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Planar Josephson junctions provide a versatile platform, alternative to the nanowire-based geom-
etry, for the generation of the Majorana bound states, due to the additional phase tunability of the
topological superconductivity. The proximity induction of chiral magnetism and superconductivity
in a two-dimensional electron gas showed remarkable promises to manipulate topological supercon-
ductivity. Here, we consider a Josephson junction involving a skyrmion crystal and show that the
chiral magnetism of the skyrmions can create and control the Majorana bound states without the
requirement of an intrinsic Rashba spin-orbit coupling. Interestingly, the Majorana bound states
in our geometry are realized robustly at zero phase difference at the junction. The skyrmion ra-
dius, being externally tunable by a magnetic field or a magnetic anisotropy, brings a unique control
feature for the Majorana bound states.

The unification of non-trivial spin texture and supercon-
ductivity via advanced interface engineering is a futuris-
tic approach to create and manipulate non-Abelian Ma-
jorana bound states (MBS) for their controlled usage in
fault-tolerant topological quantum computing [1–5]. The
nanoscale control of magnetism not only relaxes the need
for a specific form of Rashba spin-orbit coupling, but also
motivates for a magnetic field-free platform for the braid-
ing of the MBS [6–12]. Despite numerous successes in the
search for the MBS in one-dimensional geometries, the
associated limitations such as the intrinsic instabilities
of one-dimensional systems, the need for fine tuning of
parameters, and the technological obstacles in physical
implementation, suggest to look for a two-dimensional
platform [13, 14]. The discovery of topological super-
conductivity in phase-controlled planar Josephson junc-
tions is, therefore, a major step towards the realization
of a two-dimensional array of MBS for designing scalable
braiding protocols [15–18]. The Josephson junction ge-
ometry provides additional control to tune the MBS by
changing the shape of the junction, strain and unconven-
tional spin-orbit coupling [19–23]. A time-reversal invari-
ant topological superconductivity can also be induced by
placing the Josephson junction on top of a strong topo-
logical insulator [24]. Previous works on the Josephson
junction-based platforms, however, revealed the require-
ments of a strong intrinsic Rashba spin-orbit coupling
and π-phase biasing of the Josephson junction. These
constraints pose serious challenges in the detection and
manipulation of the MBS under realistic conditions. Chi-
ral magnetism in proximity to an s-wave superconductor
generates exotic effects including the appearance of the
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Majorana modes [25–32]; however, the location and sta-
bility of the Majorana states in these platforms are diffi-
cult to anticipate due to their non-localized nature.

In our considered geometry, the planar Josephson
junction, composed of a two-dimensional electron gas
and an s-wave superconductor, is placed on top of a
Néel-type skyrmion crystal (SkX) in such a way that the
two-dimensional electron gas experiences the spatially-
varying magnetic field from the bottom SkX and it is
also proximitized to the electron pairing from the top
superconductors, as described in Fig. 1a. The interplay
between the SkX spin texture and the proximity-induced
superconductivity leads to topological superconductivity
near the middle quasi-one-dimensional channel of the
Josephson junction with localized MBS at its two ends.
The advantages of using the SkX are: (i) the chiral
magnetism generates a robust fictitious gauge field, that
can also be visualized as a spin-orbit coupling, and a
local Zeeman field which remove the stringent criteria of
a strong Rashba-type spin-orbit coupling and, therefore,
essentially expands the region of parameter space to
realize the MBS, (ii) the existence of the MBS can be
further controlled externally by tuning the skyrmion
radius, and (iii) usual planar Josephson junctions are
required to be phase biased with a phase difference
ϕ = π, between the two superconducting regions, to
minimize the critical magnetic field for the topological
transition and to maximize the chemical-potential
range within which the MBS appear [15]; the current
SkX-based Josephson junction is not required to be
phase biased and the MBS can be found robustly at
ϕ = 0. Using the zero-energy feature of the quasi-
particle states with a topological energy gap, sharp
localization of these states, charge-neutrality condition,
two order parameters, viz. Majorana polarization and
curvature of the density of states, we confirm the
existence of the MBS in our set up. The tunable phase
difference and the skyrmion radius together provide
broad, flexible control of the MBS which is indispens-
able to achieve the long-sought-after goal of the braiding.
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FIG. 1. Device geometry and a skyrmion crystal.
a Planar Josephson junction on top of a skyrmion crys-
tal. The two-dimensional electron gas (2DEG) exhibits both
proximity-induced superconductivity from the top supercon-
ductor (SC) layers and spatially-varying magnetism from the
bottom skyrmion crystal that is created in the ferromagnet
due to the competition between exchange interactions in the
ferromagnet (FM) and the heavy metal or heavy insulator
(HM/HI), with a field or anisotropy. The zero-energy Majo-
rana bound states (shown as yellow bubbles) are localized at
the two ends of the quasi-one-dimensional metallic channel.
b The skyrmion crystal spin texture, spontaneously gener-
ated in a Monte Carlo simulation using a 100×100×6 lat-
tice with ferromagnetic exchange interaction strength J = 1,
Dzyaloshinskii-Moriya interaction strength D = 0.3J , mag-
netic field Hz = 0.1J , spin amplitude S = 1, and easy-plane
anisotropy A = 0.01J . The colorbar in b denotes the z com-
ponent of the magnetization mz.

Results
Theoretical set up. For the generation of the SkX,
we consider a heterointerface of a thin-layer ferromagnet
and a heavy compound (metal or insulator). The advan-
tage of the heavy compound is that it helps to generate
a large Dzyaloshinskii-Moriya interaction (DMI) at the
interface between the ferromagnet and the heavy com-
pound. The cooperation between the DMI and the fer-
romagnetic exchange interaction of the ferromagnet pro-
duces a triangular SkX, in the presence of a magnetic
field or an anisotropy. Our Monte Carlo simulations re-
veal that columns of skyrmions, arranged in a triangular
array, appear spontaneously within a six-layer ferromag-
net, although the DMI exists predominantly at the inter-

face between the ferromagnet and the heavy compound,
as shown in Fig. 1b. We perform simulated annealing
using the Metropolis energy-minimization algorithm, for-
mulated with the following Hamiltonian

H=− J
∑
〈ij〉

Si · Sj −D
∑
〈ab〉

(ẑ × r̂ab) · (Sa × Sb)

−Hz

∑
i

Szi −A
∑
a

|Sza|2, (1)

where J is the nearest-neighbor ferromagnetic exchange
interaction strength in the ferromagnet, D is the DMI
strength at the bottom ferromagnet layer that interfaces
with the heavy compound, Hz is the perpendicular mag-
netic field, A is the easy-plane magnetic anisotropy at
the bottom ferromagnet layer, i,j are the site indices in
the entire ferromagnet, and a,b are the two-dimensional
site indices at the bottom ferromagnet layer. The DMI,
present dominantly at the interface between the ferro-
magnet and the heavy compound, generates a Néel-type
SkX [1, 2, 33]. Besides the engineered interfaces, the SkX
naturally appears in a wide variety of materials [36–39]
that can also be utilized in the proposed device geome-
try, instead of the combination of the ferromagnet and
the heavy compound. Also, the SkX can be artificially-
created without the need for any external magnetic field
by nanopatternization [40].

The spin texture Bi on the top layer of the ferromag-
net, obtained from the Monte Carlo simulations, is used
to obtain the low-energy spectrum of the planar Joseph-
son junction by solving self-consistently the Bogoliubov-
de Gennes equations. Since the SkX lies underneath
the two-dimensional electron gas without a finite sep-
aration between them, it is reasonable to assume that
the deviation in the magnetic fringing field in the two-
dimensional electron gas from the original SkX texture is
negligible. The proximity-induced superconductivity in
the two-dimensional electron gas, which is subject to the
SkX spin texture Bi, is described by the Hamiltonian

HBdG =−t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(4t− µ)c†iσciσ

− 1

2
gµB

∑
i,σ

(Bi · σ)σσ′c†iσciσ′ +
∑
i

(∆ic
†
i↑c
†
i↓ +H.c.),

(2)
where t = ~2/(2m∗a2) is the hopping energy, m∗ is
the effective mass of electrons, a is the unit spacing
of the lattice grid, µ is the chemical potential, and
∆i is the induced local s-wave pairing amplitude on
the two sides of the Josephson junction that are at-
tached to the top Al layer. The pairing amplitude
∆i =−Ui〈ci↑ci↓〉 is calculated self-consistently using the
onsite attractive interaction strength Ui of the induced
superconducting states in the two-dimensional electron
gas. Ui = U in the two-dimensional electron gas below
the Al superconductors and zero in the middle metallic
channel. The value U = 2 meV is determined by setting
∆i = 0.2 meV, the estimated proximity-induced gap
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FIG. 2. Emergence of the Majorana bound states with changing chemical potential. a The quasiparticle spectrum
of the planar Josephson junction at phase difference ϕ= 0 with varying chemical potential (µ), showing the emergence of the
zero-energy Majorana bound states. The colorbar represents the Majorana polarization |PM,n| that displays the Majorana
character of the quasiparticle states. The skyrmion crystal with a skyrmion diameter Dsk = 10a was obtained using a magnetic
field Hz=0.95J and a Dzyaloshinskii-Moriya interaction strength D=1.6J in the Monte Carlo calculations. b, c The Majorana
polarization |PM,1| of the first positive eigenstate and the curvature of the density of states at zero energy ∂2D

∂E2 , with varying
µ, showing the µ range within which the Majorana bound states appear. The delta-function-like peaks are associated with
the oscillations of the MBS with changing µ. d, e The profiles of the local density of states (DOS) and the charge DOS at
µ=0.5 meV. The green rectangle in d indicates the quasi-one-dimensional metallic channel of the planar Josephson junction at
the ends of which the Majorana bound states appear. f, g The profiles of the local DOS and the charge DOS at µ=−0.5 meV,
in the non-topological regime.

magnitude for a two-dimensional electron gas with
an SC interface [41, 42], without any spin texture.
The g factor and the effective mass are set to g = 50
and m∗ = 0.017m0 for InSb [43, 44]. The lattice grid
spacing used is a = 10 nm [45] with which the hopping
energy becomes t = 22.44 meV. The amplitude of the
spin texture Bi is set to B0 = 0.3 T, compatible with
the saturation magnetization Ms = 1.7 × 106 A/m for
CoFe [10, 11]. HM/ferromagnet interfaces with Pt, Pd,
Ag, Ir, and Au as the HM have been developed together
with Co, Fe, and their alloys (see e.g. Ref. 46). We

present results for a planar Josephson junction with
length Ly = 2 µm, transverse length of the SC leads
Lx = 200 nm, and width of the quasi-one-dimensional
metallic channel W =50 nm.

Emergence of the MBS. The low-energy spectrum,
shown in Fig. 2a, reveals that there exist multiple ranges
of the chemical potential within which the zero-energy
MBS appear. To determine the Majorana character of
the quasiparticle states, we compute the Majorana po-
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FIG. 3. Skyrmion control of the Majorana bound states. a-c The skyrmion crystals of different skyrmion diameters
a Dsk = 12a, b Dsk = 14a, c Dsk = 16a, obtained in the Monte Carlo calculations using a a magnetic field Hz = 0.8J , a
Dzyaloshinskii-Moriya interaction strength D=1.4J , b Hz=0.45J , D=J , and c Hz=0.23J , D=0.6J . d-f The corresponding
quasiparticle spectra of the planar Josephson junction at the phase difference ϕ=0 with varying chemical potential, obtained by
solving the Bogoliubov-de Gennes equations with the above skyrmion crystal spin configurations. The colorbar in d-f represents
the Majorana polarization |PM,n| of the quasiparticle states.

larization, defined as [5, 6]

PM,n = 2
∑
i

uni↓v
n∗
i↓ − uni↑vn∗i↑ , (3)

where uni↑ and vni↑ are the Bogoliubov-de Gennes quasi-
particle and quasihole amplitudes, respectively, corre-
sponding to the nth eigenstate, spin ↑, and site i. As
evident from Fig. 2a, |PM,n| ≈ 1 indicates the occurrence
of a pair of robust MBS with a finite topological energy
gap. The Majorana polarization |PM,1| of the first posi-
tive eigenstate, plotted with µ in Fig. 2b, acquires finite
values within the range of µ, in which the MBS emerge.
The delta function-like peaks in |PM,1| are the signatures
of the Majorana oscillations, which is also clearly seen in
the low-energy spectrum in Fig. 2a, originating due to
the overlap of the MBS wave functions at the two ends
of the finite-length quasi-one-dimensional channel. The
Majorana oscillations in |PM,1| have also been confirmed
from the calculations of a one-dimensional wire (for re-
sults in the wire geometry, see Supplementary Note 4).
The Majorana polarization, with a modification in the
expression used in Eq. 3, was proposed to be probed in
this planar Josephson junction geometry using the spin-
selective Andreev reflection technique [49]. To further
characterize the evolution of the topological supercon-
ductivity with changing a parameter, such as µ, we look

at the curvature of the density of states at zero energy
∂2D
∂E2 , where D(E) is defined as [7]

D(E) =
∑
i,n,σ

(|uniσ|2 + |vniσ|2)δ(E − En), (4)

and δ(E−En) is modeled using a Gaussian with broaden-
ing 0.001 meV (� t). The second derivative is computed
using the second-order finite-difference method. These
two quantities, |PM,1| and ∂2D

∂E2 , may provide additional
insight in the experimental detection of the MBS, besides
the conventional zero-bias conductance peak [8] which
often leads to ambiguity due to other possible zero-bias
states in a superconductor [9].

As shown in Fig. 2c, ∂2D
∂E2 takes finite values in the

same ranges of µ as that of the Majorana polarization
|PM,1|. The Majorana oscillations, in the form of
delta-function-like peaks, is also noticeable in ∂2D

∂E2 ,
albeit with changes in the sign. To visualize the location
of the zero-energy MBS, we show, in Fig. 2d, the profile
of the local density of states ρi

LDOS
=
∑
σ(|uiσ|2 + |viσ|2),

corresponding to the lowest positive-energy eigenstate
at µ = 0.5 meV where the Josephson junction is in the
topological superconducting regime. The sharp peaks in
ρi

LDOS
indicate that the MBS are localized predominantly

near the two ends of the quasi-one-dimensional channel.
Figure 2e shows the profile of the charge density of states
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ρi
CDOS

=
∑
σ(|uiσ|2 − |viσ|2) corresponding to the lowest

positive-energy eigenstate at µ=0.5 meV. The profiles of
ρi

LDOS
and ρi

CDOS
, at µ=−0.5 meV where the Josephson

junction is in the topologically-trivial superconducting
regime, are shown in Fig. 2f and Fig. 2g, respectively.
In this case, both the quasiparticle state and the charge
density are distributed near the middle of the quasi-
one-dimensional channel. Interestingly, a comparison
of Fig. 2e and Fig. 2g, implies an order-of-magnitude
suppression in ρi

CDOS
which is reminiscent of the local

charge-neutrality signature of the MBS and is another
confirmation of the Majorana character of this state.
The above results establish that the spin-orbit coupling,
generated by the SkX, alone can lead to the emergence
of the MBS in the planar Josephson junction devices.

Skyrmion control. The skyrmion size in a SkX is tun-
able, with remarkable precession, by an external mag-
netic field, magnetic anisotropy and advanced symme-
try protocol at heterointerfaces [53–55]. In our Monte
Carlo simulations, the skyrmion size was varied by tuning
the magnetic field and the DMI, as shown in Figs. 3a-c.
The Bogoliubov-de Gennes quasiparticle spectra at dif-
ferent skyrmion sizes, shown in Figs. 3d-f, imply that
the presence of the zero energy MBS at a given chemical
potential can be turned ON or OFF by only changing
the skyrmion properties. The minimum diameter of the
skyrmions, realized in our Monte Carlo simulations, is
10 lattice spacings for which the MBS appear in the dis-
cussed planar Josephson junction setting. With increas-
ing the skyrmion size, we find that the range of the chem-
ical potential within which the MBS appear decreases ef-
fectively, however, the oscillation amplitude of the MBS
is suppressed gradually. Therefore, the skyrmions offer a
unique ability to manipulate the localization length of the
MBS in the planar Josephson junctions. The strongly-
localized MBS in the skyrmion-tuned planar Josephson
junctions can, therefore, have advantageous over other
platforms for MBS realization in fault-tolerant topologi-
cal quantum computing.

The broken inversion symmetry at the interface
between the two-dimensional electron gas and the
superconductor, often leads to a sizable intrinsic Rashba
spin-orbit coupling which is usually considered as the
primary mechanism for modifying the pairing symmetry
of the induced superconductivity [3, 4], leading to the
desired topological superconductivity. We find that
the MBS remain robust in the presence of the intrinsic
Rashba spin-orbit coupling (for details on the effect of
Rashba spin-orbit coupling, see Supplementary Note
2). By placing the SkX texture only below the middle
quasi-1D channel, we didn’t find robust MBS formation
(for details, see Supplementary Note 3) and hence it
suggests the significance of placing the SkX texture
below the entire Josephson junction.

Phase control. Another important control parameter,
that sets the planar Josephson junctions apart from other

φ/π φ/π
0.0

1.0a b

Q = + 1

Q = − 1

FIG. 4. Phase control of the Majorana bound states.
a Quasiparticle spectrum of the planar Josephson junction
at a chemical potential µ = 0.5 meV with changing phase
difference ϕ between the two superconducting regions. The
skyrmion diameter of the skyrmion crystal was Dsk=10a. b
Colormap of the Majorana polarization of the first positive
energy state in the plane spanned by the phase difference ϕ
and the chemical potential µ. The Majorana bound states
appear in the parameter regimes with |PM,1| ≈1, ϕ = 0
being the most favorable scenario in this set up. The cyan
and magenta dots in b represent the topological invariant,
respectively, Q = −1 (topologically nontrivial) and Q = +1
(topologically trivial).

platforms hosting the MBS, is the phase difference ϕ be-
tween the two superconducting regions of a Josephson
junction. The theoretical prediction [15] and the subse-
quent experimental discoveries [16, 17] suggest that the
Josephson junction needs to be biased by a phase dif-
ference ϕ = π to minimize the critical Zeeman field,
required for inducing the topological superconductivity.
Remarkably, in the current Josephson junction set up
with the SkX, the topological superconductivity is in-
duced at ϕ = 0, as depicted by the quasiparticle spectrum
with varying ϕ in Fig. 4a. With increasing ϕ, the MBS
move gradually from zero to higher energies, indicating
an enhancement in the localization length of the MBS.
The MBS appear again at zero energy above ϕ ≈ 3π/2.

This dephasing effect of the MBS can be understood
from the Majorana oscillations – as we find that the oscil-
lation increases with increasing ϕ in the range 0 < ϕ ≤ π
(for details, see Supplementary Note 1). The finite length
of the quasi-one-dimensional metallic channel gives rise
to the oscillations of the zero-energy MBS with varying
chemical potential µ. Furthermore, the finite width of
the metallic channel provides extra room for delocaliza-
tion of the MBS at the two ends, contributing additively
to the Majorana oscillation. In the previous works on this
geometry, a magnetic field is applied in the plane of the
planar Josephson junction which locks the phases of the
MBS to ϕ = π. In our set up, there is no magnetic field
applied to a particular direction, but a chiral magnetism
exists throughout the junction and, therefore, a π phase
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biasing is not required in this case. The middle metallic
region of the Josephson junction can be perceived as a
quasi-one-dimensional void region surrounded by the su-
perconducting two-dimensional electron gas. Additional
phase difference between the two superconducting sides,
therefore, only causes disruption to the induced topo-
logical superconductivity. This phenomenon generically
takes place at several values of the chemical potential,
as shown in Fig. 4b, where we plot the Majorana polar-
ization |PM,1| of the lowest positive energy eigenstate in
the parameter space spanned by the phase difference ϕ
and the chemical potential µ. For the chosen range of
µ values, the Majorana polarization decreases substan-
tially within the range π/2 / ϕ / 3π/2. The Majorana
oscillation in |PM,1|, however, survives up to ϕ ≈ π. At
ϕ = π, |PM,1| vanishes completely, indicating the dis-
appearance of the MBS. Therefore, ϕ = 0 is the most
favorable condition to realize the MBS in our Josephson
junction set up and the phase difference can be further
tuned to control the presence of the MBS. To check the
consistency of our assignment of MBS, we also compute
the Z2 topological index Q at several points of the above
phase diagram using an effective one-dimensional Hamil-
tonian of the planar Josephson junction with the SkX. In
Fig. 4b, we show the topological invariant which confirms
the phase diagram.

Conclusion
The skyrmions bring outstanding control functionalities
to the planar Josephson junctions for the creation
and manipulation of the zero-energy MBS and their
localization properties. The SkXs, being realized in an
abundance of magnetic materials and also artificially
created in patterned magnetic materials, offer a feasible
approach for advanced manipulation of the zero-energy
MBS. The proposed planar Josephson junction, com-
bined with a SkX, has the major advantages that there
is no need for a strong intrinsic Rashba-type spin-orbit
coupling and phase-biasing constraint for the realization
of the zero-energy MBS. The enhanced tunability of the
MBS in the proposed two-dimensional platform opens
up opportunities for designing feasible MBS braiding
protocols for the fault-tolerant topological quantum
computing, and investigating Majorana spectroscopy
using the multi-terminal superconducting quantum
interference devices.

Methods
Monte Carlo simulations. The SkX spin configurations
were obtained using a Lx × Ly × Lz lattice with periodic
boundary conditions along the x and y directions and open
boundary conditions along the z direction. A bias-free
sampling method, that provides a full and uniform coverage
of the phase space spanned by the spin angles, was used
for generating the completely random spin configurations.
The calculation was started at a high temperature T = 10J
with a random spin configuration and the temperature was
lowered slowly down to a low value T = 0.001J in 2000
steps. At each temperature step, 1010 Monte Carlo spin
updates were performed. In each spin update step, a new
spin direction was chosen randomly within a small cone

spanned around the initial spin direction. The new spin
configuration was accepted or rejected according to the
Metropolis energy-minimization algorithm by comparing
the total energies of the previous and the new trial spin
configurations, calculated using the Hamiltonian (1).

Self-consistent Bogoliubov-de Gennes formalism.
The Hamiltonian (2), which is quadratic in the fermionic
operators ĉiσ, can be solved by exact diagonalization via
a unitary transformation ĉiσ =

∑
n u

n
iσγ̂n + vn∗iσ γ̂

†
n, where

γ̂†n (γ̂n) is a fermionic creation (annihilation) operator
of the quasiparticle/quasiphole state in the nth energy
eigenstate. The quasiparticle amplitudes uniσ and the
quasihole amplitudes uniσ are determined by solving the
Bogoliubov-de Gennes equations:

∑
j Hijψ

n
j = εnψ

i
n, where

ψni = [uni↑, u
n
i↓, v

n
i↑, v

n
i↓]
T is the basis wave function and εn is

the nth energy eigenvalue. The Hamiltonian Hij is expressed
in the following matrix form

Hij =


H↑↑ H↑↓ 0 ∆i

H↓↑ H↓↓ −∆i 0
0 −∆∗i −H∗↑↑ −H∗↑↓

∆∗i 0 −H∗↓↑ −H∗↓↓

 , (5)

where H↑↑,↓↓ = −t(1 − δij) + (4t − µ)δij − 1/2σgµBBz,
where σ = ± for ↑↑, ↓↓, and H↑↓ = −1/2gµB(Bx + iBy).
The s-wave pairing amplitude ∆i = −Ui〈ci↑ci↓〉 is computed
using ∆i = −Ui

∑
n

[
uni↑v

n∗
i↓ (1 − f(εn)) + uni↓v

n∗
i↑ f(εn)

]
,

where Ui = U inside the two superconducting regions and
zero in the middle quasi-one-dimensional metallic channel,
f(εn) = 1/(1 + eεn/kBT ) is the Fermi-Dirac distribution func-
tion at temperature T . The self-consistency iterations were
performed until the pairing amplitudes ∆i were converged at
every lattice sites.

Calculation of topological invariant. A triangular
SkX can be described by the following spin structure

Si = S(sin θi cosφi, sin θi sinφi, cos θi), (6)

where S is the spin amplitude and the spin angles θi and φi
are defined as

θi = π min
( |r−Ri|

R
, 1
)
, φi = arctan

( y − yi
x− xi

)
, (7)

Ri = (xi, yi) is the skyrmion center near position r = (x, y)
and R is the skyrmion radius. To obtain an effective Hamil-
tonian for the planar JJ, we perform the following unitary
transformation that rotates the local spin Si with respect to
the SkX plane normal, the z direction(

ci↑
ci↓

)
= Γ̂i

(
di↑
di↓

)
(8)

where

Γ̂i = exp
(
− i θi

2

ẑ × Si
|ẑ × Si|

· σ
)
. (9)

The Hamiltonian (2) in the main text, in the transformed
basis, becomes

H=−
∑

〈ij〉,σ,σ′

t′σσ′d†iσdjσ′ +
∑
i,α

(4t− µ− 1

2
gµBB0σ

z
σσ)d†iσdiσ

+
∑
i

(∆id
†
i↑d
†
i↓ + H.c.), (10)
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where the new hopping integral is given by

t′ =

(
−t −α∗
α −t∗

)
, (11)

α being the strength of the generated SOC.
To obtain an effective one-dimensional Hamiltonian, we

consider an infinitely long junction (i.e. Ly → ∞) and per-
form a partial Fourier transform di,ky,σ =

∑
j e
ikyydi,j,σ. The

resulting Hamiltonian H(x, ky) is then used to compute the
topological invariant Q, the Z2 topological index associated
with the broken chiral symmetry, given by [58]

Q = sgn
[Pf{H(x, ky = π)}

Pf{H(x, ky = 0)}

]
(12)

where ‘Pf’ denotes the Pfaffian. A topologically nontrivial
phase is determined by Q = −1, while Q = 1 represents the
trivial phase.
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Supplementary Information

Supplementary Note 1: Majorana oscillation in the
Josephson junctions
The oscillation of the Majorana bound states (MBS) is a well-
known phenomenon that appears due to the finite size effect.
In a one-dimensional geometry, e.g. a Rashba spin-orbit cou-
pled nanowire with a Zeeman exchange coupling, the proba-
bility density of the MBS, which are localized dominantly at
the two ends, decay exponentially with distance towards the
middle of the nanowire. The overlap of these two MBS wave
functions give rise to a finite splitting in energy. This split
energy gap between the MBS pair oscillates with varying a
parameter, such as the chemical potential or the Zeeman en-
ergy. In our considered planar Josephson junction geometry,
the finite length of the quasi-one-dimensional metallic channel
in the middle, therefore, naturally leads to the oscillations of
the zero-energy MBS with varying chemical potential µ. Fur-
thermore, the finite width of the quasi-one-dimensional chan-
nel provides extra room for delocalization of the MBS at the
two ends, contributing additively to the Majorana oscillation.
The oscillation amplitude, however, decreases with increasing
the length of the Josephson junction. In Fig. S1, we show
the quasiparticle spectra with varying µ at different values
of the phase difference ϕ between the two superconducting
regions of the Josephson junction. Evidently, the oscillation
amplitude increases with increasing ϕ from 0 to π. At ϕ=π,
the oscillation becomes large and the MBS completely vanish.
The oscillation can also be visible in the Majorana polariza-
tion |PM,1| of the lowest positive eigenstate. In Fig. S2, we
show the variation in |PM,1| for the lowest positive eigenstate
with µ. At ϕ = 0, the oscillation is small in amplitude and
appears on the top of a significant value of the Majorana po-
larization (|PM,1|≈1). With increasing ϕ from 0 to π, the
value of |PM,1| decreases and the oscillation amplitude in-
creases simultaneously. These results explain why the MBS
disappear with increasing the phase difference ϕ from 0 to π,
as discussed in the main text.

Supplementary Note 2: Effect of Rashba spin-orbit
coupling
The broken inversion symmetry at the interface between the
two-dimensional electron gas and the superconductor, often
leads to a sizable intrinsic Rashba spin-orbit coupling which
is usually considered as the primary mechanism for modifying
the pairing symmetry of the induced superconductivity in a
one-dimensional [3] or two-dimensional geometry [4], leading
to the desired topological superconductivity. To explore
the mutual influence of the Rashba spin-orbit coupling and
the Skyrmion crystal (SkX)-generated spin-orbit coupling
on the emergence of the zero-energy MBS, we consider the
Hamiltonian HRSOC=−iα/(2a)

∑
〈ij〉,σ,σ′(σ × r̂ij)

z
σσ′c

†
iσcjσ′

for the Rashba spin-orbit coupling, where α is the strength of
the Rashba spin-orbit coupling, and obtain the quasiparticle
spectrum based on the total Hamiltonian HBdG +HRSOC. In
Fig. S3, we show the quasiparticle spectra for four different
values of α. With relatively smaller values of α, e.g. a.
α= 2 meV-nm and b. α= 4 meV-nm, the zero-energy MBS
within the range -0.2 meV / µ / 0.6 meV, remain stable.
The oscillations of the MBS are minimized within this range
of µ, making the MBS more robust (i.e. localized). For
larger values of α (cases c. and d.), the MBS in the above

a

c d

e f

φ = 0 φ = 0.2π

φ = 0.4π φ = 0.6π

φ = 0.8π φ = π

b

FIG. S1. Majorana oscillation in quasiparticle spec-
trum. Quasiparticle spectrum of a planar Josephson junc-
tion, attached to a skyrmion crystal as considered in Fig.2
of the main text, with varying chemical potential µ at dif-
ferent values of the phase difference ϕ between the two su-
perconducting regions of the Josephson junction: a ϕ = 0,
b ϕ = 0.2π, c ϕ = 0.4π, d ϕ = 0.6π, e ϕ = 0.8π, and f
ϕ = π. The colorbar represents the Majorana polarization
|PM,1| of the lowest positive eigenstate. The intrinsic Rashba
spin-orbit coupling is set to zero. All other parameters are as
in the Fig.2 of the main text.

range of µ start to become delocalized, possibly because a
very large Rashba spin-orbit coupling interferes destructively
with the synthetic spin-orbit coupling. But remarkably,
with larger values of α, new MBS start to appear at larger
values of the chemical potential, e.g. within the range 2.2
meV / µ / 2.6 meV. Although the mutual effects of the
intrinsic Rashba spin-orbit coupling and the SkX-generated
spin-orbit coupling are rather complex, within some ranges
of µ, they cooperate to generate robust MBS with a larger
topological energy gap.

Supplementary Note 3: Skyrmion crystal below the
quasi-1D channel
We studied the possibility of obtaining the MBS with the
SkX, lying only below the non-superconducting region of
the planar Josephson junction. As shown by the spectra in
Fig. S4 for three different values of the DMI strength, there
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FIG. S2. Majorana oscillation in Majorana polariza-
tion. The Majorana polarization |PM,1| of the lowest positive
energy eigenstate with varying chemical potential µ at differ-
ent values of the phase difference ϕ: a ϕ = 0, b ϕ = 0.2π,
c ϕ = 0.4π, d ϕ = 0.6π, e ϕ = 0.8π, and f ϕ = π. The
intrinsic Rashba spin-orbit coupling is kept at zero. All other
parameters are as in the Fig.2 of the main text.

is no signature of the formation of robust MBS with strongly
localized nature. The overall influence of the skyrmion spin
texture on the quasiparticle spectrum is lesser than the case
when the SkX is placed below the entire Josephson junction.
We would further like to stress on the fact that the planar
Josephson junction operates in a slightly different mechanism
than the 1D nanowire setting. In the 1D nanowire set up, the
topological superconductivity is realized within the nanowire,
while in the planar Josephson junction, the MBS appear in
the middle region, a region that is void of superconducting
pairing. Therefore, the influence of the skyrmion texture on
the superconducting regions is also important to realize the
strongly localized MBS in the non-superconducting channel.

Supplementary Note 4: Order parameters for the
Majorana bound states
From the solution of the Bogoliubov-de Gennes equations of
the planar Josephson junction with the realistic SkX texture,
we identify the MBS in the quasiparticle spectrum and track
the transition to the topological superconducting phase by
computing two quantities: (i) the generalized Majorana
polarization PM, proposed in Refs. [5, 6], and (ii) the second
derivative of the total density of states at zero energy, ∂2D

∂E2 ,
also called as the curvature of the density of states. The
second derivative of the local density of states at a boundary
site and at zero energy was used as an order parameter in
Ref. [7] to track the topological superconducting transition.
These quantities may provide additional insight to detect
the MBS in experiments, besides the conventional zero-bias
conductance peak [8, 12] which often leads to ambiguity due
to other possible zero-bias states in a superconductor [9]. To

a b

dc

α = 4 meV-nm

α = 6 meV-nm α = 8 meV-nm

α = 2 meV-nm

FIG. S3. Influence of Rashba spin-orbit coupling.
Quasiparticle spectrum of the planar Josephson junction as
considered in Fig.2 of the main text at phase difference ϕ=0
with varying chemical potential at different values of the
intrinsic Rashba spin-orbit coupling: a α = 2 meV-nm, b
α = 4 meV-nm, c α = 6 meV-nm, and d α = 8 meV-nm.
The colorbar represents the Majorana polarization |PM,1| of
the lowest positive eigenstate. The Majorana bound states re-
main robust in the presence of the intrinsic Rashba spin-orbit
coupling.

test the above two quantities in our set up, we first consider a
chain with Rashba spin-orbit coupling and a uniform Zeeman
exchange coupling, attached on the top and at the middle of
a quasi-one-dimensional s-wave superconductor. The BdG
quasiparticle spectrum of such a system, shown in Fig. S5a,
depicts the emergence of the zero-energy MBS within a
range of the chemical potential µ. The µ-variation of the
two above-discussed quantities, |PM,1| and ∂2D

∂E2 , are plotted
in, respectively, Fig. S5b and c. Interestingly, both these
quantities reveal sharp jumps on entering the topological
superconducting phase, similar to an order parameter in
an ordinary phase transition. The Majorana oscillations,
although not noticeable in the quasiparticle spectrum, is
visible in both |PM,1| and ∂2D

∂E2 . In the infinite-length limit,
the Majorana oscillations vanish and both these quantities
reveal a quantized feature, as shown previously in Ref. 5.
The sharp jumps, therefore, attest that these two quantities
can reliably be used to track the topological superconducting
transition in our computational framework.
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D = 1.4J D = 0.45J D = 0.23Ja b c

FIG. S4. Quasiparticle spectrum with skyrmion crystal only below the quasi-1D channel. Quasiparticle spectrum,
with varying chemical potential µ, and three different values of the Dzyaloshinskii-Moriya interaction strength a D = 1.4J , b
D = 0.45J , and c D = 0.23J . The colorbar represents the Majorana polarization |PM,1| of the lowest positive eigenstate. All
other parameters are the same as in Fig. 2 of the main text.

aa

b

c

FIG. S5. Order parameters in the wire geometry. a
Quasiparticle spectrum, with varying chemical potential µ,
of a wire of length Lx = 190a (a being the unit lattice spac-
ing) that is placed at the middle of a superconductor of size
200a×5a. A Zeeman field B = 0.3 T is uniformly present
throughout the wire. The Rashba spin-orbit coupling strength
is α = 30 meV-nm. The g-factor is g = 200. The supercon-
ducting potential is U=2 meV and the pairing amplitude ∆i

is treated self-consistently. The colorbar represents the Ma-
jorana polarization |PM,n| of the eigenstate with energy εn.
b The µ-variation of |PM,1|. c The µ-variation of ∂2D

∂E2 , the
curvature of the density of states at zero energy.

REFERENCES

[1] N. Mohanta, S. Okamoto, and E. Dagotto, “Planar topo-
logical Hall effect from conical spin spirals,” Phys. Rev. B
102, 064430 (2020).

[2] N. Mohanta, A. D. Christianson, S. Okamoto, and
E. Dagotto, “Signatures of a liquid-crystal transition in
spin-wave excitations of skyrmions,” Commun. Phys. 3,
229 (2020).

[3] N. Mohanta and A. Taraphder, “Topological superconduc-
tivity and Majorana bound states at the LaAlO3/SrTiO3

interface,” EPL (Europhysics Letters) 108, 60001 (2014).
[4] N. Mohanta, A. P. Kampf, and T. Kopp, “Supercurrent

as a probe for topological superconductivity in magnetic
adatom chains,” Phys. Rev. B 97, 214507 (2018).

[5] D. Sticlet, C. Bena, and P. Simon, “Spin and Majorana
polarization in topological superconducting wires,” Phys.
Rev. Lett. 108, 096802 (2012).

[6] N. Sedlmayr and C. Bena, “Visualizing Majorana bound
states in one and two dimensions using the generalized
Majorana polarization,” Phys. Rev. B 92, 115115 (2015).

[7] B. Scharf, F. Pientka, H. Ren, A. Yacoby, and E. M. Han-
kiewicz, “Tuning topological superconductivity in phase-
controlled Josephson junctions with Rashba and Dressel-
haus spin-orbit coupling,” Phys. Rev. B 99, 214503 (2019).

[8] K. Sengupta, I. Žutić, H.-J. Kwon, V. M. Yakovenko, and
S. Das Sarma, “Midgap edge states and pairing symmetry
of quasi-one-dimensional organic superconductors,” Phys.
Rev. B 63, 144531 (2001).

[9] L. Kuerten, C. Richter, N. Mohanta, T. Kopp, A. Kampf,
J. Mannhart, and H. Boschker, “In-gap states in supercon-
ducting LaAlO3/SrTiO3 interfaces observed by tunneling
spectroscopy,” Phys. Rev. B 96, 014513 (2017).

https://link.aps.org/doi/10.1103/PhysRevB.102.064430
https://link.aps.org/doi/10.1103/PhysRevB.102.064430
https://doi.org/10.1038/s42005-020-00489-w
https://doi.org/10.1038/s42005-020-00489-w
https://doi.org/10.1209/0295-5075/108/60001
https://link.aps.org/doi/10.1103/PhysRevB.97.214507
https://link.aps.org/doi/10.1103/PhysRevLett.108.096802
https://link.aps.org/doi/10.1103/PhysRevLett.108.096802
https://link.aps.org/doi/10.1103/PhysRevB.92.115115
https://link.aps.org/doi/10.1103/PhysRevB.99.214503
https://link.aps.org/doi/10.1103/PhysRevB.63.144531
https://link.aps.org/doi/10.1103/PhysRevB.63.144531
https://link.aps.org/doi/10.1103/PhysRevB.96.014513

	Skyrmion Control of Majorana States in Planar Josephson Junctions
	Abstract
	 References
	 References


