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The Yang-Lee edge singularity is a quintessential nonunitary critical phenomenon accompanied by anoma-
lous scaling laws. However, an imaginary magnetic field involved in this critical phenomenon makes its physical
implementation difficult. By invoking the quantum-classical correspondence to embed the Yang-Lee edge sin-
gularity in a quantum system with an ancilla qubit, we demonstrate a physical realization of the nonunitary
quantum criticality in an open quantum system. Here the nonunitary criticality is identified with the singularity
at an exceptional point caused by postselection of quantum measurement.

The Yang-Lee zero [} 2] is a zero point of the partition
function of the canonical ensemble and provides a mathe-
matical origin of singularities of thermodynamic quantities at
phase transitions. In the ferromagnetic Ising model, the Yang-
Lee zeros distribute on the imaginary axis in the complex
plane of an external magnetic field [3]], and the distribution be-
comes dense in the thermodynamic limit. In the paramagnetic
phase, there is a nonzero lower bound on the absolute values
of the Yang-Lee zeros, and the distribution of the zeros does
not touch the real axis. In the vicinity of the lower bound, i.e.,
at the edge of the distribution, a critical phenomenon called
the Yang-Lee edge singularity [4-10]] arises, which is accom-
panied by anomalous scaling laws. Although these concepts
were originally introduced for mathematical foundations of
phase transitions, practical schemes to determine the critical
points and the critical exponents from Yang-Lee zeros have
been proposed [11H13]], and experimental observation of the
Yang-Lee zeros [14H18] has been reported [19]. Moreover,
some features of the Yang-Lee edge singularity have been ex-
tracted from experimental data [[14} [15] 20, 21]. The criti-
cal exponent of the density of Yang-Lee zeros has been ob-
tained from the dependence of the magnetization in an Ising
ferromagnet on a real magnetic field combined with analytic
continuation [14} [15] and from a finite-size scaling [22] of
quantum coherence of a probe spin coupled to a many-body
spin system [20], which also provides an effective central
charge [21]] of the corresponding conformal field theory [23-
27]. However, a direct observation scheme and the physical
meaning of the anomalous scaling in the Yang-Lee edge sin-
gularity have remained elusive due to an imaginary magnetic
field involved in this critical phenomenon, which makes its
physical realization challenging.

The Yang-Lee edge singularity is a prototypical example of
nonunitary critical phenomena [4H10, 25H29]], which gener-
ally involve anomalous scaling laws with no counterparts in
unitary critical systems. In the nonunitary theory, the corre-
lation function can increase with increasing the distance due
to the negative scaling dimension of a field [S} 7} 25/ 26], and
the entanglement entropy of a subsystem can decrease with
increasing its size due to the negative central charge 28} 29].

In this Letter, we demonstrate that the Yang-Lee edge sin-
gularity can be implemented in quantum systems on the ba-

sis of the quantum-classical correspondence [30l 31], where
a classical system is mapped to a quantum system via the
equivalent canonical partition function. Thus, the corre-
sponding quantum system features the Yang-Lee zeros and
the Yang-Lee edge singularity of the classical ferromagnetic
Ising model. In a classical system, an imaginary magnetic
field makes it difficult to physically interpret this critical phe-
nomenon. In the quantum counterpart, which is described by
a non-Hermitian Hamiltonian [32H34], we find that an imagi-
nary magnetic field and hence the Yang-Lee edge singularity
can be realized in an open system.

To realize the Yang-Lee edge singularity in a quantum sys-
tem, we embed it in a Hermitian system with an ancilla so that
a physical observable can be implemented as an expectation
value conditioned on the measurement outcome of the ancilla.
Such nonunitary operations of measurement and postselection
extract the criticality in the form of a dynamical singularity
at an exceptional point. We find unconventional scaling laws
for finite-temperature dynamics, which are unique to quantum
systems and of experimental relevance.

Yang-Lee edge singularity in open quantum systems. — A
prototypical example exhibiting the Yang-Lee edge singular-
ity is the classical one-dimensional Ising model with a pure-
imaginary external magnetic field [7]: H = —J 0041~
ih Zj oj (J > 0, h € Ryo; = £1). A quantum
system to which this classical model is mapped via the
quantum-classical correspondence is described by a parity-
time (P7) symmetric non-Hermitian Hamiltonian [32H34]
Hpr = R(cos¢)o® + iR(sin¢)o® with real parameters
R > 0and ¢ € (—7/2,7/2) [35] —the canonical parti-
tion function of the classical system is obtained via the path-
integral representation [3637] of the quantum counterpart up
to an error scaling as O((AfBy)?) with a segment width A3,
of the inverse temperature [38,39]. Here, 0%, 0¥, and o* de-
note the Pauli matrices, and the P77 symmetry is described by
[Hpr,PT] = 0 with P = 0® and T = K, where K repre-
sents complex conjugation. This Hamiltonian has eigenener-
gies B4 = +R+/cos2¢. The corresponding right eigenvec-
tors are given by

1 (itan¢ % (\/cos2¢/ cos ¢
|E§>—ﬂ( ( . )), (1)



and the left eigenvectors are given by (E¥| = (Ef|n
(EE| = =(ER|o") for ¢ < /4 (6| > /4.
Here, n := (cos¢ +sin¢ o¥)/+/cos2¢ characterizes the
pseudo-Hermiticity and satisfies nHpy = H;Tvy [401 411,
and the following normalization conditions are imposed:
(ER|EE) = (BL|EL) = 1for [¢| < m/4, and (E|Ef) =
dpgv/cos2¢/ cos ¢ for p,q € {+, —} [42]. The parameter
point ¢ = 4 /4 is an exceptional point [43H45]], at which the
right (left) eigenvectors as well as the eigenenergies coalesce.

The quantum-classical correspondence shows that the
Yang-Lee edge singularity manifests itself as the distribution
of zeros of the partition function

Z =Tr [e‘ﬁHPT] = )

Y ehE

pe{+,—}

and the associated critical phenomena appear in the expecta-
tion value of O given by [46-49]

_ Tr[OePHer]
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We note that the partition function Z takes a real value be-
cause the eigenenergies are either real or form a complex con-
jugate pair due to P77 symmetry.

The dynamics governed by Hpr is realized in open quan-
tum systems. In the following, we focus on the P77 -unbroken
phase (i.e., |¢| < 7/4), and construct an explicit model fol-
lowing Ref. [50]. By introducing an ancilla, we embed the
non-Hermitian system in a Hermitian two-qubit system de-
scribed by the Hilbert space Hiot = Ha ® Hg, where Ha
and Hg represent the degrees of freedom of the ancilla and
the system qubit under consideration [50, |51]. We consider
a Hamiltonian Hyor = rsinf Iy ® 0® + rcos of ® o* of
the total system with real parameters » > 0 and § € [0, 7].
We focus on the eigenspace HI L of a conserved quantity
H :=sinf 0% @I + cosf 0% @ o¥ with eigenvalue +1. The
dynamics of [1))[o1 = [1), ® [¥) + 1), ® (n]¢)) (€ HET)
generated by Hy is described by

=1 ® e T ) + [1) 4 @ e P )
(4)

where the parameters in Hpp are given by R =
rv1+cos?6/sinf and ¢ = — arctan(cos ). By measur-
ing the ancilla qubit after this dynamics and postselecting the
event that projects the ancilla onto |1),, we obtain the time
evolution of the system qubit generated by Hpr. Such em-
bedding in a Hermitian two-qubit system has been realized
experimentally [52}[53]].

In the following, we show how to derive physical quantities
from the canonical ensemble of Hpt. The partition function
for the system qubit with Hp is obtained from the partition
function of the total system with Hy.¢ under the restriction of
the Hilbert space to HE T [35]:

efitht |,l/)>f)0'£

Treor [Plog € o] = Trg [e PHPr] = Z, (5)

where PPT := 1(I'+ H) is the projection operator onto H{ v .

Then, the four formal expectation values (O) ' (m,n € {1
,4}) for the canonical ensemble with respect to Hp are given
by [35]]

(PLL (PR ©0)), _ e (E57[OJE")

tot
mn = m n b (6)
(PET(PE™ ®1)), Z Z  (BVIE)
where |Eém)) = |E§(L)> form =1 (1), Py = |m), A (1],

and < . '>tot = Triot [ .. e—ﬁHtoc}/TrtOt [e—ﬁch]. In par-
ticular, the expectation value in Eq. (@), which exhibits the
Yang-Lee edge singularity, is obtained from (O)ﬂt In
the vicinity of the critical points 8. = 0,7, the quantity
(PET(0x ®1)),,, = (sinf)/2 in the denominator of 0yl
approaches zero, leading to the singularity. Here, o, is de-
fined as 0, = (1/2)(c% —i0¥). Moreover, the two-time
correlation function G(O(t2),O(t1)) = (O(t2)O(t1))pp —
(O(t2))pr (O(t1)) pr can be obtained in a similar manner. In
particular, (O(t2)O(t1))p is obtained as [35]]

iAtHyor (o— —iAtHyo pPT [ .— PT
<€ (UA ® 0)6 Piog (UA ® O)Ptot >
<eiAthDt (O’X ® I) e iAtHwor pPT (O’X ® I) PET

tot7 (7)
tot
where At := ¢y — t1.

Physically, the quantities in Eqgs. () and (7) can be inter-
preted as the expectation values for the subensembles con-
ditioned on the measurement outcomes of o} for each bra
and ket under the imaginary-time evolution. The denomina-
tor of <O>f§t is proportional to the probability amplitude of
the measurement outcomes corresponding to this type of the
expectation value, and the vanishing of this probability am-
plitude is the physical origin of the Yang-Lee edge singular-
ity. Here, a nontrivial equivalence with the classical many-
body system with an imaginary field emerges as a conse-
quence of nonunitary operations of measurement and post-
selection, which extract the criticality in the form of a sin-
gularity at an exceptional point § = 0,7. We note that
the criticality in observables cannot be obtained from the
canonical ensemble for Hi,; alone. For example, the mag-
netization does not exhibit any critical behavior when eval-
uated without measurement and postselection on the ancilla:
Trio [(Ia ® 07) exp(—BHiot)]/ Triot [exp(—SHior)] = 0.

The expectation value (6) can be obtained by measure-
ments of a system observable O combined with quantum
state tomography [54H358] of the reduced density matrix of
the ancilla. For example, the following linear combination
of physical quantities achieves the measurement of O and si-
multaneous projection of the ancilla for obtaining the value
(Pt (ox ®0)) (o appearing in the numerator of <O>t¢;rt
(and also the denominator as a specific case of O = I):

1

2
Here, the first (second) term is proportional to the real (imag-
inary) part of Trg[Oe~#HPT]. The two-time correlation func-
tion can also be evaluated in a similar manner.

(P& (08 @ 0))yo, — i (Pt (08 ©0)), ) (®)



Yang-Lee quantum critical phenomena in finite-
temperature systems.— Here we discuss scaling laws of
physical quantities for a finite-temperature quantum system.
In particular, finite-temperature scalings of two-time correla-
tion functions are unique to quantum critical phenomena [S9].
The quantum critical points are located at 37! = 0 and
¢ = £ /4, and we here focus on the one with ¢ = 7/4. Mag-
netization m = (0*)p, the magnetic susceptibility x = ‘é—’;‘
with a := (Rsin¢)/(Rcos¢) = tan ¢ representing a nor-
malized magnetic field, and the two-time correlation function
Gtz 1) = (0% (t2)o* (t1))pr — (07 (t2))pr (07 (t1))pr are
given by [35]]

. sing
m = —zm tanh(BR\/cos 2¢), ®

. .9
Y= —zcos3q§ [tanh(ﬂR\/(M)—2ﬂR(sm qﬁ)\/coquS]’

cosh? (ﬂR\/cos 2¢)
(10)

(cos 2¢)2

and

G(ta,t1) = cos’¢ [(tan2¢)(tanh2 {/BR\/COS 2¢} —1)

cos 2¢
cosh[(B — 2iAt)Ry/cos 29| .
* cosh [ﬂR\/cos 2(;5} - 1D

Here, the pure-imaginary nature of the magnetization origi-
nates from P77 symmetry. Indeed, because of this symmetry,
we have

L S )
m* = Z = ~ =—m. (12)
Physically, this result arises from the projector PALT in Eq. (6)
that projects onto the off-diagonal element of the reduced den-
sity matrix of the ancilla, which is complex-valued in general.

First, we consider the PT -unbroken phase (i.e., |¢| < 7/4)
and examine the dependence of physical quantities on A¢ :=
/4 — ¢ by taking the limit of ¢ — /4 — 0 after the limit
of =1 — 0, the latter of which corresponds to the thermo-
dynamic limit for the classical counterpart in the quantum-
classical correspondence. This order of the limits reproduces
the scaling laws in the classical system [7,[35]], where A¢ cor-
responds to a normalized magnetic field Aa := 1 — a x A¢
(see Fig. . By taking the limit of 5~ — 0, we obtain [35]

. sing _1 . cosd o 3
m— ———= X AP 2, x > —I————— X A¢™ 2,
Veos2¢ X (cos 2¢)°/?
cos? ¢ At
to,t —_— 2 ——— 13
Glt2,th) = T2 5 &P [ ”%/(R\/m)}’ (13)

which are expressed in terms of the paramaters of the extended
Hermitian system as

) )
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FIG. 1. Phase diagram of the Yang-Lee quantum critical system. The
quantum critical point (QCP) is located at ¢ = 7/4 and 8 -l =0
In the PT -unbroken phase (i.e., |¢| < 7/4), the A¢p dependences
of physical quantities reproduce the conventional scaling laws for
the Yang-Lee edge singularity [7} 35] in two successive limits, i.e.,
57! — 0 followed by ¢ — m/4 — 0. In the PT -broken phase
(i-e., |¢| > m/4), physical quantities exhibit periodic divergence and
the corresponding limits cannot be defined by two sequential limits
of 71 — 0 followed by ¢ — 7/4 4+ 0. Unconventional scal-
ing laws for the dependence on the temperature 5! are obtained
if the limit of 371 — 0 is taken after the limit of ¢p — 7 /4. In the
‘P T -unbroken phase, a crossover between the two limiting behaviors
occurs near the dotted curve given by 37! = (2/7) R+/cos 2¢.

in the vicinity of the critical points . = 0, 7. In particular, if
At is replaced by an imaginary-time interval —iAj, the two-
time correlation function corresponds to the spatial correlation
function G¢(z) with the distance x = A for the classical
system, which is given by

—z/€

e

Ga() x g~ (@240 (15)
(z/€)?

Here, d = 1,7 = —1, and £ < Ah~'/2 is the correlation

length, where Ah := h. — h with the critical magnetic field
h.. The singularities in Eq. originate from vanishing of
the overlap (EZ|E[Y) = \/cos2¢/ cos ¢ between the left and
right eigenstates with the same eigenenergy in the denomina-
tor of the resulting expressions (see also Eq. (3)).

Next, we consider the PT-broken phase (ie., |¢| >
m/4) and evaluate the dependence of physical quantities
on A¢ by taking the limit ¢ — 7/4 + 0 after 3~1 —
0. In this phase, the magnetization is given by m =

—i (sin @/+/| cos 2¢>|) tan (ﬁR\/ | cos 2¢|) and exhibits pe-

riodic divergence when the limit 5~! — 0 is taken for
some fixed ¢ > /4, which makes it impossible to de-
fine the above-mentioned two limits of m (see Fig.[I). The
condition for the divergence is given by SR+/|cos2¢| =
(n + 1/2) for some integer n, which corresponds to the ze-

ros of Z = 2cos (5R\/|cos 2(;5\), i.e., the Yang-Lee zeros.



Here, the real-valuedness of ¢ which satisfies this condition
is in accordance with the Lee-Yang circle theorem [2 |3 60—
62]]. These zeros appear only in the region given by =1 <
(2/m)R+/| cos 2¢| (see Fig. . As in the case of magnetiza-
tion, the two successive limits of the magnetic susceptibility
and the two-time correlation function also cannot be taken be-
cause of the periodic divergence at the Yang-Lee zeros.
Finally, we consider the case in which the limit 37! — 0
is taken after ¢ — 7 /4. This order of the two limits leads to
unconventional scaling laws that have not been discussed in
classical systems. By taking the limit of ¢ — 7/4, we obtain
the following unconventional scaling laws [35]:
B8R - (5333 + 3/33)
V2o 3v2 20 )

G(ta, 1) — R2<;B2 —iBAL — (At)z) +1,  (16)

m —

from which we obtain critical exponents —1, —3, —2 for the
dependence on the temperature 3~ (see Fig. . In particu-
lar, the two-time correlation function behaves as |G (t2,t1)|
(At)? in the limit of At — oo, which is consistent with the
anomalous divergent behavior of the spatial correlation func-
tion Ge(x) o 2 at the critical point of the corresponding
classical system [7, 135]. To understand the physical origin
of the divergent behavior in the quantum system, we note that
the factor cosh [(8 — 2iAt)R\/cos 2¢] in the two-time corre-

lation function becomes cosh {(zﬂ + 2At)R+/| cos 2(;5@

in the P77 -broken phase and exponentially diverges in a time
scale T oc |cos2¢|~1/2 as At increases, indicating an ex-
ponential amplification in this phase [63H67]. At the critical
point (i.e., ¢ = +m/4), the time scale T diverges and the
divergent behavior of the two-time correlation function be-
comes a power law. We note that we can observe the criti-
cality in Eq. (T6) in the extended Hermitian system by exam-
ining the temperature dependence of physical quantities while
fixing the parameters r and 6 near the critical point.

In the PT -unbroken phase (i.e., |¢| < m/4), a crossover
between the two limiting behaviors occurs around 3~! ~
(2/m)R+/cos 2¢, where the temperature is comparable to the
energy gap (see Fig.[I).

Experimental situation.— The dynamics governed by the
non-Hermitian Hamiltonian Hpr has been experimentally re-
alized in open quantum systems [52, |53} 68l 69], and the
scheme for embedding this non-Hermitian Hamiltonian in the
Hermitian two-qubit system discussed in this Letter has been
implemented [52, |53]]. Among various quantum simulators,
a system of trapped ions [70-90] is an ideal one to explore
the long-time dynamics at finite temperatures due to a long
coherence time [[70, |89]].

The Yang-Lee edge singularity in the magnetization m of
the system can be found from Eq. (6) through measurement
of [35]

_ Treot[(0R ® 0%)prr1] — i Triot [(0F ® %) prri] (17)
T )

T Trot[(0% @ I)prer] — i Treot[(0F ® I)pre]

where prrr = PlyprriPl- Here prr1 =
e PHTFL /Ty [e”PHTFI] is a thermal equilibrium state
of the total system for the Ising Hamiltonian with a transverse
field Hrpr = rsinfd Iy ® 0 + rcosf i ® o®, which
is related to Hios as Hior = €194 Hppre 3994, The
transverse-field Ising Hamiotonian has been implemented in
trapped ions [77, (78, I80H88], superconducting-circuit QED
systems [91H96] and Rydberg atoms [97-H104]]. The projection
operator P/, is given by e~ 79 PPTeT10a = %(I + ﬁ’),
where H' := sinf ok @I — cosf o ® oV, and it can be
implemented by projection onto the eigenspace of H' with
eigenvalue +1 using, for example, the scheme proposed in
Ref. [105], in which the center of mass of trapped ions is
coupled to atomic states and plays a role of the meter in an
indirect measurement of the Hamiltonian.

The two-time correlation function G(0*(t2),0*(t1)) can
be measured in a similar manner. Specifically, from Eq. (7)),
(0% (t2)0*(t1))pr is obtained as the ratio between the follow-
ing quantities [35]:

([(0R = i0R) © Oslppr (A Pioe[(0F —i0R) © Os]Piot)
(18)

where Og = o*(I) for the numerator (denomina-
tor), <O>TFI = Triet [Oprri], and [Olpg(t) =
ettrriQe=itHrrr  The quantity in Eq. (I8) is ob-
tained as a linear combination of quantities such as
<[OA/A®OS]TFI(At)Pt/ot[OA®OS]P1;/ot>TFI (OA’O:A €
{o%,0%}), and this quantity can be evaluated using the po-
larization identity [[LO6]:

ATMB = i [(A+B)'M(A+B)—(A-B)!M(A - B)
—i(A+iB)'M(A+iB) +i(A—iB)'M(A—iB)].

19)

Indeed, we can apply this identity to the quantity in
(- )ppr With A = I, M = [O) ® Os]pp(At), and
B = P[]0 ®Og]P/,,. Then the desired quantity is
evaluated as a linear combination of quantities such as
((A+ B)'M(A+ B)). ;- Which is obtained by first apply-
ing A+ B = I + P[;[Oa ® Os] P/, to the thermal equi-
librium state prp; and then measuring O)y ® Og after a time
interval At.

Summary and future perspectives. — We have identified a
quantum system which exhibits the Yang-Lee edge singular-
ity on the basis of the quantum-classical correspondence and
discussed its realization in an open quantum system. Specifi-
cally, we have embedded the non-Hermitian quantum system
in an extended Hermitian system by introducing an ancilla,
and found that the physical origin of the singularity lies in
the facts that the physical quantity to be evaluated is the ex-
pectation value conditioned on the measurement outcome of
the ancilla and that the probability of the successful postse-
lection of events almost vanishes in the vicinity of the crit-
ical point. Moreover, we have found unconventional scal-
ing laws for finite-temperature dynamics, which are unique



to quantum critical phenomena [59]. We have shown that an
expectation value over the canonical ensemble with respect
to a non-Hermitian Hamiltonian corresponds to that for an ex-
tended Hermitian system with the projection onto specific ma-
trix elements of the reduced density matrix of the ancilla (see
Eq. (6)). It is worthwhile to investigate the generality of this
correspondence.

The Yang-Lee edge singularity is a prototypical example
of nonunitary critical phenomena involving anomalous scal-
ing laws that cannot be found in unitary critical systems. We
hope that this work stimulates further investigation on nonuni-
tary critical phenomena in open quantum systems for higher-
dimensional systems and other universality classes.
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Supplemental Material for
“Embedding the Yang-Lee Quantum Criticality in Open Quantum Systems”

YANG-LEE EDGE SINGULARITY IN THE CLASSICAL ONE-DIMENSIONAL ISING MODEL

We briefly review the Yang-Lee edge singularity [4-10] in the classical one-dimensional ferromagnetic Ising model [7]]:
HZ—JZO'J'O']'_H—IIZO’]‘, (Sl)
J J

where J is positive and h is complex in general. The corresponding transfer matrix is given by

BJ+Bh —-BJ
= <ee—w e?wm) = e 767 4 ¢’ [cosh(Bh)I + sinh(Bh)o?], (2)

and their eigenvalues are given by

A = e/ cosh Bh + \/ €287 sinh? Bh + e—287 . (S3)

Under the periodic boundary condition, the partition function is represented as Z = Tr [TN ] , where NN is the number of sites.
In the thermodynamic limit N — oo, the free energy density is given by

1 1
f= “aN In Y = 3 In (eﬂ‘] cosh Bh + \/egﬁJ sinh? gh + e—QﬂJ) , (S4)
and the correlation length is given by
1
S — S5
¢ InAy —InA_ (55)

From Eq. (S3)), we find that the Yang-Lee edge singularity exhibits the diverging correlation length when the magnetic field
satisfies the following condition:

e?$7 sinh? Bh + e~ 27 =0, (S6)
and hence the critical magnetic field is pure imaginary:
he = i~ sin~1(e72P7), (S7)

which is in accordance with the Lee-Yang circle theorem [2}60-62].
The Yang-Lee edge singularity involves anomalous scaling laws with no counterparts in unitary critical phenomena. The

magnetization density is obtained as m = —0, f, which scales in the vicinity of the critical point as
inh Sh inh Sh 1
sinh 8 B sinh 8 x AhC, o=—3. (S8)

m = =

Vsinh? Bh + e=467  \/CAh + o(Ah)
where Ah := h — h,, and C' is some nonuniversal constant. By differentiating the magnetization density with respect to the
magnetic field, we obtain the scaling law for the magnetic susceptibility:

_dm  Be %7 cosh(Bh) 1

3
X_ p— X s ’y:l—o‘:—. (S9)
dh (Sinh2 Bh + 6*4BJ)3/2 AhY

2

Correlation functions also exhibit anomalous scaling laws. From the expression in Eq. (S3)), the correlation length scales near
the critical point as

€1 ~2e77(cosh ﬁh)_l\/em‘] sinh? Bh + e—287 = 2(cosh Bh)"'\/CAh + o(Ah) x AR'Y/2. (510)
Hence we obtain the critical exponent as follows:
1 1

Finally, the correlation function G () at spatial distance x scales as

—z/€ e /¢ 2~ (d=2+m) (S12)

1 A\
1+ €87 sinh?(8h) <A+> > AR¢ Oc(x/&)2 ’

Gal(z)

where d = 1 andn = —1.



QUANTUM-CLASSICAL CORRESPONDENCE

In this section, we discuss the quantum-classical correspondence [30, 131] between the classical one-dimensional ferromag-

netic Ising model H = —J 3 00541 —
Hamiltonian [32H34] Hq =

ihea E 0; (J > 0,hq € R) and a parity-time (P7) symmetric non- Hermman
—(hyo® + th,0?) W1th real parameters h, and h,, which is summarized as shown in Table

This correspondence is based on the equivalence of the partition functions. The partition function for Hq is given by

where |oy) is the eigenstate of o* with the eigenvalue oy € {+1,

Zq

=Te[e7 o] = 37 (aple”Comemtiagy),

0’0::‘:1

(S13)

—1}, and the inverse temperature [ is given by 5 = Bontemp

with an integer nemp and a fixed value 8y. We employ a path-integral representation of this quantity 36} 37] by dividing each
segment By into ng;, subsegments, resulting in N = nempnaiv subsegments with a width Sy /nqi, in total. By inserting a
complete set between each successive pair of subsegments, we obtain

Zq

> (ool

0‘0::‘:1

oN-—1 k=0

*Z ZANexp

ON-—1

(o

Z Z H (Ok+1lexp

—O0 exp| e
Ndiv

ﬂth

Ndiv

/Bth

< “") exp (z
Ndiv

[Z (BaJogr10k + iBerhaok)

where o = 09, and the coefficients are given by

A= \/cosh (50%
Ndiv

) sinh (BO i
Ndiv

), Bead = —%ln {ta h(ﬁoh

Ntemp Ndiv
z
o )) + Endiv,ntcmp] |00>

0z> |Uk> +Tr I:Endiv»ntemp}

+ Tr[E (S14)

Ndiv antemp] )

BO hz
Ndiv

(S15)

>:| ) ﬁclhcl =

Ndiv

quantum system

classical system

upper bound or leading-order term of the error
between the two systems

6 — Bontemp

inverse temperature

system size

Bo/naiv

segment width of
inverse temperature

lattice constant

N = NtempNdiv

number of segments
in inverse temperature

number of sites

Ntemp —> OO

zero-temperature limit

thermodynamic limit

Ndiv — 00O

continuum limit

for imaginary time

continuum limit
for real space

partition function

zmempﬁmh [+1h=D? JncempBo(Ihel+|ha)

Tr[eﬁ(hwa“+ihzoz)j| AN o oSk (BaTo 1ok +iBeaheok) |Zq — Zal| < o
free-energy density — oz _ chdiimemp In Z o — ful < % ngempBo (ha | +hz])
et | iy | ol | s o s (25 opat)
e | i | it et | & e o 2o ool (B2) 00

correlation function

in the limit ntemp — 00

cos2¢

—2RAT/cos2¢p
(&
cos 2¢

1
1—e*Per” sin? (Bclhcl)
cos(Berhe) =V e~ *Pe1’ —sin2 (Bo1her)
cos(Berhe)+V/ e~ el —sin2 (Berher)

tan 2¢

|1+2RAT(cos?$)/cos 2¢ + 3 cos 2¢|
« e—2RATVcos 26 (60_1%) +(’)( ey, )

Ndiv

TABLE S1. Quantum-classical correspondence between a quantum system with a parity-time symmetric non- Hermitian Hamiltonian and a
classical one-dimensional ferromagnetic Ising model. Parameters in the two systems are related via ScJ = —3 In [tanh(Bohes /naiv)] and

Bclhcl = Bohz/ndiv-




Here, we have used the following evaluation of a matrix element:

50hx T . ﬂ()hz z ﬂ()hx . ﬁ(]hm T . ﬁ()hz
(0k+1]exp o Jexp|li——=0% ||ok) = (ok+1]|cosh| —— | +sinh{ —— Jo® ||ok) exp| i ok
Ndiv Ndiv Ndiv Ndiv Ndiv

[cosh(ﬁohr>5gk+hak + sinh(ﬂohz> (1- 5gk+hak)] exp <z Bohs ok)

Ndiv Ndiv Ndiv

. hz
= Aexp(BaJoki10%) €xXp <zi0d. ok>. (S16)

The right-hand side of Eq. (S14) gives the partition function Z; for the classical one-dimensional ferromagnetic Ising model,
which shows the desired correspondence for the partition functions. Here, the error between the quantum and classical systems
is bounded from above as [38]]

2nceunp B3 (1l + [h:])?
12q = Zal = | Tr[Bagniens) | £ =2 03(7|1 ) (S17)
div

which is vanishingly small in the continuum limit ng;, — 00. As a corollary of this bound, we also evaluate the error of the
free-energy density as

1 1 1 spo—
fo—f ‘(mz)(mz)‘ S G e
‘ Q C1| Bontemp @ 5clndivntemp o ﬁOntemp ch
! T (B neemp | < 2685 (|ha| + [R2])? grtempBo((hal +h]). (S18)
- /BOntemp Zeal o 3nd1Vch

where we have set the inverse temperature of the classical system as 5.1 = Bo/ndiv-
Next, we evaluate the error between physical observables of the quantum and classical systems. In the classical system,
magnetization density, magnetic susceptibility and spatial correlation function are given in the thermodynamic limit n¢emp — 00

by (see Egs. (S8), (S9). (S12))
sin(Beiher) 7 el = 18 exp(—4f.1J) coz(ﬁclhcl)
\/exp(—élﬁdJ) — sin?(Berhe) [exp(—48aJ) — sin®(Barha)]

| cos(Bether) — \/exp(—4Bar]) — sin® (Baha)
2
1 —etPad sin(Berher) cos(Berha) + 1/ exp(—4LaJ) — sinQ(ﬂdhd)

Mel — ¢

3/2°

xT

Ga(z) — (S19)

On the other hand, in the quantum system, where the same limit nmp — 00 represents the zero-temperature limit, the corre-
sponding observables are given by (see Eqgs. (S48), (S49), (S30) )

. sing . cos® ¢ cos? ¢
mqo — —l————, xXqQ = —i———, Go(AT) — exp(—QRAT\/cos 2(;5)7 (S20)
« \v/cos2¢ Q (cos 2¢)%/? QA7) cos 2¢
where AT = (Bo/nqiv)x and the parametrization in the main text is reproduced by the relation h, = —Rcos¢ and h, =

—Rsin ¢. Imposing the relationship in Eq. (ST3)), we evaluate the error in each observable between the quantum and classical
systems in the same limit nemp — 00:

i cos?o
24 (cos 2¢))3/2
Baanaiv \ ! i cos’
xQ~ <_BORCOS¢>> Xet =7 16 (cos 26)5/2

Gq(AT) = Ga(z) = — tan*(26) {1 + 2RAT(cos?p)\/cos(2¢) + 3 cos(2¢ } —2RATVcos 26 (ﬂOR> +0(ngy), (S21)

24 Ndiv

mg — Mel — —

[sin ¢ — 3sin(3¢)] (/%R) +0(ngy),

Ndiv

[3 + 12 cos(2¢) + cos(4¢)] (BOR) +O(ng),

Ndiv

where we have rescaled the magnetic susceptibility for the classical system taking the difference in the magnetic field between
the two systems into account. Here, the scaling O (ngli) of the leading term in the errors is consistent with the general argument
given in Refs. [38] 39].
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Then, we consider how finely we should divide the inverse temperature in the quantum system to obtain the quantum-classical
correspondence with an error smaller than a given precision €. We argue that the integer nq;, should be chosen large enough so
as to satisfy

Ndiv 1

BoR g Ve (cos2¢)™*

(S22)

Under this condition, (i) higher-order terms in n . d in the error of observables can be relatively neglected while (ii) the leading
term is bounded by e from above. To demonstrate the argument (i), we consider the expansion of the error in magnetization
density in the limit of nemp — 00:

Mo — T —> — ) 1 (ﬁoR) + 2 1 (ﬂoR) +i ) 1 (ﬁQR) +
Q Cl 24v/2 (cos 2¢)3/2 \ ngiy 384v/2 (cos 2¢)%/2 \ naiv 276482 (€08 2¢)7/2 \ naiy
(S23)

Here, if ng;y is large enough to satisfy the condition in Eq. (S22), higher-order terms can be relatively neglected since we have

1 <B0R

cos 2¢ \ Ngiv

2
> < e(cos2¢)3? <« 1. (S24)

The above argument holds also for the magnetic susceptibility and the correlation function. Furthermore, the argument (ii) is
demonstrated as shown in the following:

Aim_l_ 1 1 (,BOR>2 <C052(]5
€ €]24v2 (cos2¢)3/2 \ naiy 24/2

Ay 1] 1 1 ( 503)2 Lo,
€ €] 16v2 (cos2¢)5/2 \ naiy 1642 ’

AG 11 1 2l feos2

AG 111 1 (HBR\T _ Veos29 (525)
€ € | 24 cos2(2¢) \ naiv 24

where Am, Ay, and AG denote the leading terms of the error for magnetization density, magnetic susceptibility, and correlation
function, respectively.

DERIVATION OF THE RESULTS FOR THE EXTENDED HERMITIAN SYSTEM

In this section, we discuss how to obtain physical quantities for the canonical ensemble of Hpt from the extended Hermitian
system. First we consider the dynamics of the total system generated by Hyo, = rsinf In ® o + rcosf of ® o* in the
following two-dimensional subspace of Hot:

Higt = {8)is = M a ® [10) + V)4 ® (1)) | ) € Hs}, (S26)

which is the eigenspace of the conserved quantity H with eigenvalue +1. The action of Hy is described by
Hiot |@D>t0t =1, @ (rsind o® —ircos o”n) [¢) + 1), @ (rsind o + ir cosd UZT)*l)(n [1)) (S27)
= [1)a® <= (0" = ic00 0%) [9) + 1) ® == (0" +icos0 %) (n]1)), (528)

which can be rewritten as

Hyoe [0)°T = 1), ® Hpr |0) + 1) 4 ® Hip(n 1)) (S29)

Here, the non-Hermitian Hamiltonian Hpr is given by Hpr = R(cos¢)o® + iR(sin ¢)o* with the parameters R =
rv/1 4 cos? 0/sin @ and ¢ = — arctan(cos 6). This action of Hy yields

e )T = 1) 5 @ €I [y) + 1), @ e T [y). (530
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On the basis of the above result, the partition function for the system qubit with Hpr is obtained from the partition function
for the total system with Hy, under the restriction of the Hilbert space to HE L :

Treor [Pt € o] = Trg [ePHPr] = Z. (S31)

To show this equation, we note that the projection operator can be written as

sin 0 _
Pl = 5= > o tor (07"l (832)
{le)}

where {|o)} is an orthonormal basis of Hg and satisfies (¢’|0) = ,/,. Here, the state vector \nila)fof =MNr@n o)+
) @ lo) (€ Hint) satisfies the following condition:

_ PT _ 2cos ¢ 2
tot (1 10/‘0>tot = (0| (77"_77 1) o) = \/méglg - Sin@éo/g' (833)

Using these expressions, the partition function is evaluated as

_ sin 6 _ _
Trioe [Plf e Pho] = == 37 St~ "olem e o)

{lo)}
Y (atleloln™ + all@ o) (1), @ e T o) + 1), @ ne=PHrr |0))
{lo)}

_ Sme Trg [(n+n—1)e—ﬁHpT]

= Trs [eFHrT) = 7. (S34)

sin 6

mn

Then we consider the four formal expectation values (O), ¢

(m,n € {1,{}) for the canonical ensemble with respect to Hpr:

(m) (n)
oy — Titor [Pt (PR @ O)e 0| o PP (™ o]Ef”) (S35)
tot Troot [PtE?(PAnn ® I)e*ﬂHtot] > Z <E;m) |E1()n)>
where \E,(,m)) = |E£(L)> form =1 (1), and P{*" = |m), , (n|. To show this equation, we first focus on
Tr,. [PPT (07 & O)e—FHio
(O}t = e o [0 © 0)e 7] (S36)

Triot [Ptlc));;r (O'X ® I)e*ﬁHmt] )

which exhibits the Yang-Lee edge singularity. Here, o, is defined as o, = (1/2)(c% — ic% ). The numerator of this expression
is evaluated as

in6
Treor [Piot (04 © O)e™?Hher] :% Z tor (ol em (17 m)B e (o) ® O)e *FHwt | )Pz 0<z<1)
{lo)}

sin 0
=22 (i@ foln eI 1y (@ (] e 0P
{lo)}

- —zfHpr —zBH]
< (03 ©0) (I @ 95 5) 1 1) @ e~ PHben o))
:¥ Trg[Oe AHPT], (S37)

from which we obtain the desired expression:

oy Tron [Pif (o3 © 0)e™o] 858 Teg[O=8rr] _ Trsf0e—tirr]
tot Trtot [Ptl())'tf (O'; X I)eiﬁHtot] - #Z - VA
(Ey|O|Ey)
— —BE,
~Z Z (EL|EER) ~ (S38)
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Similar calculations yield the following results:

Trig PET Pl @ O)eBHtor siné —1,—BH

oty = T LB O) gt 0] L s oy, s
Triot [PtF;;f (P; ® I) efﬁHcot} 32 Z
Tr [PPT (Pi ® O)e—ﬁHm] sind pm

oy, = — L2 S [10 e L S e B (BLO|BE) (S40)
Treor [P (PA ® I)e BHtoc} 3Z Z <
Trio [PE O)e PHir] 10 Trg[Oe—AH] (EE|O|EL

<O>Iit === [ t;tT<U}-\+® >e—6H ] = 4 rzLOee o) Z P 1|% |L >’ (541)
Tl"tot [Ptot (UA ®I)€ tOt:I TZ Z E ‘E >

from which Eq. (S33) follows. Here, P}, P{, o are given by Pl = [1) 4 o (1], PX = [1) 4 4 ( T=Maa W

Moreover, the two-time correlation function G(O(t2), O(t1)) = (O(t2)O(t1))pr — (O(t2)) pr (O(t1)) p can be obtained in
a similar manner. In particular, (O(t2)O(t1))p is obtained as

Treot [ iAtHot (U ® O) ﬂAthtpPT (UA ® O) PPTe- BHmt}

O(t2)O(t = , S42
< ( 2) ( 1)>PT Triot [ezAtht (JA ® I)e zAthptF;? (UA ® I)PE?@*BHM] ( )
where At := to — t1. In fact, the right-hand side is evaluated as
Trtot [ 1At Hyot (0- ® O) 77,AthtPPT (O.A ® O) 12;1“6 ﬁHmt]
Trtot [ezAtht (UA X I)@ 1At Hyot Ptl:o)? (G’A X I) PIZ;FQ*BHmt}
Trg I:eit2HPT%Oe*i(lhftl)HPT%Oe*itlHPTe ﬁHPT]
a Trs [6it2HPT¥I€_i(t2_tl)HPT %]e—itlHPTe—BHPT]
Trg[O(t2)O(t1)e~PHpT
_Ts[0)00e ) _ o .

Z

DERIVATION OF THE SCALING LAWS FOR FINITE-TEMPERATURE QUANTUM SYSTEMS

In this section, we discuss scaling laws of physical quantities for a finite-temperature quantum system. First, we derive the
magnetization, the magnetic susceptibility, and the two-time correlation function. The magnetization is calculated as

o eosd e (BHoH|ER) + PP (BH0* BE)
m = <U >PT = \/m e—BE- 4 o—BE;

tanh (BR\/ cos 2 ) (S44)

\/ <b

By differentiating this with respect to a (= tan ¢), we obtain the magnetic susceptibility:

_dm _ om _ cos® ¢ 2ﬂR(sin2 (b)\/coquﬁ
X = G = (eos”0) e [tanh(BRm ) R | (S45)
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To derive the two-time correlation function G(c*(t2), 0%(t1)) = (0%(t2)0*(t1))pr — (0% (t2)) pr (07 (t1))pp. We calculate the
first term on the right-hand side as follows:

z z cos ¢ L —(B—it2)E, = cos ¢ R\ _—i(ta—t1)E, L| 2z _—it1E, | R
(0*(t2)o" (t1))pr = > (Byle Dot o—e N |Ef) e TP (B 0%e B | B
Z \/cos 2¢ et} \/€os 2¢ el o)
1 cos® ¢ —BE,—i(ta—t1)(Eq—E L| _z| R L| _z| R
:ZCOS2¢ Z e Ppmilta =) (Fa=Fy) <Ep|a |Eq> <Eq|‘7 }Ep>
pa€{+,—}
1 cos® ¢ —BE L s mr\\2, L cos®o —BEp—i(t2—t1)(Eq—Ep)
- LB S (e s LG S e
€{+,-} p#qe{+,—}
.2 2
sin“® 1 cos® ¢ .
=— — 2 cosh — 2iA Vi 2
cos 2¢ * Z cos2¢ €08 {(/6 1At R/ cos (b}
_cos?g o + cosh [(8 — 2iAt)Ry/cos 2] (S46)
cos 2¢ cosh [5R\/cos 2(;5} ’

where At := t5 — t;. Combining this expression with Eq. (S44), we obtain the two-time correlation function:
G(0%(t2),0%(t1)) = (07 (t2)0"(t1))pr — (07 (t2))pr (07 (t1)) pr

_ cos? ¢ 9 9 cosh [(8 — 2iAt)R\/cos 29|
= [—(tan 6) (1~ tant? [BR\/cos 26| ) + osh [FRe ] . (S47)

First, we consider the PT -unbroken phase (i.e., |¢| < 7/4) and examine the dependence of physical quantities on A¢ :=
7/4 — ¢ by taking the limit of ¢ — 7/4 — 0 after the limit of 371 — 0. The latter corresponds to the thermodynamic limit for
the classical counterpart in the quantum-classical correspondence. This order of evaluation of the two limits leads to the scaling
laws in the classical system [7]]. By taking the limit of 3~ — 0, we obtain

. sing _1
m— —z\/m x Ap~ 2, (S48)
. cos® ¢ _3
[ S S— A 2, S49
e (cos 2¢)3/2 a0 (549
; B cos? ¢ exp [(8 — 2iAt)Ry/cos2¢]  cos® ¢ . At
Glo™(t2), 0% (t1)) = cos 2¢ exp [BR\/COS 2(;3] ~ cos2¢ exp | —2mi 7/ (R\/cos 2¢>) ' (50)

Here we have used the fact that hyperbolic functions behave as tanh(8R+/cos2¢) — 1 and cosh [(8 — 2iAt)Rv/cos 2¢] —

(1/2) exp [(B — 2iAt)Ry/cos 2¢] in the limit of 371 — 0.
The above results are also obtained from an extended Hermitian system discussed in the previous section in an equivalent
form. In fact, the magnetization m is obtained from Eq. (S36)) as

Triot [Pt (04 ® 07)ePHret]
Treotr [Phg (04 ® I)e=FHor]

Troos [(3 + 22008 @ I + <5005 ® 0¥) (0 ® 0°)[cosh(Br) — sinh(Br)(sinf I @ o + cosf o4 ® o7)]]
- Troos [(3 + 52%0% @ 1 + % 0% ® oY) (o, @ I)[cosh(Br) — sinh(Br)(sinf Iy ® o* + cosb o @ 2)]]
_ Trt [5(—50% ® 07)[—sinh(Sr) cos 0 o} © o]
a Trtot [(220% @ I)(40% ® I) cosh(Br)]

tanh(0r). (S51)

m = (0%)pp =

tan 9

In the limit of 31 — 0, this quantity behaves as m — i(tan §) ", which results in a scaling law m o | — .| ~* equivalent to
Eq. (S48) in the vicinity of the critical points 6. = 0, 7. We can also express the magnetic susceptibility with 7 and 6 as

2p3r
cosh?(Br) [1 4 (cos6)=2] |

(S52)

)
= tanh(S8r) —
X sin® 6 (Br)
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In the limit of 3~1 — 0, this quantity behaves as x — —i(sin#) >, which results in a scaling law x o |6 — 6|3 equiv-
alent to Eq. (S49) in the vicinity of the critical points §. = 0,7. The two-time correlation function G(o*(t3),0%(t1)) =

(0%(t2)o*(t1))pp — (0 (t2))pr (0% (t1))p is obtained from Egs. (S42) and (S31)) as

ot o) = T [ (03 0)e S PER (55 O) PERe 1] (Tro [PE 03 3 0%} ]
T D) = T (o 1) e 3 PR (73 @ 1) Pl 7]\ T [P (73 & D)o 770]
_ —(cos?0) cos}'l(zﬂr) + cosh [(8 — 2iAt)r] [ i tanh([jr)] 2
(sin” 0) cosh(fr) tan 0
1 9 cosh [(8 — 2iAt)r]
= ————|1—tanh . S53
tan? 0 [ anb®(Br)] + (sin” 0) cosh(Br) (533
In the limit of 3~ — 0, this quantity behaves as
1 At

: 2 —exp| —2mi—— 4
G(o*(t2),0%(t1)) — 74 exp( mﬂ/r) (S54)

which is equivalent to Eq. (S30).

Next, we consider the PT -broken phase (i.e., |¢| > 7/4) and evaluate the dependence of physical quantities on A¢ by taking
the limit of ¢ — 7/4 + 0 after the limit of 37! — 0. In this phase, the magnetization, the magnetic susceptibility, and the
two-time correlation function are given as follows:

m:—'%tan(ﬁR\MCOSQ ) (S55)

. cos® o 26R(sin2 (/)) | cos 29|
=i———7 |tan{ BR/|cos 2¢[ | — : (S56)
X Z|c0s2¢|3/2 an( | o8 ¢|> cos? (ﬂR\/|COSQ¢‘)

cosh [(i6 + 28) Ry /[eos 24]]
cos [ﬂRm}

These quantities diverge periodically at the Yang-Lee zeros when the limit 37! — 0 is taken for some fixed ¢ > /4, which
makes it impossible to define the above-mentioned double limits of these quantities.

Finally, we consider the case in which the limit of 3~ — 0 is taken after the limit ¢ — /4. This order of these two limits
leads to unconventional scaling laws that have not been discussed in classical systems. By taking the limit of ¢ — /4, we
obtain the following unconventional scaling laws:

. sing 3 i
m=—i W[BR\/COSQ +(’)((ﬁR\/COS2¢) )] %—ﬁﬂR

Glo* (B0),0°(30) =~ 0|1 ) (1 + tan [y Teon23]] ) +

| cos 2¢| (857)

(S58)

(1 +COSQ¢>2 1 3 ( 5) (1 — cos2¢) BR/cos 2¢
— i 2N T BR\feos 26 — = (BR\/<0s20)® + O( (BR\/c0s28) ) —
X z( 20526 cos 3( cos 2¢) ( (e ‘b) 1+ (BR /7(3052(;5)2—&—(9((&% /7cos2¢)4>

v [ s3p3
- f (5 R®+ ﬁR) (S59)

G(0(t2), 0% (1)) = 1;2;)52? (-1 - Zzi ;z [1 — B2R?cos26 + o((m@)ﬂ
14 (8 — 2A1)2R? cos 26 + O( (Rv/cos 29) )
1+ 1B2R2 cos 20 + 0((53\/@)4)
— R? (;52 —iBAt — (At)2> +1, (S60)

+

from which we obtain critical exponents —1, —3, —2 for the dependence on the temperature 3.
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POSSIBLE EXPERIMENTAL SITUATION OF THE PROPOSED OPEN QUANTUM SYSTEM

In this section, we discuss a possible experimental situation of the open quantum system discussed in the main text. Specifi-
cally, from Eq. (S36), the magnetization m of the system qubit is given by

 Trye [PET (05 ® 0%)e PHier]
Trtot [Ptlgg‘ (O'X ® I)e*BHmt]
Triot [ _%iUXPPTe%iaﬁe_%iUX ((J‘X ® O'Z>e%io-ze_%io-;§e_ﬂHtote%io'X]
- Troo [e MAPPTe Tl0hem TI7A (O'X ® I)e%wﬁef%wﬁe_ﬁfhote%iaﬁ]
_ Triot [(0F ® 07) (ProwpretPioy)] — i Treot [(07 © %) (Plosprei Ploy)]
Triot [(0% @ I)(PloeprriPloy)] — @ Trior [(03 @ I)(PlocprriPlot)]

(S61)

Here pypypp = e PH701 [ Try oy [e™#H1r1] s a thermal equilibrium state of the total system with respect to the Ising Hamiltonian
with a transverse field Hrpr = rsin Iy ® 0% + rcosf 05 ® o*, which is related to Hyoy as Hioy = €774 Hypre™ 1774, The
transverse-field Ising Hamiotonian has been implemented in trapped ions [[77, |78} 80—88] superconducting-circuit QED sys-
tems [91-96] and Rydberg atoms [97-104]. The projection operator P/, is given by P/, := e~ 1A P TeTi7a = %(I +H ),
where H' := sinf o% % ® 1 —cosf o @oY. It can experimentally be implemented by projection onto the eigenspace of H' with
the eigenvalue +1 using, for example, the scheme proposed in Ref. [105], in which the center of mass of trapped ions is coupled
to the atomic states and plays a role of the meter in an indirect measurement of the Hamiltonian.

The two-time correlation function G(c*(t2), 0%(t1)) can be evaluated in a similar manner. It follows from Eq. (S42) that
(0%(t2)o*(t1))pr is obtained as

TI‘t " [ At Heot (O_— ® O’Z) 7iAthtPPT (O_X R0 )PtF;;I‘efﬁHtOt}

o*(ta)o*(t =

< ( 2) ( 1)>PT TI‘t . [elAtht (0_ ®I)6 ZAthtPPT(O_A ®I) li’)g‘efﬁHmt]
o [ (0 — i) @ 0%]e SR (0% — i0) @ 0°] Pl e~ PH]
© Tryer [eP2HHTR (0% —i0%) @ I]e™ ’AtHTFIP’ (0% —io}) ® [P e~ BHrr]

= Treot [(UZ - iU}i) ® 0o ]TFI(At>Ptot[(UA —i0}3)®@0 ]Pote_BHTFI] (S62)
Triot “(Ui —103) @ 1] (At) Py [(0F —i0}) @ I]Ple™ BHTFI] ’

where [O]ppy(t) = eltHrriQe~Hrri Both the numerator and the denominator are obtained as linear combinations of the
quantities such as

Trtot[[OA ® OS}TFI(At) tot[OA @ Os] toteiﬁHTFI}v (S63)

where Op, O € {0%,04}, and Os = o*(I) for the numerator (denominator). The quantity in Eq. (S63) can be evaluated using
the polarization identity [106], which is given by

ATMB = % [(A+B)'M(A+B)—(A-B)'M(A-B) —i(A+iB)'M(A+iB) +i(A—iB)\M(A—iB)]. (S64)

Indeed, we can apply this identity to [0 ® Os]pp(At)P/,[Oa ® Os]P,,, with the substitution of A = I, M =
[O) ® Os|rpi(At), and B = P/ [Oa ® Os] P/, as follows:

1

[O;& ® OS]TFI(At)Pt/ot [Or® OS}Ptlot = Z(I + Pt/ot [Oa ® OS]Ptlot)T[O:A ® OS]TFI(At)(I + Ptlot [Oa ® OS]Pt/ot)
1

- 7(1 - Ptlot [OA ® OS]Pt/ot)T[Oj% ® OS]TFI(At)(I - Ptlot [OA ® OS]Pt/ot)

4 (I + ZPtot [OA oY OS] tot) [ij ® OS]TFI(At)(I + iPtlot [OA ® OS]Pt/ot)
" (I = Pl [On ® O8] Ploy) [0 ® O]y (AL (T — iPloy [0 ® O] PLy).

T3
(S65)

The first term on the right-hand side is obtained if we apply I + P/, [Oa ® Og]P/,; to a thermal equilibrium state and then
measure Oy ® Og after a time interval A¢. The other terms can also be evaluated similarly.
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