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We propose a new theory to characterize equilibrium topological phase with non-equilibrium quan-
tum dynamics by introducing the concept of high-order topological charges, with novel phenomena
being predicted. Through a dimension reduction approach, we can characterize a d-dimensional
(dD) integer-invariant topological phase with lower-dimensional topological number quantified by
high-order topological charges, of which the sth-order topological charges denote the monopoles
confined on the (s − 1)th-order band inversion surfaces (BISs) that are (d − s + 1)D momentum
subspaces. The bulk topology is determined by the sth order topological charges enclosed by the
sth-order BISs. By quenching the system from trivial phase to topological regime, we show that
the bulk topology of post-quench Hamiltonian can be detected through a high-order dynamical
bulk-surface correspondence, in which both the high-order topological charges and high-order BISs
are identified from quench dynamics. This characterization theory has essential advantages in two
aspects. First, the highest (dth) order topological charges are characterized by only discrete signs
of spin-polarization in zero dimension (i.e. the 0th Chern numbers), whose measurement is much
easier than the 1st-order topological charges that are characterized by the continuous charge-related
spin texture in higher dimensional space. Secondly, a more striking result is that a first-order
high integer-valued topological charge always reduces to multiple highest-order topological charges
with unit charge value, and the latter can be readily detected in experiment. The two fundamen-
tal features greatly simplify the characterization and detection of the topological charges and also
topological phases, which shall advance the experimental studies in the near future.

I. INTRODUCTION

Topological quantum phases have become a main-
stream of research in various areas, including condensed
matter physics [1–7], ultracold atoms [8–19], and pho-
tonic systems [20–22]. In equilibrium theory a topological
phase is characterized by the bulk topological invariant
defined in the ground state of the system and host pro-
tected boundary modes through the bulk-boundary cor-
respondence. Based upon the equilibrium characteriza-
tion the topological phases can be detected in experiment
from the bulk-boundary correspondence, e.g. by resolv-
ing the boundary modes with angle-resolved photoelec-
tron spectroscopy (ARPES) or transport measurements,
which identify the equilibrium topological features [23–
25]. The great success has been achieved in discovering
the topological matter, such as topological insulators [26–
29], topological semimetals [30–33], and topological su-
perconductors [34–38].

Recently, as a momentum-space counterpart of the
bulk-boundary correspondence, a dynamical bulk-surface
correspondence was proposed for generic d-dimensional
(dD) topological phases with integer invariants, and con-
nects the bulk topology of such equilibrium topologi-
cal phase and nontrivial dynamical pattern of quench-
induced quantum dynamics emerging on the so-called
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band inversion surfaces (BISs) [39, 40]. The BISs are
(d−1)D interfaces in Brillouin zone (BZ) where the band
inversion occurs, and are characterized by that the cou-
pling between momentum and one (pseudo)spin compo-
nent in the Hamiltonian vanishes [39]. By suddenly tun-
ing the system from initially trivial phase to topological
regime, the induced quench dynamics exhibit novel dy-
namical topological pattern on the (d− 1)D BISs, which
is uniquely related to the bulk topology of the dD equi-
librium phase of the post-quench Hamiltonian. The dy-
namical bulk-surface correspondence establishes a uni-
versal correspondence between the equilibrium topologi-
cal phases and far-from-equilibrium quantum dynamics.
It provides conceptually new schemes to characterize and
detect with high precision the equilibrium topological
phases via non-equilibrium quench dynamics, which have
been widely studied in the recent experiments with ultra-
cold atoms [41–45], solid state spin systems [46–48], and
superconducting circuits [49]. Many novel issues have
been further investigated in theory, such as the dynamical
characterization of both symmetry-breaking order and
topological phases in correlated systems [50], the topo-
logical phases in non-Hermitian systems [51–54] and Flo-
quet bands [55, 56], generalization to generic quenches
from a trivial or nontrivial phase via loop unitary con-
struction [57], and to the regime with slow nonadiabatic
quantum quenches [58]. These studies also benefit from
the high controllability of the synthetic quantum sys-
tems, which facilitates the exploration of non-equilibrium
quantum dynamics [59–70].

ar
X

iv
:2

01
2.

13
49

4v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

5 
D

ec
 2

02
0



2

The topology emerging on BISs can also be character-
ized by the topological charges enclosed in the BISs [71],
as an analogy to the Gaussian theorem, and such topolog-
ical charges are dual to BISs and denote the monopole
charges located at the nodes of the (pseudo)spin-orbit
(SO) couplings [43, 46, 47]. In this picture the topological
invariant is viewed as the quantized flux of the monopoles
through the BISs, which provides an intuitive perspec-
tive for the nontrivial bulk topology. More recently, the
high-order BISs are proposed based on a dimension re-
duction approach [72], and the sth-order BIS correspond
to (d − s)D momentum subspace which is reduced from
(s− 1)-order BIS by further taking the coupling between
momentum and the sth (pseudo)spin component to be
zero. In the quench dynamics the equilibrium topologi-
cal phase can be characterized by the dynamical topology
emerging on arbitrary high-order BISs. Since the higher-
order BISs can be determined with less information, the
dynamical theory based on high-order BISs can simplify
the characterization of topological phases [72]. The con-
cept of high-order BIS is novelly extended by Li etal [73]
to characterize the high-order topological phases [74–76].
An interesting consideration is to extend the topologi-
cal charges to the high-order regime based on the dimen-
sion reduction approach, which are dual to the high-order
BISs and may have exceptional features and advantages
in the dynamical characterization of topological phases,
but have yet to be studied.

In this article, we introduce the concept of high-order
topological charges, with which we propose a new dynam-
ical characterization theory of topological phases. The
equilibrium bulk topology is generically determined by
the total sth-order topological charges confined on the
(s− 1)th-order BISs and enclosed in the sth-order BISs.
By quenching the system from trivial phase to topologi-
cal regime, we further show that the topological phase of
post-quench Hamiltonian can be detected through a high-
order dynamical bulk-surface correspondence, in which
both the high-order topological charges and high-order
BISs are identified from quench dynamics. The proposed
new characterization theory has two essential advantages:
(i) Unlike the 1st-order topological charge whose charac-
terization necessitates to measure the continuous charge-
related (pseudo)spin texture in dD space, which could be
tedious, the highest (dth) order topological charges are
characterized by only discrete signs of spin-polarization
in the zero dimension. (ii) A high integer-valued topo-
logical charge of the first order always reduces to mul-
tiple highest-order topological charges with unit charge
value. Then the high integer-valued topological invariant
can be read by the summation of the highest-order topo-
logical charges enclosed by the highest-order BISs. The
two fundamental features greatly simplify the character-
ization and detection the equilibrium topological phases.
Finally, these advantages of the dynamical characteriza-
tion are illustrated with concrete examples.

The remaining part of this paper is organized as fol-
lows. In Sec. II, we introduce the generic theory of the

new dynamical characterization. In Sec. III, our dynam-
ical scheme is applied to two realistic models. In Sec. IV,
we show the decomposition of high integer-valued topo-
logical charges. Finally, we summarize the main results
and provide the brief discussion in Sec. V.

II. GENERIC THEORY

A. Model Hamiltonian and dimension reduction

We start with the basic Hamiltonian describing a d-
dimensional (dD) gapped topological phase with integer
invariant, which can be written in the elementary repre-
sentation matrices of Clifford algebra [77, 78] as

H(k) = h(k) · γ =

d∑
i=0

hi(k)γi, (1)

where the vector field h(k) describes a (d+ 1)D Zeeman
field depending on the Bloch momentum k in BZ. The
γ matrices obey anti-commutation relations {γi, γj} =
2δi,j1 for i, j = 0, 1, · · · , d, and their dimensionality is

2(d+1)/2 (or 2d/2) if d is odd (or even), which is the min-
imal requirement to open a topological gap for the dD
topological phase. For 1D/2D case [79–81], the γ ma-
trices simply reduce to the Pauli matrices. For 3D/4D
system [82, 83], the γ matrices are constructed as the
tensor product of the Pauli matrices. The topology of
this basic Hamiltonian is characterized by the dD (or
d/2-th) winding number (or Chern number) if d is odd
(or even), which counts the coverage times of the map-

ping ĥ(k) = h(k)/|h(k)| from the BZ torus T d to the dD
spherical surface Sd [84].

Now we perform dimension reduction for the above
Hamiltonian, and bulk topology will be reduced into the
lower-dimensional subsystem. One can choose an arbi-
trary h-component, say h0(k), to characterize the dis-
persion of the decoupled bands of γ0. Accordingly, the
remaining h-components are denoted as the SO vector
field hso(k) ≡ (h1(k), h2(k), . . . , hd(k)). The SO vector
field opens a topological gap at the band-crossing with
h0(k) = 0, which is defined as the (first-order) BISs,
namely B1 ≡ {k ∈ BZ|h0(k) = 0}. The bulk-surface
duality has manifested that the bulk topology can be re-
duced to the winding of the dD SO vector field on the
(d − 1)D first-order BISs [39]. This lower-dimensional
topology can be treated in an effective (d − 1)D gapped
Hamiltonian on the first-order BISs,

H(1)
eff (k̃) = hso(k̃) · γ̃ =

d∑
i=1

hi(k̃)γ̃i, k̃ ∈ B1, (2)

where γ̃ are the corresponding gamma matrices on the
(d− 1)D subspace. The topological number of Hamilto-
nian (2) is given by the coverage times of the mapping

ĥso(k̃) = hso(k̃)/|hso(k̃)| from B1 to S(d−1). Now we
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can also define BISs for H(1)
eff , which is called the second-

order BISs [72]. Without loss of generality, the compo-

nent h1(k̃) is used to define the (d − 2)D second-order

BISs as B2 ≡ {k̃ ∈ B1|h1(k̃) = 0} = {k ∈ BZ|h0(k) =
h1(k) = 0}. Then the bulk topology is reduced to
the winding of the (d − 1)D effective SO vector field

h
(1)
so (k̃) ≡ (h2(k̃), . . . , hd(k̃)) on the second-order BISs.
By repeating the above dimension reduction proce-

dure, the dD bulk topology can be reduced to the in-
teger invariant of (d − s + 1)D effective Hamiltonian on
the (s − 1)th-order BISs Bs−1 = {k ∈ BZ|h0(k) = · · · =
hs−2(k) = 0},

H(s−1)
eff (k̃) = hs−1(k̃)γ̃s−1+

d∑
i=s

hi(k̃)γ̃i, k̃ ∈ Bs−1, (3)

where γ̃ are the corresponding Gamma matrices on the
(d− s+ 1)D subspace. Thus hs−1(k̃) component further
defines the (d− s)D sth-order BISs as

Bs ≡ {k̃ ∈ Bs−1|hs−1(k̃) = 0}
= {k ∈ BZ|h0(k) = · · · = hs−1(k) = 0}

(4)

for H(s−1)
eff [see Fig. 1(a)], and the remaining components

represent the corresponding (d−s+1)D effective SO vec-

tor field h
(s−1)
so (k̃) ≡ (hs(k̃), . . . , hd(k̃)). The topological

number is given by the winding of the (d − s + 1)D SO
vector field on the sth-order BISs [see Fig. 1(b)].

B. High-order topological charges

As an analogy to the Gaussian theorem, the bulk topol-
ogy can also be characterized by the topological charges
enclosed in the BISs, and such topological charges are
dual to BISs and denote the monopole charges located at
the nodes of the SO couplings [39, 40, 43, 46, 47, 71]. In

this picture the topological invariant of H(s−1)
eff is simply

viewed as the quantized flux of the monopoles through
the sth-order BISs.

We introduce the sth-order topological charges

C(s)
n =

Γ[(d− s+ 1)/2]

2π(d−s+1)/2

∫
Sn

[
1

|h(s−1)
so |d−s+1

d∑
j=s

(−1)j−1hj

]
dhs ∧ · · · ∧ dhd,

(5)

which are located at the nodes k̃ = gn of the (d−s+1)D

effective SO vector field with h
(s−1)
so (gn) = 0 and char-

acterize the corresponding monopoles. Here Sn denotes
a (d − s + 2)D interface on (s − 1)th-order BISs, en-
closing the nth monopole gn. In the typical case where

h
(s−1)
so is linear near the monopole, the sth-order topolog-

ical charges can be simplified as C(s)
n = sgn[J

h
(s−1)
so

(gn)],

FIG. 1: (a) A sth-order BIS (red curve) produced by hs−1 = 0
and two sth-order topological charges (red points) determined
by hs = hs+1 = · · · = hd = 0 are both confined on the (s −
1)th-order BIS (hemisphere surface), while the (s−1)th-order
topological charge (gray-green point) determined by hs−1 =
hs = hs+1 = · · · = hd = 0 is enclosed by the (s − 1)th-order
BIS. (b) The (d−s+1)D topology described by the winding on
(s−1)th-order BIS (gray-green arrows) is reduced on the (d−
s)D sth-order BIS (red arrows). (c) The properties of a high-
order topological charge are characterized by constructing the
coordinates γ̃s-γ̃s+1- · · · -γ̃d in (pseudo)spin subspace.

where J
h

(s−1)
so

(k̃) ≡ det[(∂h
(s−1)
so,j /∂k̃i)] is Jacobian de-

terminant with j = s, s + 1, · · · , d. However, when a
monopole does not have the linear dispersion, the Jaco-

bian is zero and the charge value |C(s)
n | is in fact larger

than one.

We emphasize that the sth-order topological charges
are confined on the (s − 1)th-order BISs Bs−1 [see
Fig. 1(a)] and are characterized by the all components

of (d− s+ 1)D effective SO vector field h
(s−1)
so (k̃). Thus

the properties (charge value and chirality) of sth-order
topological charges can be read out by measuring the

(pseudo)spin structure of h
(s−1)
so (k̃) at k̃ → gn in the

(pseudo)spin subspace of γ̃s-γ̃s+1- · · · -γ̃d coordinate sys-
tem [see Fig. 1(c)]. In particular, one can find that the
highest (dth) order topological charges are only charac-

terized by the discrete signs of hd(k̃) at k̃ → gn, i.e.
the 0th Chern numbers [72]. This intrinsic property

determines that whose charge value is only |C(d)
n | = 1.

Moreover, a high integer-valued topological charge can al-
ways reduce to multiple highest-order topological charges
with unit charge value by the dimension reduction pro-
cedure. This two fundamental features of highest-order
topological charges can greatly simplify the characteri-
zation and detection the equilibrium topological phases,
which avoids the redundant measurements of the con-
tinuous charge-related (pseudo)spin texture in high di-
mensional space and provides the easy measurements in
experiments (See sections III and IV for details). This is
one of the key ideas of this paper.
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Besides, three points are worthwhile to mention: (i)
The order of topological charge is actually the number
of dimension reduction for bulk Hamiltonian. (ii) The
real dimensionality for the arbitrary high-order topolog-
ical charge is zero, because the topological charges are
the nodes of effective SO vector field in momentum sub-
space. (iii) The configurations of high-order BISs are
sharply different for choosing different h-components of
the Hamiltonian, thus the location of the corresponding
high-order topological charges should be different. Nev-
ertheless, this does not affect the results of topological
characterization (see Appendix C).

C. High-order dynamical bulk-surface
correspondence

We further propose to use quench dynamics to detect
the high-order topological charges and the corresponding
high-order BISs, which establishes the high-order dynam-
ical bulk-surface correspondence to characterize the equi-
librium topological phases. We consider a series of deep
quench process (see Appendix A) along all axes γi with
i = 0, 1, . . . , d while only measure a single (pseudo)spin
component γ0, which is well measurable in cold atom ex-
periments [40–42]. Then the time-averaged (pseudo)spin
polarization (TASP) is given by

〈γ0(k)〉i = −h0(k)hi(k)/E2(k), (6)

where E(k) =
√∑d

i=0 h
2
i is the energy of the post-

quenched Hamiltonian. Note that the TASP vanishes
both on the momentum space with h0(k) = 0 and
hi(k) = 0.

Now the high-order topological charges and high-order
BISs can be identified by measuring TASP. We define a
set S(i) ≡ {k ∈ BZ|〈γ0(k)〉i = 0, 〈γ0(k)〉0 6= 0} for i > 0,
which includes the momenta with hi = 0 but h0 6= 0.
Then the closure S̄(i) also contains the momenta with
hi = h0 = 0. After setting S(0) = {k ∈ BZ|〈γ0(k)〉0 =
0}, the vanishing TASP gives the sth-order BISs when
quenching the axes γ0, γ1, · · · , γs−1, i.e.

Bs = S(0) ∩ S̄(1) ∩ · · · ∩ S̄(s−1). (7)

Correspondingly, the location of the sth-order topologi-
cal charges can be determined by the momenta {gn} =
Bs−1 ∩ S̄(s) ∩ S̄(s+1) ∩ · · · ∩ S̄(d). We further define the
dynamical field

Θj(k̃) ≡ − lim
k→k̃

sgn[hs−1(k)]

Nk

〈γ0(k)〉j〈γ0(k)〉s−1

〈γ0(k)〉0
(8)

in (pseudo)spin subspace of γ̃s-γ̃s+1- · · · -γ̃d coordinate
system, where Nk̃ is a normalization factor and j =
s, s+ 1, · · · , d. Near the monopole charges, the dynamic
field satisfies

Θj(k̃)|k̃→gn
= h

(s−1)
so,j (k̃), (9)

whose (pseudo)spin structures intuitively give the prop-
erties of the sth-order topological charges.

Finally, the bulk topology can be read out by the total
sth-order topological charges in the regions with Bs,− ≡
{k̃ ∈ Bs−1|hs−1(k̃) < 0} enclosed by the sth-order BISs,
namely

W =
∑

n∈Bs,−

C(s)
n . (10)

The results of Eqs. (7)-(10) manifest a high-order dy-
namical bulk-surface correspondence, and provide the di-
rect measurements of bulk topology via the well-resolved
TASP in experiments. In addition, it is worth mentioning
that we also provide another dynamical characterization
scheme by quenching all (pseudo)spin axes and measur-
ing multiple (pseudo)spin axis in Appendix C. Although
the measurements of multiple (pseudo)spin components
are challenging in recent experiments, this scheme is eas-
ier to determine high-order BISs and high-order topolog-
ical charges, and then the equilibrium topological phase,
which may has broader applications in the future.

III. APPLICATION TO THE REALISTIC
MODELS

We consider a simple dD model with

h0 = m0 − t0
d∑

i=1

cos kri , hi = mi + tso

d∑
i=1

sin kri , (11)

which can be realized with recent advances. Here k =
(kr1 , kr2 , ..., krd) is the dD momentum, m0 and mi are
the effective Zeeman coupling, and t0, tso are the nearest-
neighbor spin-conserved and spin-flipped hopping coeffi-
cients, respectively.

The 2D quantum anomalous Hall (QAH) model with
(r1, r2) = (y, x) is considered first, which has been real-
ized in cold atoms experiments [13, 16, 85] and widely
studied [86–90]. The γ matrices are Pauli matrices
γ0,1,2 = σz,y,x. For m1 = m2 = 0, the bulk topology
is characterized by the 1st Chern number (Ch1), where
the topological phase corresponds to 0 < |m0| < 2t0
with Ch1 = −sgn(m0), but the trivial phases are for
|m0| > 2t0 with Ch1 = 0. We perform the quench
by suddenly varying (m0,m1,m2) from (30t0, 0, 0) to
(t0, 0, 0) for h0, from (0, 30t0, 0) to (t0, 0, 0) for h1, and
from (0, 0, 30t0) to (t0, 0, 0) for h2. The time evolution
of spin polarization for σz-component only needs to be
measured, which can present the second-order BISs and
second-order topological charges and then gives the in-
formation of bulk topology.

A ring structure characterizes the first-order BIS B1

with h0 = 0 is observed from the vanishing TASP
〈σz(k)〉z = 0 in Fig. 2(a). The vanishing polariza-

tion 〈σz(k)〉y = 0 in Fig. 2(b) shows the surfaces of

h0(k) = 0 and h1(k) = 0, where the second-order BISs
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FIG. 2: Dynamical characterization of 2D QAH model. (a)-(c) The TASP 〈σz(k)〉z,y,x via quenching m0,1,2 along all axes,

where the vanishing polarization are marked as black, red, and green dashed lines that represent the interfaces with h0,1,2(k) = 0
respectively. The first-order BIS B1 (black dashed line) is given by h0(k) = 0 in (a). The second-order BISs B2 (green points)
at k = (±π/2, 0) are given by h1(k) = 0 on first-order BIS B1 in (b), and h1(k) = h2(k) = 0 gives the first-order topological

charges C(1)n=1,2,3,4 (light-pink and light-blue points) at (0,−π), (0, 0), (−π, 0), and (−π,−π). The second-order topological

charges C(2)1 = −1 (blue point) at k = (0,−π/2) and C(2)2 = 1 (red point) at k = (0, π/2) are given by h2(k) = 0 on first-order
BIS B1 in (c). (d) The normalized dynamic field in spin space of σy − σx characterizes the properties of first-order topological

charges, where C(1)2 in the region h0(k) < 0 (light-red surface) gives the 1st Chern number Ch1 = C(1)2 = −1. (e) The normalized

dynamic field in spin subspace of σ̃x characterizes the properties of second-order topological charges, where C(2)1 = −1 in the

region h1(k̃) < 0 (light-red solid curves) gives the 1st Chern number Ch1 = C(2)1 = −1. Here the other parameter is tso = t0.

B2 are given by h1(k) = 0 on the first-order BIS B1 and

present two points when taking h
(1)
eff-so(k̃) = h2. More-

over, the second-order topological charges determined by
h2(k̃) = 0 sit on the first-order BIS B1 and are ob-

tained by the vanishing polarization 〈σz(k)〉x = 0, as
shown in Fig. 2(c). Because the effective BZ is reduced

as {k̃|h0(k) = 0} (or say k̃ ∈ B1) and the bottom

half-ring of first-order BIS holds h1(k̃) < 0, the second-

order topological charge C(2)
1 = 1 is enclosed into by the

second-order BISs, which gives the 1st Chern number

Ch1 = C(2)
1 = −1 and is shown in Fig. 2(e). Compared

with the dynamical characterization by using the first-
order topological charges in Fig. 2(d), the spin textures
around second-order topological charges are determined
by the sign of h2(k̃) at two sides of monopoles, which is
more convenient for the experimental measurement.

We further consider the application to a 3D chiral topo-
logical insulator with (r1, r2, r3) = (x, y, z), which has
been simulated by using nitrogen-vacancy center [47].
The γ matrices are taken as γ0 = σz ⊗ τx, γ1 = σx ⊗ 1,
γ2 = σy⊗1, and γ3 = σz⊗τz, where σx,y,z and τx,y,z are
both Pauli matrices. For m1 = m2 = m3 = 0, the topo-

logical phases are classified by the 3D winding number
and are distinguished as: (i) t0 < m0 < 3t0 with wind-
ing number ν3 = 1; (ii) −t0 < m0 < t0 with ν3 = −2;
and (iii) −3t0 < m0 < −t0 with ν3 = 1. Beyond these
regions the phase is trivial. We perform the quench by
suddenly varying (m0,m1,m2,m3) from (30t0, 0, 0, 0) to
(1.5t0, 0, 0, 0) for h0, from mi = 30t0 to 0 for hi (tun-
ing m0 to 1.5t0 and keeping mj 6=i = 0), then the bulk
topology in region (i) can be read out by measuring
the time evolution of pseudospin polarization of the γ0-
component.

The vanishing 〈γ0(k)〉0,1,2,3 in six 2D planes of BZ im-

plies h1,2,3(k) = 0, but the spherical-like surface is for
h0(k) = 0, which identifies the first-order BIS B1 [see
Fig. 3(a)]. When taking the effective SO vector field as

h
(1)
eff-so(k̃) = (h2, h3), the second-order BIS B2 presents

the ring-shape structure produced by h0 = h1 = 0 in
vanishing polarization of 〈γ0(k)〉1, which are confined
on the first-order BIS B1 [see Fig. 3(b)]. The corre-

sponding second-order topological charges C(2)
n=1,2 with

h2 = h3 = 0 are determined by the vanishing polar-
ization of 〈γ0(k)〉2,3 on the first-order BIS B1. The
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FIG. 3: Dynamical characterization of 3D chiral topological insulator. (a) The vanished TASP of 〈γ0(k)〉0,1,2,3, where

〈γ0(k)〉0 = 0 presents a spherical-like surface (orange surface) and gives the first-order BIS B1 with h0(k) = 0. (b) The second-

order topological charges are determined by h2(k̃) = h3(k̃) = 0 on B1 and are characterized by the normalized dynamic field

in pseudospin subspace γ̃2 − γ̃3, with C(2)1 = 1 (red point) at k = (−2π/3, 0, 0) and C(2)2 = −1 (blue point) at k = (2π/3, 0, 0).

The second-order BIS B2 (black curve) divides B1 into two regions, where C(2)1 = 1 in left hemisphere surface with h1(k̃) < 0

gives the winding number ν3 = C(2)1 = 1. (c) The third-order topological charges are determined by h3(k̃) = 0 on B2 and are

characterized by the normalized dynamic field in pseudospin subspace γ̃3, with C(3)1 = 1 (red point) at k = (0,−2π/3, 0) and

C(3)2 = −1 (blue point) at k = (0, 2π/3, 0). The third-order BISs B3 (green points) divides B2 into two regions, where C(3)1 = 1

in the front of ring with h2(k̃) < 0 gives the winding number ν3 = C(3)1 = 1. (d) Minimal measurement by detecting the TASP
on the 2D plane of kx = 0, where the vanishing polarization marked as the black, red, and green dashed lines presents the
interfaces with h0(1),2,3(k) = 0, respectively. The B1 and B2 are coincident in (d1). h2(k) = 0 on B2 gives the third-order

BISs B3 (green points) in (d2), and h3(k) = 0 gives two third-order topological charges C(3)1 = 1 (red point) and C(3)2 = −1
(blue point) in (d3). The normalized dynamic field characterizes the properties of the third-order topological charges in (d4),

where the leftward C(3)1 = 1 in the region h2(k̃) < 0 (light-red curves) gives the winding number ν3 = C(3)1 = 1. Here the other
parameter is tso = t0.

second-order topological charge C2
1 = 1 is enclosed by

the second-order BIS B2, giving the 3D winding number

ν3 = C(2)
1 = 1. Moreover, when the effective SO vector

field h
(3)
eff-so(k̃) = h3 is taken, the third-order BISs B3 are

produced by h0 = h1 = h2 = 0 in vanishing polarization
of 〈γ0(k)〉0,1,2, which are confined on the second-order

BIS B2 and present two points [see Fig. 3(c)]. The ef-

fective BZ is reduced as {k̃|h0(k) = h1(k) = 0} (or say

k̃ ∈ B2) and the front half-ring structure of the second-

order BIS B2 holds h2(k̃) < 0. Therefore, the 3D winding

number is given by ν3 = C(3)
1 = 1. Similarly, the obser-

vation of third-order topological charges are simpler to
determine the bulk topology.

Particularly, here we can also identify the third-order
topological charges by a minimum measurement scheme
(see Appendix B) with advantage in future experiments.
By measuring the TASP on some 2D planes of BZ,
〈γ0(k)〉1 = 0 is for all momentum k on the 2D plane of
kx = 0 (The 2D plane of kx = −π is failed to identify the

third-order BISs B3). Thus 〈γ0(k)〉0,2 on this plane re-

flects the locations of the second-order BISs B2 and third-
order BISs B3 [see Figs. 3(d1) and 3(d2)]. Therefore, the

TASP 〈γ0(k)〉3 and the normalized dynamic field Θ(k)
on 2D plane of kx = 0 give the properties of the third-
order topological charges and the topological number of
the system [see Figs. 3(d3) and 3(d4)].

IV. DECOMPOSITION OF HIGH
INTEGER-VALUED TOPOLOGICAL CHARGES

For a monopole charge without linear dispersion, the
charge value is larger than one and the system has a
high-valued winding or Chern number. If detecting the
topological charges with high charge value to identify the
topological phases, it is cumbersome for the measure-
ments of the continuous charge-related (pseudo)spin tex-
ture. Nevertheless, we can avoid these redundant mea-
surements by reducing the high integer-valued topologi-
cal charges to multiple highest-order topological charges
with unit charge value. This essential advantage of the
highest-order topological charge greatly simplifies topo-
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FIG. 4: Numerical results in the extended 2D QAH model with charge value |C(1)n | = 2. (a)-(c) The TASP 〈σz(k)〉z,y,x, where the

vanishing polarization presents the first-order BIS B1 with h0(k) = 0 (black dashed curve) in (a). The vanishing polarization on
B1 gives the second-order BISs B2 (green points) in (b), and the vanishing polarization on B1 gives the second-order topological

charges C(2)n=1,2,3,4 (blue and red points) in (c). (d) The normalized dynamic field characterizes the properties of four first-order

topological charges C(1)n=1,2,3,4, where the first-order topological charge in the region h0(k) < 0 (light-red region) gives the 1st

Chern number Ch1 = C(1)2 = −2. (e) The normalized dynamic field characterizes the properties of four second-order topological

charges C(2)n=1,2,3,4, where the summation of second-order topological charges in the region h1(k̃) < 0 (light-red region) gives the

1st Chern number Ch1 = C(2)1 + C(2)3 = −2. (f) The first-order topological charge C(1)2 = −2 enclosed by B1 is equivalent to the

sum of two second-order topological charges C(2)n=1,3 = −1 enclosed by B2. The sum of remaining first-order topological charges

C(1)n=1,3,4 is equivalent to the sum of two second-order topological charges C(2)n=2,4 = 1. Here the other parameter is tso = t0.

logical characterization, especially for high-dimensional
systems. Next we use two extended models to illustrate
this point.

We first extend the 2D QAH model as follows:

H2D(k) = h0σz + h1σy + h2σx,

h0 = m0 − t0(cos kx + cos ky),

h1 = m1 + tso=[(sin kx + i sin ky)p],

h2 = m2 + tso<[(sin kx + i sin ky)p],

(12)

with positive integer p. For m1 = m2 = 0, the topo-
logical phase corresponds to 0 < |m0| < 2t0 with Ch1 =
−p×sgn(m0), but the trivial phase is still for |m0| > 2t0.
By quenching the system with p = 2 in the same pa-
rameters as 2D QAH model, a ring-shape structure is
identified as the first-order BIS B1 from the vanishing
polarization 〈σz(k)〉z = 0 [see Fig. 4(a)]. Further, four

first-order topological charges C(1)
n=1,2,3,4 with high charge

value |C(1)
n | = 2 are given by 〈σz(k)〉y = 〈σz(k)〉x = 0

[see Fig. 4(b)]. Thus the bulk topology is determined by
the summation of the first-order topological charges en-

closed by the first-order BIS B1, i.e. Ch1 = C(1)
2 = −2

[see Fig. 4(d)].

After taking h
(1)
so (k̃) = h2 for the dimension reduc-

tion, we observe the second-order BISs B2 from the van-
ishing polarization 〈σz(k)〉y = 0, which is confined on

the first-order BIS B1 [see Fig. 4(b)]. Correspondingly,

four second-order topological charges C(2)
n=1,2,3,4 are ob-

tained by the vanishing polarization 〈σz(k)〉x = 0 [see
Fig. 4(c)]. We emphasize that now each second-order

topological charge has unit charge value |C(2)
n | = 1, and

then the bulk topology is calculated by the summation of
second-order topological charges enclosed by the second-

order BISs B2, i.e. Ch1 = C(2)
1 + C(2)

3 = −1 − 1 = −2
[see Fig. 4(e)]. One can find that a first-order topological

charge C(1)
2 is separated into two second-order topologi-

cal charges C(2)
n=1,3 with unit negative charge by dimen-

sion reduction, and the total contribution of the remain-

ing first-order topological charges C(1)
n=1,3,4 is equivalent

to two second-order topological charges C(2)
n=2,4 with unit

positive charge [see Fig. 4(f)]. The 2D topology with
high integer-valued Ch1 = 2 is transformed to 0D topol-
ogy given by the summation of two 0th Chern numbers
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FIG. 5: Numerical results of the extended 3D chiral topological insulator model with charge value |C(1)n | = 3. (a) The TASP
〈γ0(k)〉0, where the spherical-like surface (orange surface) is identified as the first-order BIS B1 and eight first-order topological

charges C(1)n=1,2,··· ,8 determined by h1(k) = h2(k) = h3(k) = 0 are marked as light-pink and light-blue points. (b) On 2D

plane of kz = 0, the first-order topological charge C(1)1 in the region h0(k) < 0 (light-red region) gives the 3D winding number

ν3 = C(1)1 = 3, where the pseudospin textures in the normalized dynamic field present that the charge value of each first-order

topological charge are |C(1)n=1,2,··· ,8| = 3. (c) The second-order BISs B2 present ring-shape curves (gray curves) on first-order
BISs B1 and the third-order BISs B3 present two points (green points) on the second-order BISs B2, which are identified by

the vanishing polarization 〈γ0(k)〉1,2 = 0. Six third-order topological charges (red and blue points) with |C(3)n=1,2,··· ,6| = 1 are

determined by h3(k̃) = 0 (green curve). (d) On 2D plane of kz = 0, the summation of third-order topological charges in the

region h2(k̃) < 0 (light-red region) gives the 3D winding number ν3 = C(3)1 + C(3)3 + C(3)5 = 3. (e) The first-order topological

charge C(1)1 = 3 enclosed by B1 is equivalent to the sum of three third-order topological charges C(3)n=1,3,5 = 1 enclosed by B2.

The sum of remaining first-order topological charges C(1)n=2,··· ,8 is equivalent to the sum of three third-order topological charges

C(3)n=2,4,6 = −1. Here the other parameter is tso = t0.

with Ch0 = 1, i.e. Ch1 � 2Ch0.
Similarly, we extend the 3D chiral topological insulator

model as the following case,

H3D(k) = h0σz ⊗ τx + h1σx ⊗ 1 + h2σy ⊗ 1 + h3σz ⊗ τz,
h0 = m0 − t0(cos kx + cos ky + cos kz),

h1 = m1 + tso(sin3 kx − 3 sin kx sin2 ky),

h2 = m2 + tso(3 sin ky sin2 kx − sin3 ky),

h3 = m3 + tso sin3 kz. (13)

For m1 = m2 = m3 = 0, the topological phases are
classified by: (i) t0 < m0 < 3t0 with ν3 = 3; (ii) −t0 <
m0 < t0 with ν3 = −6; and (iii) −3t0 < m0 < −t0 with
ν3 = 3. By taking the quenched parameters as the same
as 3D chiral topological insulator model, eight first-order

topological charges with high charge value |C(1)
n=1,2,··· ,8| =

3 and a spherical-like first-order BIS B1 [see Figs. 5(a)
and 5(b)] can be observed by vanishing polarization of

〈γ0(k)〉0,1,2,3 when taking h
(0)
so (k) = (h1, h2, h3). Thus

the bulk topology is determined by the summation of
first-order topological charges enclosed by the first-order

BISs B1, i.e. ν3 = C(1)
1 = 3.

After taking h
(2)
so (k̃) = h3 for the dimension reduction,

six third-order topological charges C(3)
n=1,2,··· ,6 sit on the

second-order BISs B2 [see Fig. 5(c)]. Each third-order

topological charge has unit charge value |C(3)
n=1,2,··· ,6| = 1,

and then the bulk topology is given by the summation
of third-order topological charges enclosed by the third-

order BISs B3, i.e. ν3 = C(3)
1 + C(3)

3 + C(3)
5 = 3 [see

Fig. 5(d)]. Similarly, a first-order topological charge C(1)
1

is separated into three third-order topological charges

C(3)
n=1,3,5 with unit positive charge, and the total contri-

bution of the remaining first-order topological charges

C(1)
n=2,··· ,8 is equivalent to the summation of three third-

order topological charges C(3)
n=2,4,6 with unit negative

charge [see Fig. 5(e)]. Thus a high integer-valued 3D
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winding number with ν3 = 3 is transformed to the sum
of three 0th Chern numbers, i.e. ν3 � 3Ch0.

The above results strongly demonstrate the advantages
of the highest-order topological charge in characteriza-
tion of topological phases. Although the definition of
topological charge depends on the selection of the h-
components, choosing a different h-component to define
the highest-order topological charge will not change the
essence of its unit charge value, which is different from
the first-order topological charge. Therefore, for a more
general system, we only need to measure the properties
of the highest-order topological charge to determine the
bulk topology.

V. CONCLUSION AND DISCUSSION

In conclusion, we have proposed a new dynamical
scheme to characterize the equilibrium topological phases
based on the high-order topological charges, which cor-
respond to monopoles confined in low dimensional sub-
spaces. Through a dimensional reduction approach for
a dD bulk Hamiltonian, the topology of the dD system
can be determined by the arbitrary sth order topologi-
cal charges enclosed by the sth-order BISs. In quenching
the system from a trivial phase to a topologically nontriv-
ial regime, both the high-order BISs and the high-order
topological charges are directly observed by the quench
induced (pseudo)spin dynamics, for which the topologi-
cal phases of post-quench Hamiltonian can be detected
dynamically.

The high-order topological charges have essential ad-
vantages in characterizing topological phases due to
their intrinsic features. We compare the first-order and
highest-order topological charges. For the first-order
topological charge with unit or high charge value, as de-
fined in dD momentum space, its characterization gener-
ically necessitates to measure the continuous charge-
related (pseudo)spin texture in dD space. In compar-
ison, the highest-order topological charges are defined
in the zero dimension, and are characterized by the dis-
crete signs of spin-polarization in zero dimension. This
intrinsic feature determines that the charge value of a
highest-order topological charge only takes C(d) = ±1.
Accordingly, a high integer-valued lower-order topologi-
cal charge can always reduce to multiple highest-order
topological charges with unit charge value, which can
be easily measured in experiment, hence simplifying the
characterization and detection of topological phases.
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Appendix A: Deep quench process

In quenching the axis γi, we initialize a fully polar-
ized state ρi(0) along the opposite γi axis by introduc-
ing a very large constant magnetization mi such that
hi(k) ≈ mi � 0 for t < 0. After t = 0, the magnetization
mi is suddenly tuned to the topological regime, and the
momentum-linked (pseudo)spin expectation 〈γ(k, t)〉 will
process around h(k). The quantum dynamics is governed
by the unitary evolution operator U(t) = exp(−iHt) with
the post-quenched Hamiltonian H(k). We can measure
the time-averaged (pseudo)spin polarization (TASP) of
the component γ0,

〈γ0(k)〉i ≡ lim
T→∞

1

T

∫ T

0

dtTr[ρi(0)eiH(k)tγ0e
−iH(k)t]

= −h0(k)hi(k)/E2(k), (A1)

where E(k) =
√∑d

i=0 h
2
i is the energy of the post-

quenched Hamiltonian.

Appendix B: Minimal measurement scheme

We provide a minimal dynamical scheme for the topo-
logical systems, in which the bulk topology is determined

by the dth-order topological charges C(d)
n enclosed by the

0D dth-order BISs Bd. This scheme greatly simplifies the
characterization of bulk topological phases, especially for
d > 3. We consider the topological systems with at least
one plane-type component, say hd−2, which means that
the momenta satisfying hd−2(k) = 0 form planes. Note
that both the dth-order topological charges and the dth-
order BISs sit on the 1D (d− 1)th-order BISs Bd−1 con-
sisting of momenta with h0 = h1 = · · · = hd−2 = 0.
Since hd−2 is plane-type, the (d − 1)th-order BISs Bd−1

also belong to the plane determined by hd−2 = 0. With
these observations, to identify the dth-order topological
charges and the corresponding BISs, we can first extract
the planes specified by hd−2 from the TASP 〈γ0(k)〉d−2

with vanishing values. On these planes, 〈γ0(k)〉0 =

〈γ0(k)〉1 = · · · = 〈γ0(k)〉d−3 = 0 further determine the
(d − 1)th order BISs Bd−1. Finally, the dth-order BISs
Bd and the dth-order topological charges shall be found
by observing 〈γ0(k)〉d−1 = 0 and 〈γ0(k)〉d = 0 in the
(d− 1)th BISs.
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FIG. 6: Dynamical characterization of 2D QAH model. (a)-

(c) The TASP 〈σy(k)〉y and 〈σx(k)〉x,z, where the vanishing
polarization marked as the black, red, and blue dashed line
presents the interface with h0,1,2(k) = 0, respectively. The
first-order BISs B1 (two black dashed line) are identified by

〈σy(k)〉y = 0 in (a). The second-order BISs B2 are four points

(green) at (−π,−π), (−π, 0), (0,−π), and (0, 0), which are

given by 〈σx(k)〉x = 0 on the first-order BISs B1 in (b). The

second-order topological charges C(2)1 and C(2)2 at (−π/2,−π)

and (π/2,−π) are determined by h2(k̃) = 0 of 〈σx(k)〉z on
the first-order BISs B1 in (c). (d) The normalized dynamic
field in σ̃z spin subspace characterize the properties of the

topological charges, where C(2)1 = 1 in the region h1(k̃) < 0
(light-red thick-solid curves) is enclosed by the second-order

BISs B2 and gives the Chern number Ch1 = C(2)1 = 1. Here
the other parameter is tso = t0.

Appendix C: Another dynamical characterization
scheme

We provide another dynamical characterization
scheme by quenching all (pseudo)spin axes and mea-
suring multiple (pseudo)spin axis. On the other hand,
we notice that the configurations of the high-order BISs
and high-order topological charges are sharply different
if choosing different components (hi) of the Hamiltonian
for definition. Here we take the different h-components to
define the high-order topological charges compared with
the previous results.

We quench s axes and measure the same axes for de-
termination of sth-order high-order BISs through TASP,

Bs = {k ∈ BZ|〈γ0〉0 = · · · = 〈γs−1〉s−1 = 0}, (C1)

and then the sth-order topological charges are identified
by quenching the remaining axes and only measuring the
γs−1 component, i.e. 〈γs−1(k)〉j with j = s, s+ 1, · · · , d.

We further define

Θj(k̃) ≡ − lim
k→k̃

sgn[hs−1(k)]

Nk
〈γs−1(k)〉j (C2)

in (pseudo)spin subspace with the coordinate system
γ̃s-γ̃s+1- · · · -γ̃d, where Nk̃ is a normalization factor.
Near the monopole charge, the dynamic field satisfies

Θj(k̃)|k̃→gn
= h

(s−1)
so,j (k̃), thus the high-order topologi-

cal charge is determined directly by C(s)
n = sgn[JΘ(gn)]

in the linear case. Note that the above dynamical char-
acterization scheme is same with that in previous results
for the determination of first-order topological charges.
We next numerically examine the 2D QAH model and
3D chiral topological insulator model, and only consider
the highest-order cases.

For 2D QAH model H2D(k) = hx(k)σx + hy(k)σy +
hz(k)σz, we reselect

h0 = hy = my + tso sin ky,

h1 = hx = mx + tso sin kx,

h2 =hz = mz − t0 cos kx − t0 cos ky.

(C3)

By quenching (my,mx,mz) from (30t0, 0, 0) to (0, 0,−t0)
for hy and measuring the spin polarization of γy-

component, the TASP 〈σy(k)〉y is obtained. We ob-

serve that the first-order BISs B1 are identified by
〈σy(k)〉y = 0, which are two lines in Fig. 6(a). Further,

we quench the (my,mx,mz) of system from (0, 30t0, 0)
to (0, 0,−t0) for hx and from (0, 0, 30t0) to (0, 0,−t0) for
hz. After only measuring the spin polarization of γx-
component, the TASP 〈σx(k)〉x,z are obtained. We ob-
serve that the second-order BISs B2 present four points
at (−π,−π), (−π, 0), (0,−π), and (0, 0), which are given

by 〈σx(k)〉x = 0 on the first-order BISs B1 in Fig. 6(b).

Finally, two second-order topological charges C(2)
1 and

C(2)
2 at (−π/2,−π) and (π/2,−π) are determined by

h2(k̃) = 0 of 〈σx(k)〉z on the first-order BISs B1, as
shown in Fig. 6(c). The bulk topology is determined

by C(2)
1 = 1 enclosed by the second-order BISs B2, i.e.

Ch1 = C(2)
1 = 1.

We further consider the 3D chiral topological insulator
model H3D(k) =

∑3
i=0 hi(k)γi and reselect the compo-

nent hi as follows:

h0 = m2 + tso sin ky,

h1 = m1 + tso sin kx,

h2 = m3 + tso sin kz,

h3 =m0 − t0(cos kx + cos ky + cos kz),

(C4)

where the γ matrices are taken as γ0 = σy ⊗ 1, γ1 =
σx ⊗ 1, γ2 = σz ⊗ τz, and γ3 = σz ⊗ τx. When
the quench is firstly performed by suddenly varying
(m0,m1,m2,m3) from (0, 0, 30t0, 0) to (1.5t0, 0, 0, 0) for
h0 and then the pseudospin polarization of γ0-component
is measured, we observe that the first-order BISs B1
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FIG. 7: Dynamical characterization of 3D chiral topological insulator. (a-d) TASP via quenching (m0,m1,m2,m3), where two

planes (orange surface) of ky = 0 and ky = −π present 〈γ0(k)〉0 = 0 which are identified the first-order BISs B1 with h0(k) = 0

in (a). Four lines of 〈γ1(k)〉1 = 0 on the first-order BISs B1 at kx = 0 and kx = −π are the second-order BISs B2 (orange lines)

in (b). The third-order BISs B3 present eight points given by 〈γ2(k)〉2 = 0 on the second-order BISs B2 (orange points) in (c).

Two third-order topological charges C(3)1 (red point) and C(3)2 (blue point) at (kx, ky, kz) = (0, 0,−2π/3) and (0, 0, 2π/3) are

determined by h3(k̃) = 0 of 〈γ2(k)〉3 on the second-order BISs B2 in(d), which gives ν3 = C(3)1 = 1. (e-h) Minimal measurement

for the TASP in kx = 0, where 〈γ0(k)〉0, 〈γ2(k)〉2, and 〈γ2(k)〉3 in (e), (f), and (g). The vanishing polarization marked as
the black, blue and green dashed line presents the interface with h0(1),2,3(k) = 0, respectively. The normalized dynamic field

characterizes the properties of the third-order topological charges in (h), where C(3)1 = 1 in the region h2(k̃) < 0 (light-red
thick-solid curves) is enclosed by B3 and gives the winding number ν3 = 1. Here the other parameter is tso = t0.

are identified by 〈γ0(k)〉0 = 0, which are two planes
of ky = 0 and ky = −π, as shown in Fig. 7(a). Sec-
ondly, we quench (m0,m1,m2,m3) from (0, 30t0, 0, 0) to
(1.5t0, 0, 0, 0) for h1 and measure the pseudospin po-
larization of γ1-component, the second-order BISs B2

are identified by 〈γ1(k)〉1 = 0, which are four lines on
the first-order BISs B1 at kx = 0 and kx = −π, as
shown in Fig. 7(b). Thirdly, we quench (m0,m1,m2,m3)
from (0, 0, 0, 30t0) to (1.5t0, 0, 0, 0) for h2 and from
(0, 0, 0, 0) to (1.5t0, 0, 0, 0) for h3. By only measuring
the pseudospin polarization of γ2-component, the TASP
〈γ2(k)〉2,3 are obtained. We observe that the third-order

BISs B3 present eight points given by 〈γ2(k)〉2 = 0 on
the second-order BISs B2, as shown in Fig. 7(c). Fi-

nally, two third-order topological charges C(3)
1 and C(3)

2

at (kx, ky, kz) = (0, 0,−2π/3) and (0, 0, 2π/3) are deter-

mined by h3(k̃) = 0 of 〈γ2(k)〉3 on the second-order BISs
B2, as shown in Fig. 7(d). Thus the bulk topology is

determined by C(3)
1 = 1 enclosed by the third-order BISs

B3, i.e. ν3 = C(3)
1 = 1.

Besides, we also give the 2D measurement to deter-
mine the bulk topology based on the minimal scheme of
Appendix B. For this 3D model, the second-order BISs
B2 must be on 2D planes. One can measure the TASP
〈γ1(k)〉1 on 2D planes after quench, then 〈γ1(k)〉1 = 0
is for all k on 2D planes of kx = 0 and kx = −π.
Therefore, the third-order BISs B3 and the correspond-
ing third-order topological charges are obtained by the
TASP 〈γ0(k)〉0 and 〈γ2(k)〉2,3, as shown in Figs. 7(e-g).

The bulk topology is characterized by C(3)
1 = 1, as shown

in Fig. 7(h).
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