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The effect of electronic correlations on the orbital magnetization in real materials has not
been explored beyond a static mean-field level. Based on the dynamical mean-field theory, the
effect of electronic correlations on the orbital magnetization in layered ferromagnet VI3 has been
studied. A comparison drawn with the results obtained from density functional theory calculations
robustly establishes the crucial role of dynamical correlations in this case. In contrast to the
density functional theory that leads to negligible orbital magnetization in VI3, in dynamical
mean-field approach the orbital magnetization is greatly enhanced. Further analysis show that this
enhancement is mainly due to the enhanced local circulations of electrons, which can be attributed
to a better description of the localization behavior of correlated electrons in VI3. The conclusion
drawn in our study could be applicable to a wide range of layered materials in this class.

Although in most of the materials electronic spin mag-
netization dominates their magnetic behaviors, in a few
unusual magnetic materials orbital magnetization can be
significant and even dominant. [1–5] Though its implica-
tions on the fascinating properties of a broader range of
materials [6–10] is self-motivating, yet much of the atten-
tion has been paid to its spin counterpart. In contrast
to atomic and molecular species where only local elec-
tronic circulation is possible, the orbital magnetization of
a crystalline material comes from intracellular and inter-
cellular circulations. [11–16] Often concomitant to mag-
netism is the most intricate issue of strong correlation
effect, which usually incurs dramatic changes in the elec-
tronic structure. This begets a natural question whether
and in what manner electronic correlation will affect the
orbital magnetization in crystalline materials.

This interesting problem has been approached with
various theoretical framework in previous studies, how-
ever associated with them are their natural shortcom-
ings. For example, in density-functional theory (DFT)
with Hubbard U correction, correlation effects were in-
cluded only at static mean-field level [17]. Studies on the
related issue of exciton g-factor renormalization based on
GW approximation [18–20], which although accounts for
many-body effects at perturbative level, only simple for-
malism of orbital magnetic moments for non-interacting
case was used. While the modern theory of orbital mag-
netization has been generalized to interacting systems
and applied to model systems [21–24], its applicability
when dealing with real materials is yet to be established.
Thus, a more generic approach to this problem would
be to apply the formalism for interacting case on a real
material with proper treatment of electronic correlations
beyond static mean-field level.

The stabilization of long-range magnetic order in lay-
ered magnetic materials, despite the celebrated Mermin-
Wagner theorem [25], is due to the strong magnetic
anisotropy through spin-orbit coupling, a direct conse-

quence of the unquenched orbital moments of magnetic
ions. A large number of layered materials contains tran-
sition metal elements which are themselves magnetic in
nature and exhibit strong electronic correlation. On top
of that, highly anisotropic nature of chemical bonding
with strong in-plane and weaker interlayer cohesion, leads
to reduction of electronic dimensionality. This in turn
leads to reduced screening of Coulomb interaction, hence
stronger electronic correlation. Thus, the question raised
above becomes highly relevant to this class of materials.
A unique advantage of these materials is that the indi-
vidual layers can be removed and transferred to desired
substrate [26], yielding a quasi-two-dimensional mono-
layer. The orbital magnetization therein only has the out
of layer-plane component due to dimensional reduction,
making room for strong magnetic anisotropy.

Two-dimensional magnetism with long range magnetic
order has just been established in monolayer materials,
such as Cr2Ge2Te6 and CrI3 [27–29]. In both of these Cr
compounds, crystal field-splitted lower lying t2g orbitals
are fully filled with three electrons in majority spin chan-
nel, leaving less room for unquenched orbital moment.
This observation makes a material with less than fully
filled t2g orbitals all the more interesting. Recently re-
ported VI3, which is also suggested to be a layered van
der Waals magnetic material, satisfy this pre-condition.
It is found to display more complicated magnetic behav-
ior compared to CrI3 [30–33]. In particular, VI3 is also
suggested to be a Mott insulator, and exhibits larger
saturated magnetization along c axis than in-plane di-
rection. More specifically, Tian et al., reported a satu-
rated magnetic moment of 2.47µB/V along c axis, slightly
larger than the expected value from spin polarization, in-
dicating an unquenched orbital magnetic moment. Past
study on YVO3 employing Hartree-Fock approach also
reported small but non-zero orbital magnetization [17].
Based on the above considerations, VI3 seems to be a
good platform to explore the effect of electronic correla-
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tion on orbital magnetization.

In this paper, we study the effect of dynamical correla-
tions on the magnetic properties of VI3. To this end, we
use a combination of DFT+U [34, 35] and self-consistent
DFT + dynamical mean-field theory [36] in our study.
Hereafter, we shall refer to the latter method simply as
DMFT. We find that compared to the static mean-field
results from DFT+U method, the dynamical correlations
involved in the self-consistent DMFT framework enhance
the orbital magnetization in VI3 in both the states, the
high temperature paramagnetic as well as the low tem-
perature ferromagnetic state. We find that dynamical
correlation also stabilizes the orbital magnetization in
the monolayer limit. To the best of our knowledge, this
would be the first study to show the role of dynamical
correlation in evaluating the orbital magnetization in real
magnetic materials.

VI3 has been found to crystallize in different poly-
morphs owing to different layer stacking, with the space
groups R3̄, P 3̄1c, C2/m, and C2/c. [30–33] The struc-
tural phase transitions in VI3, albeit interesting, are very
subtle. A summary of experimentally reported crystal
structures at low and room temperatures can be found
in Section S1 of the Supplemental Material [37]. For sim-
plicity, we will focus exclusively on R3̄ structure for the
discussion here, for subtle stacking difference is not ex-
pected to impact the orbital magnetization in any way
significant. Within each layer, V atoms form a hon-
eycomb lattice, and each V is caged by six I− that
form edge-sharing octahedra, as shown in Fig. 1 (a). In
the R3̄ structure, a hexagonal primitive cell contains 3
monolayers, and the vanadium honeycomb lattices dis-
play a rhombohedral stacking along crystallographic c-
direction, as shown in Fig. 1(b). In subsequent calcula-
tions, we adopt experimental lattice parameters for bulk
R3̄ [30], whereas for a monolayer the lattice and ions are
relaxed using the density-functional theory (see the Sup-
plemental Material [37] for details of calculations).

Recent experiments show that the bulk VI3 exhibits an

FIG. 1. Crystal structures of (a) monolayer, and (b) bulk R3̄.
The local Cartesian coordinates for the octahedral coordina-
tion, x′ − y′ − z′, are indicated with red arrows.

optical bandgap of 0.6∼0.7 eV [31, 32], in contrast to a
metallic band structure from a DFT electronic structure
calculation as shown in Fig. S1 in the Supplemental Ma-
terial [37]. By including the static correlation described
by Hubbard U (i.e., DFT+U), the calculated band struc-
tures recover the insulating nature for reasonable U val-
ues (see Fig. S1 [37]), indicating that VI3 is indeed Mott
insulating. We choose a value of Ueff = U − J = 4 eV by
matching the computed band gaps (0.67 and 0.64 eV for
R3̄ and P 3̄1c, respectively) to experimentally observed
optical bandgap at room temperature (0.60 and 0.67 eV
for R3̄ [31] and P 3̄1c [32], respectively). From the pro-
jected band structure and density of states for R3̄ shown
in Fig. S3(a-b) [37], it can be seen that both t2g and eg or-
bitals at V atoms hybridize with p states of iodines. This
hybridization is significantly enhanced when compared to
the result without U and magnetism (see Fig.S4 [37]). It
will shortly be seen that this enhanced mixing may lead
to overestimation of the extended contribution to the or-
bital magnetization.

As DFT+U calculations only capture the static part
of electronic correlation, self-consistent DMFT method is
employed to incorporate the dynamical correlation [36].
The starting point of a DMFT calculation is a nonmag-
netic DFT calculation without U , which shows a signifi-
ant crystal field splitting between t2g and eg of 2 eV (see
Fig.S4 [37]). Since the crystal field splitting is larger than
the band widths of both t2g and eg sets, Hubbard U is
added only to the t2g set in DMFT calculations. We
find that inclusion of eg orbitals into our correlated sub-
space does not change our main conclusions concerning
the orbital magnetizations [37]. To obtain the spin- and
momentum-resolved spectral functions in DMFT calcula-
tions, we have performed analytical continuation of self-
energies using the maximum-entropy method [36]. Figure
2(a) and 2(c) are momentum-resolved spectral functions
for high temperature (290 K) paramagnetic and low-
temperature (29 K) ferromagnetic phases, respectively.
In contrast to the DFT+U result, due to the dramatical
renormalization from electronic correlation, the spectral
weight of t2g becomes highly smeared out along the en-
ergy axis, although the Mott gap is clearly visible in both
ferro- and paramagnetic regimes.

Experimentally, VI3 is a ferromagnet with out-of-plane
magnetic moments (i.e., along z direction) and Curie
temperature of Tc ∼ 50 K [30–33]. Our DMFT cal-
culations can reproduce both the low-temperature fer-
romagnetic and high-temperature paramagnetic phases.
As seen in the spin-resolved density of states shown in
Fig. 2(e), the two spin projections of t2g orbitals are
equally populated at 290 K, leading to the paramagnetic
phase. At 29 K, the spin up component dominates and
the system develops a ferromagnetic order. In the low-
temperature ferromagnetic phase, there is a quasiparticle
peak around the chemical potential as shown in Fig. 2(d)
and 2(e). This dynamical singlet, attributable to Kondo
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FIG. 2. (a) and (c) are momentum resolved spectral functions
for bulk VI3 in theR3̄ space group using DMFT method under
290 K and 29 K, respectively. (b) and (d) are corresponding
projected density of states. (e) Spin resolved density of states.

resonance, is insensitive to the parameters used in ana-
lytical continuation, but is quickly obliterated by thermal
fluctuations as the temperature rises. In the ferromag-
netic phase, the local spin moment on each V atom ob-
tained from DMFT and DFT+U is 1.88 and 2.00 µB,
respectively, which is close to the expected S = 1 state.
We will examine next the orbital magnetization at both
DFT+U and DMFT levels.

In DFT+U static mean-field approximation, the or-
bital magnetizations can be efficiently calculated using
the non-interacting formula in the low temperature limit,

M(k) = − ie

2~
∑
n

fnk

〈
∂unk
∂k

∣∣∣∣×(Hk+εnk−2µ)

∣∣∣∣∂unk∂k

〉
,

(1)
where unk is the cell-periodic part of the Bloch function
of the nth band at crystal momentum k, εnk is the band
dispersion and µ is the chemical potential. Brillouin zone
summation of M(k) then yields the total orbital mag-
netic moment (See Supplemental Material [37] for calcu-

lation details). The value of the orbital magnetization
for bulk R3̄ phase is about 0.02 µB per V, accounting
for about 1% of the spin moment. The orbital magnetic
moment of monolayer VI3 is computed to be essentially
zero within this approach.

To further incorporate dynamical correlation in the
self-consistent DMFT level, the generalized formula for
orbital magnetization expressed in terms of interacting
Green’s functions is used [21],

Mc(k) =
ie

2~β
∑
ωn

εabc tr

{[
H0 − µ+

Σ

2

]
Gva(k)Gvb(k)G

}
(2)

where a, b, c refer to the Cartesian axes x, y, z, ωn =
(2n + 1)π/β, G(k, iωn) and Σ(iωn) are Matsubara fre-
quencies, interacting Green’s functions, and self-energies,
respectively. va(k) = −∂kaG

−1 is the velocity opera-
tor. In the above formula, a term involving the deriva-
tive of self-energy against magnetic field B has been
dropped, as the DMFT self-energy cannot depend on
B linearly [21]. For Σ = 0 this formula will reduce to
the non-interacting case given in Eq. 1, which can be
confirmed by both explicit derivation and numerical cal-
culation. The Matsubara summation is converged with
|n| ≤ 600 for β = 40 (290 K), and |n| ≤ 2000 for
β = 400 (29 K).

Remarkably, in the DMFT calculations the computed
orbital magnetizations are greatly enhanced compared
with the DFT+U results, as listed in Table. I. The DMFT
method gives consistent values of Mz for all bulk struc-
tures and a monolayer. This is reasonable in the sense
that the local octahedral crystal fields imposed on V
atoms are nearly identical in these structures. It should
be pointed out that Eq. 2 is derived without consider-
ing the entropic contribution, and only suitable for low
temperatures. [14] Although, the values of U and JH

in our DMFT calculations are chosen by matching the
computed spectral gap at 290 K to experimental opti-
cal gap at room temperature [31, 32], more calculations
show that the calculated orbital magnetizations are sim-
ilar within reasonable range of U and JH values (see Ta-
ble. S1 [37]).

TABLE I. Calculated orbital magnetization along z-direction
for bulk R3̄, P 3̄1c, C2/m, C2/c, and monolayer (ML) VI3
using different methods and temperatures as indicated in each
case. Units: µB/V.

R3̄ P 3̄1c C2/m C2/c ML
DFT+U 0.021 0.026 0.003 0.020 0.001

DMFT (290 K) 0.079 0.084 0.079 0.081 0.084
DMFT (29 K) 0.080 0.085 0.079 0.085 0.085

In order to further analyze how the dynamical cor-
relation influence orbital magnetization, we plot the or-
bital magnetization Mz(k) across the Brillouin zone from
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FIG. 3. (a) and (b) are calculated orbital magnetization dis-
tribution in the Brillouin zone (at kz = 0 plane) for bulk R3̄
using DFT+U and DMFT (29 K), respectively. (c) and (d)
are calculated orbital angular momentum distribution in the
Brillouin zone (at kz = 0 plane) for bulk R3̄ using DFT+U
and DMFT (29 K), respectively.

both DFT+U and DMFT calculations for R3̄ structure,
as shown in Fig. 3(a) and (b). It is obvious that the
distributions of orbital magnetization in the Brillouin
zone are quite different for these two methods. In the
DFT+U method, the main contribution to orbital mag-
netization comes from the Brillouin zone center, while
the orbital magnetization accumulates mainly along the
Brillouin zone boundaries for the DMFT result. The
distribution of Mz(k) from DFT+U is more localized
compared to the DMFT result, which means the orbital
magnetization in real space should be more extended in
the DFT+U result. This difference can be partially at-
tributed to the enhanced d-p mixing in the DFT+U elec-
tronic structures as mentioned earlier. Another source
of the difference is the dramatical renormalization of the
electronic structures through the DMFT self-energy, as
shown in the spectral functions above (Fig. 2(a) and
2(c)). The overall effects lead to an over four-fold en-
hancement of total orbital magnetization compared to
DFT+U result. It is noteworthy that the orbital mag-
netization is along the z direction, thus it will lead to
strong anisotropy of saturation magnetization, which is
consistent with the experimental observation [30–32].

Since in atomic limit, the orbital magnetization orig-
inates from orbital angular momentum, we have done
further analysis to elucidate the correlation effect on the
orbital angular momentum of Bloch wave functions. As
the net residual orbital angular momentum can come
from the imbalanced occupation of d orbitals of vana-
dium atoms, we have projected the Bloch wave functions
to the 5 channels of the spherical harmonics Y m

2 with
m = 0,±1,±2. The k-resolved orbital angular momen-

tum is defined as

lz(k) =
∑

n∈occ

∑
m

m|〈ψnk|Y m
2 〉|2, (3)

where the summation is over the occupied states. ψnk

is the Bloch wave functions. The results for bulk R3̄
structure are shown in Fig. 3 (c) and (d). It can be seen
that for both the methods, distributions of orbital angu-
lar momentum in k-space are almost uniform, especially
for the DFT+U method. The reason behind such a be-
havior can be understood in terms of strong localization
of d orbitals on V atoms, leading to weak k-dependence
of orbital angular momentum. However, the values of or-
bital angular momentum from DMFT is greatly enhanced
compared to that from DFT+U . The integrated lz for
DFT+U and DMFT are 0.060/V and 0.158/V, respec-
tively. Note that for an atomic model with 2 electrons
filling the t2g orbitals of V atoms, according to the Hund’s
rules, the orbital magnetic moment should be 1µB/V and
antiparallel to the 2µB/V spin moment [38]. However,
the experimental observations show that the out-of-plane
magnetic moments are larger than the in-plane ones [30–
32], indicating that the orbital magnetic moment should
be parallel to the spin moment. In our DMFT study,
we find the orbital moments of ∼ 0.08µB/V parallel to
spin moments, consistent with the experimental observa-
tions. Our results imply that the orbital magnetization in
real materials cannot be simply explained by the atomic
model.

Hence, a unified physical picture for dynamically en-
hanced orbital magnetization in VI3 emerges from the
above comparison. Despite a stronger p-d mixing in
DFT+U that increases the intercellular electronic cir-
culations of electrons (corresponding to the hot spot in
Fig. 3 (a)), it suppresses the (potentially more impor-
tant) intracellular circulations at the same time. The
overall effect is minimal occupational imbalance among
lz channels, and quenched orbital angular momentum. In
the self-consistent DMFT framework, the localization be-
havior of correlated electrons in VI3 is found to increase
the occupational imbalance of lz channels dramatically.
Although the orbital hybridizations in crystals will still
suppress the orbital magnetization, the greatly enhanced
residual orbital angular momentum eventually leads to
a significantly enhanced orbital magnetization in DMFT
approach when compared to that from DFT+U .

Futher insights can be obtained by separating the
orbital magnetization into local (MLC) and itiner-
ant (M IC) parts, leading support to the forego-
ing picture. As defined by Thonhauser el al. [12],
MLC = −ie/(2N~)

∑
nk fnk 〈∇kunk|×Hk |∇kunk〉, and

M IC = −ie/(2N~)
∑

nk fnk 〈∇kunk| × |∇kunk〉 εnk. For
DFT+U case, these two parts can be calculated ac-
cording to the above formulas separately. In order to
compare the results given by DFT+U and DMFT on
the equal footing, we need some approximations for the
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DMFT case. Specifically, we used the eigen energies
from the DFT step but corrected by the real part of
self-energy at infinity frequency, corresponding to a shift
of chemical potential, to ensure a proper electron num-
ber, i.e., εDMFT

nk ≈ εDFT
nk + ReΣ∞. As the d-p mixing

is directly related to the itinerant motion of electrons,
it is indeed found that in the DFT+U results, the itin-
erant contribution dominates the orbital magnetization
(Mz

LC = −0.012µB/V and Mz
IC = 0.033µB/V). How-

ever, the orbital magnetization is dominated by the local
part in the DMFT framework (Mz

LC = 0.208µB/V and
Mz

IC = −0.148µB/V), due to the localization behavior of
V atoms.

In summary, we have studied the electronic correla-
tion effect on orbital magnetization, taking the layered
van der Waals magnetic materials VI3 as an example.
Our calculations reveal that the dynamical correlation is
crucial for evaluating the orbital magnetization in cor-
related materials like VI3. The static mean-field theory
based density-functional theory (in the DFT+U level)
is insufficient to capture the renormalization to spectral
functions and the localization behavior of correlated elec-
trons. As a result, it will underestimate the intracellu-
lar circulations contribution to orbital magnetization for
these materials. Making use of the state-of-the-art dy-
namical mean-field theory, we are able to recover the
dynamical correlation and give a better description to
orbital magnetization, which is consistent with the ex-
perimental observation [30–32]. It is interesting that the
correlation effect can even stabilize the orbital magneti-
zation to monolayer limit, which calls for further exper-
iments to verify. Our study may inspire the research of
low dimensional magnetism as well as potential spintron-
ics applications. From the future perspective, effect of
short-range or nonlocal correlations on the orbital mag-
netization would be interesting to study. It can be done
using more accurate but computationally costly cluster
methods [39, 40], or GW+DMFT [41].
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[18] T. Woźniak, P. E. Faria Junior, G. Seifert, A. Chaves,
and J. Kunstmann, Phys. Rev. B 101, 235408 (2020).

[19] F. Xuan and S. Y. Quek, Phys. Rev. Research 2, 033256
(2020).
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