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Abstract

The Kondo effect, a hallmark of strong correlation physics, is characterized by
the formation of an extended cloud of singlet states around magnetic impurities
at low temperatures. While many implications of the Kondo cloud’s existence
have been verified, the existence of the singlet cloud itself has not been directly
demonstrated. We suggest a route for such a demonstration by considering an
observable that has no classical analog, but is still experimentally measurable:
“singlet weights”, or projections onto particular entangled two-particle states.
Using approximate theoretical arguments, we show that it is possible to con-
struct highly specific energy- and position-resolved probes of Kondo correlations.
Furthermore, we consider a quantum transport setup that can be driven away
from equilibrium by a bias voltage. There, we show that singlet weights are en-
hanced by voltage even as the Kondo effect is weakened by it. This exposes a
patently nonequilibrium mechanism for the generation of Kondo-like entangle-
ment that is inherently different from its equilibrium counterpart.
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1 Introduction

Strongly correlated quantum systems are a central paradigm in condensed matter physics. A
pivotal role in this field is played by the Kondo effect [1,2], where the resistance of metals with
a small concentration of magnetic impurities increases at low temperatures. This is due to
electrons within the impurities becoming intricately entangled with those in the surrounding
bulk material [3]. The resulting low energy state is characterized by a narrow resonance in the
spectral function [4], and by singlet correlations that extend far beyond the impurity [5]. The
latter are believed to cause enhanced scattering in a volume that may be orders of magnitude
larger than that of the impurity atom [2–6].

The correlated singlet is known in the literature as the Kondo screening cloud, and its
equilibrium properties are well understood in a wide variety of circumstances. The length
scale characterizing this cloud can be estimated from scaling or perturbative arguments [7,
8] and explicitly calculated numerically [9, 10]. Predictions can then be made about the
experimentally observable implications of the existence of the Kondo cloud [11]. Important
examples include oscillations in density and spin correlations [10,12–19]; dependence on finite
size effects or boundary conditions in the metallic environment [20–26]; and entanglement
between the dot and conduction electrons [27, 28]. The dynamical formation of equilibrium
density oscillations and spin correlations after a quantum quench has also been explored
[29,30].

Experimental studies have confirmed many of the predicted microscopic consequences of
the existence of the Kondo cloud, beyond its macroscopic effect on conductance. To give a few
examples, the cloud’s effect on electronic spin polarizability could in principle be measured by
nuclear magnetic resonance (NMR) experiments, though this is difficult [31]. Size dependent
effects in nanoscale systems were detected [32–39]. Perhaps the most direct observations
come from studies combining scanning tunneling microscopy and spectroscopy [40], which
have generated evidence that electrons scatter off the cloud [41].

Some of the clearest and most controlled spectroscopic observations of the Kondo effect
[42, 43], as well as demonstrations of the size of the associated cloud [44], are obtained in
mesoscopic transport experiments. Here, the impurity embedded in a metallic host is replaced
by a quantum dot spanning two noninteracting leads. Within linear response, the conductance
across this junction provides access to the spectral function of the dot; and can also probe its
nonequilibrium properties. An important example is the prediction that the Kondo resonance
can be split by a bias voltage before being destroyed by nonequilibrium dissipation [45–49].
A different resonance then resides (approximately, see Ref. [49]) at the chemical potential of
each lead. However, it remains unknown to what degree these split resonances correspond
to the equilibrium Kondo resonance and whether they share its singlet-like nature. It is also
largely unknown whether nonequilibrium currents are capable of suppressing, enhancing or
distorting the Kondo cloud.
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Despite all this progress, the Kondo cloud itself—in the sense of an extended singlet—has
yet to be directly observed in either equilibrium or nonequilibrium situations. Even though the
extended singlet is arguably the defining quality of the Kondo cloud, there has been virtually
no direct study of its structure in either theory or experiment. This is understandable, because
the degree to which a system exhibits singlet correlations is difficult to measure compared with
the observables on which most work has been focused. It is nevertheless important to realize
that while the existence of a Kondo singlet implies, e.g., oscillatory response in spin–spin
correlations [9], the converse is not necessarily true.

On the other hand, singlet correlations not related to Kondo physics have been exper-
imentally measured in several types of very different experimental protocols. For example,
in optics experiments, knowledge about singlets between entangled pairs of photons can be
extracted [50–52]. Furthermore, in NMR experiments singlets between nuclear spins can be
observed by way of specialized pulse sequences [53, 54]. As a third example, in ultracold
atomic systems, singlet and triplet states can be artificially manufactured and controlled [55].

From the quantum information point of view, measuring the projection on a singlet state
could be considered a specialized kind of “quantum measurement”. It requires a transfor-
mation from the Bell (i.e. singlet–triplet) basis to a so-called computational basis, where
measurements of normal correlation functions are carried out. This is accomplished by a sim-
ple quantum circuit (an inverse Bell circuit, see top part of Fig. 1), which may be implemented
in different ways within different experiments. Therefore, in a system enabling implementa-
tion of generic two-qubit quantum gates–e.g., as was recently suggested for ultracold fermionic
gases [56]–a singlet projection measurement would be relatively straightforward. Quantum
tomography is another potentially viable route to accessing such quantum observables in
correlated electron systems [57].

Experiments of this sort on Kondo systems have yet to be performed, and clearly represent
a significant technical challenge. Nevertheless, it is important to distinguish between observ-
ables that are theoretically interesting, but not generally measurable; and observables that
may be difficult to access in experiment, but are measurable in principle. Bipartite entangle-
ment entropy is one example of an observable that is often discussed in the literature [27],
but generally belongs to the first class. The projection onto a (two-particle) singlet state, our
main focus in the rest of this manuscript, is of the latter variety.

In the following, we present a study of singlet correlations in the nonequilibrium (and
equilibrium) Anderson impurity model, where the impurity is modeled by a single, spin de-
generate electronic orbital. Complementary representations of singlet correlations in energy-
and position-space are considered, allowing us to construct a detailed picture of the Kondo
cloud in several regimes. In particular, we establish that singlet correlations are an excellent
and intuitive observable for examining the well-understood equilibrium physics of the Kondo
cloud. Then, we show that they can provide new insight about the nonequilibrium physics.

To solve the nonequilibrium impurity problem, we use the propagator flavor of the non-
crossing approximation (NCA) [58–60]. Since its introduction to the field [61–64], variants of
the NCA and its extensions have been used to study various aspects of the nonequilibrium
Kondo effect [45, 46, 58, 59, 65–67]. The method provides qualitatively, though not quantita-
tively, accurate results at higher temperatures in the Kondo regime, and its regions of appli-
cability have often been explored [59,60,67–70]. However, it cannot be used to systematically
examine, e.g., the scaling limit that emerges at low energies, where at least vertex corrections
are needed [71–74] and numerically exact methods are desirable. The NCA used here is the
lowest order precursor of the numerically exact bold-line Monte Carlo [48, 60, 68, 75, 76] and
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Figure 1: Schematic representation of the system under investigation. The quantum im-
purity (bronze circle) is coupled to semi-infinite chains of identical atoms (gold circles). A
simultaneous quantum measurements on the impurity and on the chains can quantify the
Kondo phenomenon.

Inchworm Monte Carlo [49, 77–84] methods. Other recent approaches to the impurity prob-
lem may also be applicable to the same problem [85–89], and revisiting this work within a
controlled numerical scheme will be a goal for future studies.

The outline of the paper is as follows: In Sec. 2, we introduce the model and provide general
definitions of singlet observables. Sec. 3 is dedicated to the NCA method and its application
to such observables. Our results, first in equilibrium and then with a nonequilibrium bias, are
presented in Sec. 4. Finally, in Sec. 5, we discuss our conclusions.

2 Hamiltonian and observables

2.1 Anderson impurity model

We consider the Anderson impurity model, which is often used to describe a quantum dot
with electron–electron interactions coupled to noninteracting leads. The system is described
by the Hamiltonian

H = HD +HB +HDB. (1)

Here, the internal dot Hamiltonian HD, in units where ~ = e = 1, is

HD =
∑
σ

εDd
†
σdσ + Ud†↑d↑d

†
↓d↓, (2)

where the d
(†)
σ annihilate(create) a spin σ ∈ {↑, ↓} electron on the dot. εD is the single-particle

occupation energy, and U is the energetic cost of Coulomb charging when the dot is doubly
occupied. The lead Hamiltonian HB represents a continuum of noninteracting electrons,

HB =
∑
`

∑
k∈`

∑
σ

εka
†
kσakσ. (3)
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The lead index ` ∈ {L,R} stands for the “left” and “right” lead, respectively. The a
(†)
kσ

annihilate(create) an electron with spin σ and energy εk on lead orbital k in either lead.
Finally, the dot–lead coupling is

HDB =
∑
`

∑
k∈`

∑
σ

(
Vka

†
kσdσ + h.c.

)
. (4)

The coupling constants Vk are determined by the lead coupling density

Γ`(ε) = π
∑
k∈`
|Vk|2δ(ε− εk). (5)

2.2 Singlet weights and projectors

Our next task is to construct a set of observables that directly relate to Kondo correlations
between the dot and specific bath orbitals. We will do this in two steps. First, we will consider
projections onto specific dot–bath singlet-states and construct second-quantized operators
associated with them. Then, we will argue that these operators still contain some non-Kondo
contributions, and discuss how they can be removed.

Let χ be an index characterizing a lead orbital. The exact meaning of χ will not yet
be further specified, so that it can denote either a singleßparticle eigenfunction of the lead

Hamiltonian or a local lead orbital. In general, however, a
(†)
χσ is a linear combination of the

a
(†)
kσ . These operators generate a local subspace on orbital χ that contains the zero electron

state |0χ〉, the one electron states |↑χ〉 and |↓χ〉 and the two electron state |↑↓χ〉. The dot

operators d
(†)
σ similarly generate the states |0D〉, |↑D〉, |↓D〉 and |↑↓D〉.

Consider, then, a two particle singlet-state formed between the dot orbital D and the lead
orbital χ. The wavefunction of this state can be written as follows:

|sχ〉 =
1√
2

(
|↑D↓χ〉 − |↓D↑χ〉

)
. (6)

If we define the operators

P σσ
′

χχ′χ′′χ′′′ ≡
(
a†χσaχ′σd

†
σ′dσ′

)
·
(
aχ′′σ′a†χ′′′σ′dσd

†
σ

)
,

Eσσ
′

χχ′ ≡ a†χσaχ′σ′d†σ′dσ,
(7)

the projector onto |sχ〉 can be expressed as

|sχ〉 〈sχ| =
1

2

(
P ↑↓χχχχ + P ↓↑χχχχ − E↑↓χχ − E↓↑χχ

)
. (8)

Here, P σσ
′

χχχχ selects the state |σ′Dσχ〉, and Eσσ
′

χχ exchanges a spin between the dot orbital and
the lead orbital χ. We remark in passing that it is similarly possible to express projectors
onto other states, such as the tripletßstates

|t1χ〉 = |↑D↑χ〉 ,

|t2χ〉 =
1√
2

(
|↑D↓χ〉+ |↓D↑χ〉

)
,

|t3χ〉 = |↓D↓χ〉 ,

(9)
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in terms of P σσ
′

χχχχ and Eσσ
′

χχ . This enables the application of our methodology to a variety of
physical questions beyond those to be considered here. Analogous expressions for multi-orbital
impurities can be devised accordingly.

The operator |sχ〉 〈sχ| was designed specifically to extract singlet correlations, but still
admits contributions that might be considered trivial. For example, P σσ

′
χχχ′χ′ does not eliminate

the product state |σ′Dσχ〉, which can occur even in a system where the dot and leads are neither
coupled nor entangled. While this state is characterized by (“classical”, or population-based)
spin–spin correlations, it is not necessarily indicative of quantum correlations, and we discard
it in the remainder of this work. To do this in practice, wherever 〈P σσ′

χχ′χ′′χ′′′〉 might appear
we replace it with the quantity

〈P σσ′
χχ′χ′′χ′′′〉

correl
≡ 〈P σσ′

χχ′χ′′χ′′′〉 − δχχ′δχ′′χ′′′ 〈d†σ′dσ′dσd
†
σ〉 fχf̄χ′′ . (10)

Here, fχ is the Fermi function (or initial occupation probability) associated with lead orbital
χ, and f̄χ = 1 − fχ. It is important to note that for the sake of simplicity, this definition

neglects nonequilibrium corrections to the lead occupancy 〈a†χσaχσ〉.
The expectation value of the correlated singlet weight operator is given by

s(χ) ≡ 1

2

(
〈P ↑↓χχχχ〉correl + 〈P ↓↑χχχχ〉correl − 〈E

↑↓
χχ〉 − 〈E↓↑χχ〉

)
, (11)

whereby we emphasize that all operators are evaluated at the same time. To simplify the
notation, the “correl” subscript will be dropped from now on where no confusion can occur.
The significance of s(χ) is self evident in light of the singlet nature of Kondo physics, and will
be demonstrated with several examples in Sec. 4.

3 Methodology

The singlet weight s(χ) is a well-defined quantity, and in principle a variety of numerically
exact methods could be adapted to evaluating the corresponding expectation values in a con-
trolled manner. However, in the present context we plan to explore general qualitative aspects,
such that an approximate treatment suffices. In this section, we discuss the approximation
scheme that will be used to evaluate s(χ) in the present work, the noncrossing approximation
(NCA). Sec. 3.1 explains how the operators P σσ

′
χχ′χ′′χ′′′ and Eσσ

′
χχ′ are treated and how s(χ) is

obtained for a general orbital index χ. Given this, Sec. 3.3 specializes the discussion to the
energy representation χ = k, while Sec. 3.4 specializes it to the position representation χ = x.

3.1 Noncrossing approximation and the vertex function

Our treatment of the model will be based on the NCA, a self-consistent, lowest order per-
turbative expansion in the dot–lead coupling/hybridization [46, 58–60, 65–67, 69, 76, 90–92].
Generally, the name NCA refers to a class of hybridization expansions which only account
for contributions that have a diagrammatic representation in which the hybridization lines do
not cross. NCA methods are rooted in the seminal work by Grewe and Kuramoto [61, 62],
which forms the basis for various extensions that account for finite electron–electron inter-
action strengths [71, 93] and nonequilibrium conditions [46]. In its basic formulation, the
NCA successfully captures the physics at temperatures that are not far below the Kondo
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Figure 2: (a) Diagrammatic representation of the Dyson equation for the vertex function,
Eq. (15). (b) Diagrammatic representation of the Dyson equation for the propagator, Eq. (20).
(c) Examples of contributions to 〈P σσ′

χχ′χ′′χ′′′〉 and 〈Eσσ′
χχ′ 〉 in Eqs. (24) and (25). The curled

(“gluon”) lines denote bath correlation functions connected to the observable at the measure-
ment time t.

temperature, as well as in the large U limit and for small bias voltages. However, it does
not correctly reproduce the Kondo behavior in the scaling regime. For this regime, vertex
corrections have proven to be essential [59, 72–74]. These extensions of the NCA, which are
also numerically more demanding, have been successful in recovering the temperature scal-
ing behavior characterizing Kondo phenomena in agreement with numerical renormalization
group calculations [94,95].

Here, we provide a brief overview of the method focusing on the details needed to discuss
the evaluation of singlet weights in the next subsection. For a more systematic introduction
to the propagator NCA, we refer the reader to the literature [60].

The expectation value of a dot operator A at time t is given by:

〈A(t)〉 = Tr
(
ρU †(t)AU(t)

)
. (12)

Here, ρ = ρD ⊗ ρB is the initial density matrix, which we assume to be a product of an
initial dot state ρD and an initial lead state ρB; and U(t) = T exp(−i

∫ t
0 H(τ)dτ) is the time

evolution operator, with T the time ordering operator. Let us define the vertex function,

Kβ
α(t, t′) = TrB

{
ρB 〈α|U †(t) |β〉 〈β|U(t′) |α〉

}
, (13)

such that the expectation value from Eq. (12) can be expressed as

〈A(t)〉 =
∑
β

Kβ
α(t, t) 〈β|A |β〉 . (14)

Here, the α and β indices enumerate a basis of many-particle states in the dot subspace, and
we assume that the initial state of the isolated dot can be written in the form ρD = |α〉 〈α|.

7
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The hybridization expansion finds Kβ
α(t, t′) by perturbatively expanding in the dot–lead

coupling HDB. As such, Kβ
α(t, t′) is given by the Dyson equation

Kβ
α(t, t′) = kβα(t, t′) +

∑
γδ

t∫
0

t′∫
0

dτ1dτ
′
1 k

β
δ (t− τ1, t′ − τ ′1) ξδγ(τ1 − τ ′1) Kγ

α(τ1, τ
′
1). (15)

A diagrammatic representation of this equation is shown in Fig. 2(a). The quantity kβα(t, t′)
will be defined later. Within the NCA, the exact cross-branch self-energy ξβα(t) is replaced
with an approximate form that only takes into account the lowest nonvanishing order in the
expansion,

ξβα(t) '
∑

σ,`∈{L,R}

(
∆<
` (t) 〈α|dσ|β〉 〈β|d†σ|α〉+ ∆>

` (t) 〈α|d†σ|β〉 〈β|dσ|α〉
)
. (16)

Here, the lesser and greater hybridization functions, ∆<
` (t) and ∆>

` (t), are determined by the
lead coupling density Γ`(ε) and the initial equilibrium distributions in the leads, f`(ε):

∆<
` (t) =

1

π

∫
dε e+iεt Γ`(ε)f`(ε), (17)

∆>
` (t) =

1

π

∫
dε e−iεt Γ`(ε)f̄`(ε). (18)

When the Dyson equation is solved self-consistently, the NCA effectively incorporates an
infinite subset of all possible perturbative contributions. In this context, the name NCA
refers to the fact that the methodology only includes contributions with a diagrammatic
representation where the hybridization lines do not cross [60].

We now return to the remaining undefined quantity in Eq. (15),

kβα(t, t′) ≡ δαβG∗β(t)Gα(t′), (19)

which contains all contributions to the vertex function with hybridization events limited to
a single branch of the Keldysh contour, and which is given in terms of the single-branch
propagator Gα(t) = 〈α|TrB (ρBU(t)) |α〉. Note that we have taken Gα(t) to be diagonal in
the dot state basis, which is possible for the model used here but not in general. Like the
vertex function, the propagator can be written as the solution of a Dyson equation,

Gα(t) = gα(t)−
t∫

0

τ1∫
0

dτ1dτ2 gα(t− τ1)Σα(τ1 − τ2)Gα(τ2), (20)

a diagrammatic representation of which is provided in Fig. 2(b). In the NCA, we consider
only the lowest-order contribution to the single-branch self-energy:

Σα(t) '
∑

β,σ,`∈{L,R}

(
∆<
` (t) · 〈α|dσ|β〉 〈β|d†σ|α〉+ ∆>

` (t) · 〈α|d†σ|β〉 〈β|dσ|α〉
)
Gβ(t). (21)

Finally, gα(t) = e−iEαt is the atomic propagator obtained in the absence of a coupling between
the dot and the leads. This can be obtained directly from the state energies Eα of the isolated
dot, which can in turn be found analytically in the present model.

8
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To this point, we have described how to calculate the expectation value of an observable
as it evolves in time t from the moment where the dot and leads are connected. It is also
possible, and in fact substantially easier, to directly calculate steady state expectation values
using the NCA framework. This is because at steady state, the vertex function depends only
on the difference between its two time arguments:

Kβ
α

(
t, t′
)
−→
t,t′→∞

Kβ
(
t− t′

)
. (22)

This is equivalent to requiring that any dependence on the initial condition has faded away
with time, and that time-local observables have become independent of time. By definition,
the NCA propagator Gα(t) already depends only on a single time argument. Consequently,
the vertex function at steady state must obey

Kβ (t) =

∫ t

−∞
dτ1

∫ ∞
τ1

d∆τ G∗β (t− τ1)Gβ (∆τ − τ1)
∑
γ

ξβγ (∆τ)Kγ (∆τ) , (23)

which directly follows from Eq. (15) upon neglecting the initial condition and propagating
from the infinite past. Eq. (23) is therefore iterated until self-consistency is established.
However, Eq. (23) has no inhomogeneous initial condition term, and is linear in the vertex
function. Its solutions are therefore unbound with respect to multiplication by a constant,
and it is necessary to impose the normalization condition

∑
γ K

γ(0) = 1 at every iteration.
This corresponds to imposing the conservation of probability. With this, it is possible to
directly access steady state observables.

In practice, Eq. (23) is solved over a finite time interval. The length of this interval
therefore becomes a numerical parameter with respect to which the calculation needs to
be converged. However, the computational cost scales just linearly in the interval length,
such that obtaining convergence is usually inexpensive compared to performing the full time
propagation.

3.2 Adapting the noncrossing approximation to singlet weight observables

The vertex function Kβ
α (t, t′) can be used to obtain the expectation value of any single-time

dot operator according to Eq. (14), either exactly or within the NCA. However, nonlocal
observables comprising operators from the leads—or both the dot and leads—cannot be im-
mediately expressed in terms of the vertex function. In this subsection, we will develop
an NCA approach to the nonlocal observables needed to obtain the singlet weight: 〈Eσσ′

χχ′ 〉
and 〈P σσ′

χχ′χ′′χ′′′〉. The technique is similar to that used to obtain Green’s functions from the
NCA [59,60].

The main issue with the appearance of lead operators in the observable is that during the
application of Wick’s theorem, these can be paired with lead operators from the perturbation.
Diagrammatically, this results in “hybridization lines” going from the observable at the tip of
the contour to all other contour times, which, in turn, breaks up the propagators and vertex
functions into smaller segments. This is schematically depicted in Fig. 2(c).

In general, an exact calculation requires that all hybridization lines between these segments
and the vertex function be evaluated [78]. Because these higher-order corrections invariably
involve hybridization events between propagator segments already divided by a hybridization
line, they can be neglected at the NCA level. A formal derivation of this approximation

9
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proceeds by setting of A = Eσσ
′

χχ′ or A = P σσ
′

χχ′χ′′χ′′′ in Eq. (12), and working out the lowest
non-vanishing order of the perturbative expansion of the time-evolution operators U(t) in
the system–bath hybridization. The atomic propagators gα are then replaced by their NCA
counterparts Gα, and propagation from the initial state is replaced by Kβ

α as in Fig. 2(c).
This leads to relatively straightforward, if unwieldy, expressions (with the dependence on time
t suppressed on the left hand side):

〈P σσ′
χχ′χ′′χ′′′〉 = −

∫ t

0
dτ ′1

∫ τ ′1

0
dτ ′2 A

σσ′
χχ′χ′′χ′′′

(
t, τ ′1, τ

′
2

)
−
∫ t

0
dτ2

∫ τ2

0
dτ1 B

σσ′
χχ′χ′′χ′′′ (t, τ1, τ2)

−
∫ t

0
dτ1

∫ t

0
dτ ′1 C

σσ′
χχ′χ′′χ′′′

(
t, τ1, τ

′
1

)
−
∫ t

0
dτ1

∫ t

0
dτ ′1 D

σσ′
χχ′χ′′χ′′′

(
t, τ ′1, τ1

)
,

(24)
and

〈Eσσ′
χχ′ 〉 = −

∫ t

0
dτ ′1

∫ τ ′1

0
dτ ′2Gσ(t− τ ′1)Ωχχ′

(τ ′1, τ
′
2) ·Kσ′

α (t, τ ′2)

−
∫ t

0
dτ2

∫ τ2

0
dτ1G

∗
σ′(t− τ2)Ωχ′χ∗(τ2, τ1) ·Kσ

α(τ1, t)

+

∫ t

0
dτ1

∫ t

0
dτ ′1G

∗
σ′(t− τ1)Gσ(t− τ ′1)Θ

χχ′
0 (τ1, τ

′
1)K

0
α(τ1, τ

′
1)

+

∫ t

0
dτ1

∫ t

0
dτ ′1G

∗
σ′(t− τ1)Gσ(t− τ ′1)Θ

χχ′
↑↓ (τ1, τ

′
1)K

↑↓
α (τ1, τ

′
1).

(25)

Here, the following set of auxiliary definitions has been used:

Aσσ
′

χχ′χ′′χ′′′ ≡Gσ′(t− τ ′1)Kσ′
α (t, τ ′2)

×
(
δχ′′χ′′′ f̄χ′′ · Ξχχ

′
↑↓ (τ ′1, τ

′
2) + δχχ′fχ · Ξ̃χ

′′′χ′′
0 (τ ′1, τ

′
2)
)
,

(26)

Bσσ′
χχ′χ′′χ′′′ ≡G∗σ′(t− τ2)Kσ′

α (τ1, t)

×
(
δχ′′χ′′′ f̄χ′′ · (Ξχ

′χ
↑↓ )∗(τ2, τ1) + δχχ′fχ · (Ξ̃χ

′′χ′′′
0 )∗(τ2, τ1)

)
,

(27)

Cσσ
′

χχ′χ′′χ′′′ ≡G∗σ′(t− τ1)Gσ′(t− τ ′1)K0
α(τ1, τ

′
1)× δχχ′fχΘχ′′′χ′′

0 (τ1, τ
′
1), (28)

Dσσ′
χχ′χ′′χ′′′ ≡G∗σ′(t− τ1)Gσ′(t− τ ′1)K↑↓α (τ1, τ

′
1)× δχ′′χ′′′ f̄χ′′Θχχ′

↑↓ (τ1, τ
′
1). (29)

Finally, setting ηχχ′ ≡ V ∗χVχ′ (with Vχ the coupling between the dot and lead orbital χ), this
relies on the quantities:

Ξχχ
′

α (τ1, τ2) = ηχχ′ · fχf̄χ′ · eiεχ(t−τ2)e−iεχ′ (t−τ1) ·Gα (τ1 − τ2) , (30)

Ξ̃χχ
′

α (τ1, τ2) = ηχχ′ · fχf̄χ′ · eiεχ(t−τ1)e−iεχ′ (t−τ2) ·Gα (τ1 − τ2) , (31)

Θχχ′
α (τ1, τ2) = −ηχχ′ ·

(
δα,0 · fχfχ′ · eiεχ(t−τ2)e−iεχ′ (t−τ1)

+ δα,↑↓ · f̄χf̄χ′eiεχ(t−τ1)e−iεχ′ (t−τ2)
)
,

(32)

Ωχχ′
(τ1, τ2) = −

(
Ξχχ

′
↑↓ (τ1, τ2) + Ξ̃χχ

′
0 (τ1, τ2)

)
. (33)

We note that these expressions have relatively simple diagrammatic interpretations, which
are shown in Fig. 2(c).
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Given the results of this subsection, the energy-resolved and position-resolved representa-
tion of the singlet weight within the NCA approach can now be obtained. These physically
motivated definitions of χ will now be discussed in Secs. 3.3 and 3.4.

3.3 Energy-resolved singlet weights

In the energy representation of the singlet weight, the index χ represents a single-particle
energy ε in one of the leads, L or R. The observable isolates all contributions to s(ε) from a
narrow range of lead energies surrounding ε. The quantities to be evaluated are then

〈P σσ′
L/R〉 (ε, t) =

∑
k∈L/R

δ(ε− εk) · 〈P σσ
′

kkkk〉 (t),

〈Eσσ′
L/R〉 (ε, t) =

∑
k∈L/R

δ(ε− εk) · 〈Eσσ
′

kk 〉 (t).
(34)

Expressions for the expectation values appearing here within the NCA were given in Sec. 3.2.
To change the generic χ indices to lead level indices k, it is sufficient replace ηχχ′ by ΓL/R(ε)δkk′

in Eqs. (30)–(33). Given this, it is only necessary to evaluate Eqs. (24) and (25) for k = k′ =
k′′ = k′′′, and the calculation scales linearly with the number of single-particle energies used
to describe the lead. Using the definition in Eq. (11), it is now straightforward to write the
energy-resolved singlet weight in each lead in the form

sL/R(ε, t) =
1

2

(
〈P ↑↑L/R〉 (ε, t) + 〈P ↓↓L/R〉 (ε, t)− 〈E

↑↓
L/R〉 (ε, t)− 〈E

↓↑
L/R〉 (ε, t)

)
. (35)

In the case of the energy-resolved singlet weight, Eqs. (30)–(33) only depend on the dif-
ference between the two time arguments, such that a steady state formulation for the energy-
resolved singlet weight becomes straightforward. In the steady state, Eqs. (24) and (25) can
be rewritten as follows:

〈P σσ′
t→∞〉 (ε) = −

∫ ∞
0

dτ

∫ ∞
0

d∆τ
{

Gσ′(τ)
(
f̄L/R(ε) · Ξ↑↓(ε,∆τ) + fL/R(ε) · Ξ̃0(ε,∆τ)

)
Kσ′

(τ + ∆τ)

+G∗σ′(τ)
(
f̄L/R(ε) · Ξ∗↑↓(ε,∆τ) + fL/R(ε) · Ξ̃∗0(ε,∆τ)

)
Kσ′

(−τ −∆τ)
}

−
∫ ∞
0

dτ

∫ ∞
−τ

d∆τ
{
G∗σ′(τ)Gσ′(τ + ∆τ) · fL/R(ε)Θ0(ε,∆τ) ·K0(∆τ)

+G∗σ′(τ)Gσ′(τ + ∆τ) · f̄L/R(ε)Θ↑↓(ε,∆τ) ·K↑↓(∆τ)
}
,

(36)

〈Eσσ′
t→∞〉 (ε) = −

∫ ∞
0

dτ

∫ ∞
0

d∆τ
{
Gσ(τ) · Ω(ε,∆τ) ·Kσ′

(τ + ∆τ)

+G∗σ′(τ) · Ω∗(ε,∆τ) ·Kσ(−τ −∆τ)
}

+

∫ ∞
0

dτ

∫ ∞
−τ

d∆τ
{
G∗σ′(τ)Gσ(τ + ∆τ) ·Θ0(ε,∆τ)K0(∆τ)

+G∗σ′(τ)Gσ(τ + ∆τ) ·Θ↑↓(ε,∆τ)K↑↓(∆τ)
}
.

(37)

This enables the direct evaluation of the energy-resolved, steady state singlet weight in the
left or right lead, sL/R(ε, t→∞).
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3.4 Position-resolved singlet weights

We now continue to the position representation of the singlet weight. The general state χ
entering Eq. (6) is now identified with a local lattice orbital x, such that

s(x, t) =
1

2

(
〈P ↑↑〉 (x, t) + 〈P ↓↓〉 (x, t)− 〈E↑↓〉 (x, t)− 〈E↓↑〉 (x, t)

)
. (38)

Here, the position x is assumed to be specific to one of the leads, such that the subscript L/R
can be dropped. A position-resolved representation of the singlet weight is then encoded in
the observables

〈P σσ′〉 (x, t) = 〈P σσ′
xxxx〉 (t), (39)

〈Eσσ′〉 (x, t) = 〈Eσσ′
xx 〉 (t). (40)

We will now discuss their evaluation.
The expectation values 〈P σσ′〉 (x, t) and 〈Eσσ′〉 (x, t) can be written in terms of the pre-

viously discussed quantities 〈P σσ′
kk′k′′k′′′〉 (t) and 〈Eσσ′

kk′ 〉 (t). Consider the wavefunction ϕk(x)
associated with lead mode k at position x. The annihilation operator in the position repre-
sentation then takes the form

axσ =
∑
k

ϕk(x)akσ. (41)

Using this transformation, the position-resolved singlet weight components in Eqs. (39) and
(40) are given by

〈P σσ′〉 (x, t) =
∑

kk′k′′k′′′
ϕ∗k(x)ϕk′(x)ϕk′′(x)ϕ∗k′′′(x) · 〈P σσ′

kk′k′′k′′′〉 (t), (42)

〈Eσσ′〉 (x, t) =
∑
kk′

ϕ∗k(x)ϕk′(x) · 〈Eσσ′
kk′ 〉 (t). (43)

Within the NCA approximation used here, only terms where at least two of the four energy
indices k are identical contribute to Eq. (42). The naive calculation of position-resolved
singlet weights in this manner therefore scales cubically with the number of lead orbitals in
the NCA, and quartically in general. It is, however, possible to perform the sums over the
lead eigenstates k semi-analytically before the NCA calculation, essentially carrying out the
evaluation of Eqs. (39) and (40) directly in the position space. To this end, we introduce the
quantities

ζx(t− τ) =
∑
k

V ∗k ϕ
∗
k(x) fk e

iεk(t−τ), (44)

ξx(t− τ) =
∑
k

Vkϕk(x) f̄k e
−iεk(t−τ), (45)

Λx =
∑
k

|ϕk(x)|2 fk, (46)

Λ̄x =
∑
k

|ϕk(x)|2 f̄k. (47)

12
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With their help, we can rewrite Eqs. (30)–(33) specific for the position representation, includ-
ing the sum over the lead energy states, as

Ξα (x, τ1, τ2) = ξx(t− τ1)ζx(t− τ2) ·Gα (τ1 − τ2) , (48)

Ξ̃α (x, τ1, τ2) = ζx(t− τ1)ξx(t− τ2) ·Gα (τ1 − τ2) , (49)

Θα (x, τ1, τ2) = −δα,0 · ζ∗x(t− τ1)ζx(t− τ2)− δα,↑↓ · ξ∗x(t− τ1)ξx(t− τ2), (50)

Ω(x, τ1, τ2) = −
(

Ξ↑↓ (x, τ1, τ2) + Ξ̃0 (x, τ1, τ2)
)
. (51)

Similarly, we express Eqs. (26)–(29) as

Aσσ
′

x ≡Gσ′(t− τ ′1)Kσ′
α (t, τ ′2)

(
Λ̄xΞ↑↓(x, τ

′
1, τ
′
2) + ΛxΞ̃0(x, τ

′
1, τ
′
2)
)
, (52)

Bσσ′
x ≡G∗σ′(t− τ2)Kσ′

α (τ1, t)
(

Λ̄xΞ∗↑↓(x, τ2, τ1) + ΛxΞ̃∗0(x, τ2, τ1)
)
, (53)

Cσσ
′

x ≡G∗σ′(t− τ1)Gσ′(t− τ ′1)K0
α(τ1, τ

′
1)× ΛxΘ0(x, τ1, τ

′
1), (54)

Dσσ′
x ≡G∗σ′(t− τ1)Gσ′(t− τ ′1)K↑↓α (τ1, τ

′
1)× Λ̄xΘ↑↓(x, τ1, τ

′
1). (55)

As only quantities incorporating the sum over the different lead eigenstates contribute, it is
numerically feasible to treat extended systems comprising tenths of thousands of lead sites
and beyond (cf. Sec. 4). Still, evaluation in position space requires the calculation of the
eigenfunctions ϕk(x) of the nointeracting lead Hamiltonian. This is essentially a tight-binding
calculation, a computational task that scales cubically with the number of lead orbitals when
done numerically. For periodic leads, however, it is possible to obtain converged results
directly at the thermodynamic limit, and for simple systems like the 1D chains used here
analytical expressions are readily available.

Finally, we remark that it is also possible to solve directly for the steady state in position
space. Here, we exploit the fact that the quantities introduced in Eqs. (48)–(51) factorize
into parts that depend on t− τ1, t− τ2, and τ1 − τ2. Using this structure, we can express the
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position-resolved singlet in steady state as

〈P σσ′
t→∞〉 (x) = −

∫ ∞
0

dτ

∫ ∞
0

d∆τ
{

Gσ′(τ)
(

Λ̄xξx(τ)G↑↓(∆τ)ζx(T ) + Λxζx(τ)G0(∆τ)ξx(T )
)
Kσ′

(T )

+G∗σ′(τ)
(

Λ̄xξ
∗
x(τ)G∗↑↓(∆τ)ζ∗x(−T ) + Λxζ

∗
x(τ)G∗0(∆τ)ξ∗x(−T )

)
Kσ′

(−T )
}

+

∫ ∞
0

dτ

∫ ∞
−τ

d∆τ
{
G∗σ′(τ)ζ∗x(τ)Gσ′(T )ζx(T ) · Λx ·K0(∆τ)

+G∗σ′(τ)ξ∗x(τ)Gσ′(T )ξx(T ) · Λ̄ ·K↑↓(∆τ)
}
,

(56)

〈Eσσ′
t→∞〉 (x) =

∫ ∞
0

dτ

∫ ∞
0

d∆τ
{

Gσ(τ)
(
ξx(τ)G↑↓(∆τ)ζx(T ) + ζx(τ)G0(∆τ)ξx(T )

)
Kσ′

(T )

+G∗σ′(τ)
(
ξ∗x(τ)G∗↑↓(∆τ)ζ∗x(−T ) + ζ∗x(τ) ·G∗0(∆τ) · ξ∗x(−T )

)
Kσ(−T )

}
−
∫ ∞
0

dτ

∫ ∞
−τ

d∆τ
{
G∗σ′(τ)ζ∗x(τ)Gσ(T )ζx(T ) ·K0(∆τ)

+G∗σ′(τ)ξ∗x(τ)Gσ(T )ξx(T ) ·K↑↓(∆τ)
}
,

(57)

where T = τ + ∆τ .
We note that in order to obtain accurate steady state results at the thermodynamic limit,

the underlying microscopic model for the leads needs to be large compared to the decoherence
time multiplied by the Fermi velocity. In the Kondo regime in particular, systems must
be considered that are large compared to the size of the Kondo cloud. It is then possible
to directly calculate the position-resolved representation of the steady state singlet weight
s(x, t→∞).

4 Results

In this section, we present the energy- and position-resolved dynamics and steady state of the
singlet weight in the nonequilibrium Anderson impurity model within the NCA framework. To
simplify the discussion, we will model the leads as two semi-infinite 1D chains (see Fig. 1). This
is by no means required by either the definition of the singlet weight or the NCA formalism,
though it could be advantageous within matrix product state methods. Each lead site will be
assumed to comprise a single orbital with on-site energy εb, coupled with strength tb to its
nearest neighbors. We will assume that in each lead, εb is pinned to the chemical potential
in that lead, such that the isolated lead is always half occupied. In the limit of an infinitely
long chain, the coupling density can be evaluated analytically [96–98] and assumes the form

Γ`(ε) =

{√
4|tb|2−(ε−µ`)2

4tb
Γ for |ε− µ`| < 2|tb|,

0 otherwise.
(58)

The maximum coupling strength to each of the two leads is therefore Γ/2. This determines
the coupling between the dot and the lead site adjacent to it, t0 =

√
tbΓ. We employ Γ as
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our energy scale. We set tb = 10Γ such that the lead bandwidth is 40Γ. The on-site energy
at the dot is εD = −4Γ and the Coulomb interaction U = 8Γ, such that we are investigating
the particle–hole symmetric scenario. We also apply a symmetric bias across the junction by
setting µL/R = ±Φ/2, where Φ is the bias voltage.

We use the Kondo temperature as a measure for the emergence of correlation effects. The
Kondo temperature is a crossover scale and its definition carries a degree of arbitrariness. A
commonly used large U estimate based on the Bethe ansatz suggests a Kondo temperature
TK ≈ 0.8Γ at equilibrium [3]. We found that this is consistent with the temperature at
which the Abrikosov–Suhl resonance appears in the spectral function (data not shown) and
in the differential conductance. This is also consistent with the operational definition used in
Ref. [99]. We stress once again that the NCA does not generally produce the exact Kondo
temperature and demonstrates other failures [59, 67, 72, 94, 95]. However, it does provide a
qualitative picture. A systematic validation of the results upon comparison with more refined
methods is left for future work.

Equilibrium Kondo correlations are expected to be characterized by a length scale ξ =
vf/Tk, where vf is the Fermi velocity in the noninteracting Fermionic leads [7,21]. If we assume
that the spacing between sites is a, the Fermi velocity can be written as vf = 2tba, such that
at the parameters above one expects ξ/a ≈ 25. In the finite time calculations finite leads were
used. Simulation were run for several chains lengths at the timescale shown, and we found
the data to be converged with ∼ 350 sites on each side. At any finite chain lengths, reflections
from the ends of the chain eventually develop (not shown); the effect of such reflections on
the charge density has previously been studied [100, 101]. For position-resolved calculations
in the steady state, we found that convergence requires simulating chains with ∼ 12, 000 sites.
The energy-resolved singlet weights shown, on the other hand, are always calculated directly
in the thermodynamic limit.

We will study the system at four representative lead temperatures, T = 0.2Γ, 0.5Γ, 1.0Γ,
and 5.0Γ. Respectively, these temperatures are well below the Kondo crossover scale; close
to but still below Kondo; slightly above Kondo; and well above Kondo. In Sec. 4.1 we will
consider relaxation to equilibrium from an initially factorized state. In Sec. 4.2 we will apply
a voltage bias between the leads to drive the system to a nonequilibrium steady state.

4.1 Relaxation to equilibrium

We begin by examining the energy-resolved singlet weight sL/R(ε, t) without a bias voltage,
i.e. for µL/R = Φ = 0. This obviates the distinction between the left and right leads, and
we therefore drop the corresponding index for the remainder of this section and write the
observable as s(ε, t).

In the top panels of Fig. 3(a) and (b), the time and frequency dependence of s(ε, t) is
plotted at T = 0.2Γ, well below the Kondo temperature. Two different initial states are
shown: the dot is initially empty in (a), and fully magnetized in (b). The lower panels
present cuts at constant time across the same data. Additionally, the equilibrium steady
state that eventually develops at the long time limit is shown.

The most prominent feature at long times (dashed lines), where the result is independent
of the initial conditions, is the central peak at ε = 0. We associate this peak with singlet
correlations driven by the Kondo effect. The dip at its center, which is more prominent
at shorter times, is due to the classical correlations subtracted in Eq. (10). Due to the
factor f(ε)f̄(ε) in our definition of the classical part, the width of the dip is determined
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Figure 3: Formation of equilibrium (Φ = 0) energy-resolved singlet weight. (a) Top: Dynam-
ics with an initially unpopulated dot at temperature T = 0.2Γ < TK . Bottom: Cuts across
the data at several representative finite times, with the dashed black line corresponding to
steady state. (b) Same as (a), but with an initially magnetized dot. (c) Singlet weight at
different times and temperatures. Time increases towards lower panels, with the bottom panel
at steady state.

16



SciPost Physics Submission

by the temperature T . While classical correlations dominate s(ε, t) at short times, they
eventually mostly fade away, leaving behind an almost pure peak representing non-classical
singlet correlations. Notice, however, that the NCA is prone to overestimating relaxation time
of the system [77].

When the dot is initially unoccupied, a large feature appears after a timescale t ∼ 1/Γ
around ε = εD. This feature decreases with time, and does not appear at all in the initially
magnetized state. This phenomenon is easy to understand. Consider the two electrons initially
incoherently occupying the lead orbital with single-particle energy ε. These electrons are of
opposite spins. At short times, before interactions take effect, both electrons can resonantly
enter the unoccupied dot. For some timescale, until decoherence takes place, these electrons
can be expected to maintain their original singlet correlations while being split between the
dot and lead orbitals. Preliminary investigations of the scaling behavior of this timescale
with U reveal a linear relationship between the relaxation time and 1/TK . The relaxation
dynamics is therefore fully determined by the Kondo temperature, albeit with a prefactor that
remains to be understood. Further analysis will await numerically exact results. When the
dot eventually stabilizes in the half-occupied singlet-state, this effect is suppressed because
the dot and lead share the same occupancy. From an analogous argument, it is easy to see
that a corresponding transient effect must appear at ε = −εD for the initially doubly-occupied
state (not shown here).

An essential facet of Kondo physics is its dependence on temperature. In Fig. 3(c), we
present a series of plots at different lead temperatures for the initially empty dot. These
are shown at constant times, increasing towards equilibrium at progressively lower panels.
Higher temperatures suppress singlet correlations in essentially all cases. While at short times,
noninteracting contributions to s(ε) at ε ≈ εD form at all temperatures, the Kondo correlations
at ε ≈ 0 form only below the Kondo temperature at both short and long timescales. The dip
due to classical spin–spin correlations that appears at low frequencies is only visible when the
temperature T is substantially smaller than the Kondo temperature TK , such that the dip is
narrower than the Kondo peak. If the temperature was even lower, the dip would eventually
become too narrow to be distinguished.

A final interesting feature should be noted. Surrounding the main Kondo peak is a weaker,
wider feature extending from ε ≈ −U/2 to ε ≈ U/2. This implies that, at least within the
NCA and at finite temperature, a remnant of singlet correlations exists throughout the range
of energies accessible by dot excitations, and not just within the Kondo peak. Nevertheless,
the specificity with which s(ε, t → ∞) corresponds to our intuitive picture of Kondo physics
is striking: for example, there are no side bands, as one would observe in a spectral function.
The energy-resolved singlet weight therefore remains an excellent diagnostic for the Kondo
effect.

We now continue to the position-resolved singlet weight s(x, t). In the 1D case considered
here, we denote with x ∈ Z/0 the displacement of a site in lead L/R for negative/positive
sign from the impurity, and use x = 0 to refer to the impurity site itself. Fig. 4 shows
the corresponding dynamics and the steady state. We once again focus on dynamics up to
time t = 15/Γ; this should be compared with Fig. 3, which shows the same time scale. The
results are characterized by an even–odd structure that has previously been discussed in the
literature [7, 9, 14,27,29,30,102,103].

Perhaps the easiest feature to understand is the light cone, which appears at all parameters.
It corresponds to a wavefront of singlet correlations propagating into the leads at the Fermi
velocity after the coupling is activated. The magnitude of the cone structure fades with
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Figure 4: Formation of equilibrium (Φ = 0) position-resolved singlet weight s(x, t), with
parameters as in Fig. 3, at two initial dot conditions: unoccupied (middle row) and magnetized
(bottom row). The steady state is depicted in the top row, separated into even and odd sites.
A series of temperatures is shown, increasing from left to right. The dot is located at x = 0.
The black dotted lines in the middle and bottom row panels indicate the location vf t.

increased temperature, but, in the 1D leads discussed here, it does not rapidly decay with
time and distance from the impurity. Moreover, the light cone is sensitive to the initial dot
state. The wavefront’s propagation obeys the Lieb–Robinson bounds, and is directly related
to the spreading of spin–spin correlations that has been previously described in the literature
for the single lead case [29, 30, 104–107]. Outside the light cone, one can note the formation
of minor correlations due to the initial spatial entanglement within the noninteracting baths.
For spin–spin correlations, this has been previously observed and analyzed [29, 30, 107]. It is
interesting to note, though perhaps not particularly surprising, that the same physical picture
emerges from singlet correlations.

Another conspicuous feature is the correlations that form near the impurity, at x . 25 ≈
ξK/a, and which quickly establish after the light cone has reached the respective lead sites.
Previous work has associated similar structures in the spin–spin correlations with the Kondo
cloud [29, 30, 101, 107, 108]. Also, the dynamical generation of short-time nonequilibrium
density oscillations and spin correlations after a quench has been explored, showing some
evidence of cloud formation [100, 101]. The structure of the this central feature and its
dependence on temperate is most easily studied based on the steady state results in the top
row of Fig. 4, which are separated into the individual contributions from even and odd chain
sites. We observe that the magnitude and the extent of the central feature decreases with
increasing temperature, and that this feature essentially disappears at higher temperatures. In
particular, for the highest temperate considered here, all that remains is a minor contribution
from the terminal sites immediately adjacent to the impurity. Contributions from even chain
sites are completely absent. This is remarkable, because the energy-resolved representation
of the singlet weight at high temperatures is essentially zero, which indicates that the energy-
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Figure 5: Steady state conductance as a function of bias voltage Φ within the NCA at a
series of temperatures.

and the position-resolved representations provide complementary information and are not
straightforwardly mapped onto one another.

4.2 Nonequilibrium driving

Next, we investigate the influence of a nonzero bias voltage Φ on the singlet weight. The span
of voltages we discuss corresponds to typical regimes in quantum transport scenarios, where
biases ranging from linear response to Coulomb blockade can be applied to the system. To
identify these relevant parameter regimes, it is useful to consider the conductance as a function
of bias voltage, as shown in Fig. 5. The peak at Φ = 8Γ that appears at all temperatures
below T = 5.0Γ corresponds to the onset of resonant transport. When T = 5.0Γ, essentially
all features are washed out by thermal broadening. At the two temperatures below Kondo,
T = 0.5Γ and more noticeably T = 0.2Γ, low bias conductance is enhanced. The enhanced
conductance is due to the emergence of the Kondo resonance for temperatures below the
Kondo temperature. In the low temperature limit, the Kondo resonance leads to a unitary
conductance [109, 110] G0 = 1/2π. Here, the conductance is substantially smaller because
we are only at the edge of the Kondo regime, where the NCA method is still expected to
be reliable. We will therefore focus most of our analysis on a low voltage within the Kondo
feature, Φ = 1Γ; an intermediate voltage in the nonresonant transport regime beyond it,
Φ = 5Γ; and a large voltage resulting in resonant transport, Φ = 10Γ. As will be shown
below, each of these regimes is characterized by a different dependence of the singlet weight
on the bias voltage. For reference, we will compare all findings to the equilibrium case, Φ = 0.

Fig. 6(a) presents sL(ε) in the steady state at low temperature (T = 0.2Γ). The top
panel shows the dependency on the bias voltage for several representative values of Φ. For
comparison, the equilibrium result at Φ = 0 is shown in black. The bottom panel shows
a contour plot of the bias dependence at the entire range of voltages. Due to particle–hole
symmetry in our choice of parameters, the results for the two leads can be related to each
other by the transformation ε→ −ε. The discussion can therefore be restricted to sL(ε) with
no loss of generality.

When a small bias voltage Φ . Γ in the Kondo-enhanced conductance regime is applied to
the system, the symmetry of sL(ε) is immediately broken. A sharp and pronounced positive
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Figure 6: Nonequilibrium (Φ 6= 0) energy-resolved singlet weight. (a) Steady state singlet
weight of the left lead as a function of bias voltage and lead energy level for T = 0.2Γ. The
top panel depicts a set of representative bias voltages, the bottom panel a comprehensive
contour plot of the same data. (b) Steady state singlet weight of the left lead at a series
of temperature, with bias voltage Φ = Γ (top panel), Φ = 5Γ (middle panel), and Φ = 10Γ
(bottom panel). (c) Singlet weight in the left lead at a series of times, at temperature T = 0.2Γ
and bias voltage Φ = Γ (top panel), Φ = 5Γ (middle panel), and Φ = 10Γ (bottom panel).
The dot is initially empty, and the dashed black lines indicate the steady state.

peak appears at small negative frequencies, and a sharper but smaller negative peak appears
at small positive frequencies. The intensity of both peaks rapidly increases with the bias
voltage in this regime. Interestingly, the large positive peak corresponding to strong singlet
correlation in the left lead is pinned to the chemical potential of the right lead, and vice versa
(the bottom panel of Fig. 6(a) shows the two chemical potentials as dotted lines). This positive
peak corresponds to strong, non-classical Kondo-like singlet correlations. The negative peak,
which—as in equilibrium—is due to the classical spin–spin correlations, corresponds to the
dip at ε = 0 in the equilibrium curve and is pinned to the left chemical potential. Its width
and location continue to essentially be determined by the lead temperature and chemical
potential, as they appear within the factor fLf̄L in the classical correlation term.

The pinning of non-classical singlet correlations in each lead to the chemical potential
within the other lead may be surprising, but can be justified by simple arguments. Interest-
ingly, the mechanism for this is more closely related to the large evanescent peak at the unoc-
cupied initial condition in Fig. 3(a) than to the equilibrium Kondo effect. In the equilibrium
case, when the dot eventually becomes singly occupied, the chemical potentials throughout
the system are equalized and electrons are exchanged only as a result of undriven diffusion.
In the nonequilibrium scenario, the left lead is fully occupied at the chemical potential of the
right lead, while the right lead is half occupied at the same energy. The dot is half occupied at
steady state, and can rapidly eject electrons into empty orbitals in the right lead through the
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remnants of the Kondo transmission peak. Electrons from the left lead are therefore driven
to resonantly enter the dot in a process that entails transport of another electron of the same
spin from the dot to the right lead, such that the dot remains singly occupied. Each such
event generates a singlet between the left orbital and the dot, but no singlet between the right
orbital and the dot.

The rate controlling this nonequilibrium mechanism for the formation of singlet corre-
lations is substantially higher than that characterizing the formation of equilibrium Kondo
correlations, because it is driven by the difference in occupancy between the left lead and the
rest of the system at that energy, rather than just by diffusive fluctuations. This mechanism
can therefore generate a large contribution to the singlet weight in the left lead at the chem-
ical potential of the right lead, at the nonequilibrium steady state. Naturally, an analogous
process in the opposite direction happens at the left lead’s chemical potential, resulting in
enhanced singlet correlations in the right lead.

The two singlet features remain pinned to the lead chemical potentials at larger biases
1Γ . Φ . 5Γ that are still below resonant transport. However, their intensity decays with
voltage and the larger peak broadens. A wider but less intense positive peak develops near
the negative feature, most likely corresponding to the normal Kondo effect. For yet higher
bias voltages Φ & 8Γ, once the resonant regime has been reached, the larger positive peak
becomes pinned to the resonance energy εD and stops moving with voltage. The eventual
decay and broadening of all features with increased voltage are consistent with the commonly
accepted consensus that Kondo correlations cannot survive in the presence of larger voltages.

The temperature dependence of the singlet weight in the three transport regimes is ex-
plored in Fig. 6(b). In the Kondo-enhanced transport regime, the singlet weight is strongly
suppressed and eventually eliminated by higher temperatures. The nonresonant transport
regime at intermediate bias still shows a temperature suppression, but the nonequilibrium
singlet weights, presumably associated more strongly with the nonequilibrium mechanism
discussed above than with the equilibrium Kondo effect, appear to be robust at somewhat
higher temperatures. In the resonant transport regime, response to small temperatures is
weak, and strong suppression of singlet weights only occurs at T = 5.0Γ. This suggests (at
least within the NCA) that the robustness of singlet correlations with respect to temperature
may be enhanced by nonequilibrium driving.

Next, in Fig. 6(c), the quench dynamics when starting from an empty dot are presented.
We observe that the relaxation timescale needed to reach the steady state is substantially
decreased with increasing bias voltage. In the resonant transport regime at Φ = 10Γ, the
system already assumes its steady state by t = 5/Γ. Comparing the dynamics in Fig. 3(c)
to those in Fig. 6(c) suggests that bias voltages have a substantially stronger effect on the
relaxation dynamics than temperatures of similar magnitude.

The last set of results to be presented here, in Fig. 7, pertains to the spatially-resolved
singlet weight s(x, t). The light cone and central feature seen in subsection 4.1 are once again
visible. As in the energy-resolved singlet weight, the dependence on the initial condition, which
is imprinted onto the light cone in the position-resolved representation, fades more rapidly as
the bias voltage is increased. The most clearly visible transient signature of nonequilibrium
driving, however, is the breaking of symmetry between the left and right lead visible for the
initially unoccupied state. At short times, an initially empty dot is more likely to be populated
by electrons from the lead with larger chemical potential, i.e. the left lead.

The dependence of the central feature on bias voltage is most clearly visible in the steady
state data in the upper panels. Here, where contributions from even and odd lead sites are
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Figure 7: Formation of nonequilibrium position-resolved singlet weight s(x, t), with param-
eters as in Fig. 6, at two initial dot conditions: unoccupied (middle row) and magnetized
(bottom row). The steady state is depicted in the top row, separated into even and odd sites.
A series of bias voltages is shown, increasing from left to right. The temperature is T = 0.2Γ.
The dot is located at x = 0. The black dotted lines in the middle and bottom row panels
indicate the location vf t.
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shown separately, the dependence on bias voltage differs qualitatively from that on tempera-
ture (see Fig. 4). For low bias voltages, the central feature is mostly unaffected by the bias
voltage. This is remarkable, since the energy-resolved singlet weight is very sensitive to a
similar change in temperature within this regime. Again, this highlights the complementary
information provided by the two different representations. For intermediate bias voltages still
in the nonresonant transport regime, the central peak begins to extend over larger distances
from the dot. This is in line with the previous argument that electrons contributing to trans-
port form correlated singlets. This trend is eventually reversed at higher bias voltages in the
resonant bias regime, presumably due to increased decoherence. For high bias voltages in
the resonant transport regime, we observe that the even–odd structure breaks down, starting
from higher energies. The central feature at high voltage is reminiscent of the Kondo feature
at low temperatures and equilibrium, but with a different characteristic length scale, and with
both even and odd sites exhibiting a positive singlet weight.

We note that the particular way in which we have applied bias voltages—by shifting
the lead density of states along with the chemical potential, rather than changing the filling
factor—entails that the Fermi velocity in the two noninteracting leads is unmodified. There-
fore, only one correlation length is expected to remain present. This indeed appears to be the
case, though a more systematic examination of this correlation length and its dependence on
voltage would be interesting given a more reliable method. The question of whether multiple
correlation lengths can appear when the lead filling factors are modified will be left to future
work.

5 Conclusion

We investigated the formation of singlet correlations between electrons in an interacting An-
derson impurity, and orbitals in a pair of noninteracting 1D leads coupled to it. In order to
quantify this, we devised singlet weight observables comprising dot and lead degrees of free-
dom. Measuring these weights experimentally requires a “quantum measurement” scheme,
because it contains operators that cannot be expressed as a simple correlation function. Fo-
cusing on regimes where the Kondo effect is expected to generate singlet correlations, we
identified the lead orbitals that most significantly contribute to the formation of the Kondo
effect, in both the energy and position representations. We presented results for the evolution
of singlet weights after an impurity–lead coupling quench, and for their final steady state (or
equilibrium) values in the thermodynamic limit.

In equilibrium, we showed that the energy-resolved singlet weight vanishes at high temper-
ature, while manifesting only a single sharp peak at the chemical potential below the Kondo
temperature. This allows for cleanly and precisely separating the Kondo-induced singlet cor-
relations from other phenomena, without relying on differences between energy scales as one
would in considering the spectral function. Classical correlations are also easy to quantify
and remove within this scheme.

The position-resolved equilibrium singlet weight is concentrated in a well-defined region
centered around the quantum dot, which forms within the light cone after a quench. The size
of the region is consistent with the Kondo correlation scale, supporting the notion of a Kondo
cloud. As an aim for future work, it will be of some interest to see whether sum rules for the
ground state [7, 8] can be extended to finite temperatures and voltages.
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We noted that corresponding equilibrium scenarios have been studied extensively in the
literature using a variety of measures other than the singlet weight, often with more reliable
numerical techniques. The equilibrium results presented here therefore serve only to corrob-
orate these existing results, and do not reveal new physics. Nevertheless, they confirm that
the secondary observables studied by previous authors truly correspond to quantum singlet
correlations rather than classical ones.

We then investigated the effect of a nonequilibrium bias in several regimes. At low volt-
ages, where conductance is enhanced by the bias, the steady state singlet weights are signif-
icantly enhanced compared to the equilibrium Kondo weights. Most notably, we identify an
enhancement of singlet correlations in each lead, which is located at the chemical potential
of the other lead. Moreover, we observe a change in the oscillatory behavior of the position
resolved Kondo cloud with bias voltage. The mechanism for this is driven by transport, but
is eventually overtaken by dissipation at higher voltages where resonant transport occurs.

Our work is based on a noncrossing approximation (NCA), and can therefore be expected
to be only qualitatively accurate [59, 60, 67–70]. However, the model can be solved to a
numerically exact level of accuracy within Inchworm Monte Carlo methods, and several other
methodologies may also be applicable.

We believe this work constitutes a first step towards a deeper understanding of quantum
correlation effects and their impact on impurity physics and transport, in general. This is
because a wide variety of “quantum measurements” like the singlet weight can be constructed,
allowing for the extraction of highly specific couplings and order parameters from either
simulations or experiments. In particular, within the diagrammatic methodology used here
and its numerically exact counterparts [77,111,112], studies of this nature are not limited to
low energies, weak bias voltages or special lead geometries (like the 1D case considered here).
Projective observables will therefore improve our ability to tie together intuitive insights from
variational ansatzes and low energy physics to numerical simulations at finite temperatures
and in nonequilibrium situations.
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