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We study the dynamics of an interacting quantum spin chain under the application of a linearly
increasing field. This model exhibits a type of localization known as Stark many-body localization.
The dynamics shows a strong dependence on the initial conditions, indicating that the system
violates the conventional (“strong”) eigenstate thermalization hypothesis at any finite gradient of
the field. This is contrary to reports of a numerically observed ergodic phase. Therefore, the
localization is crucially distinct from disorder-driven many-body localization, in agreement with
recent predictions on the basis of localization via Hilbert-space shattering.

Introduction.— Sufficiently strong disorder can localize
an interacting many-body system at finite energy density
of excitations (even at high temperature), a phenomenon
known as many-body localization (MBL) [1–6]. This can
be thought of as a generalization of Anderson localiza-
tion [7, 8] to the many-body case. Signatures of the MBL
phase were found experimentally, where it was observed
that the dynamics of disordered systems can halt on lab-
oratory time scales [9–12].

Recently, it was shown by Schulz et al. [13] and van
Nieuwenburg et al. [14] that some features of the MBL
phase can appear in systems without disorder. The key
ingredient is an applied field with (approximately) con-
stant gradient. From a single-particle perspective, this
applied field induces Wannier-Stark localization. It was
then demonstrated, building on earlier works using ex-
act numerical results for small chains [15] and the non-
linear Schrödinger equation [16], that this localization
is robust to the introduction of interactions for a suffi-
ciently strong applied field, a phenomenon termed Stark
(or Bloch) many-body localization (SMBL). The authors
furthermore argued that a transition from ergodicity to
localization should emerge at some finite value of the ap-
plied field. However, the authors employed exact diago-
nalization for relatively small chains up to L = 24 sites.
It is still debated whether such studies provide reliable
insight into the conceptually more interesting thermody-
namic limit [17–20]. It was shown numerically that the
MBL transition for the archetypal Heisenberg chain with
on-site disorder shifts substantially with system size [21].

As a means to explain the observation of SMBL, re-
cent theoretical studies propose Hilbert-space shatter-
ing [22] or Hilbert-space fragmentation [23] (see also
Refs. [24, 25]). The key idea is that the Hilbert space
of the system fragments into disconnected sectors, thus
preventing thermalization. While the main focus is on
fractonic models [26], the authors of Ref. [22] report a
general proof that is applicable to a wide variety of sys-
tems exhibiting local constraints, and they argue that
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FIG. 1. Cartoon of the stationary state of the spin density
〈Sz〉 as a function of position i after initializing with (a) a sin-
gle domain wall and (b) two domain walls. In the former case,
particle transport beyond a region of characteristic width ξ
is prohibited by global energy conservation; in the latter case
by local energy conservation.

this also hinders thermalization in SMBL systems, at
least for a certain class of initial states at large values
of the applied field [27]. It is argued that at large values
of the field gradient, localization might persist up to ex-
ponentially long (or even infinite) timescales. This can be
regarded as an analogy with the formation of many-body
quantum scars [28].

From the perspective of experiments, a recent study
reports the observation of SMBL in a superconducting
quantum processor [29]. SMBL has also been investi-
gated in cold-atom setups in a two-dimensional system
tilted in one direction [30], and more recently in a one-
dimensional system [31].

It is therefore of interest to numerically investigate the
fate of one-dimensional SMBL as reported in Refs. [13,
14, 24, 29, 31–37]. For this purpose we employ the pow-
erful numerical machinery of the time-dependent varia-
tional principle (TDVP) [38], a method formulated in
terms of the language of matrix product states (MPS).
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The TDVP allows for investigation of system sizes far be-
yond those available to exact diagonalization, at the cost
of being limited to short times or weakly ergodic systems.
Since MBL systems are weakly entangled, this makes the
TDVP especially powerful as a tool for numerical analy-
sis of such systems [21, 39–42].

Here we show, on the basis of numerical results and
semiclassical considerations, that the aforementioned
Hilbert-space shattering precludes thermalization (in a
sense defined below) in the model exhibiting SMBL.
These results indicate that, in the thermodynamic limit,
a certain class of initial states exhibits nonergodicity at
least up to exponentially long times, for both weak and
strong gradients.

Model.— We consider a one-dimensional spin chain on
a lattice of length L with open boundary conditions, as
described by the Hamiltonian

H =

L∑

i=1

εiS
z
i +

L−1∑

i=1

[
J(Sx

i S
x
i+1 + Sy

i S
y
i+1) + ∆Sz

i S
z
i+1

]
.

(1)
Here Sx, Sy, and Sz are spin-1/2 operators. An on-site
field is applied with strength εi = Wi (we take W >
0 w.l.o.g.). In the limit ∆ → 0, this problem can be
mapped onto non-interacting spinless fermions using a
Jordan-Wigner transformation. In that case, it is well-
known that the eigenfunctions of the Hamiltonian (1)
are localized due to Wannier-Stark localization. In the
following, we take J = ∆ = 1. In the case of no applied
field W = 0, the model is the isotropic Heisenberg chain,
which thermalizes rapidly [43].

Absence of an ETH-MBL transition at finite gradi-
ent.— Here we argue that the model (1) does not permit
a transition from an ergodic phase to a localized one at
finite W , assuming that the ergodic phase satisfies the
eigenstate thermalization hypothesis (ETH) [43]. Here
we mean the ETH in a “strong” sense, meaning that the
long-time behavior of local observables does not depend
on the initial state for any choice of initial state, as long
as it has the same relevant macroscopic quantities. For
a closed system with fixed particle number (microcanon-
ical ensemble), the quantity of interest is the energy. We
will comment below on the possible implications for the
“weak” ETH, which requires only that most initial states
(possibly excluding some states with measure zero in the
Hilbert space) exhibit the aforementioned loss of mem-
ory.

Consider the scenario depicted in Fig. 1, where the
system of length L is initialized with a domain wall in the
middle of the system, such that 〈Sz〉 = 0. The dynamics
of the system is bound by conservation of energy and
particle or spin transport to the right boundary of the
system is, just like in the non-interacting case, inhibited.
No matter the value of W , there will be a certain finite
length scale ξ ≡ ξ(W ) that characterizes the width of the
domain wall in the late-time limit. In the thermodynamic
limit the system is then localized for any W > 0, where
the thermodynamic limit is understood as the limit of

taking L → ∞, followed by t → ∞. However, this is
clearly only a specific choice of the energy and not a
general case.

Nonetheless, the above argument can be generalized
to arbitrary energy by introducing more domain walls.
Consider the initial state shown in Fig. 1, with two do-
main walls. If those walls are situated at roughly L/4
and 3L/4, then we again have a state with 〈Sz〉 = 0,
but now with an energy that is close to the center of
the energy band. With a fixed distance L/2 between
the domain walls a desired energy can be reached (up
to arbitrary precision in the thermodynamic limit) by
shifting the initial position of the walls. The dynamics,
however, is locally identical to the first scenario, while
the global energy constraint no longer prevents delocal-
ization. Thermalization of the ETH-type would require
transport processes that link both domain walls. How-
ever, those processes are exponentially suppressed in the
thermodynamic limit since then the requirement ξ � L
is always satisfied. In other words, the Hilbert space is
shattered or fragmented [22, 23], and the two-wall initial
state, or more generally any state with sufficiently large
polarized regions, can persist at least up to exponentially
large timescales in ξ/L.

If, instead, we consider a finite density of domain walls
(i.e., a charge density wave initial condition), say η, then
we can identify two regimes: i) ηξ � 1: the system is
localized in the sense discussed above, since the different
domain walls are far enough apart such that the rea-
soning above applies; ii) ηξ � 1: the system is “quasi-
ergodic” and may appear thermal in the sense of exhibit-
ing ergodic grains of finite size. If one considers a finite-
size system, then such grains can exceed the size of the
system. While the system in this case is not thermaliz-
ing according to the ETH, it will still show ETH-like level
spacing statistics, given sufficient integrability-breaking.
This is an essential difference with the non-interacting
case, where no ETH-like level statistics are observed.

In a strict sense, the ETH requires that the Hilbert
space is not shattered, yet the reasoning above implies
that such shattering occurs at any W > 0. Exponen-
tially slow processes might allow for large polarized re-
gions to melt eventually. Faster thermalization has been
predicted on the basis of resonances in the single-particle
spectrum in the case where the field is purely linear [24].
Those processes might be responsible for local thermal-
ization within the region ξ. As we shall see, however,
the numerical results provide no indication of full ther-
malization for ξη . 1 on laboratory timescales even for
a constant field gradient.

It is instructive to compare the scenario considered
above to the “standard” MBL problem of the isotropic
Heisenberg chain with on-site disorder [44]. In that case,
the choice of initial state is not important for the long-
time state of the system. Compared to a Néel initial con-
dition | ↑↓ . . .〉, the domain wall initial condition merely
thermalizes somewhat more slowly in the ergodic phase
[45], and there is no analogous constraint related to local
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FIG. 2. Dynamics for the double-domain wall initial state (solid lines) and the single domain wall initial state (dashed lines)
for L = 48,∆ = 1. (a) Imbalance dynamics (2) as a function of time for various choices of W . (b) Spin density 〈Sz〉 at
t = 500 for both initial conditions, with an offset such that the rightmost domain wall is at i = 0. (c) Von Neumann entropy of
entanglement, with the bipartition at the rightmost domain wall [i = 0 in panel (b)]. Thin black lines indicate S for the single
domain wall and L = 32. Inset: saturated entropy S∞, defined as the average entropy over the time interval [100, 500], as a
function of ξ, defined as the extent of the region around i = 0 with |〈Sz(t = 500)〉| < 0.45. The red dashed line is a linear fit
through the origin.

or global energy conservation. The arguments outlined
above do not apply for standard MBL.

Method.— We compute the dynamics starting from
a product state initial condition in the Sz-basis with∑

i〈Sz
i 〉 = 0. By tracking the density imbalance

I(t) =
4

L

∑

i

〈Sz
i (t)〉〈Sz

i (t = 0)〉, (2)

one can conveniently determine whether the time-evolved
state has a memory of the initial state, in the sense of
the ETH.

Our numerical method is the time-dependent varia-
tional principle (TDVP) as applied to matrix product
states (MPS) [38]. We use a similar method as in previ-
ous works [21, 40, 46]; the reader is referred to Ref. [47]
for a recent review of MPS-based methods to simulate
dynamics. The method boils down to the projection of
the unitary dynamics onto the variational manifold of the
MPS:

d

dt
|ψ〉 = −iPMPSH|ψ〉. (3)

We use a bond dimension χ = 256 (which determines
the size of the variational manifold) and compute dynam-
ics up to t = 500. Details are provided in the Supplemen-
tary Material [48].

Density and imbalance dynamics.— We consider the
Hamiltonian (1) with open boundary conditions. We can
compare the cases where the initial state is a double do-
main wall to a single domain wall, cf. Fig. 1. In Fig. 2a
we show the imbalance dynamics. The domain wall melt-
ing quickly halts, even for a relatively weak value of the
field gradient W = 0.3. The late-time spin density is

shown in Fig. 2b. While the global energies of the initial
states are very different, the local dynamics is practi-
cally identical, showing the system does not thermalize
up to the times considered here. Moreover, the dynam-
ics does not depend strongly on system size as long as
ξ . 1/η, see Fig. 3a. As W is decreased, at a certain
value dependent on the size of the domains, the melting
domains meet, see Fig. 3b. Note the difference between
the results for W = 0.3, L = 16 and W = 0.3, L = 48:
the former is clearly delocalized, while the latter is lo-
calized. Indeed, upon inspection of Fig. 2b, we can infer
that ξ(W = 1) ≈ 8, which corresponds to the crossover
value W = 1 observed for L = 16 with η = 1/8. Hence,
W = 0.3 and η = 1/8 corresponds to the “quasi-ergodic”
regime discussed above.

There is a significant difference between the dynamics
at either side of the domain wall. This can be explained
by considering the relative signs of the interaction ∆ and
the field W . If they have the same sign (as in the case
we consider here), then it is easier for spin waves to move
“uphill.” This is because spins will lose energy by mov-
ing apart due to the antiferromagnetic coupling, which
is then compensated by the increased potential energy
from the linear field. However, at the left domain wall,
spins can only move “downhill”: spins lose energy by the
domain wall melting as well as through reduced antiferro-
magnetic coupling and very little melting of the domain
wall is permitted by local energy conservation. This phe-
nomenon was dubbed “negative current” in Ref. [36] and
is another sign of non-thermalization.

Entropy.— A frequently used measure for the ETH-
MBL transition in disordered systems is the bipartite von
Neumann entropy of entanglement:
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FIG. 3. (a) spin density 〈Sz〉 at t = 500 for various system sizes L = 16, 32, 48 and fixed W = 1 and both the double domain
wall (solid lines) and single domain wall (dashed lines) initial conditions, cf. Fig. 2b. The difference between system sizes,
visible in the “zig-zag” shape for L = 16, is due to boundary effects. (b) 〈Sz〉 at t = 500 for L = 16 and various W , using the
double domain wall initial condition. (c) as in panel (a), but for a fixed domain wall density η = 1/8.

S ln 2 = −Tr
[
ρA ln ρA

]
, ρA = TrBρ, (4)

where the system is divided into two segments A and B,
and ρ is the density matrix. In Fig. 2c we show the results
for the entanglement entropy, where the division between
segments is at the rightmost domain wall · · · ↑↑↓↓ · · · for
both configurations. No logarithmic growth of the en-
tanglement entropy with time is observed, but instead
a fast crossover from linear growth to saturation at a
constant value S∞ – a hallmark of the localized phase.
There is a very weak dependence on system size: the en-
tropy curves are plotted for different system sizes L = 32
(single wall) and L = 48 (double wall), which indicates
saturation with system size and hence area-law scaling of
the entropy. At the same time we can see very little dif-
ference between the single and double-domain wall con-
figurations. The similarity between the different initial
conditions – which have a strongly different global energy
– is another direct signature of the suppression of entan-
glement across the entire system, since it implies that
only the sites close to the position of the initial domain
wall contribute to the entropy. Indeed, the asymptotic
value of the entropy S∞ scales linearly with ξ(W ) (see the
inset of Fig. 2c). Note that S∞ determines the smallest
W that can be reached numerically, since the numerical
max(S) = log2(χ). For ξ � L, we find this leads, with
reasonable numerical resources, to W & 0.3 (see Sup-
plementary Material [48]). This value is deep into the
regime identified as ergodic in Refs. [13, 14], where it is
argued that a transition from an ergodic to a localized
regime occurs at W ≈ 1.

Stability of the domain wall.— Thus far, we have con-
sidered two types of initial conditions: a single domain
wall and a double domain wall configuration. One may
wonder how robust the halting of transport and the
growth of entanglement is to changing the initial condi-
tion. We consider the following adaptation: instead of a

“hard” domain wall in the double-domain wall configura-
tion, we replace the step in spin density by a Néel region
of length `. For example, by flipping two spins we obtain
an initial state · · · ↑↑↓↑↓↓ · · · , corresponding to a Néel
region of length ` = 2. The introduction of this region
acts as a region of effectively high local temperature, and
might be expected to aid delocalization. Numerical re-
sults for the spin and entanglement dynamics are shown
in Fig. 4 for the choice W = 0.5. Comparing Figs. 4a
and 2b, we observe that the melting of the polarized re-
gion (vertical dashed lines in Fig. 4b) at the right domain
wall is largely unaffected by introducing the Néel region,
whereas the left density profile looks more similar to the
right one. Despite this “symmetrization,” a finite po-
larized region remains in the long-time limit. Both the
halting of transport and the saturation of the entropy of
entanglement are therefore robust upon including these
Néel regions to the system. Local thermalizing regions
do not lead to melting across larger distances and fine-
tuning the initial condition is not necessary for observing
non-ergodicity.

Discussion.— We have investigated the fate of Stark
many-body localization. Crucial differences between this
type of localization and disorder-driven many-body lo-
calization are elucidated. In particular, we show that
there is no ergodic phase described by the strong ETH in
such systems, as the late-time dynamics is strongly de-
pendent on initial conditions, in agreement with the pre-
dicted mechanism of Hilbert-space shattering [22, 23]. As
can be seen from the dynamics, ξ ≈ 8 for W ≈ 1, so if one
chooses an initial state with η = 1 (the Néel state) then
W ≈ 1 is already deep into the “quasi-ergodic” regime
where melted regions overlap strongly. This explains why
an apparent transition is observed numerically [13, 14],
yet it is not of the strong ETH-type since the thermaliza-
tion (in the quasi-ergodic sense) depends strongly on the
initial state, and for large systems one can always find
initial states, such as the double-wall configuration, that
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would fully thermalize at most exponentially slowly in ξη,
if at all. Quasi-ergodic features manifest themselves only
in local thermalization within the melted region. The
dependence on the initial state (through η or an equiv-
alent quantity) furthermore prohibits the definition of a
mobility edge dependent only on energy. Such a mobility
edge was reported recently [35]. In contrast, we find that
states with strongly different energy (the single and dou-
ble domain wall configurations) can have locally identical
dynamics up to long times.

While these results convincingly show the strong ETH
is violated, the fate of the weak ETH remains an open
question. Nevertheless, from the investigation of the dy-
namics for the double-domain wall configuration with

Néel regions we can infer that the critical feature leading
to the halting of transport and entanglement growth (at
least up to the timescales considered here) is only the
length of the largest polarized region of the system. In
the space of all possible random product states, we will
find with probability one a sufficiently long polarized re-
gion of length λ with ξ � λ� L at L→∞, so that such
a state will show similar dynamics. Moreover, there will
be exponentially many (in L) such states, which confirms
the “shattering” of the Hilbert space into a large number
of disconnected sectors.

Experimentally, the system considered here was stud-
ied in Refs. [29, 31]. The authors of Ref. [31] report a
rather robust non-ergodic behavior, consistent with our
predictions here. The thermalizing phase observed in
Ref. [29] can be identified with the quasi-ergodic regime
in our work, i.e., as a finite-size effect.

It is worth pointing out more differences between
disorder-driven MBL and SMBL. In the former case,
there is substantial evidence that the transition point
from the ETH-type phase to the localized phase is it-
self localized, as per the “avalanche” mechanism [46, 49–
53]. There is no evidence of such a localized transition
point for the Wannier-Stark system. Indeed, there is
no quenched disorder present, and no subdiffusion is ob-
served. Moreover, as emphasized above, we do not ob-
serve logarithmic growth of the entanglement in time [54].

In conclusion, care must be exercised when drawing
parallels between SMBL and “conventional” MBL. In the
former case, the localization is due to Hilbert space shat-
tering, while in the latter case due to emergent local in-
tegrals of motion.

Note added.— After the initial submission of this
manuscript a related preprint appeared [55], confirm-
ing the non-ergodic properties observed here in the case
of large polarized regions. In addition, an experimen-
tal study appeared [56], confirming the existence of the
Stark-MBL phase in a system with interacting trapped
ions and observing a nonzero imbalance even with mod-
est values of the field gradient.
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Supplementary Material to “Stark many-body localization: Evidence for
Hilbert-space shattering”

NUMERICAL DETAILS

As described in the main text, the time evolution is ob-
tained by means of the time-dependent variational princi-
ple (TDVP), a matrix product state method. Such meth-
ods rely on a variational ansatz for the many-body wave
function, with a number of variational parameters con-
trolled by the bond dimension χ [1]. As we have argued,
we can define a characteristic size of the melted region
of a domain wall, ξ ≡ ξ(W ), and a density of domain
walls in the initial condition η. In the limit of ξη � 1,
we should expect that distant regions in are completely
disconnected and hence exhibit no entanglement. We
therefore would expect the low-entanglement ansatz of
the MPS to work well.

Consider Fig. 2b of the main text. For W = 0.3, we can

estimate the size of the melted region as ξ ≈ 24 sites, and
the density of domain walls in the chosen initial condition
is η = 1/24 (two domain walls with a system size L = 48).
We therefore expect numerical convergence will be lost
around W = 0.3. This is precisely what is observed,
as shown in the figure S1 where results are shown for
W = 0.2 and W = 0.3, with bond dimensions χ = 256
and χ = 512.
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FIG. S1. Dynamics for the double domain wall initial condition, for L = 48, η = 1/24 and the slope of the potential W = 0.2
(left) and W = 0.3 (right). Top panel: the imbalance as a function of time for two choices of bond dimension χ = 256 and
χ = 512. Middle panel: entropy as a function of time for the same choices of χ, where the bipartition is taken at the rightmost
domain wall. Bottom panel: difference of the density at individual sites in the system with respect to the initial density ∆n as
a function of time for χ = 512.


