, the
trial orbitals in the twelve-band case are computed from
the wavefunctions at Γ in the following way. Consider the
twelve bands closest to the Fermi level, labelling them
n = 1, . . . , 12 in order of increasing energy. Next, the
bands with indices n and m = 13−n are paired together.
The trial orbitals |ωn〉 are then formed by combining the
pairs |ψnΓ〉 and |ψmΓ〉. In addition, these trial orbitals
are truncated by Gaussians centered along the center of
rotation of the corresponding irreducible representation.
A similar approach was recently taken in the four-band
case [32]. Details on the symmetry configuration are dis-
cussed in Sec. IV B.

III. INTERACTIONS

Having obtained the non-interacting low-energy model,
the final ingredient for a full many-body Hamiltonian is
to consider the Coulomb interaction between electrons.
In general, this interaction is screened by the surround-
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ing media, which in our case comprises all electrons that
do not enter the low-energy Hamiltonian, and by an envi-
ronmental dielectric function accounting for the substrate
on which TBG is placed. A straightforward way to take
into account this screening is by making the constrained
random phase approximation (cRPA) which we describe
below.

After computing the screening, one can then compute
the Hubbard parameters in order to construct the many-
body Hamiltonian. These parameters simply correspond
to matrix elements of the cRPA-screened Coulomb in-
teraction in the Wannier basis of the low-energy TB
model. The workflow for calculating theses quantities
is described in the subsequent sections and follows very
closely that of Ref. [17], with the exception that symme-
tries are taken into account. In addition, we fit the result-
ing matrix elements with an analytic envelope function
to better understand their dependence on distance.

A. Screened Coulomb interaction

The cRPA screening is described by the polarizability
function

Π(q + G) =
4

Ω

∑
k

∑
cv

′ |〈ψvk|e−i(q+G)r|ψck+q〉|2
εck+q − εvk

, (22)

where q is a vector in the first Brillouin Zone and G is a
reciprocal lattice vector. The prime in the second sum-
mation indicates that transitions between bands used in
the construction of the low-energy Hamiltonian are ex-
cluded. The indices c and v thus run over all conduction
and valence bands, respectively, that are not part of the
low-energy Hamiltonian. The cRPA dielectric function is
then evaluated via

ε(q + G) = εenv + v(q + G)Π(q + G), (23)

with v(q + G) = 2π/|q + G| the bare Coulomb inter-
action in two dimensions in atomic units and we choose
a substrate-specific εenv = 5 to simulate screening [17].
The screened Coulomb interaction can then be computed
in real space by performing the Fourier transform:

W (r) =
∑
G

∫
dq

(2π)2

v(q + G)

ε(q + G)
e−iqr. (24)

The eigenvalues εnk entering the cRPA polarizability
expression in Eq. (22) are computed on a 7 × 7 grid of
k points. In total, 8400 bands were used to ensure con-
vergence. Calculation of the cRPA polarizability for the
four-band model is straightforward. One simply needs to
exclude four flat bands out of the sum in Eq. (22). The
twelve-band model, on the other hand, is constructed
with the disentanglement procedure, which forbids the
direct use of Eq. (22) in principle. However, due to the
fact that the energy range of the twelve-band model spec-
trum is equal to that of the lowest twelve bands of the

original Hamiltonian, we can assume that screening prop-
erties of both sets of bands should be similar. Moreover,
the resulting disentanglement matrices of Eq. (6) show
that the dominant contribution of the final Wannier basis
set indeed comes from these twelve bands. Therefore, we
use Eq. (22) as given ignoring the twelve bands closest to
the Fermi level in the sum, which is straightforward since
this set is isolated on the chosen k-point grid (the degen-
erate K and K ′ Brillouin-zone points are not present on
this grid).

B. Hubbard parameters

The screened Coulomb interaction computed in the
previous section is incorporated into the non-interacting
low-energy TB Hamiltonian in the form of two-body in-
teraction terms given by

Un1n2
n3n4

(R2 −R1)ĉ†n1R1
ĉ†n2R2

ĉn3R2 ĉn4R1 , (25)

where Un1n2
n3n4

(R2−R1) is the two-body interaction matrix
element. When n1 = n4 and n2 = n3, the terms become
a density-density interaction and the corresponding pa-
rameters Un1n2

= Un1n2
n2n1

are also known as the Hubbard
parameters.

Given the Wannier-orbital wave functions wnR(r) =
〈r|wnR〉 as well as the screened interaction obtained in
the previous section, the Hubbard parameters can be
computed as

Un1n2(R2 −R1) =

∫∫
dr1dr2 (26)

× |wn1R1(r1)|2W (r2 − r1)|wn2R2(r2)|2.
The calculation is done by decomposing the Wannier or-
bitals in the basis of pz orbitals |φzτi+R′〉 at each carbon
site i of TBG

|wnR〉 =
∑
iR′

cni(R
′ −R)|φzτi+R′〉. (27)

Here cni(R
′−R) are defined from the solution of the free

SK-TB Hamiltonian 〈φzτi+R′ |ψmk〉, via the result of the
maximum localization procedure

cni(R
′ −R) =

1

NBZ

∑
mk

Uk
mne

ik(R′−R)〈φzτi+R′ |ψmk〉,

(28)
where Uk

mn, the transformation from Eq. (1), always car-
ries a bold momentum superscript, and should not be
confused with the Hubbard parameter matrix without
such a superscript. In the twelve-band case, the orbitals

|ψmk〉 must be replaced by smoothed |ψ̃mk〉 from Eq. (6).
Following the approach of Refs. [17, 18], we have as-

sumed that carbon pz orbitals of different sites have zero
overlap, such that the final expression for the Hubbard
parameters is given by

Un1n2
(R2 −R1) =

∑
ijR′R′′

W (rijR′R′′) (29)

× |cn1i(R
′ −R1)|2|cn2j(R

′′ −R2)|2,
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where rijR′R′′ = R′′ + τj −R′ − τi.
The summation in Eq. (29) needs to be cut at short dis-

tances due to the high computational costs. This leads to
a slight error of the sum, and an associated small symme-
try breaking of the matrix U . Moreover, the calculation
of the full matrix as given in Eq. (25) is computationally
more challenging. Therefore, we reduce the computation
to matrix elements that are not related by symmetry (i.e.,
an irreducible wedge) and obtain the others via the appli-
cation of symmetry transformations. Symbolically, this

operation can be represented as

UnR = ÔmR′←nRUmR′ , (30)

where n,m are combined orbital indices (e.g., n =
n1, n2, n3, n4), R,R′ are lattice vectors for general [left
hand side of Eq. (30)] and irreducible (right hand side)

wedge respectively. Ô is a symmetry operation which
connects these matrix elements.

The transformation requires the full interaction matrix parameters defined by

Un1n2
n3n4

(R2 −R1) =〈wn1R1wn2R2 |Ŵ |wn3R2wn4R1〉
=

∑
ijR′R′′

c∗n1i(R
′ −R1)c∗n2j(R

′′ −R2)W (rijR′R′′)cn3j(R
′′ −R2)cn4i(R

′ −R1). (31)

When n1 = n4 and n2 = n3, the equation reduces to Eq. (29).
The operation in Eq. (30), and the construction of the irreducible wedge is based on the knowledge of the symmetry

transformations of the interaction parameters above, which in turn is based on the knowledge of site-symmetry
representations of the Wannier orbitals, and thus, the point group representation matrices Dg

nm. The complete
derivation for the symmetry transformations of U is presented in Appendix A. Here, we give only the final expression,

ĝUn1n2
n3n4

(R2 −R1) =
∑
m1m2
m3m4

Dg
n1m1

Dg
n2m2

Um1m2
m3m4

(Tñ2ñ1
n2n1

)Dg̃
m3n3

Dg̃
m4n4

(32)

× δτn1
,τn4

δτn2
,τn3

δτ̃n1
,τm1

δτ̃n2
,τm2

δτm3
,τ̃n3

δτm4
,τ̃n4

,

where Tñ2ñ1
n2n1

= Sg̃(R2 −R1) + Sg̃(τn2
− τn1

)− (τ̃n2
− τ̃n1

), and tilde is related to the action of the inverse symmetry

operation g̃ = g−1 (see Appendix A for details). Note that Eq. (32) can also be used to symmetrize an existing U
matrix, in a similar fashion as the symmetrization of TB models in Ref. [37] (see Appendix A).

IV. RESULTS

A. Extraction of TB parameters

All Wannierization calculations were performed with
Wannier90 code version 3.1.0 [20]. The SIESTA code ver-
sion 4.0.2 [38] was used for DFT calculations, for which
a non-relativistic pseudopotential and the local density
approximation (LDA) for the exchange-correlation func-
tional was chosen. A 30 × 30 and 18 × 18 k mesh was
used in 21.79◦ and 13.17◦ TBG, respectively. In all cases,
the so-called SZ (single-ζ) basis of the SIESTA code was
chosen.

Figure 3 shows the in-plane and out-of-plane hopping
amplitudes of 21.76◦-TBG, as a function of distance. The
values follow the SK analytical form well, albeit not with
the standard parameters. In addition, we repeated the
procedure using ab-initio data for 13.17◦-TBG. We found
that the fitted SK parameters for this case are in good
agreement with those computed for 21.76◦-TBG, thus
lending credibility for its subsequent use at the magic
angle. Fitted Slater-Koster parameters for out-of-plane
interactions can be found in Tab. I. Notably large value
of t0π in comparison with its literature value of −2.7 eV is

t0π (eV) t0σ (eV) qπ qσ
Ref. -2.7 0.48 3.14 7.43
Fit -35.7 0.31 2.56 3.29

TABLE I. Fitted Slater-Koster parameters for t⊥. Referered
values are used in Refs. [11, 15–18] for describing both in- and
out-of-plane hopping amplitudes.

due to 1− [zij/rij ]
2 prefactor in Eq. (19), which is small

for closest out-of-plane interactions dominating the fit,
and a larger value of the fitting parameter t0π is required
for a sensible range of the physical hopping parameters
t⊥ij(Rj −Ri) [Eq. (21)].

The slight variance of the data away from the SK-fitted
line is explained by the fact that the actual electronic or-
bitals formed within the DFT framework are not strictly
aligned along the vertical axes. An alternative scheme
was proposed in Ref. [39] to include the dependence of
the out-of-plane hopping amplitudes between atoms i
and j on the in-plane π-bonding directions originating
from these atoms. The reported small-angle TBG band-
structure supports a set of flat bands, which, however,
is not as well isolated from other bands. This shortcom-
ing has been attributed to neglected lattice relaxation
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FIG. 3. Data for the out-of plane (left) and in-plane (right)
hopping amplitudes for 21.79◦-TBG (empty circles) computed
with the ab-initio TB scheme. Its SK parametric fit (red)
together with the SK curve generated with commonly used
parameters given in Sec. II D [11, 15–18] (orange). The result
of a similar fit for 13.17◦-TBG for t⊥ is given by filled circles
on the left hand side. The good agreement between the SK fit
at 21.79◦ and the 13.17◦ data supports our assumption that
SK parameters are transferable between different angles.

FIG. 4. The corrugation structure of the magic-angle TBG
together with all Wickoff positions used in this work as centers
of trial orbitals. One of the 6g sites is taken as (0.45, 0.1)
in lattice coordinates, the others are related by symmetry
operations. The model of the out-of-plane corrugations seen
on the plot is the one described by Eq. (20) [11, 34], which
gives comparable sizes of AA and AB domains of larger and
smaller interlayer distance, respectively, encoded by the color.
All distances are in Å.

effects. We leave the complete resolution of this question
to future research.

B. Low-energy models

In the construction of the four-band low-energy model,
we used a 24×24 k-point mesh. The trial orbital set was
composed in a similar way as was done in Ref. [32] with
a key difference that crystal and time-reversal symme-
tries were included in our calculations as discussed ear-
lier. These symmetry constraints led to real-valued or-

FIG. 5. Wannier basis functions for four-band TB model.
Color shows the weight of pz component relative to its maxi-
mal value specified at top-right of each subplot. Given Wan-
nier functions transform according to atomic-like character
shown at the bottom-left of each plot.

bitals which transform as px,y, as opposed to the complex
TR-related pairs in Ref. [32]. Another advantage of our
scheme is that, in principle, one does not need the exactly
symmetric trial orbital configuration, because this is fixed
during the constrained maximum localization procedure.

In the twelve-band case, the target symmetry configu-
ration of the trial orbital set was chosen according to the
one represented by atomic orbital symbols in Fig. 6. It
includes six s-like orbitals at the 6g, two pz-like at the 2d,
and a pair (px,y and dxy,x2−y2) of two-dimensional irre-
ducible representations of D3 at the 1a Wyckoff positions
of space group P321 [40]. These Wyckoff positions are
shown in Fig. 4. This configuration gave a stable conver-
gence of Eq. (14) for several different k-point grids. We
have chosen a 12×12 grid for the twelve-band TB model
construction.

In both the four- and twelve-band cases, the Wannier-
ization procedure results in exponentially localized Wan-
nier functions as shown in Fig. 5 and Fig. 6, respectively.
For the four-band model, the resulting orbital shape is
similar to that obtained in Ref. [32]. On the other hand,
the orbitals obtained for the twelve-band model have very
diverse shape. Moreover, it can be seen from Fig. 6 that
the center of mass and Wyckoff position do not necessar-
ily match except when the orbitals are centered at AB
and BA (honeycomb) sites.

The spread of Wannier basis functions of the four- and
twelve-band models can be quantified by computing the
average absolute band energy error per band and k point
with respect to a hopping cutoff (Rcut),

∆(Rcut) =
1

NbandsNBZ

∑
m,k

|εmk(R∞cut)− εmk(Rcut)|.

(33)
This is done by ignoring all hopping amplitudes above
a certain threshold, i.e., when |rn2R2

− rn1R1
| > Rcut

the hopping between sites n1R1 and n2R2 is ignored.
R∞cut corresponds to including all hopping terms. The re-
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FIG. 6. The same as Fig. 5 but for twelve-band model. The
difference is that centers of site-symmetry irreducible repre-
sentations and the center of mass of the orbitals do not gen-
erally match. In each plot only centers corresponding to the
plotted orbital are shown.

sult is shown in Fig. 7, and one can clearly see that the
twelve-band model has shorter decay length, which can
be attributed to the lower spread of orbitals. It is even
possible to further reduce the spread of the Wannier or-
bitals in the twelve-band case by switching off the crystal
symmetry constraint and using a frozen window in the
disentanglement step. The result of the corresponding
calculation is shown in Appendix B.

Finally, we show the bandstructures of the resulting
low-energy models in Fig. 8. There is a slight devia-
tion of the twelve-band-model bandstructure around the
Dirac points, which does not happen in the four-band
case. This is due to the disentanglement step, which
mixes bands outside the energy window of interest. This
deviation and mixing is, however, very small and can be
safely neglected.
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51.3, 196, 241, 200 (12-band)
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FIG. 7. (left) Averaged absolute error in a band energy per
band and k-point computed with a low-energy Hamiltonian
as a function of nearest-neighbor cut off Rcut. Note that
the twelve-band model shows better convergence of flat bands
(FB, green circles) than the four-band one. (right) Relative
values of extended Hubbard parameters against the distance
between centers of masses of orbitals. Fit to a soft Coulomb
potential truncated by a Gaussian is given by the solid lines
[Eq. (34)]. Fitted parameters are given as numbers in meV/Å
units. The inset shows the relative scale of the onsite intra-
orbital Hubbard matrix elements for each orbital with value
for s-orbitals given by U0. The exchange parameters corre-
spond to (ex.) label.
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FIG. 8. Comparison between the original band structure of
SK approach and its Wannier interpolation with the twelve-
band model.

C. Hubbard parameters

Hubbard parameters for both models are shown in
Fig. 7 (right). Fewer bands are included in the cRPA
polarizability summation of Eq. (22) of the twelve-band
model in comparison to four-band case, which results in
poorer screening. The orbitals are also more compact
such that the Hubbard parameters have larger values at
short range but decay faster with distance. For the four-
and twelve-band models, the interactions become negligi-
ble at distances larger than 300 Å and 500 Å, respectively,
to be compared to the lattice constant of magic-angle
TBG, a ≈ 134 Å.

It was shown that the Ohno potential [41] reasonably
describes the dependence of Hubbard parameter values
on the inter-orbital distance in TBG [17, 18]. However, a
better fit was achieved in our calculations by considering
a soft Coulomb interaction subjected to a Gaussian cut
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off,

Ufit(r) = U0
ae−r

2/σ2

|r + δ| , (34)

where U0 is the (fixed) on-site Hubbard interaction, while
a, σ and δ are fitting parameters. The fitted values for
U0, a, σ, δ are 14.4 meV, 469, 300 Å, 465 Å and 57.7 meV,
165, 244 Å, 164 Å for four- and twelve-band model respec-
tively. The quality of this fit is demonstrated in Fig. 7
(right).

Finally, our exchange parameters, which correspond
to taking n1 = n3 and n2 = n4 in Eq. (31) do not show
any long-range behaviour, as seen from the Fig 7. This
behaviour is different from the one found in Ref. [42],
and can be due to several reasons. First, we perform the
maximum localisation procedure for obtaining the low-
energy model. Second, we use full D3 symmetry group
instead of C3z one in the reference. Third, our RPA
model of screening may behave differently than the gate
screening used, most likely, in Ref. [42]. And last, we have
used quite comprehensive tight-binding model, while the
continuum model was employed in the reference above.

V. CONCLUSIONS

In this work, we explored a new microscopic approach
for obtaining an interacting low-energy tight-binding de-
scription of TBG. The two standard microscopic ap-
proaches begin either (i) by assuming that the TB hop-
ping amplitudes are described by the SK form with a
heuristic choice for the SK parameters or (ii) by per-
forming a full Wannierization of ab-initio DFT data at
the magic angle. The former is computationally light but
of limited accuracy, while the latter is computationally
expensive despite being highly accurate. Our approach
takes the middle ground by making a compromise be-
tween accuracy and computational cost.

The main idea is to perform Wannierization of ab-
initio data not at the magic angle, but at a larger twist
angle, thus significantly reducing the computational re-
quirements. The resulting TB model can then be used to
extract the SK parameters which allows one to construct

a TB model at arbitrary angles. The bandstructure at
the first magic angle was further Wannierized to give
fully symmetric four- and twelve-band low-energy mod-
els. The low-energy Hamiltonians together with their
corresponding Hubbard parameters are available at the
open repository [43].

The full workflow presented in this article attempts
to make a fair compromise between accuracy and com-
putational cost. The various techniques and tricks used
here are easily applicable and adaptable to any twisted
multi-layer system, where the large unit cells present a
computational difficulty.

During the course of this work we encountered two
questions that might be worth studying in the future.
First, the Wannierized ab-initio data does not exactly
follow the SK curves for interplane hopping amplitudes.
This is most likely due to the assumption of rigid pz or-
bitals. Therefore, a potential improvement of the numer-
ical precision of our scheme can be achieved by taking
into account such deviations. Secondly, we found that a
more compact twelve-band model can be obtained using
the so-called frozen window technique when the crystal
symmetry constraint is given up. The crystal symmetry
constraint within the frozen window calculation is, how-
ever, not yet implemented in the Wannier90 code. Im-
plementation of this functionality would allow to study if
such scheme would give a better result in comparison to
the symmetric twelve-band model presented in the main
text. This comparison is left for future research, when
such implementation will be available.
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Appendix A: Symmetry transformations of Hubbard parameters

The transformation of the Hubbard interaction presented in the main text takes the following form:

ĝUn1n2
n3n4

(R2 −R1) = 〈wn1R1
wn2R2

|ĝŴ ĝ−1|wn3R2
wn4R1

〉 (A1)

=

∫∫
dr1dr2w

∗
n1R1

(r1)w∗n2R2
(r2)ĝW (r2 − r1)ĝ−1wn3R2

(r2)wn4R1
(r1).

The real-space integrals above must be computed over the entire space. For this purpose, we insert the complete set
of basis orbitals from each side of W , which yields

ĝUn1n2
n3n4

(R2 −R1) =
∑

m1m2m3m4
T1T2T3T4

〈wn1R1
wn2R2

|ĝ|wm2T2
wm1T1

〉〈wm1T1
wm2T2

|Ŵ |wm3T3
wm4T4

〉 (A2)

× 〈wm4T4
wm3T3

|ĝ−1|wn3R2
wn4R1

〉.
Next, we introduce g1 and g2, equivalent symmetry operations from the point group, acting on coordinates r1 and r2

correspondingly, such that we can further simplify

ĝUn1n2
n3n4

(R2 −R1) =
∑

m1m2m3m4
T1T2T3T4

〈wn1R1
|ĝ1|wm1T1

〉〈wn2R2
|ĝ2|wm2T2

〉Um1m2
m3m4

(T1T2T3T4) (A3)

× 〈wm3T3 |ĝ−1
2 |wn3R2〉〈wm4T4 |ĝ−1

1 |wn4R1〉.
If the underlying Wannier basis obeys known site symmetry representations, one is able to construct the representation
matrices Dg

nm and express matrix elements of the symmetry operations above accordingly:

〈wnR|ĝ|wmT〉 = Dg
nmδR+τn,T+τm

, (A4)

where τ is the center of Wannier orbital andT+τ gives the coordinates of transformed Wannier center by an operation
g, such that τ is a Wannier center vector within the unit cell. Plugging this form into the equation above results in:

ĝUn1n2
n3n4

(R2 −R1) =
∑

m1m2m3m4
T1T2T3T4

Dg
n1m1

Dg
n2m2

Um1m2
m3m4

(T1T2T3T4)Dg̃
m3n3

Dg̃
m4n4

× δR1+τn1
,T1+τm1

δR2+τn2
,T2+τm2

δT3+τm3
,R̃2+τ̃n3

δT4+τm4
,R̃1+τ̃n4

,

where R̃ + τ̃ is transformed Wannier center by an inverse symmetry operation g̃ = g−1. Any δR+τn,T+τm
can be

written as δR̃+τ̃n,T+τm
. It follows that the combination of delta-symbols in the equation above transforms into:

δT1+τm1
,R̃1+τ̃n1

δT2+τm2
,R̃2+τ̃n2

δT3+τm3
,R̃2+τ̃n3

δT4+τm4
,R̃1+τ̃n4

= δT1,R̃1
δT3,R̃2

δT2,R̃2
δT4,R̃1

δτm1
, τ̃n1

δτm2
, τ̃n2

δτm3
, τ̃n3

δτm4
, τ̃n4

. (A5)

Eq. (A5) suggests, that the resulting translation vectors T1 and T2 after summing up the delta-symbols will be fixed
as the following expressions:

T1 = R̃1 + τ̃n1 − τm1 (A6)

T2 = R̃2 + τ̃n2 − τm2 (A7)

The U depends on the difference of vectors above, and it could be computed via the following expression:

T2 −T1 ≡ Tñ2ñ1
n2n1

= Sg̃(R2 −R1) + Sg̃(τn2
− τn1

)− (τ̃n2
− τ̃n1

), (A8)

where Sg is the rotation matrix representing the point group operation g. Collecting all statements:

ĝUn1n2
n3n4

(R2 −R1) =
∑

m1m2m3m4

Dg
n1m1

Dg
n2m2

Um1m2
m3m4

(Tñ2ñ1
n2n1

)Dg̃
m3n3

Dg̃
m4n4

(A9)

× δτ̃n1
,τm1

δτ̃n2
,τm2

δτm3
,τ̃n3

δτm4
,τ̃n4

.
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If we, use more strict constraint such that centers of orbitals n1, n2 coincide with ones of n4, n3 correspondingly, the
transformation of the matrix U will still be consistent:

ĝUn1n2
n3n4

(R2 −R1) =
∑

m1m2m3m4

Dg
n1m1

Dg
n2m2

Um1m2
m3m4

(Tñ2ñ1
n2n1

)Dg̃
m3n3

Dg̃
m4n4

(A10)

× δτn1
,τn4

δτn2
,τn3

δτ̃n1 ,τm1
δτ̃n2 ,τm2

δτm3 ,τ̃n3
δτm4 ,τ̃n4

,

meaning that such restricted gUn1n2
n3n4

still depends on the same type of Um1m2
m3m4

matrix elements in the sum, i.e., ones
with m1,m2 and m4,m3 corresponding orbital centers matching, and these matrix elements contain the conventional
Hubbard parameters at n1 = n4 and n2 = n3.

Finally, one could imagine a symmetrization of an existing U , if due to some reasons it does not obey the crystal
symmetries, basically applying the same idea as for tight-binding models in Ref. [37]:

Un1n2
n3n4

(R2 −R1) =
1

Ng

∑
g∈G

ĝUn1n2
n3n4

(R2 −R1). (A11)

Validity of such expression was checked by applying this operation twice to originally non-symmetric U, the result of
second symmetrization was the same as the first one.

Appendix B: Non-symmetric twelve-band TB model.

We have found out that a more compact twelve-band
low-energy TB model for magic-angle TBG can be ob-
tained by switching off the crystal symmetry constraint
and using the frozen window technique in the disentan-
glement step. The resulting bandstructure together with
frozen window used in the calculation is shown in the
Fig 9. In this case the flat bands are reproduced more
accurately in comparison with the crystal-symmetry con-
strained calculation, while having larger error in other
bands, which are outside the frozen window. One can
also see from the Wannier functions plot of Fig. 10 that
centers of masses of each orbital form the Kagome lat-
tice, and when plotted all together, form two hexagons
per unit cell sharing one edge. Such calculations is, how-
ever, very sensitive to both trial orbital set ωn and the
choice of the frozen window. In the particular calculation
of this section the trial orbitals were taken as lobes of trial
orbitals for four-band model (i.e., taking separately each
of three pockets from functions similar to ones in Fig. 5)

Appendix C: TR symmetry constraint in the
disentanglement algorithm

In the disentanglement procedure, the Eq. (14) is
solved for V k instead of Uk at every iteration of disentan-
glement algorithm. In order to ensure that these matrices
obey time-reversal symmetry, one should incorporate the
insertion of Eq. (18) to be applied self-consistently during
the solution of Eq. (14). Instead, we have implemented
this insertion to be applied only after solving Eq. 14 at
every disentanglement iteration step. This gave slightly
slower iterative convergence of the disentanglement algo-
rithm with, however, an advantage of simpler implemen-
tation. Note that such approach can be extended to a

K M Γ K′

−0.05

0.00

0.05

E
n
er

gy
(e

V
)

frozen window

12-band model
Original

FIG. 9. Bandstructure computed with twelve-band low-
energy Hamiltonian without introducing crystal symmetry
constraint, in comparison with the original SK bandstructure.

spinor case.

Appendix D: Corrugations in the 1.08◦-TBG

In this section we compare different relaxed atomic
structures for 1.08◦-TBG, and present the electronic
structures obtained by different TB Hamiltonians. The
model of corrugation used in this work [Eq. (20)] is ba-
sically the Fourier expansion of the DFT-relaxed struc-
tures at twist angles larger than 2◦ [34]. It was shown
recently [35] that 1.08◦ DFT-relaxed TBG possesses a
crystal structure, which has also high-frequency modula-
tions of the carbon’s z-coordinates with respect to the
in-plane location, as can be seen in the Fig. 11. We
find, however, that the electronic bandstructures com-
puted with various TB Hamiltonians are similar in these
two cases (first and last columns of Fig. 12). On the
other hand, the crystal structure obtained with the clas-
sical force field methods gives quite different electronic
bandstructures except the pure SK case with original pa-
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FIG. 10. The same as Fig. 6, but taken from the non-
symmetric Wannierization.
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FIG. 11. Top layer (left) and bottom layer (right) vertical
coordinate of atoms in vicinity of the long diagonal of the
TBG UC in three different crystal structures. The model
structure is given by the Eq. (20), the structure relaxed using
classical forces (lammps code) was given by the authors of
Ref. [19], while the DFT-relaxed structure (VASP code) was
taken from Ref. [35].

FIG. 12. Electronic bands computed with various in-plane
and out-of-plane TB model parametrizations for 1.08◦-TBG.
The first two rows are obtained with the SK parametriza-
tion for t⊥ developed in this work (Sec. II E), while the stan-
dard SK parameters for t⊥ were used in the lower two rows.
The standard SK parameters for t‖ were used in the second
and the fourth row, while the first and the third row corre-
spond to using the ab-initio TB parameters for SLG for in-
plane Hamiltonian of TBG with, however, reversed sign of the
second-nearest neighbor hopping amplitude. Column names
are explained in the caption of Fig. 11, and all vertical energy
axes are in eV. Finally, values for the standard SK parameters
can be found in Fig. 3 of the main text and in references of
its caption.
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FIG. 13. Valley- and layer-resolved bandstructure of 1.79◦

TBG ignoring the out-of-plane coupling in the tight-binding
model. The Vtot is a difference between valley characters (V)
of two layers. Note, that odd and even bands are shifted
vertically with respect to each other for a better observation
of the valley character, which is normalized to span [−1, 1]
range.
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FIG. 14. The same as Fig. 13, but with finte t⊥ parametriza-
tion used in our work.

rameters (last row of Fig. 12). Taking the DFT-relaxed
crystal structure as the reference one, we assume that
the right SK parameters must perform the best in this
case. We see from Fig. 12 that parameters used in this
work (corresponding to the second row of the figure) have
satisfactory performance in flat-bands bandwidths (∼ 20
meV) and gaps between narrow and other bands (∼ 30
meV) against the corresponding experimental values of
10 and 30− 60 meV [2] (for 1.05◦-TBG) correspondingly
(keep in mind the reduction by a factor of two of the nar-
row bands bandwidth when reducing the twist angle to
1.05◦). The parameters from the first row can, in prin-
ciple, be used as well, but the ad-hoc change of the sign
of the in-plane second-nearest hopping amplitude has no
justification, therefore, the conventional in-plane SK-TB
Hamiltonian was chosen for our calculations.

Appendix E: Valley projection

We have found out that the out-of-plane coupling in
the tight-binding model gives an essential valley mixing
in TBG. These can be seen from the valley and layer pro-
jected bandstructures, which can be obtained by evalu-
ating the projector operator from Ref. [47, 48] on TBG
eigenfunctions across the Brillouin zone. For example,
when the out-of-plane t⊥ in the tight-binding model is
off, we see a robust two-valley structure in each of layers
in Fig. 13. In contrast, the finite t⊥ makes the bands
being heavily mixed in the valley character (Fig. 14). In
addition to that, the Wannierization algorithm do not
employ a valley character resulting in the fact that the
Fourier transform step of Eq. (1) picks up bands of one
valley character at K and of the opposite one at K′, which
contributes to zero valley character at a Wannier orbital.
The matrices Uk in Eq. (1) could, potentially, sort the
bands according to valley character, but this would be
an additional constraint for Wannierization, which can
be, in principle, implemented. Note, that the conserved
quantum number is Vtot = V1−V2 [47], i.e., difference of
valley characters between two layers. If such operation
is performed, the resulting Vtot behaves smoothly across
the Brilloiun zone, and Vtot on Γ-M path becomes zero
in the finite t⊥ case. With vanishing t⊥, the Vtot is either
1 or −1 except highly symmetric Γ and M points, where
it becomes zero.
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