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Power-law suppression of local electronic tunneling density of states (TDOS) in the zero-energy
limit is a hallmark of the Luttinger liquid (LL) phase of the interacting one-dimensional electron
system. We present a theoretical model which hosts the LL state with the surprising feature of en-
hancement rather than suppression in local TDOS originating from non local and repulsive density-
density interactions. Importantly, we find enhancement of TDOS in the manifold of parameter space
where the system is stable in the renormalization group (RG) sense. We argue that enhancement of
TDOS along with RG stability is possible only when the system has broken parity symmetry about
the position of local TDOS enhancement. Such a model could be realized on the edge states of a bi
layer quantum Hall system where both intra layer and inter layer density-density interactions are
present mimicking the role of local and non local interactions, respectively.

PACS numbers:

I. INTRODUCTION

It is well-known that the ampliude of electron tunnel-
ing into a Luttinger liquid (LL) state exhibits power-
law suppression in the zero-energy limit owing to its non
Fermi-liquid behavior1–9. The suppression can be at-
tributed to many-body orthogonality, which is akin to
an orthogonality catastrophe discussed in the context of
a LL 10–18, and it can be understood as follows. When
an electron-like quasiparticle (with vanishingly small en-
ergy) tunnels locally into the LL prepared in its ground
state, interelectron interactions lead to a significant re-
arrangement of all the other electrons constituting the
LL state, which results in an excited state which is or-
thogonal to the corresponding ground state hence leading
to the suppression of the tunneling process itself. This
is a direct consequence of the fact that the low-energy
excitation spectrum of a LL is devoid of electron like
quasiparticles19–25.

It is worthwhile to explore possibilities of departure
from the observed suppression, which is treated as a hall-
mark of the LL phase, and this is the main idea behind
the present study. Here, we obtain an enhancement of lo-
cal tunneling density of states (TDOS) in the LL phase.
We present a minimal set up that allows for such an en-
hancement in TDOS of a LL. It should be noted that in
the bulk of a LL, any deviation from suppression is un-
likely to take place due to the above-stated argument of
the orthogonality. However, in the local neighborhood of
the boundary between two LLs, we may be able to real-
ize a situation where such deviations could occur. Hence,
with the goal of finding a deviation from suppression, in
this paper, we consider a geometry involving the junction
of two chiral LLs26–28. The junction of multiple LLs29–56,
whether chiral or non chiral, has been an area of theo-
retical interest owing to the rich physics associated with
various fixed points that they host and belongs to the
realm of the general topic of quantum impurity problems

in low-dimensional electronic systems.

In an earlier study45 involving one of the present au-
thors along with others, it was shown that the exotic
fixed points of a three-wire junction can lead to an en-
hancement of electron TDOS in the vicinity of the junc-
tion when the LL parameter K is tuned to the repulsive
interelectron interaction limit, i.e., K < 1. The origin
of this TDOS enhancement was attributed to the reflec-
tion of a hole current35 from the three-wire LL junction
due to interaction effects. A concern that remained is
that the fixed points which allowed for an enhancement
were unstable to relevant perturbation in the renormal-
ization group (RG) sense and may not be direct of in-
terest for experimental exploration. In the follow-up
work, the spin degree of freedom was incorporated for
the three-wire LL junction52; however, the issue of sta-
bility remained. Recently, a density-matrix renormaliza-
tion group (DMRG) study was carried out by one of the
present authors along with others which demonstrated a
TDOS enhancement for the three-wire junction but again
for an unstable fixed point56.

Actually, it is quite logical that all the fixed points
depicting TDOS enhancement in the vicinity of the
LL junction are unstable fixed points. To understand
this point, let us consider a hypothetical situation con-
sisting of a two-LL wire junction tuned to a disconnected
fixed point. The RG flow for the TDOS for each individ-
ual wire in the vicinity of the junction decides the rate
at which the tunneling amplitude of an electron into the
individual wires diverges or gets suppressed in the zero-
energy limit (E → 0). In the presence of a weak tunneling
amplitude between the two wires, the net current flow-
ing from one wire to another, in the linear response limit,
is proportional to the product of the TDOSs of the two
wires at the junction. In order for the disconnected fixed
point to be stable against weak interwire electron tun-
neling perturbation, the tunneling current between the
two wires must vanish in the zero-bias limit. This, in
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Figure 1: Stacking of bilayer QH states with filling fraction
ν1 and ν2 exposed to a uniform magnetic field with a local
tunnel coupling at the apex which is denoted by S. The top
left panel shows the zoomed-in view of the unfolded version
of the bilayer QH edge states. The bottom panel shows the
α, β, and γ interactions between chiral QH edge states. Here,
the subscript “I” and “O” stand for the fields flowing into
the junction and fields the flowing out of the junction, re-
spectively. “I1/2,I/O” stand for the currents on the incoming
and outgoing edges.

the RG sense, implies that the interwire tunneling op-
erator is an irrelevant perturbation. Hence the stability
of the disconnected fixed point along with simultaneous
TDOS enhancement is achieved only when the rate at
which TDOS gets suppressed in one of the wires is more
than the rate at which TDOS is enhanced in the other
wire as E → 0, i.e., simultaneous TDOS enhancement
and stability are always accompanied by breaking of par-
ity symmetry between the two wires about the junction.
This can be achieved by having different intrawire inter-
actions in the two wires.

In this paper, we consider a fixed point of junction be-
tween two chiral LLs for exploring TDOS enhancement
where the two chiral edge modes could belong to two
distinct quantum Hall (QH) states. This is theoreti-
cally equivalent to having a single quantum point con-
tact (QPC) in a Hall bar geometry forming a tunnel
junction between the left and the right region, each of
which in principle could host a distinct quantum Hall
state surrounded by its own chiral edge states. Such a
setup is simple from a theoretical perspective owing to
the fact that a junction between two chiral LLs can host

only two fixed points (a connected fixed point and the
disconnected fixed point29,57), unlike the three-wire case,
which hosts a family of fixed points35,39,45.

Furthermore, we are interested in exploring how non-
local density-density interaction between edge states be-
longing to the two sides of a QPC influences the TDOS .
One way to simulate such interactions is to consider a sit-
uation where we fold the two-dimensional system about
the QPC to form a bilayer system58–61 and then consider
local (in the folded 1 D coordinate system) interlayer and
intralayer edge interaction as shown in Fig. 1. As dis-
cussed above, to host a fixed point that is stable and at
the same time also shows TDOS enhancement, we need
to break the junction symmetry. We explore two different
ways of breaking the symmetry (i) by having a junction
between the chiral LLs belonging to two layers such that
each layer has a different filling fraction or, (ii) if the
filling fraction is same, then by introducing asymmetric
intralayer edge interaction.

II. INTERACTING QH EDGE HAMILTONIAN

Consider the situation of a bilayer interacting
QH system with filling fractions ν1 and ν2 on the two
layers as depicted in Fig. 1. To begin with, we consider
repulsive density-density interactions between the edges
such that it poses a symmetric situation about the junc-
tion and is parametrized by α, β, and γ, where α is the
interaction between the counterpropagating edge states
in the same QH states (intralayer interaction), β is the
interaction between the copropagating edge states of the
different QH states (interlayer interaction), and γ is the
interaction between the counterpropagating edge states
of the different QH states (interlayer interaction).

The Hamiltonian for QH edge states can be described
in terms of bosonic fields. The fermionic field ψI/O for
the electron on the edge can be expressed in terms of
the bosonic fields φI/O using the standard bosonization

formula19,21,23–25,29,62 as ψI/O ∼ FI/O exp(iφI/O/ν),
where subscript I(O) describes in (out) fields. Here,
“in”(“out”) is used to index the chiral fields which flow
into the junction (out of the junction). FI/O are the
corresponding Klein factors for in/out fields. Then the
bosonized interacting edge Hamiltonian describing our
setup is given by

H = ~πvF
∫ ∞

0

dx

[(
ρ2

1I + ρ2
1O

ν1

)
+

(
ρ2

2I + ρ2
2O

ν2

)
+ 2α

(
ρ1Iρ1O

ν1
+
ρ2Iρ2O

ν2

)
+

2β
√
ν1ν2

(ρ1Iρ2I + ρ1Oρ2O) +
2γ
√
ν1ν2

(ρ1Iρ2O + ρ1Oρ2I)

]
, (1)

where ρi,I/O = ±(1/2π)∂xφi,I/O and they represent the electronic density operator for the in/out bosonic fields
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corresponding to filling fraction νi of the ith QH layer
(i ∈ {1, 2}). vF is the Fermi velocity, which has been
taken to be the same on all the edges. Note that the inter-
action parameters α, β, and γ are scaled appropriately in
the above Hamiltonian so that the transformation which
diagonalizes the above Hamiltonian stays algebraically
simple. We use the folded basis to describe the junc-
tion such that all the QH edge states lie between x = 0
and x = ∞ with the junction positioned at x = 0. We
applied the appropriate fixed-point boundary condition
on the “in” and the “out” fields at the junction. The
interacting Hamiltonian given in Eq. (1) along with the
boundary condition describes the total system. In what
follows we will closely follow the diagonalization proce-
dure for the above Hamiltonian as was done in Ref. [63].
To begin with, we can rewrite Eq. (1) in a compact form
as

H =
~vF
4π

∫ ∞
0

dx ∇φ̄T (x) K ∇φ̄(x), (2)

where the matrix K is given by

K =

 1 β −α −γ
β 1 −γ −α
−α −γ 1 β
−γ −α β 1

 (3)

and is written in the basis Φ̄(x, t), which is given by

(φ̄1, φ̄2, φ̄3, φ̄4)(x,t) =

(
φ1O√
ν1
,
φ2O√
ν2
,
φ1I√
ν1
,
φ2I√
ν2

)
(x,t)

.

(4)
Then at t = 0, the mode decomposition for the field

φ̄a is given by

φ̄a(x) =

∫ ∞
0

dk

k

[
c̄a,ke

iεakx + c̄†a,ke
−iεakx

]
, (5)

where a ∈ {1, 2, 3, 4}, with εa = +1 for a = {1, 2} (for
the outgoing field) and εa = −1 for a = {3, 4} (incoming
field). The commutation relation for the bosonic annihi-

lation and creation operator is given by
[
c̄a,k, c̄

†
b,k′

]
=

δabkδ(k − k′), which is consistent with the commuta-
tion relation of the bosonic field in the real-space basis
φ̄(x) given by

[
φ̄a(x), φ̄b(y)

]
= iπεaδab sgn(x− y). Since

the relation between original interacting fields φi,I/O and

the transformed field φ̄a is given by Eq. (4), the anni-
hilation operators ciI/Ok of the φiI/O field and c̄ak of

the φ̄a field are also related as (c1Ok, c2Ok, c1Ik, c2Ik) =
(
√
ν1 c̄1k,

√
ν2 c̄2k,

√
ν1 c̄3k,

√
ν2 c̄4k), where νi is the fill-

ing fraction of the ith QH layer.

Let the interacting φ̄(x, t) field be related to the Bo-

goliubov field φ̃(x, t) through a real matrix X, such that

φ̄(x, t) = Xφ̃(x, t), (6)

where

φ̃α(x, t) =

∫ ∞
0

dk

k

(
c̃α,ke

iεαk(x−ṽαt) + c̃†α,ke
−iεαk(x−ṽαt)

)
,

(7)
where α ∈ {1, 2, 3, 4} and εα = sgn(ṽα). c̃αk (c̃†αk)

is the bosonic annihilation (creation) operator for the
αth Bogoliubov mode, with commutation relations as[
c̃αk, c̃

†
βk′

]
= δαβ k δ(k− k′) and [c̃αk, c̃βk′ ] = 0, and this

is consistent with
[
φ̃α(x), φ̃β(y)

]
= πiεαδαβ sgn(x− y).

From Eq. (2), the Heisenberg equation of motion for
the bosonic fields is given by

d

dt
φ̄a(x, t) = −vf εa

4∑
α=1

Kaα
d

dx
φ̄α(x, t) . (8)

Using Eqs. (6) and (7) in Eq. (8), we have

4∑
α=1

[∫ ∞
0

dk

k
(ikεα)

(
Xaαṽα − vf εa

4∑
b=1

KabXbα

)(
c̃αke

ik(x−ṽαt) − c̃†αke
−ik(x−ṽαt)

)]
= 0 . (9)

Equation (9) implies that

vf

4∑
b=1

εaKabXbα = Xaαṽα . (10)

Now we can solve for the Xaα and the ṽα by
solving the above equation. The ṽα’s are given
by ±

√
(1− β)2 − (α− γ)2 and ±

√
(1 + β)2 − (α+ γ)2,

with a + (−) sign for out (in) free field. The bosonic
excitations are stable if the ṽα’s are real. In order for
new fields to satisfy the bosonic commutation relations

we must impose the following normalized condition:

4∑
α=1

εaεαXaαXbα = δab ,

4∑
a=1

εaεαXaαXaβ = δαβ . (11)

Once we have obtained the X matrix, then for all (x, t)
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we have

φ̄a(x, t) =

4∑
α=1

Xaαφ̃α(x, t) ,

φ̃α(x, t) =

4∑
a=1

εaεαXaαφ̄a(x, t) . (12)

The interacting bosonic field operator c̄ak and the Bo-
goliubov field operator c̃αk are related as

c̄ak =

4∑
α=1

Xaα

(
Paα,+c̃αke

i(εα−εa)kx + Paα,−c̃
†
αke
−i(εα+εa)kx

)
,

c̃αk =

4∑
a=1

Xaα

(
Paα,+c̄ake

i(εa−εα)kx − Paα,−c̄†ake
−i(εa+εα)kx

)
, (13)

where the projection operator is given by Paα,± =

(1± εaεα)/2. Let φ̄O/I , φ̃O/I be doublets such that φ̄O =

(φ̄1, φ̄2), φ̄I = (φ̄3, φ̄4) and φ̃O = (φ̃1, φ̃2), φ̃I = (φ̃3, φ̃4).
Also, ṽ1 = −ṽ3 > 0 and ṽ2 = −ṽ4 > 0. Then, we can
express Eq. (6) as(

φ̄O
φ̄I

)
(x,t)

=

(
X1 X2

X3 X4

)(
φ̃O
φ̃I

)
(x,t)

, (14)

where the Xi’s are 2 × 2 matrices. Now, the original
incoming fields φiI and outgoing field φiO are related to
each other through a boundary condition at the junc-
tion (x = 0). The boundary condition is expressed as
the current splitting matrix S, which corresponds to the
different fixed points of the junction, such that(
φ1O

φ2O

)
(x=0,t)

= S

(
φ1I

φ2I

)
(x=0,t)

,(
φ̄1

φ̄2

)
(x=0,t)

= M−1SM

(
φ̄3

φ̄4

)
(x=0,t)

= S̄

(
φ̄3

φ̄4

)
(x=0,t)

,

(15)

where M is a 2 × 2 matrix, with Mij =
√
νiδij and

S̄ = M−1SM . From Eqs. (14) and (15), we have

(
X1 φ̃O +X2 φ̃I

)
(x=0,t)

= S̄
(
X3 φ̃O +X4 φ̃I

)
(x=0,t)

,(
X1 − S̄X3

)
φ̃O (x=0,t) =

(
S̄X4 −X2

)
φ̃I (x=0,t),

(16)

φ̃O (x=0,t) =
(
X1 − S̄X3

)−1 (
S̄X4 −X2

)
φ̃I (x=0,t), (17)

which can be translated to finite values of x using the
following relation,

φ̃O(x, t) =
(
X1 − S̄X3

)−1 (
S̄X4 −X2

)
φ̃I(−x, t). (18)

Here, we have used the fact that in our setup the incom-
ing fields are left-moving fields (see Fig. 1). Now, using

Eq. (14) and the relation between the φ̄a and φa fields,
we have

φO(x, t) = M
[
T1φ̃I(−x, t) + T2φ̃I(x, t)

]
,

φI(x, t) = M
[
T3φ̃I(−x, t) + T4φ̃I(x, t)

]
, (19)

where,

T1 = X1

(
X1 − S̄X3

)−1 (
S̄X4 −X2

)
,

T2 = X2,

T3 = X3

(
X1 − S̄X3

)−1 (
S̄X4 −X2

)
,

T4 = X4. (20)

Hence we have expressed all the interacting bosonic fields
in terms of the tilde fields [Eq. (19)], which are free,
and this will be used to calculate TDOS and scaling di-
mensions of tunneling and backscattering operators that
could be switched on at the junction for RG analysis.
Before we conclude this section, it should be noted that
for the setup considered here, there are only two allowed
fixed points28,29 and, hence, two possible S matrices,
which are given by

S1 =

(
1 0
0 1

)
, (21)

S2 =
1

ν1 + ν2

(
ν1 − ν2 2ν1

2ν2 ν2 − ν1

)
, (22)

where S1 is the fully reflecting disconnected fixed point
and S2 is the strongly coupled fixed point. For ν1 6= ν2,
the S2 fixed point may allow for incident current to be
partially reflected as a hole current.

III. POWER LAW DEPENDENCE OF TDOS

The electronic TDOS45,57 at energy E at the position
x is given by
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ρ(E) = 2π
∑
n

|N+1〈n|ψ†(x)|0〉N |2δ(EN+1
n − EN0 − E),

where EN+1
n , |n〉N+1 and EN0 , |0〉N are the energy eigen-

values and eigenstates corresponding to the nth excited
state of (N + 1)-electron system and the ground state of
the N -electron system, respectively, for the interacting
Hamiltonian given in Eq. (1) subjected to appropriate
boundary conditions (S1 or S2)and ψ†(x) is the electron
creation operator at position x. In particular, we will
be calculating TDOSs only for the outgoing edge as they
only carry interesting information about the fixed point
to which the junction is tuned. Hence, to obtain the
TDOS in terms of the bosonic field, we rewrite it as

ρi(E) =

∫ ∞
−∞
〈0|ψiO(x, t)ψ†iO(x, 0)|0〉e−iEtdt,

which in terms of the bosonic fields φiO reads as

ρi(E) ∼
∫ ∞
−∞

dt〈0|ei
φiO(x,t)

νi e
−iφiO(x,0)

νi |0〉e−iEt.

Here, we have suppressed the subscript representing
the number of electrons in the ground state given by |0〉
for notational convenience. Using Eq. (19), we evaluate
the above expression in two limits, (i) at the junction
(x=0), and (ii) far from the junction (x → ∞). In both
these limits, TDOS has a pure power-law dependence of
the form of E(∆i−1). The TDOS power law at the junc-
tion (x = 0) is denoted by ∆0

i , and far from the junction,
x→∞ is denoted by ∆∞i (for details, see Appendix A).
After a straightforward algebra, the TDOS exponent at
the junction is found to be given by

∆0
i =

1

νi

2∑
j=1

(
[T1]ij + [T2]ij

)2

, (23)

while far from the junction it is given by

∆∞i =
1

νi

2∑
j=1

(
[T1]

2
ij + [T2]

2
ij

)
. (24)

TDOS in the zero-energy limit is enhanced when ∆i−1 <
0, is marginal when ∆i = 1, and is suppressed when
∆i − 1 > 0. Our primary focus is to study ∆0

i , but be-
fore we go ahead, we briefly discuss ∆∞i . ∆∞ does not
depend on the fixed point that we impose at the junc-
tion but gets modified only by the bulk interaction be-
tween the edges, and it always corresponds to suppressed
TDOS irrespective of the interaction strength which is
expected from standard LL physics45. The explicit form
for the TDOS exponent ∆∞i corresponding to our model
considered in Eq. (1) is given by

∆∞i =
1

2νi

(
1− β√

(1− β)2 − (α− γ)2

+
1 + β√

(1 + β)2 − (α+ γ)2

)
. (25)

Note that in the α, β, γ → 0 limit we recover the expected
1/ν power-law suppression of TDOS for an edge of the
fractional quantum Hall state33. The power law of 1/ν
is also recovered when only α, γ → 0 while β 6= 0, due to
the fact that the nonzero β corresponds to a pure forward
scattering interaction and hence can result only in the
renormalization of Fermi velocity but cannot influence
the power law of the TDOS. One should also note that
even in absence of the tunneling between the edges at
x = 0, the very presence of interaction parameters α, γ
breaks translational invariance along the edge while β
alone does not affect translational invariance as expected.

IV. STABILITY OF THE FIXED POINT

In this section, we obtain a general expression for the
scaling dimension of various tunneling and backscatter-
ing operators which can be switched on at the junction,
where the scaling dimension being greater (less) than
unity corresponds to an irrelevant (relevant) operator and
being equal to 1 corresponds to being marginal. There
are two possible fixed points for the junction described in
Fig. 1: (i) The first one is the disconnected fixed point,
where the tunneling between the two layers at x = 0 is
fully suppressed. Hence the most important perturbation
to be analyzed as far as the RG stability of the junction
is concerned is the electron tunneling operator between
the two layers at x = 0. (ii) The second one is the strong
tunneling fixed point, where the two layers are strongly
coupled at x = 0 and, hence, the most important pertur-
bation to be analyzed as far as the RG stability of the
junction is concerned is the quasiparticle backscattering
operator in each layer at x = 0.

Furthermore, it should be noted that the relation
between the scaling dimensions of tunneling operators,
which can be switched on at the junction as a pertur-
bation, and the TDOS in the immediate vicinity of the
junction (x → 0) is not a simple relation which one
might naively expect. To understand this point, let us
consider the disconnected fixed point to be specific. In
this case, the scaling dimension of interlayer tunneling
operators is dictated by the correlation function given

by G = 〈0|ψ†e,1O(0)ψe,2I(0)ψ†e,2I(t)ψe,1O(t)|0〉, while the
TDOS in each of the individual edge states is governed by

the correlation functions g1 = 〈0|ψ†e,1O(0, 0)ψe,1O(0, t)|0〉
and g2 = 〈0|ψ†e,2I(0, 0)ψe,2I(0, t)|0〉. Here, the subscript
“e” corresponds to the electron operator, while we will
use “qp” for the quasiparticle operator and the subscript
1, 2 stand for the layer index. Hence one might expect
that G = g1g2 for the disconnected fixed point leading to
a simple relation between TDOS and the stability of the
junction. However, G 6= g1g2 owing to the fact that one
has interlayer interactions such that the ground state of
the full edge Hamiltonian, |0〉, does not decompose onto
the direct product of the ground states of the edge Hamil-
tonian of individual layers, i.e., |0〉 6= |0〉1|0〉2 even for
the disconnected fixed point. This fact plays an impor-
tant role in the interplay of stability of a fixed point and
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TDOS enhancement via the various nonlocal interaction
terms.

The expressions for scaling dimension of backscattering
and tunneling operators are straightforward to calculate
using Eq. (19) and are given below:

(1) The intralayer quasiparticle backscattering opera-

tor ψ†qp,iO(0)ψqp,iI(0) has a scaling dimension given

by dO,Iii = dI,Oii = 1
2

∑2
k=1(ΛkB,i)

2, where

ΛkB,i =
√
νi(T3 + T4 − T1 − T2)ik, (26)

(2) The interlayer electron tunneling operator

ψ†e,iO(0)ψe,jI(0) has a scaling dimension given

by dO,Iij = dI,Oji = 1
2

∑2
k=1(ΛkT,ji)

2, where

ΛkT,ij =
1
√
νi

(T3 + T4)ik −
1
√
νj

(T1 + T2)jk, (27)

(3) The interlayer electron tunneling operator

ψ†e,iO(0)ψe,jO(0) has a scaling dimension given by

dO,Oij = dO,Oji = 1
2

∑2
k=1(ΛkT,ij)

2, where

ΛkT,ij =
1
√
νi

(T1 + T2)ik −
1
√
νi

(T1 + T2)jk, (28)

(4) The interlayer electron tunneling operator

ψ†e,iI(0)ψe,jI(0) has a scaling dimension given

by dI,Iij = dI,Iji = 1
2

∑2
k=1(ΛkT,ij)

2, where

ΛkT,ij =
1
√
νi

(T3 + T4)ik −
1
√
νi

(T3 + T4)jk. (29)

V. SIMULTANEOUS TDOS ENHANCEMENT
AND STABILITY OF S1 FIXED POINT

The explicit form of the TDOS exponent correspond-
ing to the disconnected fixed point S1, denoted by ∆0

i,S1
,

is evaluated on one of the two outgoing QH edge states
of the bi-layer system and is given by

∆0
i,S1

=
1

2νi

(√
1 + α− β − γ
1− α− β + γ

+

√
1 + α+ β + γ

1− α+ β − γ

)
. (30)

We note that though interlayer interactions do exist,
the TDOS in each layer only depends on the filling frac-
tion (νi) of the respective layer and not on that of the
other layer. We will see later that this is not the case
for the S2 fixed point. It is also clear from the above ex-
pression that increasing α monotonically increases ∆0

i,S1
,

which leads to the suppression of TDOS. When β
and γ are zero in the above expression, ∆0

i,S1
reduces

to (1/νi)
√

(1 + α)/(1− α), where
√

(1 + α)/(1− α) is
nothing but the inverse of the standard LL parameter64

which is known to suppress the TDOS and the factor 1/νi
leads to additional suppression owing to the presence of a
fractional QH edge state33. Also, it was discussed earlier
that the effect of β alone is trivial as it represents the
forward scattering interaction. Hence the enhancement
of TDOS is expected to be induced by the presence of a
finite γ.

To have a closer look at the interplay of various inter-
action parameters leading to the enhancement of TDOS ,
we carry out a small α, γ expansion of ∆0

i,S1
(α, β, γ)

around (α = 0, β, γ = 0) to leading order and obtain

∆0
i,S1
' 1

νi

(
1 +

α− βγ
1− β2

)
. (31)

From now onwards, we will only consider the case of
repulsive electron-electron interactions, i.e., α, β, γ >
0. Furthermore, we focus on a specific case for ex-
ploring the possibility of observing enhancement of
TDOS (i.e., ∆0

i,S1
< 1) for a junction of a ν1 = 1

and ν2 = 1/3 QH system. This case could be of rel-
evance as in this case we break the layer symmetry
(which is necessary for the observation of simultane-
ous TDOS enhancement and stability of the junction)
by choosing distinct ν for each layer and both ν = 1
and ν = 1/3 represent a quantum Hall state which de-
picts prominent plateaus in experiments65–67. It is ex-
pected that TDOS enhancement for the ν2 = 1/3 edge
will be practically impossible due to strong suppression
arising from the 1/ν term in ∆0

i,S1
, and hence we focus

on the ν1 = 1 edge only. Equation (31) implies that
TDOS enhancement for the ν1 = 1 edge will be possible
only if β γ > α in the small α, γ limit, which implies that
the magnitude of α, β, and γ has to follow a specific hi-
erarchy for TDOS enhancement. However, most impor-
tantly, this inequality points to the fact that interaction
parameters γ and β are essential for TDOS enhancement
while α is not (i.e., α can be zero). This point is
demonstrated numerically in Fig. 2, where the first plot
in Fig. 2(a) shows enhancement of the TDOS in the
β-γ plane around the origin whereas the first plot in
Fig. 2(b) shows that the region of TDOS enhancement
starts shrinking as we turn on small but finite α.

As far as the stability of the S1 fixed point (FP) is
concerned, the most relevant operators are the inter-
layer single electron tunneling operators, which are to
be considered for the analysis because the scaling dimen-

sion of back-scattering operators is dI,O11 = dI,O22 = 0 for
all α, β, γ as expected. Also note that for the S1 FP,

dI,O12 = dO,I12 = dI,I12 = dO,O12 = dS1 . We obtain the expres-
sion for dS1 , which is given by

dS1 =
1

4

(√
1 + α− β − γ
1− α− β + γ

(
1
√
νi

+
1
√
νj

)2

+

√
1 + α+ β + γ

1− α+ β − γ

(
1
√
νi
− 1
√
νj

)2
)
.

(32)
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Figure 2: The schematic pictures on the left show the unfolded version of the S1 junction fixed point of bilayer QH states
exposed to a uniform magnetic field. For a junction of ν1 = 1 and ν2 = 1/3 tuned to the S1 fixed point, (a) and (b) each
show three density plots corresponding to ∆0

S1
and dS1 and the region of simultaneous TDOS enhancement and stability as we

move from left to right in each row for α = 0 and α = 0.02 respectively. (c) shows ∆0
S1

and dS1 and the region of simultaneous
TDOS enhancement and stability as we move from left to right in the row for α = 0.02. The third plot in this row indicates
that the region of simultaneous TDOS enhancement and stability is mutually exclusive in this case.

Note that dS1 is a function of both symmetric and
antisymmetric combination of

√
ν1 and

√
ν2. The pres-

ence of antisymmetric combination indicates that the
broken layer symmetry (ν1 6= ν2) results in an addi-
tional contribution to the scaling dimension which is con-
nected to the essential requirement for tuning simultane-
ous TDOS enhancement and stability. It is also clear
from the above expression that the junction gets more
and more stable as we increase α; that is, increasing α
leads to monotonically increasing dS1 . Hence finite α has
an adverse effect on simultaneous TDOS enhancement
and stability as its presence, on one hand, leads to greater
stability but, on the other hand, suppresses the enhance-
ment of TDOS .

Similar to the expansion of ∆0
i,S1

above, we now per-

turbatively expand dS1 about (α = 0, β, γ = 0) to obtain
the following expression:

dS1 ' ν1 + ν2

2 ν1ν2

(
1 +

α− βγ
1− β2

+

(
2
√
ν1ν2

ν1 + ν2

)
αβ − γ
1− β2

)
(33)

Consider the specific case of ν1 = 1 and ν2 = 1/3
which was previously discussed in the context of ∆0

i,S1
,

where a TDOS enhancement was observed on the ν1 = 1
edge when α = 0. For this case, with α = 0, we ob-
tain dS1 ' 2 − 2γ(β +

√
3)/(1 − β2) using the above

equation, which implies that even for small β and γ,
dS1 > 1, implying a simultaneous TDOS enhancement
and stability. This fact is demonstrated clearly in the
second and the third plot in Fig. 2(a). Furthermore, the
third plot in Fig. 2(b) shows how the region of simul-
taneous TDOS enhancement and stability shrinks as we
turn on a small but finite α. This study established the
fact that breaking of layer symmetry by taking ν1 6= ν2

may lead to TDOS enhancement in one of the two layers
while ensuring stability of the fixed point as was argued
in the Introduction. For a finite α also, we do find si-
multaneous TDOS enhancement and stability provided
we proportionately increase the strength of the other in-
teractions, but this is harder to see from the analytic
expressions. Hence we have performed a numerical anal-
ysis to demonstrate that it is indeed possible, which is
depicted in Fig. 3(b).

Now, consider the case when ν1 = ν2 = 1, so that
∆0

1 = ∆0
2 = ∆0

S1
. When (β = γ = 0), dS1 = ∆0, which

is due to the fact that the ground state of the system
can be written as the direct product of the ground states
of individual QH layers. In the presence of interlayer in-
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Figure 3: The schematic pictures on the left show the unfolded version of the S1 junction fixed point of bilayer QH states
exposed to a uniform magnetic field. For a junction of ν1 = 1 and ν2 = 1 states tuned to the S1 fixed point with asymmetric α
in two layers, (a) shows three density plots corresponding to ∆0

S1
and dS1 and the region of simultaneous TDOS enhancement

and stability as we move from left to right in the row for β = 0.6 and γ = 0.4. Here, region A shows the interaction parameters
for which TDOS is enhanced on both the edges. Region B (C) shows interaction parameters for which TDOS for the ν1 (ν2)
QH edge is enhanced and the junction is stable simultaneously. For a junction of ν1 = 1 and ν2 = 1/3 tuned to the S1 fixed
point, in the presence of symmetric interactions, (b) shows three density plots corresponding to ∆0

S1
and dS1 and the region of

simultaneous TDOS enhancement and stability as we move from left to right in the row for γ = 0.4. Here, regions A, B, and
C in the rightmost plots correspond to (∆0

S1
> 1, dS1 > 1), (∆0

S1
< 1, dS1 > 1), and (∆0

S1
< 1, dS1 < 1), respectively. Region

B shows the interaction parameters for which the TDOS is enhanced and the junction is stable simultaneously.

teraction (β, γ), ∆0
S1

and dS1 both modify themselves,

and dS1 acquires an additional contribution such that
dS1 = ∆0

S1
+ (αβ − γ)/(1− β2), which is due to the fact

that the ground states of the two QH layers are now en-
tangled in the presence of nontrivial (β, γ). Also note
that in the presence of only copropagating edge interac-
tion β (with α = γ = 0), the ground state of the two
QH layers is still entangled, but the power laws are not
modified, and we have dS1 = ∆0

S1
. We do not have simul-

taneous TDOS enhancement and stability as expected
owing to perfect layer symmetry even in the presence
of β, γ interaction as shown in Fig. 2(c). We can break
the layer symmetry by taking the interaction parameter
α in the two QH layers to be asymmetric. The analytic
expressions of ∆0

S1
and dS1 for the case of asymmetric α

in the two layers are too cumbersome to be included in

this paper; hence we have performed a numerical analysis
corresponding to this case and shown that the asymme-
try in α can indeed result in simultaneous enhancement
of TDOS and stability though it requires the presence of
strong interaction. The result of our numerical analysis
is presented in Fig. 3(a).

VI. SIMULTANEOUS TDOS ENHANCEMENT
AND STABILITY OF S2 FIXED POINT

For the strongly coupled S2 fixed point, the
TDOS exponent for the outgoing edge of the ith
QH layer is denoted by ∆0

i,S2
and has a lengthy analytic

expression; hence we first focus on performing an expan-
sion of ∆0

i,S2
to leading orders in α, γ, which is given by

∆0
1,S2

' 1

ν1

(
1 +

(ν1 − ν2)(α− βγ)

(1− β2)(ν1 + ν2)
+

2
√
ν1ν2(γ − βα)

(1− β2)(ν1 + ν2)

)
(34)

∆0
2,S2

' 1

ν2

(
1− (ν1 − ν2)(α− βγ)

(1− β2)(ν1 + ν2)
+

2
√
ν1ν2(γ − βα)

(1− β2)(ν1 + ν2)

)
(35)

Note that in the weak (α, γ) limit, both ∆0
1,S2

and

∆0
2,S2

have a term which is proportional to ν1 − ν2 but

with opposite sign. This implies that if ν1 > ν2, then
the contribution from this term will tend to suppress
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TDOS on the ν1 edge while it will enhance it on the
ν2 edge. Now, we consider the specific case of ν1 = 1
and ν2 = 1/3 which was discussed earlier in the context
of the S1 fixed point. Naively, one would expect that
it is more likely to obtain an TDOS enhancement in the
ν1 = 1 edge as compared with ν2 = 1/3, because the
ν2 = 1/3 edge suffers from a strong suppression arising
from the overall factor of 1/ν in the expression for ∆0

2,S2
.

Hence we focus on TDOS enhancement in the ν1 = 1
QH layer as it will have a higher likelihood of having si-
multaneous stability. Substituting ν1 = 1 and ν2 = 1/3
in the expression of ∆0

1,S2
given above, we get ∆0

1,S2
'

1 + (1/2)(α − βγ)/(1 − β2) + (
√

3/2)(γ − βα)(1 − β2),
which implies that if the second and the third terms in
this expression turn out to be negative, then enhance-
ment of TDOS will be possible. This would require that
α < βγ and γ < βα simultaneously, which is impossi-
ble because the interaction parameters are bounded be-
tween 0 and 1. Hence we need to look for a possibility
where the sum of the two terms is negative, which im-
plies (α − βγ) +

√
3(γ − βα) < 0. Now if we take an

extreme limit of β, i.e., β = 1 − ε, where ε is a small
number which is of the order of α, γ, or smaller and
α = γ + δ where δ << α, γ then the inequality reduces
to δ(1−

√
3) < 0 to leading order in all the small param-

eters hence resulting in TDOS enhancement. However,
one should note that the β → 1 or equivalently the ε→ 0
limit of Eq. (35) is problematic as it is itself a pertur-
bative result and hence we must conform it using exact
numerical values. For example, for δ = 0.006, ε = 0.01,
and γ = 0.1, we see TDOS enhancement on the ν1 = 1
QH edge, while for δ = 0.00996, ε = 0.01, and γ = 0.1,
we see TDOS enhancement on the ν1 = 1/3 QH edge. A
numerical analysis of possible TDOS enhancement is ex-
plored in Fig. 4(b), where we find that both for large val-
ues of β(γ) and small values of γ(β), TDOS enhancement
exists for α = 0.2.

This observation of enhancement for the case of ν1 = 1
and ν2 = 1/3 is indeed very interesting when we see it in
the light of Ref. [45], which reported TDOS enhancement
for a junction of three LL wires in the weak repulsive in-
terelectron interaction limit. Ref. [45] shows a correla-
tion between the Andreev-reflection-like process leading
to hole current35 bouncing off the LL junction and the
TDOS enhancement at the junction. Note that even in
our setup (which is analogous to a junction of two nonchi-
ral LL wires), hole current is generated on the ν = 1/3
edge4,26 for the junction of ν1 = 1 and ν2 = 1/3. This can
be seen from the expression of the field splitting matrix
given in Eq. (22), where one of its diagonal elements turns
negative for the choice of ν1 = 1 and ν2 = 1/3. Hence
one would have naively expected that we should observe
an enhancement only on the ν2 = 1/3 edge, but on the
contrary we observe that the enhancement is happening
on both the ν1 = 1 and the ν1 = 1/3 edges. We conclude
that Andreev-reflection-like processes do not necessarily
lead to TDOS enhancement in general.

For the S2 fixed point, the intralayer single-
quasiparticle backscattering operator represents the most

relevant perturbation, and the junction is stable when

d
O/I
11 , d

O/I
22 > 1. The scaling dimension is studied mostly

numerically as its exact expression is too lengthy. We
start by analyzing the weak (α, γ) limit by carrying out

a leading order expansion of d
O/I
ii in these parameters

which is given by

d
O/I
11 ' 2ν1ν2

ν1 + ν2

[
1 +

βγ − α
1− β2

+

(
2
√
ν1ν2

ν1 + ν2

)
γ − βα
1− β2

]
(36)

Note that d
O/I
11 is symmetric under ν1 ↔ ν2, and thus

d
O/I
11 = d

O/I
22 as expected. Let d

O/I
11 = d

O/I
22 = dS2 . In the

limit βγ > α, the second term in Eq. (36) dominates over
the third term, and dS2 tends towards the region where
the strongly coupled S2 fixed point is stable. Now, con-
sider the specific case of ν1 = 1 and ν2 = 1/3. dS2 can be
written as dS2 = 1/2 + ζ, where ζ is a function of α, β, γ
and is of the same order as them in the α, β, γ << 1
limit, which implies that the S2 fixed point is an unsta-
ble fixed point in this limit. Above we have noted that
TDOS enhancement is possible for large values of some
interaction parameters [see Fig. 4(b)] for the ν1 = 1 edge,
and hence we would like to check whether S2 can be si-
multaneously stable in this parameter regime; however,
this analysis is too complicated to be pursued analyti-
cally owing to lengthy expressions, and hence we perform
a numerical analysis. The result of our analysis is pre-
sented in last two plots in Fig. 4(b), where we have shown
the existence of a small but finite overlap region between
stability and TDOS enhancement in the strong γ limit.
It is not surprising that unlike the S1 fixed point, the
region of simultaneous TDOS enhancement and stability
of the junction for the S2 fixed point always lies in the
strong γ limit. This arises from the fact that the discon-
nected fixed point (S1) is a stable fixed point while the
connected fixed point (S2) is an unstable fixed point in
the presence of α alone (i.e., β = 0 and γ = 0). Hence it
requires large values of β or γ or both to stabilize the S2

fixed point. Also, note that for ν1 = 1 and ν2 = 1/3, we

have dO,I11 = dO,I22 = dO,I12 = d
O/I
21 . This is due to symme-

try in the current splitting matrix for the S2 fixed point,
i.e., transmission = reflectance = 1/2, when current is
excited from the ν1 = 1 side.

For ν1 = ν2 = ν, the scaling dimensions of the tunnel-
ing operators are zero, i.e., dS2

12 = dS2
21 = dS2

II = dS2

OO = 0
as expected. Also, ∆0

1,S2
= ∆0

2,S2
. The exact expression

for the scaling dimension of the backscattering operator
and the TDOS exponent ∆0

i,S2
is given by

dS2 = ν

√
1− α− β + γ

1 + α− β − γ
(37)

∆0
i,S2

=
1

2νi

(√
1 + γ − β − α
1− γ − β + α

+

√
1 + α+ β + γ

1− α+ β − γ

)
(38)
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Figure 4: The schematic pictures on the left show the unfolded version of the S2 junction fixed point of bilayer QH states
exposed to a uniform magnetic field. (a) shows a junction of ν1 = 1 and ν2 = 1 tuned to the S2 fixed point with asymmetric
α in the two layers. The three density plots in (a) correspond to the region of ∆0

i,S2
< 1 and dS2 > 1 and the region of

simultaneous TDOS enhancement and stability as we move from left to right in the row for β = 0.6 and γ = 0.9. Region A (B)
in the third plot shows interaction parameters for which the TDOS for the ν1 (ν2) QH edge is enhanced and the junction is
simultaneously stable. (b) shows a junction of ν1 = 1 and ν2 = 1/3 tuned to the S2 fixed point, in the presence of symmetric
intralayer interactions. The first two density plots in (b) correspond to ∆0

S2
and dS2 for α = 0.2 as we move from left to

right. The last plot in the row shows the region of simultaneous TDOS enhancement, which is marked as region A. (c) shows a
junction of ν1 = 1 and ν2 = 1/3 tuned to the S2 fixed point, in the presence of asymmetric α interactions. The first two density
plots in (c) correspond to ∆0

S2
and dS2 for β = 0.6 and γ = 0.7. The last plot in the row shows the region of simultaneous

TDOS enhancement and stability, which is again marked as A.

Expanding Eqs. (37) and (38) in the weak α, γ limit,
we get

dS2 ' ν

(
1 +

γ − α
1− β2

)
∆0
i,S2

' 1

νi

(
1 +

γ − βα
1− β2

)
(39)

Note that for ν1 = ν2 = 1 there exists a symmetry
between the scaling dimension of the electron tunnel-
ing operator, dS1 , of the S1 fixed point and the scal-
ing dimension of the electron backscattering operator,
dS2 , of the S2 fixed point in the α ↔ γ exchange,
such that dS1(α, β, γ) = dS2(γ, β, α). Also, we have
∆0
i,S1

(α, β, γ) = ∆0
i,S2

(γ, β, α). From Eq. (39), we note
that in the weak α, γ limit, the junction becomes stable in
the γ > α region and the TDOS shows that enhancement
appears in the βα > γ region, which is impossible to sat-

isfy simultaneously. Similar to the S1 fixed point, we do
not expect to see simultaneous TDOS enhancement and
stability of the junction in this case, as the role of α and
γ gets exchanged but the region of dS2 > 1 and ∆0

i,S2
< 1

still remains mutually exclusive.

Now, we break the parity symmetry or layer symmetry
of the junction by introducing asymmetric α in the two
QH layers as we did for the S1 fixed point to investigate
the possibility of having dS2 > 1 and ∆0

S2
< 1 simulta-

neously. We run a numerical search to check the possi-
bility of simultaneous stability and TDOS enhancement
in the presence of asymmetric α in the case of both
ν1 = 1, ν2 = 1 and ν1 = 1, ν2 = 1/3, and the results
of our findings are given in Figs. 4(a) and 4(c). In both
cases we again find the region of simultaneous stability
and TDOS enhancement, but it exists only in the strong
interaction limit.
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VII. DISCUSSION AND CONCLUSIONS

Both the bulk and boundary of an isolated LL wire
show suppression of TDOS for LL parameter K < 1,
i.e., the repulsive interelectron interaction limit? . The
minimal modifications which could be added to the
LL model such that it leads to a deviation for the stan-
dard paradigm of TDOS suppression are (i) formation
of a junction of multiple LLs and (ii) switching on non-
local density-density interaction in addition to the lo-
cal ones. Introducing exotic quantum impurity into the
LL 68 could also lead to TDOS enhancement, but such
a scenario is not the focus of this paper. The junction
of LL wires is a well-studied subject both theoretically
and experimentally, but the physical setting for motivat-
ing a nonlocal density-density interaction is not obvious.
This leads us to consider the bilayer quantum Hall sys-
tem, which can naturally host such a model. In par-
ticular, a bilayer quantum Hall line junction69 could be
a possibility which allows all the four edge states par-
ticipating at the junction (two from the top layer and
two from the bottom layer) to come in the close vicin-
ity of each other hence leading to mutual interactions
between them. Such a system has been in discussion
recently owing to the possibility of being a host to lo-
calized parafermion zero modes69–72. Also, there exists
a long history in the experimental realization of bilayer
quantum Hall systems58–61,73,74. Additionally, there has
been significant experimental progress also in realizing
graphene bilayer quantum Hall systems75–80. This exper-
imental progress indicates that the technology required
for designing the proposed setup may not be a far-fetched
one.

In general, it is difficult to find a fixed point for the
LL system which leads to TDOS enhancement at the
junction of LL s and is also stable (in the RG sense)
against perturbations that could be switched on at
the junction. This is obvious as an enhancement of
TDOS naturally implies the presence of relevant pertur-
bations involving tunneling of electrons at the junction
which could destabilize the junction fixed point. An im-
portant realization in this paper was the fact that simul-
taneous enhancement of TDOS and RG stability of the
junction fixed point is a possibility provided we break the
layer symmetry either by having different filling fractions
on the two layers or by choosing a different strength for

the two intralayer interaction parameters (α).

Furthermore, we would like to point out that the oc-
currence of processes analogous to Andreev reflection at
the junction of LL s does not seem to provide a litmus
test for the presence of TDOS enhancement in general
though such a connection was observed in Ref. [45] in
the context of a junction of three LL s for a repulsive
interelectron interaction parameter regime. An invalida-
tion of such an identification was demonstrated explicitly
when we considered the S2 fixed point between the ν = 1
and ν = 1/3 edge, which supports a process analogous to
Andreev reflection at the junction owing to the fact that
the quasiparticles on the ν = 1/3 edge have fractional
charge as opposed to the electron-like quasiparticles on
the ν = 1 edge. Furthermore, we note that the junc-
tion of two chiral LL s (not three) is enough to show
TDOS enhancement provided we switch on interaction
(like β and γ) in addition to the routinely considered
interaction parameter α.

Lastly, we would like to point out that here we have
taken the interaction parameters to be independent of
each other, which in a general QH setup need not be
true. Codependencies of interaction parameters can be
accounted for through a distributed circuit model intro-
duced in Ref. [81] to analyze the experimental results
obtained by those authors in the context of an interact-
ing quantum Hall edge state. We apply this circuit model
to our setup comprising four interacting edge states and
find that the interaction parameters indeed have strong
interdependencies which cannot be ignored in general in
a realistic experimental setup (see Appendix B for more
details).
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Appendix A: Tunneling Density of states (TDOS)

The local electron TDOS for a chiral outgoing QH edge
of a 2 × 2 QH edge junction with filling fraction νi at a
point x from the junction is given by

ρi(E) = 2π
∑
n

|〈n|ψ†iO(x)|0〉|2δ(En − E0 − E)

=

∫ ∞
−∞
〈0|ψiO(x, t)ψ†iO(x, 0)|0〉e−iEtdt (A1)

The fermionic field ψiI/O denotes the incom-
ing/outgoing chiral edge with filling fraction νi and can
be expressed in terms of the bosonic field φiI/O as

ψiI/O ∼ Fie
ιφiI/O/νi , where Fi is the Klein factor. Then

the TDOS is given by

ρi(E) ∼
∫ ∞
−∞

dt〈0|ei
φiO(x,t)

νi e
−iφiO(x,0)

νi |0〉e−iEt (A2)

Let φ̄O =
(
φ̄1O, φ̄2O

)
and φ̄I =

(
φ̄1I , φ̄2I

)
. The free

Bogoliubov fields φ̃ are related to the interacting φ̄ by
the X matrix, which can now be decomposed as follows:(

φ̄O
φ̄I

)
(x,t)

=

(
X1 X2

X3 X4

)(
φ̃O
φ̃I

)
(x,t)

(A3)

The QPC of the 2 × 2 QH edge system can be ac-
counted for by a current splitting matrix at the junction
which relates the incoming interacting bosonic fields to
the outgoing interacting bosonic fields, such that

(
φ1O

φ2O

)
(x=0)

= S

(
φ1I

φ2I

)
(x=0)

(A4)

where S denotes the current splitting matrix given by the
two possible fixed points, namely, the S1 and S2 fixed
points.(

φ̄1O

φ̄2O

)
(x=0)

= M−1SM

(
φ̄1I

φ̄2I

)
(x=0)

= S̄

(
φ̄1L

φ̄2L

)
(x=0)

(A5)
where Mij =

√
νiδij . Then the real interacting bosonic

fields φO and φI can be expressed only in terms of the
left-moving Bogoliubov field φ̃I ( which are independent
of each other) as follows:

φO(x, t) = M
[
T1φ̃I(−x, t) + T2φ̃I(x, t)

]
, (A6)

φI(x, t) = M
[
T3φ̃I(−x, t) + T4φ̃I(x, t)

]
, (A7)

where

T1 = X1

(
X1 − S̄X3

)−1 (
S̄X4 −X2

)
, (A8)

T2 = X2, (A9)

T3 = X3

(
X1 − S̄X3

)−1 (
S̄X4 −X2

)
, (A10)

T4 = X4. (A11)

Then

〈0|ψiO(x, t)ψ†iO(x, 0)|0〉 ∼
2∏
j=1

(
iα

−ṽjt+ iα

)γij
×
(

(iα)2 − 4x2

(iα− ṽjt)2 − 4x2

)ζij
,

(A12)

where α is the short-distance cutoff, γij =
[T1]2ij+[T2]2ij

νi
,

and ζij =
[T1]ij [T2]ij

νi
. Now we calculate the TDOS in

two limits, namely, first at the junction with x −→ 0, in
which case Eq. (A12) becomes

〈0|ψiO(x, t)ψ†iO(x, 0)|0〉 ∼
2∏
j=1

(
iα

−ṽjt+ iα

)γij+2ζij

,

(A13)
and the other far from the junction with x −→ ∞, in
which case Eq. (A12) becomes

〈0|ψiO(x, t)ψ†iO(x, 0)|0〉 ∼
2∏
j=1

(
iα

−ṽjt+ iα

)γij
. (A14)

Now from Eqs. (A1), (A13), and (A14), we have the
TDOS integral in the two limits of the form∫ ∞
−∞

2∏
j=1

(
iα

−ṽjt+ iα

)∆ij

e−iEtdt ∝ E(∆i−1), (A15)

where the TDOS exponent ∆i is given by

∆0
i =

1

νi

2∑
j=1

(
[T1]ij + [T2]ij

)2

(A16)

and, far from the junction,

∆∞i =
1

νi

2∑
j=1

(
[T1]

2
ij + [T2]

2
ij

)
. (A17)

Appendix B: Inter-dependency of Interaction
Parameters

Let us consider the simplest possible case of two quan-
tum Hall (QH) systems with filling fraction ν1 = ν2 = 1
in bilayer stacking, with two incoming and two outgoing
edges. Here, we use a simple approach to account for
the effect of Coulomb interactions between the edges in
terms of a distributed circuit model81. The dynamics of
edge plasmons traveling along a single edge channel is
modeled through the distributed electrochemical capaci-
tance per unit length between the channel and the ground
(denoted by Cch-channel capacitance). The interaction
between the two different channels is modeled with dis-
tributed elements, which is expressed by the interedge
capacitance.
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Interedge capacitance per unit length between φiI and
φiO of the same QH layer is given by Cα, between φiI
and φjI of different QH layers (i 6= j) is given by Cβ ,
and between φiI and φjO of different QH layers is given

by Cγ . Channel capacitance per unit length C
(i)
ch = Cch

for all the edges (i = {1, 4}) is taken to be the same (as
the Fermi velocity for each edge plasmon is taken to be
the same81). Let ρiO/I(x, t), ViO/I(x, t), and IiO/I(x, t)
be the excess charge density, potential, and current flow-
ing through the out/in edge channel of the ith QH
layer, respectively, at position x and time t. The rela-
tion between the current Ii(x, t) = (I1O, I2O, I1I , I2I)

T

and potential Vi(x, t) = (V1O, V2O, V1I , V2I)
T is given by,

IiO(x, t) = σ
(i)
xyViO(x, t) and IiI(x, t) = −σ(i)

xyViI(x, t).
The excess charge density ρiI/O is related to the po-

tential through the matrix CT given by

ρ1O

ρ2O

ρ1I

ρ2I


(x,t)

=

 Cp −Cβ −Cα −Cγ
−Cβ Cp −Cγ −Cα
−Cα −Cγ Cp −Cβ
−Cγ −Cα −Cβ Cp


V1O

V2O

V1I

V2I


(x,t)

(B1)
which in compacted form can be written as ρ(x, t) =

CTV (x, t). Cp is given by Cp = Cch+Cα+Cβ+Cγ . The
Heisenberg equation of motion for the coupled system
[Eq. 8 of the main text] is given by

d

dt
φa(x, t) = −vf εa

4∑
α=1

Kaα
d

dx
φα(x, t). (B2)

Since ρiI/O = ± d
dxφiI/O and IiI/O = ∓ d

dtφiI/O, we have

d

dt
Ia(x, t) = −vf

4∑
α=1

Kaα
d

dx
Iα(x, t),

d

dt
I(x, t) = −U d

dx
I(x, t), (B3)

where U is a 4× 4 matrix given by

U = vf

 1 β α γ
β 1 γ α
−α γ −1 −β
−γ −α −β −1

 . (B4)

Now, using the continuity equation ∂tρi,I/O +
∂xIi,I/O = 0, Eq. (B1), and the relation IiO/I(x, t) =

±σ(i)
xyViO/I(x, t), we get

U = σxyC
−1
T , (B5)

where σxy is a diagonal 4×4 matrix with

(σ
(1)
xy , σ

(2)
xy ,−σ(1)

xy ,−σ(2)
xy ) being the diagonal elements.

We can now express interaction parameters in terms of
capacitance as follows:

vf =
1

Cch
+

1

Cch + 2 (Cα + Cβ)
+

1

Cch + 2 (Cα + Cγ)

+
1

Cch + 2 (Cβ + Cγ)

α =

1
Cch
− 1

Cch+2(Cα+Cβ) −
1

Cch+2(Cα+Cγ) + 1
Cch+2(Cβ+Cγ)

1
Cch

+ 1
Cch+2(Cα+Cβ) + 1

Cch+2(Cα+Cγ) + 1
Cch+2(Cβ+Cγ)

β =

1
Cch
− 1

Cch+2(Cα+Cβ) + 1
Cch+2(Cα+Cγ) −

1
Cch+2(Cβ+Cγ)

1
Cch

+ 1
Cch+2(Cα+Cβ) + 1

Cch+2(Cα+Cγ) + 1
Cch+2(Cβ+Cγ)

γ =

1
Cch

+ 1
Cch+2(Cα+Cβ) −

1
Cch+2(Cα+Cγ) −

1
Cch+2(Cβ+Cγ)

1
Cch

+ 1
Cch+2(Cα+Cβ) + 1

Cch+2(Cα+Cγ) + 1
Cch+2(Cβ+Cγ)

(B6)

As can be seen from the above equation (B6), interac-
tions between the edges, in general, cannot be treated as
independent parameters in a realistic situation.
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