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MINIMAL MASS BLOW-UP SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATIONS

WITH AN INVERSE POTENTIAL

NAOKI MATSUI

Abstract. We consider the following nonlinear Schrödinger equation with an inverse potential:

i
∂u

∂t
+∆u+ |u|

4
N u±

1

|x|2σ
u = 0

in RN . From the classical argument, the solution with subcritical mass (‖u‖2 < ‖Q‖2) is global and bounded in
H1(RN ). Here, Q is the ground state of the mass-critical problem. Therefore, we are interested in the existence
and behaviour of blow-up solutions for the threshold (‖u0‖2 = ‖Q‖

2
). Previous studies investigate the existence

and behaviour of the critical-mass blow-up solution when the potential is smooth or unbounded but algebraically
tractable. There exist no results when classical methods can not be used, such as the inverse power type potential.
However, we construct a critical-mass initial value for which the corresponding solution blows up in finite time.
Moreover, we show that the corresponding blow-up solution converges to a certain blow-up profile in virial space.

1. Introduction

We consider the following nonlinear Schrödinger equation with an inverse potential:

(NLS±)











i
∂u

∂t
+∆u+ |u|

4
N u±

1

|x|2σ
u = 0,

u(t0) = u0

in RN , where

σ ∈

(

0,min

{

N

2
, 1

})

.(1)

Then, (NLS±) is locally well-posed in H1(RN ) (e.g., see [4]). This means that for any u0 ∈ H1(RN ), there exists a
unique maximal solution u ∈ C1((−T∗, T ∗), H−1(RN ))∩C((−T∗, T ∗), H1(RN )). Moreover, the mass (i.e., L2-norm)
and energy E of the solution are conserved by the flow, where

E(u) :=
1

2
‖∇u‖22 −

1

2 + 4
N

‖u‖
2+ 4

N

2+ 4
N

∓
1

2
‖|x|−σu‖22.

Furthermore, there is a blow-up alternative

T ∗ < ∞ ⇒ lim
tրT∗

‖∇u(t)‖22 = ∞.

1.1. Critical problem. Firstly, we describe the results regarding the mass-critical problem:

(CNLS)







i
∂u

∂t
+∆u+ |u|

4
N u = 0,

u(t0) = u0.

In particular, (NLS±) with σ = 0 is attributed to (CNLS).
According to a classical variational argument ([16]), there exists a unique classical solution of

−∆Q+Q− |Q|
4
N Q = 0, Q ∈ H1(RN ), Q > 0, Q is radial
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2 N. MATSUI

(see [1, 7]) which is called the ground state. For u ∈ H1(RN ), if ‖u‖2 = ‖Q‖2 (‖u‖2 < ‖Q‖2, ‖u‖2 > ‖Q‖2), we
say that u has a critical mass (subcritical mass, supercritical mass, respectively). Here, Ecrit(Q) = 0 holds, where
Ecrit is the critical energy. Moreover, the ground state Q attains the optimal constant for the Gagliardo-Nirenberg
inequality

‖u‖
2+ 4

N

2+ 4
N

≤

(

1 +
2

N

)(

‖u‖2
‖Q‖2

)
4
N

‖∇u‖
2
2 .

Therefore, for any u ∈ H1(RN ),

Ecrit(u) ≥
1

2
‖∇u‖

2
2

(

1−

(

‖u‖2
‖Q‖2

)
4
N

)

.

This inequality means that for any initial value with subcritical mass, the corresponding solution for (NLS) is global
and bounded in H1(RN ).

Regarding critical mass, we consider

S(t, x) :=
1

|t|
N
2

Q
(x

t

)

e−
i
t ei

|x|2

4t ,

which is the solitary wave solution u(t, x) = Q(x)eit to which the pseudo-conformal transformation

u(t, x) 7→
1

|t|
N
2

u

(

−
1

t
,±

x

t

)

ei
|x|2

4t

applied. Then, S is also a solution for (CNLS) and

‖S(t)‖2 = ‖Q‖2 , ‖∇S(t)‖2 ∼
1

|t|
(t ր 0),

meaning S is a minimal-mass blow-up solution. Furthermore, up to the symmetries of the flow, the only critical-mass
finite blow-up solution for (CNLS) is S ([10]).

Regarding supercritical mass, there exists a solution for (CNLS) such that

‖∇u(t)‖2 ∼

√

log
∣

∣log |T ∗ − t|
∣

∣

T ∗ − t
(t ր T ∗)

([12, 13]).

1.2. Main results. For (NLS±), it is immediately clear from the classical argument that if an initial value u0 has
a subcritical mass, then the corresponding solution is global and bounded in H1(RN ).

In contrast, regarding critical mass in (NLS+), we obtain the following result:

Theorem 1.1 (Existence of a minimal-mass blow-up solution). For any energy level E0 ∈ R, there exist t0 < 0
and a critical-mass radial initial value u(t0) ∈ Σ1(RN ) with E(u0) = E0 such that the corresponding solution u for
(NLS+) blows up at T ∗ = 0. Moreover,

∥

∥

∥

∥

∥

u(t)−
1

λ(t)
N
2

P

(

t,
x

λ(t)

)

e
−i b(t)4

|x|2

λ(t)2
+iγ(t)

∥

∥

∥

∥

∥

Σ1

→ 0 (t ր 0)

holds for some blow-up profile P , positive constants C1(σ) and C2(σ), positive-valued C1 function λ, and real-valued
C1 functions b and γ such that

P (t) → Q in H1(RN ), λ(t) = C1(σ)|t|
1

1+σ (1 + o(1)) , b(t) = C2(σ)|t|
1−σ
1+σ (1 + o(1)) , γ(t)−1 = O

(

|t|
1−σ
1+σ

)

as t ր 0.

Here, Σ1 is defined as

Σ1 :=
{

u ∈ H1
(

R
N
) ∣

∣ xu ∈ L2
(

R
N
)}

.

On the other hands, the following results hold in (NLS−).
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Theorem 1.2 (Non-existence of a radial minimal-mass blow-up solution). Assume N ≥ 2. If u0 ∈ H1
rad(R

N ) such
that ‖u0‖2 = ‖Q‖2, the corresponding solution u for (NLS−) is global and bounded in H1(RN ).

See Appendix A for the proof.

Theorem 1.3. For any δ > 0, there exists u0 ∈ Σ2 such that ‖u0‖2 = ‖Q‖2 + δ and the corresponding solution u

for (NLS−) blows up at finite time.

This is a consequence of [9].

1.3. Outline of proof. We will now outline the proof for Theorem 1.1.
In Section 2, we describe some basic statements that are used in the proof of Theorem 1.1.
In Section 3 (and Appendix B), we construct a blow-up profile and introduce the decomposition of functions.
From Section 5 to Section 9, we prove Theorem 1.1 using the technique described in Le Coz-Martel-Raphaël [8]

and Martel-Szeftel [14].
In Section 5, we set an initial value and decompose the corresponding solution for (NLS+) into a core part and

remainder part. By rescaling the time variable, we consider an equation for the remainder part in rescaled time
and estimate the modulation equations of the parameters for decomposition.

In Section 6, by using the coercivity of the linearised Schrödinger operator, we estimate the energy of the
remainder part.

In Section 7, by using bootstrapping, we justify the arguments in Sections 6.
In Section 8, we restore the time variable.
In Section 9, we complete the proof of Theorem 1.1.

1.4. Previous results. We describe previous results regarding the following nonlinear Schrödinger equation with
a potential:

(PNLS)







i
∂u

∂t
+∆u + |u|

4
N u+ V u = 0,

u(t0) = u0

in RN .

Theorem 1.4 ([9]). We assume that V ∈
(

Lp(RN ) + L∞(RN )
)

∩ C1(RN ) for some p ∈ [1,∞] ∩ (N2 ,∞] and

∇V ∈ Lq(RN ) + L∞(RN ) for some q ∈ [2,∞] ∩ (N,∞]. Then, there exist t0 < 0 and a critical-mass radial initial
value u(t0) ∈ Σ1(RN ) such that the corresponding solution u for (PNLS) blows up at T ∗ = 0. Moreover,

∥

∥

∥

∥

∥

u(t)−
1

λ(t)
N
2

Q

(

x+ w(t)

λ(t)

)

e
−i b(t)4

|x+w(t)|2

λ(t)2
+iγ(t)

∥

∥

∥

∥

∥

Σ1

→ 0 (t ր 0)

holds for some positive-valued C1 function λ, real-valued C1 functions b and γ, and RN -valued C1 function w such
that

λ(t) = |t| (1 + o(1)) , b(t) = |t| (1 + o(1)) , γ(t)−1 = O
(

|t|−1
)

, |w(t)| = o(|t|)

as t ր 0.

Theorem 1.5 (Carles [2]). If V = E · x for some E ∈ RN , then (PNLS) has a finite time blow-up solution

S(t, x) :=
1

|t|
N
2

Q

(

x+ t2E

t

)

e
i

(

|x+t2E|2

4t − 1
t
−
√
2tE·x+ t3

3 |E|2
)

.(2)

In particular, ‖S‖2 = ‖Q‖2.

Theorem 1.6 (Carles and Nakamura [3]). If V = ω|x|2 for some ω > 0, then (PNLS) has a finite time blow-up
solution

S(t, x) :=
1

∣

∣

2
ω sinh

(

ωt
2

)∣

∣

N
2

Q

(

ωx

2 sinh
(

ωt
2

)

)

e
i

(

ω|x|2

8 sinh(ωt
2 ) cosh(ωt

2 )
− ω

2 sinh(ωt
2 )

+ω
4 |x|2 tanh(ωt

2 )

)

.(3)

In particular, ‖S‖2 = ‖Q‖2.
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Theorem 1.7 (E. Csobo and F. Genoud [5]). Let N ≥ 3 and V = c
|x|2 for some 0 < c <

(N−2)2

4 . Then, (PNLS)

has a finite time blow-up solution

S(t, x) :=

(

λ0

T − t

)
N
2

Q̃

(

λ0x

T − t

)

e
−i |x|2

4(T−t)
+i

λ0
2

T−t
+iγ0 ,

where T, γ0 ∈ R, λ0 > 0, and Q̃ is a unique radial positive classical solution of

−∆ϕ+
c

|x|2
ϕ− ϕ+ |ϕ|

4
N ϕ = 0.

Moreover, S is a minimal-mass blow-up solution.

Finally, we introduce the result of Le Coz, Martel, and Raphaël [8] based on the methodology of seminal work
Martel and Szeftel [14] for

(DPNLS)







i
∂u

∂t
+∆u+ |u|

4
N u+ ǫ|u|p−1u = 0,

u(0) = u0.

Theorem 1.8 (Le Coz, Martel, and Raphaël [8]). Let N = 1, 2, 3, 1 < p < 1+ 4
N , and ǫ = 1. Then, for any energy

level E0 ∈ R, there exist t0 and a radially symmetric initial value u0(t0) ∈ H1(RN ) with

‖u(t)‖2 = ‖Q‖2, E(u(t0)) = E0

such that the corresponding solution u for (DPNLS) blows up at T ∗ = 0 with a blow-up rate of

‖∇u(t)‖2 =
C(p) + otր0(1)

|t|
4

4+N(p−1)

,

where C(p) > 0.

Theorem 1.9 ([8]). Let N = 1, 2, 3, 1 < p < 1 + 4
N , and ǫ = −1. If an initial value has critical mass, then the

corresponding solution of (DPNLS) is global and bounded in H1(RN ).

1.5. Comments regarding the main results. We present some comments regarding Theorem 1.1 below.
In Theorem 1.5, Theorem 1.6, and Theorem 1.7, the blow-up solutions are explicitly constructed by the trans-

formation of a solitary wave. In contrast to these, the method used in Theorem 1.1 is not classical. In particular,
Theorem 1.1 is the first result for a unbounded potential without algebraic properties.

In terms of blow-up rates, we have |t|−
1

1+σ → |t|−
1
2 as σ → 1. This blow-up rate is different from the Theorem

1.7. This may be since (NLS±) is not locally well-posed in H1 when σ = 1. Moreover, since C1(σ) → ∞ as σ → 1,
the limit dose not make sense.

The potential in Theorem 1.4 is smooth. However, the potential in Theorem 1.1 is singular at the origin. This
difference reflect in the blow-up rate.

The method in Theorem 1.1 could also be applied to nonlinear terms of the form |x|−2σ|u|p−1u.

1.6. Notations. In this section, we introduce the notation used in this paper.
Let

N := Z≥1, N0 := Z≥0.

Unless otherwise noted, we define

(u, v)2 := Re

∫

RN

u(x)v(x)dx, ‖u‖p :=

(
∫

RN

|u(x)|pdx

)
1
p

, f(z) := |z|
4
N z, F (z) :=

1

2 + 4
N

|z|2+
4
N .

By identifying C with R2, we denote the differentials of f and F by df and dF , respectively. We define

Λ :=
N

2
+ x · ∇, L+ := −∆+ 1−

(

1 +
4

N

)

Q
4
N , L− := −∆+ 1−Q

4
N .

Then,

L−Q = 0, L+ (ΛQ) = −2Q, L−
(

|x|2Q
)

= −4ΛQ, L+ρ = |x|2Q
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hold, where ρ is the unique radial Schwartz solution of L+ρ = |x|2Q. Furthermore, there exists µ > 0 such that

∀u ∈ H1
rad(R

N ), 〈L+ Reu,Reu〉+ 〈L− Imu, Imu〉 ≥ µ ‖u‖
2
H1 −

1

µ

(

(Reu,Q)22 + (Reu, |x|2Q)22 + (Imu, ρ)22
)

(e.g., see [11, 12, 14, 15]). We introduce

Σm :=
{

u ∈ Hm(RN )
∣

∣ |x|mu ∈ L2(RN )
}

.

Additionally, we denote by Y the set of functions g ∈ C∞(RN \ {0}) ∩ C(RN ) ∩H1
rad(R

N ) such that

∀α ∈ N0
N∃Cα, κα > 0, |x| ≥ 1 ⇒

∣

∣

∣

∣

(

∂

∂x

)α

g(x)

∣

∣

∣

∣

≤ Cα(1 + |x|)καQ(x)

and by Y ′ the set of functions g ∈ Y such that

Λg ∈ H1(RN ) ∩C(RN ).

Finally, we use . and & when the inequalities hold except for non-essential positive constant differences and ≈
when . and & hold.

2. Preliminaries

We provide the following statements regarding notations without proofs.

Proposition 2.1. For any α ∈ N0
N , there exists a constant Cα > 0 such that

∣

∣

∣

(

∂
∂x

)α
Q(x)

∣

∣

∣
≤ CαQ(x). Similarly,

∣

∣

∣

(

∂
∂x

)α
ρ(x)

∣

∣

∣
≤ Cα(1 + |x|)καQ(x) holds (e.g., [8, 9]).

Lemma 2.2. For the ground state Q,

(Q, ρ)2 =
1

2

∥

∥|x|2Q
∥

∥

2

2

holds.

Lemma 2.3. For an appropriate function w,

(

|x|2pw,Λw
)

2
= −p

∥

∥|x|pw
∥

∥

2

2
, (−∆w,Λw)2 =

∥

∥∇w
∥

∥

2

2
, (|w|pw,Λw)2 =

Np

2(p+ 2)
‖w‖p+2

p+2

hold.

Lemma 2.4 (Properties of F and f). For F and f ,

∂F

∂Re
= Re f,

∂F

∂ Im
= Im f,

∂Re f

∂ Im
=

∂ Im f

∂Re
,

∂

∂s
F (z(s)) = f(z(s)) ·

∂z

∂s
= Re

(

f(z(s))
∂z

∂s

)

,

dF (z)(w) = f(z) · w = Re (f(z)w) ,

df(z)(w1) · w2 = df(z)(w2) · w1,

∂

∂s
dF (z(s))(w(s)) = df(z(s))(w(s)) ·

∂z

∂s
+ f(z(s)) ·

∂w

∂s
,

∂

∂w

∫

RN

(F (z(x) + w(x)) − F (z(x))− dF (z(x))(w(x))) dx = f(z + w) − f(z),

L+ (ReZ) + iL− (ImZ) = −∆Z + Z − df(Q)(Z)

hold. When identifying C with R2, · is the inner product of R2.
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3. Construction of a blow-up profile

In this section, we construct a blow-up profile P and introduce a decomposition of functions.
For K ∈ N, we define

ΣK :=
{

(j, k) ∈ N0
2
∣

∣ j + k ≤ K
}

.

Proposition 3.1. Let K,K ′ ∈ N be sufficiently large. Let λ(s) > 0 and b(s) ∈ R be C1 functions of s such that
λ(s) + |b(s)| ≪ 1.

(i) Existence of blow-up profile. For any (j, k) ∈ ΣK+K′ , there exist real-valued functions P+
j,k, P

−
j,k ∈ Y ′ and

βj,k ∈ R such that P satisfies

i
∂P

∂s
+∆P − P + f(P ) + λα 1

|y|2σ
P + θ

|y|2

4
P = Ψ,

where α = 2− 2σ, and P and θ are defined by

P (s, y) := Q(y) +
∑

(j,k)∈ΣK+K′

(

b(s)2jλ(s)(k+1)αP+
j,k(y) + ib(s)2j+1λ(s)(k+1)αP−

j,k(y)
)

,

θ(s) :=
∑

(j,k)∈ΣK+K′

b(s)2jλ(s)(k+1)αβj,k.

Moreover, for some ǫ′ > 0 which is sufficiently small,
∥

∥

∥
eǫ

′|y|Ψ
∥

∥

∥

H1
. λα

(
∣

∣

∣

∣

b+
1

λ

∂λ

∂s

∣

∣

∣

∣

+

∣

∣

∣

∣

∂b

∂s
+ b2 − θ

∣

∣

∣

∣

)

+ (b2 + λα)K+2

holds.
(ii) Mass and energy properties of blow-up profile. Let define

Pλ,b,γ(s, x) :=
1

λ(s)
N
2

P

(

s,
x

λ(s)

)

e
−i b(s)4

|x|2

λ(s)2
+iγ(s)

.

Then,
∣

∣

∣

∣

d

ds
‖Pλ,b,γ‖

2
2

∣

∣

∣

∣

. λα

(
∣

∣

∣

∣

b+
1

λ

∂λ

∂s

∣

∣

∣

∣

+

∣

∣

∣

∣

∂b

∂s
+ b2 − θ

∣

∣

∣

∣

)

+ (b2 + λα)K+2,

∣

∣

∣

∣

d

ds
E(Pλ,b,γ)

∣

∣

∣

∣

.
1

λ2

(∣

∣

∣

∣

b+
1

λ

∂λ

∂s

∣

∣

∣

∣

+

∣

∣

∣

∣

∂b

∂s
+ b2 − θ

∣

∣

∣

∣

+ (b2 + λα)K+2

)

hold. Moreover,
∣

∣

∣

∣

8E(Pλ,b,γ)− ‖| · |Q‖22

(

b2

λ2
−

2β

2− α
λα−2

)∣

∣

∣

∣

.
λα(b2 + λα)

λ2
(4)

holds, where

β := β0,0 =
4σ‖|y|−σQ‖22

‖|y|Q‖22
.

proof. See [8] for details of proofs.
We prove (i). We set

Z :=
∑

(j,k)∈ΣK+K′

b2jλkαP+
j,k + i

∑

(j,k)∈ΣK+K′

b2j+1λkαP−
j,k.

Then, P = Q+ λαZ holds. Moreover, let set

Θ(s) :=
∑

(j,k)∈ΣK+K′

b(s)2jλ(s)(k+1)αc+j,k,

Φ := i
∂P

∂s
+∆P − P + f(P ) + λα 1

|y|2σ
P + θ

|y|2

4
P +ΘQ,

where P+
j,k, P

−
j,k ∈ Y ′ and βj,k, c

+
j,k ∈ R are to be determined.
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Firstly, we have

i
∂P

∂s
= −i

∑

(j,k)∈ΣK+K′

((k + 1)α+ 2j)b2j+1λ(k+1)αP+
j,k

+ i
∑

j,k≥0

b2j+1λ(k+1)αF
∂P
∂s

,−
j,k +

∑

j,k≥0

b2jλ(k+1)αF
∂P
∂s

,+

j,k +Ψ
∂P
∂s ,

where

Φ
∂P
∂s =

(

b+
1

λ

∂λ

∂s

)

∑

(j,k)∈ΣK+K′

(k + 1)αb2jλ(k+1)α(iP+
j,k − bP−

j,k)

+

(

∂b

∂s
+ b2 − θ

)

∑

(j,k)∈ΣK+K′

b2j−1λ(k+1)α(2jiP+
j,k − (2j + 1)bP−

j,k)

and for j, k ≥ 0, F
∂P
∂s

,±
j,k consists of P±

j′,k′ and βj′,k′ for (j′, k′) ∈ ΣK+K′ such that k′ ≤ k − 1 and j′ ≤ j + 1 or

k′ ≤ k and j′ ≤ j − 1. Only a finite number of these functions are non-zero. In particular, F
∂P
∂s

,±
j,k belongs to Y ′

and F
∂P
∂s

,±
0,0 =0.

Next, we have

∆P − P + |P |
4
N P =−

∑

(j,k)∈ΣK+K′

b2jλ(k+1)αL+P
+
j,k − i

∑

(j,k)∈ΣK+K′

b2j+1λ(k+1)αL−P
−
j,k

+
∑

j,k≥0

b2jλ(k+1)αF
f,+
j,k + i

∑

j,k≥0

b2j+1λ(k+1)αF
f,−
j,k +Φf ,

where

Φf = f(Q+ λαZ)−

K+K′+1
∑

k=0

1

k!
dkf(Q)(λαZ, · · · , λαZ)

and for j, k ≥ 0, F f,±
j,k consists of Q, P±

j′,k′ , and βj′,k′ for (j′, k′) ∈ ΣK+K′ such that k′ ≤ k − 1 and j′ ≤ j. Only a

finite number of these functions are non-zero. In particular, F f,±
j,k belongs to Y ′ and F

f,±
0,0 =0.

Next, we have

λα 1

|y|2σ
P =

∑

j+k≥0

(

b2jλ(k+1)α 1

|y|2σ
F

σ,+
j,k + ib2jλ(k+1)α 1

|y|2σ
F

σ,−
j,k

)

,

where

F
σ,+
j,k =







Q (j = k = 0)
0 (j ≥ 1, k = 0)
P+
j,k−1 (k ≥ 1)

, F
σ,−
j,k =

{

0 (k = 0)
P−
j,k−1 (k ≥ 1)

.

Finally, we have

θ
|y|2

4
P =

∑

(j,k)∈ΣK+K′

b2jλ(k+1)αβj,k
|y|2

4
Q+

∑

j,k≥0

b2jλ(k+1)αF
θ,+
j,k + i

∑

j,k≥0

b2j+1λ(k+1)αF
θ,−
j,k

and for j, k ≥ 0, F θ,±
j,k consists of Q, P±

j′,k′ , and βj′,k′ for (j′, k′) ∈ ΣK+K′ such that k′ ≤ k − 1 and j′ ≤ j. Only a

finite number of these functions are non-zero. In particular, F θ,±
j,k belongs to Y ′ and F

θ,±
0,0 =0.

Here, we define

F±
j,k := F

∂P
∂s

,±
0,0 + F

θ,±
0,0 ,

Φ>K+K′

:=
∑

(j,k) 6∈ΣK+K′

b2jλ(k+1)αF+
j,k + i

∑

(j,k) 6∈ΣK+K′

b2j+1λ(k+1)αF−
j,k,

Φ := Φ
∂P
∂s +Φf +Φ>K+K′

+ λ(K+K′+2)α 1

|y|2σ
P+
0,K+K′ + ibλ(K+K′+2)α 1

|y|2σ
P−
0,K+K′ .
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Then, Φ>K+K′

is a finite sum and we obtain

i
∂P

∂s
+∆P − P + f(P ) + λα 1

|y|2σ
P + θ

|y|2

4
P +ΘQ

=
∑

(j,k)∈ΣK+K′

b2jλ(k+1)α

(

−L+P
+
j,k + βj,k

|y|2

4
Q+

1

|y|2σ
F

σ,+
j,k + F+

j,k + c+j,kQ

)

+ i
∑

(j,k)∈ΣK+K′

b2j+1λ(k+1)α

(

−L−P
−
j,k − ((k + 1)α+ 2j)P+

j,k +
1

|y|2σ
F

σ,−
j,k + F−

j,k

)

+Φ.

For each (j, k) ∈ ΣK+K′ , we choose recursively P±
j,k ∈ Y ′ and βj,k, c

+
j,k ∈ R that are solutions of the systems

(Sj,k)



















L+P
+
j,k − F+

j,k − βj,k
|y|2

4
Q−

1

|y|2σ
F

σ,+
j,k − c+j,kQ = 0

L−P
−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k −

1

|y|2σ
F

σ,−
j,k = 0

and satisfy

c+j,k = 0 (j + k ≤ K),
1

|y|2
P±
j,k,

1

|y|
|∇P±

j,k| ∈ L∞(RN ).

See Appendix B for details.
In the same way as Proposition 2.1 in [8], for some ǫ′ > 0 which is sufficiently small, we have

∥

∥

∥
eǫ

′|y|Φ
∂P
∂s

∥

∥

∥

H1
. λα

(
∣

∣

∣

∣

b+
1

λ

∂λ

∂s

∣

∣

∣

∣

+

∣

∣

∣

∣

∂b

∂s
+ b2 − θ

∣

∣

∣

∣

)

,

∥

∥

∥
eǫ

′|y|Φf
∥

∥

∥

H1
. λ(K+K′+2)α,

∥

∥

∥
eǫ

′|y|Φ>K+K′
∥

∥

∥

H1
.
(

b2 + λα
)K+K′+2

.

Moreover,
∥

∥

∥
eǫ

′|y|ΘQ
∥

∥

∥

H1
.
(

b2 + λα
)K+2

holds. Therefore, we have

∥

∥

∥
eǫ

′|y|Ψ
∥

∥

∥

H1
. λα

(
∣

∣

∣

∣

b+
1

λ

∂λ

∂s

∣

∣

∣

∣

+

∣

∣

∣

∣

∂b

∂s
+ b2 − θ

∣

∣

∣

∣

)

+
(

b2 + λα
)K+2

,

where Ψ := Φ−ΘQ.
Next, we prove only (4) of (ii). The rest is the same as in [8]. We have

λ2E(Pλ,b,γ) =
1

2
‖∇Q + λα∇Z‖

2
2 −

∫

RN

F (Q+ λαZ)dx−
λα

2

∥

∥|y|−σQ+ λα|y|−σZ
∥

∥

2

2

−
b

2
(iQ+ iλαZ,ΛQ+ λαΛZ)2 +

b2

8
‖|y|Q+ λα|y|Z‖22 .

Here,

1

2
‖∇Q‖

2
2 =

∫

RN

F (Q)dx, (∇Q, λα∇Z)2 = −(Q, λαZ)2 +

∫

RN

dF (Q)(λαZ)dx,

1

2

∥

∥|y|−σQ
∥

∥

2

2
=

1

8
‖|y|Q‖22

2β

2− α
, (iQ,ΛQ)2 = 0
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hold and we have

(Q, λαZ)2 =
∑

(j,k)∈ΣK+K′ , j+k≥1

b2jλ(k+1)α
(

Q,P+
j,k

)

2
= O(λα(b2 + λα)),

b(iλZ,ΛQ)2 = −b
∑

(j,k)∈ΣK+K′

b2j+1λ(k+1)α
(

P−
j,k,ΛQ

)

2
= O(b2λα).

Therefore, we have

λ2 d

ds
E(Pλ,b,γ) =−

∫

RN

(F (Q+ λαZ)− F (Q)− dF (Q)(λαZ)) dx

−
λα

8
‖|y|Q‖

2
2

2β

2− α
+

b2

8
‖|y|Q‖

2
2 +O(λα(b2 + λα))

and
∫

RN

(F (Q+ λαZ)− F (Q)− dF (Q)(λαZ)) dx = O(λ2α).

Consequently, we have the conclusion. �

Lemma 3.2 (Decomposition). There exist constants l, λ, b, γ > 0 such that the following logic holds.
Let I be an interval, let δ > 0 be sufficiently small, and let u ∈ C(I,H1(RN )) ∩ C1(I,H−1(RN )) satisfy that

there exist functions λ ∈ Map(I, (0, l)) and γ ∈ Map(I,R) such that

∀ t ∈ I,
∥

∥

∥
λ(t)

N
2 u(t, λ(t)y)eiγ(t) −Q

∥

∥

∥

H1
< δ.

Then, (given γ̃(0)) there exist unique functions λ̃ ∈ C1(I, (0,∞)) and b̃, γ̃ ∈ C1(I,R) that are independent of λ and
γ such that

u(t, x) =
1

λ̃(t)
N
2

(P + ε̃)

(

t,
x

λ̃(t)

)

e
−i

˜b(t)
4

|x|2

λ̃(t)2
+iγ̃(t)

,(5)

λ̃(t) ∈
(

λ(t)(1 − λ), λ(t)(1 + λ)
)

,

b̃(t) ∈ (−b, b),

γ̃(t) ∈
⋃

m∈Z

(−γ − γ(t) + 2mπ, γ − γ(t) + 2mπ)

hold and ε̃ satisfies the orthogonal conditions

(ε̃, iΛP )2 =
(

ε̃, |y|2P
)

2
= (ε̃, iρ)2 = 0

in I. In particular, λ̃ and b̃ are unique within functions and γ̃ is unique within continuous functions (and is unique
within functions under modulo 2π).

A summary of the proof is described in Appendix C. See [9] for details of the proof. Also see [8, 12].

4. Approximate blow-up law

In this section, we describe the initial values and the approximation functions of the parameters λ and b in the
decomposition.

Lemma 4.1. Let

λapp(s) :=

(

α

2

√

2β

2− α

)− 2
α

s−
2
α , bapp(s) :=

2

αs
.

Then, (λapp, bapp) is a solution of
∂b

∂s
+ b2 − βλα = 0, b+

1

λ

∂λ

∂s
= 0

in s > 0.
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Lemma 4.2. Let define C0 := 8E0

‖|y|Q‖2
2
and 0 < λ0 ≪ 1 such that 2β

2−α + C0λ0
2−α > 0. For λ ∈ (0, λ0], we set

F(λ) :=

∫ λ0

λ

1

µ
α
2 +1
√

2β
2−α + C0µ2−α

dµ.

Then, for any s1 ≫ 1, there exist b1, λ1 > 0 such that
∣

∣

∣

∣

∣

λ1
α
2

λapp(s1)
α
2
− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

b1

bapp(s1)
− 1

∣

∣

∣

∣

. s1
− 1

2 + s1
2− 4

α , F(λ1) = s1, E(Pλ1,b1,γ) = E0.

Moreover,
∣

∣

∣

∣

∣

∣

F(λ)−
2

αλ
α
2

√

2β
2−α

∣

∣

∣

∣

∣

∣

. λ−α
4 + λ2− 3

2α

holds.

proof. The method of choosing λ1 and the estimate of F are the same as in [8] and is therefore omitted.

Setting h(b) := λ1
2E(Pλ1,b,γ), we have

h(b) =
1

8
‖|y|Q‖22

(

b2 −
2β

2− α
λ1

α

)

+O(λ1
α(b2 + λ1

α))

=
1

8
‖|y|Q‖22

(

b2 − bapp(s1)
2 −

2β

2− α
(λ1

α − λapp(s1)
α)

)

+O(λ1
α(b2 + λ1

α)).

Then, since λ1 is sufficiently small if s1 is sufficiently large, we have

h(0)− λ1
2E0 = −

1

8
‖|y|Q‖22

2β

2− α
λ1

α − λ1
2E0 +O(λ1

2α) < 0,

h(1)− λ1
2E0 =

1

8
‖|y|Q‖22

(

1−
2β

2− α
λ1

α − λ1
2C0

)

+O(λ1
α(1 + λ1

α)) > 0.

Therefore, there exists b1 ∈ (0, 1) such that h(b1) = λ1
2E0 and we have

∣

∣b1
2 − bapp(s1)

2
∣

∣ . λ1
2 + |λ1

α − λapp(s1)
α|+ λ1

α
(
∣

∣b1
2 − bapp(s1)

2
∣

∣ + λapp(s1)
α + λ1

α
)

. s1
− 4

α + s1
− 5

2 .

Consequently, we have the conclusion. �

5. Uniformity estimates for decomposition

In this section, we estimate modulation terms.
Let define

C :=
α

4− α

(

α

2

√

2β

2− α

)− 4
α

.

For t1 < 0 which is sufficiently close to 0, we define

s1 := |C−1t1|
− α

4−α .

Additionally, let λ1 and b1 be given in Lemma 4.2 for s1 and γ1 = 0. Let u be the solution for (NLS+) with an
initial value

u(t1, x) := Pλ1,b1,0(x).(6)

Then, since u satisfies the assumption of Lemma 3.2 in a neighbourhood of t1, there exists a decomposition
(λ̃t1 , b̃t1 , γ̃t1 , ε̃t1) such that (5) in a neighbourhood I of t1. The rescaled time st1 is defined as

st1(t) := s1 −

∫ t1

t

1

λ̃t1(τ)
2
dτ.
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Then, we define an inverse function st1
−1 : st1(I) → I. Moreover, we define

tt1 := st1
−1, λt1(s) := λ̃(tt1(s)), bt1(s) := b̃(tt1(s)),

γt1(s) := γ̃(tt1(s)), εt1(s, y) := ε̃(tt1(s), y).

If there is no risk of confusion, the subscript t1 is omitted. In particular, it should be noted that u ∈ C((−T∗, T ∗),Σ2(RN ))
and |x|∇u ∈ C((−T∗, T ∗), L2(RN )). Furthermore, let It1 be the maximal interval such that a decomposition as (5) is
obtained and we define Js1 := s (It1). Additionally, let s0 (≤ s1) be sufficiently large and let s′ := max {s0, inf Js1}.

Let 0 < M < min{ 1
2 ,

4
α − 2} and s∗ be defined as

s∗ := inf {σ ∈ (s′, s1] | (7) holds on [σ, s1]} ,

where

‖ε(s)‖2H1 + b(s)2‖|y|ε(s)‖22 < s−2K ,

∣

∣

∣

∣

λ(s)
α
2

λapp(s)
α
2
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

b(s)

bapp(s)
− 1

∣

∣

∣

∣

< s−M .(7)

Finally, we define

Mod :=

(

1

λ

∂λ

∂s
+ b,

∂b

∂s
+ b2 − θ, 1−

∂γ

∂s

)

.

In the following discussion, the constant ǫ > 0 is a sufficiently small constant. If necessary, s0 and s1 are
recalculated in response to ǫ > 0.

Lemma 5.1 (The equation for ε). In Js1 ,

i
∂ε

∂s
+∆ε− ε+ f (P + ε)− f (P )− λα 1

|y|2σ
ε

− i

(

1

λ

∂λ

∂s
+ b

)

Λ(P + ε) +

(

1−
∂γ

∂s

)

(P + ε) +

(

∂b

∂s
+ b2 − θ

)

|y|2

4
(P + ε)−

(

1

λ

∂λ

∂s
+ b

)

b
|y|2

2
(P + ε)

= −Ψ(8)

holds.

Lemma 5.2. For s ∈ (s∗, s1],

|(ε(s), Q)| . s−(K+2), |Mod(s)| . s−(K+2), ‖eǫ
′|y|Ψ‖H1 . s−(K+4)

hold.

proof. Let

s∗∗ := inf
{

s ∈ [s∗, s1]
∣

∣

∣
|(ε(τ), P )2| < τ−(K+2) holds on [s, s1].

}

.

We work below on the interval [s∗∗, s1].
According to the orthogonality properties, we have

0 =
d

ds
(iε,ΛP )2 =

(

i
∂ε

∂s
,ΛP

)

2

+

(

iε,
∂(ΛP )

∂s

)

2

(9)

=
d

ds

(

iε, i|y|2P
)

2
=

(

i
∂ε

∂s
, i|y|2P

)

2

+

(

iε, i|y|2
∂P

∂s

)

2

(10)

=
d

ds
(iε, ρ)2 =

(

i
∂ε

∂s
, ρ

)

2

.(11)

For (9), we have
(

iε,
∂(ΛP )

∂s

)

2

=

(

iε,
∂

∂s
(λαΛZ)

)

2

= O(s−(K+3)) +O(s−1|Mod(s)|)(12)
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and
(

i
∂ε

∂s
,ΛP

)

2

=

(

L+ Re ε+ iL− Im ε− (f (P + ε)− f (P )− df(Q)(ε)) + λα 1

|y|2σ
ε

+i

(

1

λ

∂λ

∂s
+ b

)

Λ(P + ε)−

(

1−
∂γ

∂s

)

(P + ε)−

(

∂b

∂s
+ b2 − θ

)

|y|2

4
(P + ε)

+

(

1

λ

∂λ

∂s
+ b

)

b
|y|2

2
(P + ε) + Ψ,ΛP

)

2

.

According to ΛP±
j,k ∈ H1(RN ) ∩C(RN ),

|(L+Re ε,ΛP )2|+ |(iL− Im ε,ΛP )2|+

∣

∣

∣

∣

(

λα 1

|y|2σ
ε,ΛP

)

2

∣

∣

∣

∣

= O(s−(K+2)),

(iΛP,ΛP )2 = (P,ΛP )2 = 0,

(Ψ,ΛP )2 = O(s−2(K+2)) +O(s−1|Mod(s)|),
(

|y|2P,ΛP
)

2
= −‖|y|Q‖22 +O(s−2)

hold. Here, we have

f (P + ε)− f (P )− df(Q)(ε) = f (P + ε)− f (P )− df(P )(ε) + df(P )(ε)− df(Q)(ε).

Firstly, we consider (f(P + ε)− f(P )− df(P )(ε)) ΛP . For N ≤ 3, according to Taylor’s theorem, we have
∣

∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣

∣ .(1 + |y|κ)(P + |ε|)
4
N

−1|ε|2Q

.(1 + |y|κ)(Q + |ε|)
4
N

−1|ε|2Q.

On the other hand, we assume N ≥ 4. If Q < 3|λαZ|, then 1 . λα(1 + |y|κ). Therefore, we have
∣

∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣

∣ . λα(1 + |y|κ)(Q
4
N + |ε|

4
N )|ε|Q.

If 3|λαZ| ≤ Q and Q < 3|ε|, then we have
∣

∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣

∣ . (1 + |y|κ)Q
4
N |ε|2.

If 3|ε| ≤ Q, then P − |ε| > 1
3Q > 0. According to Taylor’s theorem, we have

∣

∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣

∣ .(1 + |y|κ)(P − |ε|)
4
N

−1|ε|2Q

.(1 + |y|κ)Q
4
N |ε|2.

Therefore, we have

(f(P + ε)− f(P )− df(P )(ε),ΛP )2 = O(s−(K+2)).

The same calculation for (df(P )(ε)− df(Q)(ε)) ΛP yields

(df(P )(ε)− df(Q)(ε),ΛP )2 = O(s−(K+2)).

Accordingly, we have
(

i
∂ε

∂s
,ΛP

)

2

= −
1

4
‖|y|Q‖

(

∂b

∂s
+ b2 − θ

)

+O(s−(K+2)) + O(s−1|Mod(s)|)

and by (9) and (12),
∂b

∂s
+ b2 − θ = O(s−(K+2)) +O(s−1|Mod(s)|).

The same calculations for (10) and (11) yield

1

λ

∂λ

∂s
+ b = O(s−(K+2)) +O(s−1|Mod(s)|), 1−

∂γ

∂s
= O(s−(K+2)) +O(s−1|Mod(s)|).

Consequently, we have

|Mod(s)| . s−(K+2), ‖eǫ
′|y|Ψ‖H1 . s−(K+4).
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Finally, since
‖P (s1)‖

2
2 = ‖P (s)‖22 + 2(ε(s), P (s))2 + ‖ε(s)‖22,

we have

|(ε(s), P (s))2| . ‖ε(s)‖22 +

∫ s1

s

∣

∣

∣

∣

d

ds

∣

∣

∣

∣

s=τ

‖P (s)‖22

∣

∣

∣

∣

dτ

. s−2K +

∫ s1

s

(

τ−2|Mod(τ)| + τ−2(K+2)
)

dτ

. s−(K+3).

Therefore, if s0 is sufficiently large, then we have s∗∗ = s∗. Moreover, we have

|(ε(s), Q)2| . |(ε(s), P (s))2|+ λα |(ε(s), Z)2| . s−(K+2).

�

6. Modified energy function

In this section, we proceed with a modified version of the technique presented in Le Coz, Martel, and Raphaël
[8] and Martel and Szeftel [14]. Let m > 0 be sufficiently large and define

H(s, ε) :=
1

2
‖ε‖2H1 + b(s)2 ‖|y|ε‖22 −

∫

RN

(F (P + ε)− F (P )− dF (P )(ε)) dy −
1

2
λα
∥

∥|y|−σε
∥

∥

2

2
,

S(s, ε) :=
1

λm
H(s, ε).

Lemma 6.1 (Coercivity of H). For s ∈ (s∗, s1],

‖ε‖2H1 + b2 ‖|y|ε‖
2
2 +O(s−2(K+2)) . H(s, ε) . ‖ε‖2H1 + b2 ‖|y|ε‖

2
2

hold.

proof. If N ≤ 3, then we have
∣

∣

∣

∣

F (P + ε)− F (P )− dF (P )(ε)−
1

2
d2F (P )(ε, ε)

∣

∣

∣

∣

.
(

|P |
4
N

−1 + |ε|
4
N

−1
)

|ε|3.

For N ≥ 4, if 2|ε| ≥ |P |, then we have
∣

∣

∣

∣

F (P + ε)− F (P )− dF (P )(ε)−
1

2
d2F (P )(ε, ε)

∣

∣

∣

∣

. |ε|
4
N

+2.

If 2|ε| < |P |, then |P | > 0 and |P | − |ε| > 1
2 |P |. Therefore, we have

∣

∣

∣

∣

F (P + ε)− F (P )− dF (P )(ε)−
1

2
d2F (P )(ε, ε)

∣

∣

∣

∣

. (|P | − |ε|)
4
N

−1
|ε|3 . |ε|

4
N

+2.

Therefore, we obtain
∫

RN

(

F (P + ε)− F (P )− dF (P )(ε)−
1

2
d2F (P )(ε, ε)

)

dy = o(‖ε‖2H1).

Similarly, if N ≤ 3, then we have
∣

∣

∣

∣

1

2
d2F (P )(ε, ε)−

1

2
d2F (Q)(ε, ε)

∣

∣

∣

∣

. λα
(

Q
4
N

−1 + |λαZ|
4
N

−1
)

|ε|2|Z|.

For N ≥ 4, if 2|λαZ| ≥ Q, then we have
∣

∣

∣

∣

1

2
d2F (P )(ε, ε)−

1

2
d2F (Q)(ε, ε)

∣

∣

∣

∣

. |λαZ|
4
N |ε|2.

If 2|λαZ| < Q, then Q− |λαZ| > 1
2Q. Therefore, we have

∣

∣

∣

∣

1

2
d2F (P )(ε, ε)−

1

2
d2F (Q)(ε, ε)

∣

∣

∣

∣

. λα (Q− |λαZ|)
4
N

−1
|ε|2|Z| . (1 + | · |κ)λα|ε|2Q

4
N
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and
∫

RN

(

1

2
d2F (P )(ε, ε)−

1

2
d2F (Q)(ε, ε)

)

dy = o(‖ε‖2H1).

Accordingly, we have

‖ε‖
2
H1 −

∫

RN

d2F (Q)(ε, ε)dy = 〈L+Re ε,Re ε〉+ 〈L− Im ε, Im ε〉

≥ µ‖ε‖2H1 −
1

µ

(

(Re ε,Q)22 + (Re ε, |y|2Q)22 + (Im ε, ρ)22
)

= µ‖ε‖2H1 −
1

µ

(

(ε,Q)22 +
(

(ε, |y|2P )2 − λα(ε, |y|2Z)2
)2

+ (ε, iρ)22

)

= µ‖ε‖2H1 +O(s−2(K+2)).

Consequently, we have the lower estimate. The upper estimate is clearly. �

Corollary 6.2 (Estimation of S). For s ∈ (s∗, s1],

1

λm

(

‖ε‖2H1 + b2 ‖|y|ε‖22 +O(s−2(K+2))
)

. S(s, ε) .
1

λm

(

‖ε‖2H1 + b2 ‖|y|ε‖22

)

hold.

Lemma 6.3. For s ∈ (s∗, s1],

|(f(P + ε)− f(P ),Λε)2| . ‖ε‖2H1 + s−3K(13)

holds.

proof. Calculated in the same way as in Section 5.4 in [8], we have

∇ (F (P + ε)− F (P )− dF (P )(ε))

=Re
(

f(P + ε)∇
(

P + ε
)

− f(P )∇P − df(P )(ε)∇P − f(P )∇ε
)

=Re
(

(f(P + ε)− f(P )− df(P )(ε))∇P + (f(P + ε)− f(P ))∇ε
)

and

(f(P + ε)− f(P ),Λε) = Re

∫

RN

(f(P + ε)− f(P )) Λεdy

=Re

∫

RN

(

N

2
(f(P + ε)− f(P )) ε− (f(P + ε)− f(P )− df(P )(ε)) y · ∇P −N (F (P + ε)− F (P )− dF (P )(ε))

)

dy.

Firstly,

|(f(P + ε)− f(P )) ε|+ |F (P + ε)− F (P )− dF (P )(ε)| .((1 + |y|κ)Q
4
N + |ε|

4
N )|ε|2

holds.
Next, we consider (f(P + ε)− f(P )− df(P )(ε)) y · ∇P . For N ≤ 3, we have

∣

∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P
∣

∣ . (1 + |y|κ)(Q+ |ε|)
4
N

−1|ε|2Q.

For N ≥ 4, if Q < 3|λαZ|, then 1 . λα(1 + |y|κ). Therefore, we have
∣

∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P
∣

∣ . λKα(1 + |y|κ)(Q
4
N + |ε|

4
N )|ε|Q.

If 3|λαZ| ≤ Q and Q < 3|ε|, we have
∣

∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P
∣

∣ . (1 + |y|κ)Q
4
N |ε|2.

If 3|ε| ≤ Q, then P − |ε| ≥ 1
3Q > 0. Therefore, we have
∣

∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P
∣

∣ . (1 + |y|κ)Q1− 4
N |ε|2.

Consequently, we have the conclusion. �
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Lemma 6.4 (Derivative of H in time). For s ∈ (s∗, s1],

d

ds
H(s, ε(s)) & −b

(

‖ε‖2H1 + b2 ‖|y|ε‖
2
2

)

+O(s−2(K+2))

holds.

proof. Firstly, we have
d

ds
H(s, ε(s)) =

∂H

∂s
(s, ε(s)) +

(

i
∂H

∂ε
(s, ε(s)), i

∂ε

∂s
(s)

)

2

.

Here,

∂H

∂ε
=−∆ε+ ε+ 2b2|y|2ε− (f(P + ε)− f(P ))−

λα

|y|2σ
ε

=L+ Re ε+ iL− Im ε+ 2b2|y|2ε− (f(P + ε)− f(P )− df(Q)(ε))−
λα

|y|2σ
ε,

∂H

∂s
=2b

∂b

∂s
‖|y|ε‖22 − Re

∫

RN

(f(P + ε)− f(P )− df(P )(ε))
∂P

∂s
dy −

αλα

2

1

λ

∂λ

∂s
‖|y|−σε‖22

hold. Therefore, we have
∂H

∂s
& −b3‖|y|ε‖22 − s−2b‖ε‖2H1 +O(s−3K).

Let define

Modop v := i

(

1

λ

∂λ

∂s
+ b

)

Λv −

(

1−
∂γ

∂s

)

v −

(

∂b

∂s
+ b2 − θ

)

|y|2

4
v +

(

1

λ

∂λ

∂s
+ b

)

b
|y|2

2
v.

Then,

i
∂ε

∂s
=

∂H

∂ε
− 2b2|y|2ε+Modop(P + ε) + Ψ

holds. Moreover, we have
(

i
∂H

∂ε
(s, ε(s)), i

∂ε

∂s
(s)

)

2

=

(

i
∂H

∂ε
(s, ε(s)),−2b2|y|2ε+Modop(P + ε) + Ψ

)

2

.

Secondly, we have
(

i
∂H

∂ε
(s, ε),−2b2|y|2ε

)

2

=− 4b2 (i∇ε, yε)2 +
(

i
(

|P + ε|
4
N − |P |

4
N

)

P,−2b2|y|2ε
)

2

=− 4b2 (i∇ε, yε)2 +O(b2‖ε‖2H1 + s−3K)

&− b
(

‖∇ε‖22 + b2‖|y|2ε‖22
)

+O(b2‖ε‖2H1 + s−3K).

Thirdly,
(

i
∂H

∂ε
(s, ε(s)),Modop P

)

2

= O(s−(3K+2)),

(

i
∂H

∂ε
(s, ε(s)),Ψ

)

2

= O(s−2(K+2))

hold.
Finally, since

|(i (f(P + ε)− f(P )) , iΛε)2|+
∣

∣

(

i (f(P + ε)− f(P )) , |y|2ε
)

2

∣

∣ = O(‖ε‖2H1) +O(s−3K),

we have
(

i
∂H

∂ε
(s, ε(s)),Modop ε

)

2

= o
(

b
(

‖ε‖2H1 + b2 ‖|y|ε‖
2
2

))

+O(s−(5K+2)).

Consequently, we have the conclusion. �

Lemma 6.5 (Derivative of S in time). Let m > 0 be sufficiently large. Then,

d

ds
S(s, ε(s)) &

b

λm

(

‖ε‖2H1 + b2 ‖|y|ε‖
2
2 +O(s−(2K+3))

)

holds for s ∈ (s∗, s1].
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proof. From Lemma 6.4, we have

d

ds
S(s, ε(s)) =−m

1

λ

∂λ

∂s

1

λm
H(s, ε) +

1

λm

d

ds
H(s, ε(s))

=−m

(

1

λ

∂λ

∂s
+ b

)

1

λm
H(s, ε) +m

b

λm
H(s, ε) +

1

λm

d

ds
H(s, ε(s))

≥
b

λm

(

(m− ǫ)C
(

‖ε‖2H1 + b2 ‖|y|ε‖
2
2

)

+O(s−2(K+2))− C′
(

‖ε‖2H1 + b2 ‖|y|ε‖
2
2

)

+O(s−(2K+3))
)

.

Therefore, we have the conclusion if m is sufficiently large. �

7. Bootstrap

In this section, we use the estimates obtained in Section 6 and the bootstrap to establish the estimates of the
parameters.

Lemma 7.1 (Re-estimation). For s ∈ (s∗, s1],

‖ε(s)‖
2
H1 + b(s)2 ‖|y|ε(s)‖

2
2 . s−(2K+2),(14)

∣

∣

∣

∣

λ(s)
α
2

λapp(s)
α
2
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

b(s)

bapp(s)
− 1

∣

∣

∣

∣

. s−
1
2 + s2−

4
α(15)

holds.

proof. We prove (14) by contradiction. Let C† > 0 be sufficiently large and define

s† := inf
{

σ ∈ (s∗, s1]
∣

∣

∣
‖ε(τ)‖2H1 + b(τ)2 ‖|y|ε(τ)‖22 ≤ C†τ

−2(K+1) (τ ∈ [σ, s1])
}

.

Then, s† < s1 holds. Here, we assume that s† > s∗. Then, we have

‖ε(s†)‖
2
H1 + b(s†)

2 ‖|y|ε(s†)‖
2
2 = C†s†

−2(K+1).

Let C‡ > ǫ and define

s‡ := sup
{

σ ∈ (s∗, s1]
∣

∣ ‖ε(τ)‖
2
H1 + b(τ)2 ‖|y|ε(τ)‖

2
2 ≥ C‡τ

−2(K+1) (τ ∈ [s†, σ])
}

.

Then, we have s‡ > s†. Furthermore,

‖ε(s‡)‖
2
H1 + b(s‡)

2 ‖|y|ε(s‡)‖
2
2 = C‡s‡

−2(K+1).

Then, according to Corollary 6.2 and Lemma 6.5, we have

C1

λm

(

‖ε‖
2
H1 + b2 ‖|y|ε‖

2
2 − C′s−2(K+1)

)

≤ S(s, ε) ≤
C2

λm

(

‖ε‖
2
H1 + b2 ‖|y|ε‖

2
2

)

,

b

λm

(

‖ε‖
2
H1 + b2 ‖|y|ε‖

2
2 − ǫs−2(K+1)

)

.
d

ds
S(s, ε).

in (s∗, s1]. Therefore, we have

C1(C† − C′)s†
−2(K+1) =C1

(

‖ε(s†)‖
2
H1 + b(s†)

2 ‖|y|ε(s†)‖
2
2 − C′s†

−2(K+1)
)

≤λ(s†)
mS(s†, ε(s†))

≤λ(s†)
mS(s‡, ε(s‡))

≤C2
λ(s†)m

λ(s‡)m

(

‖ε(s‡)‖
2
H1 + b(s‡)

2 ‖|y|ε(s‡)‖
2
2

)

≤C2C‡
λ(s†)m

λ(s‡)m
s‡

−2(K+1)

≤(1 + ǫ)C2C‡
s†−

2m
α

s‡−
2m
α

s‡−2(K+1)

s†−2(K+1)
s†

−2(K+1)
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and since K − m
α > 0, we have

C1(C† − C′) ≤ (1 + ǫ)C2C‡.

Since C† is sufficiently large, it is a contradiction. Therefore, s† ≤ s∗. On the other hand, s† ≥ s∗ is clearly.
Accordingly, s∗ = s†.

Next, since

|E(Pλ,b,γ(s))− E0| ≤

∣

∣

∣

∣

∫ s

s1

d

ds

∣

∣

∣

∣

s=τ

E(Pλ,b,γ(s)dτ

∣

∣

∣

∣

≤

∫ s1

s

τ−(K+2)+ 4
α dτ . s−(K+1)+ 4

α ,

we have
∣

∣

∣

∣

b2 −
2β

2− α
λα − C0λ

2

∣

∣

∣

∣

≤ λ2

(∣

∣

∣

∣

b2

λ2
−

2β

2− α
λα−2 −

8

‖|y|Q‖22
E(Pλ,b,γ)

∣

∣

∣

∣

+
8

‖|y|Q‖22
|E(Pλ,b,γ)− E0|

)

. s−4.

From the definition of F , we have

|F ′(s)− 1| . s−2.

Therefore, we have

|s−F(λ(s))| . s−1

since F(λ(s1)) = s1. From definition λapp, we have
∣

∣

∣

∣

∣

λapp(s)
α
2

λ(s)
α
2

− 1

∣

∣

∣

∣

∣

. s−
1
2 + s2−

4
α

and
∣

∣

∣

∣

∣

λ(s)
α
2

λapp(s)
α
2
− 1

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

λ(s)
α
2

λapp(s)
α
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λapp(s)
α
2

λ(s)
α
2

− 1

∣

∣

∣

∣

∣

. s−
1
2 + s2−

4
α .

Finally, we have
∣

∣

∣
b(s)2 − bapp(s)

2
∣

∣

∣
. s−4 + s−2− 1

2 + s−
4
α

and
∣

∣

∣

∣

b(s)

bapp(s)
− 1

∣

∣

∣

∣

. s−
1
2 + s2−

4
α .

Consequently, we have the conclusion. �

Corollary 7.2. If s0 is sufficiently large, then s∗ = s′.

Lemma 7.3. If s0 is sufficiently large, then s′ = s0.

proof. See [9] for the proof. �

8. Conversion of estimates

In this section, we rewrite the estimates obtained for the time variable s in Lemma 7.1 into estimates for the
time variable t.

Lemma 8.1 (Interval). If s0 is sufficiently large, then there is t0 < 0 which is sufficiently close to 0 such that for
t1 ∈ (t0, 0),

[t0, t1] ⊂ st1
−1([s0, s1]),

∣

∣

∣
Cst1(t)

− 4−α
α − |t|

∣

∣

∣
. |t|1+

αM
4−α (t ∈ [t0, t1])

holds.

proof. Since tt1(s1) = t1 and s1 = |C−1t1|
− α

4−α , we have
∫ s1

s

λapp(τ)
2

(

λt1(τ)

λapp(τ)
− 1

)(

λt1(τ)

λapp(τ)
+ 1

)

dτ =

∫ s1

s

(

λt1(τ)
2 − λapp(τ)

2
)

dτ

= tt1(s1)− tt1(s) + C(s1
1− 4

α − s1−
4
α )

= |tt1(s)| − Cs−
4−α
α .
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Therefore, we have
∣

∣

∣
|tt1(s)| − Cs−

4−α
α

∣

∣

∣
.

∫ s1

s

λapp(τ)
2τ−Mdτ .

∫ s1

s

τ−
4
α
−Mdτ ≤

α

M + 4− α
s−(

4−α
α

+M).

Accordingly,

|tt1(s)| ≈ s−
4−α
α i.e. |t| ≈ st1(t)

− 4−α
α .

�

Lemma 8.2 (Conversion of estimates). Let

Cλ := C− 2
4−α

(

α

2

√

2β

2− α

)− 2
α

, Cb :=
2

α
C− α

4−α .

For t ∈ [t0, t1],

λ̃t1(t) = Cλ|t|
2

4−α

(

1 + ǫλ̃,t1(t)
)

, b̃t1(t) = Cb|t|
α

4−α

(

1 + ǫb̃,t1(t)
)

,

‖ε̃t1(t)‖H1 . |t|
αK
4−α , ‖|y|ε̃t1(t)‖2 . |t|

α(K−1)
4−α

hold. Furthermore,

sup
t1∈[t,0)

∣

∣

∣
ǫλ̃,t1(t)

∣

∣

∣
. |t|

αM
4−α , sup

t1∈[t,0)

∣

∣

∣
ǫb̃,t1(t)

∣

∣

∣
. |t|

αM
4−α .

proof. Let

ǫλ̃,t1(t) :=
λ̃t1(t)

Cλ|t|
2

4−α

− 1.

Then, we have

∣

∣

∣
ǫλ̃,t1(t)

∣

∣

∣
≤

∣

∣

∣

∣

∣

λ̃t1(t)

λapp(st1(t))
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λapp(st1(t))

Cλ|t|
2

4−α

∣

∣

∣

∣

∣

+
1

Cλ|t|
2

4−α

∣

∣

∣
λapp(st1(t))− Cλ|t|

2
4−α

∣

∣

∣
. |t|

αM
4−α .

The same is done for ǫb̃,t1(t). �

9. Proof of Theorem 1.1

See [8, 9] for details of proof.

proof of Theorem 1.1. Let (tn)n∈N ⊂ (t0, 0) be a monotonically increasing sequence such that limnր∞ tn = 0. For
each n ∈ N, un is the solution for (NLS+) with an initial value

un(tn, x) := Pλ1,n,b1,n,0(x)

at tn, where b1,n and λ1,n are given by Lemma 4.2 for tn.
According to Lemma 3.2 with an initial value γ̃n(tn) = 0, there exists a decomposition

un(t, x) =
1

λ̃n(t)
N
2

(P + ε̃n)

(

t,
x

λ̃n(t)

)

e
−i b̃n(t)

4
|x|2

λ̃n(t)2
+iγ̃n(t)

.

Then, (un(t0))n∈N is bounded in Σ1. Therefore, up to a subsequence, there exists u∞(t0) ∈ Σ1 such that

un(t0) ⇀ u∞(t0) in Σ1, un(t0) → u∞(t0) in L2(RN ) (n → ∞),

see [8, 9] for details.
Let u∞ be the solution for (NLS+) with an initial value u∞(t0) and T ∗ be the supremum of the maximal existence

interval of u∞. Moreover, we define T := min{0, T ∗}. Then, for any T ′ ∈ [t0, T ), [t0, T
′] ⊂ [t0, tn] if n is sufficiently

large. Then, there exist n0 and C(T ′, t0) > 0 such that

sup
n≥n0

‖un‖L∞([t0,T ′],Σ1) ≤ C(T ′, t0)

holds. According to Lemma B.2 in [9],

un → u∞ in C
(

[t0, T
′], L2(RN )

)

(n → ∞)
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holds. In particular, un(t) ⇀ u∞(t) in Σ1 for any t ∈ [t0, T ). Furthermore, from the mass conservation, we have

‖u∞(t)‖2 = ‖u∞(t0)‖2 = lim
n→∞

‖un(t0)‖2 = lim
n→∞

‖un(tn)‖2 = lim
n→∞

‖P (tn)‖2 = ‖Q‖2.

Based on weak convergence in H1(RN ) and Lemma 3.2, we decompose u∞ to

u∞(t, x) =
1

λ̃∞(t)
N
2

(P + ε̃∞)

(

t,
x

λ̃∞(t)

)

e
−i b̃∞(t)

4
|x|2

λ̃∞(t)2
+iγ̃∞(t)

,

where an initial value of γ̃∞ is γ∞(t0) ∈
(

|t0|
−1 − π, |t0|

−1 + π
]

∩ γ̃(u∞(t0)) (which is unique, see [9]). Furthermore,
for any t ∈ [t0, T ), as n → ∞,

λ̃n(t) → λ̃∞(t), b̃n(t) → b̃∞(t), eiγ̃n(t) → eiγ̃∞(t), ε̃n(t) ⇀ ε̃∞(t) in Σ1

holds. Consequently, from a uniform estimate of Lemma 8.2, as n → ∞, we have

λ̃∞(t) = Cλ |t|
2

4−α (1 + ǫλ̃,0(t)), b̃∞(t) = Cb |t|
α

4−α (1 + ǫb̃,0(t)),

‖ε̃∞(t)‖H1 . |t|
αK
4−α , ‖|y|ε̃∞(t)‖2 . |t|

α(K−1)
4−α ,

∣

∣

∣
ǫλ̃,0(t)

∣

∣

∣
. |t|

αM
4−α ,

∣

∣

∣
ǫb̃,0(t)

∣

∣

∣
. |t|

αM
4−α .

Consequently, we obtain that u converges to the blow-up profile in Σ1.
Finally, we check energy of u∞. Since

E (un)− E
(

Pλ̃n,b̃n,γ̃n

)

=

∫ 1

0

〈

E′(Pλ̃n,b̃n,γ̃n
+ τ ε̃λ̃n,b̃n,γ̃n

), ε̃λ̃n,b̃n,γ̃n

〉

dτ

and E′(w) = −∆w − |w|
4
N w − |y|−2σw, we have

E (un)− E
(

Pλ̃n,b̃n,γ̃n

)

= O

(

1

λ̃2
n

‖ε̃n‖H1

)

= O
(

|t|
αK−4
4−α

)

.

Similarly, we have

E (u∞)− E
(

Pλ̃∞,b̃∞,γ̃∞

)

= O

(

1

λ̃2
∞
‖ε̃∞‖H1

)

= O
(

|t|
αK−4
4−α

)

.

From the continuity of E, we have

lim
n→∞

E
(

Pλ̃n,b̃n,γ̃n

)

= E
(

Pλ̃∞,b̃∞,γ̃∞

)

and from the conservation of energy,

E (un) = E (un(tn)) = E
(

Pλ̃1,n,b̃1,n,γ̃1,n

)

= E0.

Therefore, we have

E (u∞) = E0 + otր0(1)

and since E (u∞) is constant for t, E (u∞) = E0. �

Appendix A. Proof of Theorem 1.3

In this section, we describe the proof of Theorem 1.3.

Proof of Theorem 1.3. We assume that u is a critical-mass radial solution of (NLS−) and blows up at T ∗. Let a
sequence (tn)n∈N be such that tn → T ∗ as n → T ∗ and define

λn :=
‖∇Q‖2

‖∇u(tn)‖
, vn(x) := λn

N
2 u(tn, λnx).

Then,

‖vn‖2 = ‖Q‖2, ‖∇vn‖2 = ‖∇Q‖2

hold. Moreover,

E0 := E(u(tn)) ≥ Ecrit(u(tn)) =
E(vn)

λn
2 .



20 N. MATSUI

Therefore, we obtain
lim sup
n→∞

E(vn) ≤ 0.

From the standard concentration argument (see [12, 8]), there exist sequences (xn)n∈N ⊂ RN and (γn)n∈N ⊂ R such
that

vn(· − xn)e
iγn → Q in H1(RN ) (n → ∞).

Moreover, up to a subsequence, we have

vne
iγn → Q in H1(RN ) (n → ∞).

Indeed, if (xn)n∈N is unbounded, we may assume xn → ∞ as n → ∞. Then, since vn decay uniformly by the radial
lemma, we have

0 = lim
n→∞

∥

∥vn(· − xn)e
iγn −Q

∥

∥

2

H1 = 2 ‖Q‖
2
H1 − lim

n→∞
2
(

vn(· − xn)e
iγn , Q

)

H1 = 2 ‖Q‖
2
H1 .

It is a contradiction. Therefore, (xn)n∈N is bounded. We may assume that (xn)n∈N is a convergent sequence. Let
define x0 := limn→∞ xn. Then, we have

vne
iγn → Q(·+ x0) in H1(RN ) (n → ∞).

Since vn and Q are radial, we obtain x0 = 0.
Here, we have

∥

∥| · |−σu(tn)
∥

∥

2

2
=

‖| · |−σvn‖
2
2

λn
2σ .

Therefore, since Ecrit(u) ≥ 0,

E0 = E(u(tn)) ≥
‖| · |−σvn‖

2
2

λn
2σ → ∞ (n → ∞).

It is a contradiction. �

Appendix B. Solutions for (Sj,k)

In this section, we construct solutions (P+
j,k, P

−
j,k, βj,k, c

+
j,k) ∈ Y ′2 × R

2 for systems (Sj,k) in Proposition 3.1.

Proposition B.1. For any g ∈ H−1(RN ) such that
〈

g, ∂Q
∂xj

〉

= 0 (j = 1, . . . , N), there exists f ∈ H1(RN ) such

that L+f = g in H−1. Similarly, for any g ∈ H−1(RN ) such that 〈g,Q〉 = 0, there exists f ∈ H1(RN ) such that
L−f = g in H−1.

proof. Let φ+ be the ground state of L+ and µ+ be the eigenvalue of φ+. Then, µ+ < 0 and we may assume
‖φ+‖2 = 1. Let define H± which is subspaces of H1(RN ) by

H+ := span

{

φ+,
∂Q

∂x1
, . . . ,

∂Q

∂xN

}⊥
, H− := span {Q}⊥ ,

then H± is Hilbert space and
∃C± > 0∀f ∈ H±, 〈L±f, f〉 ≥ C±‖f‖

2
H1

hold, where double sign correspond. Therefore, from the Lax-Milgram theorem,

∀g ∈ H∗
±∃!f̃± ∈ H±, L±f̃± = g in H∗

±

hold, where double sign correspond.

Here, let
〈

g, ∂Q
∂xj

〉

= 0, f := f̃ + 〈g,φ+〉
µ+

2 φ+, and ϕ̃ := ϕ− (ϕ, φ+)φ+ − (ϕ,∇Q) · ∇Q for each ϕ ∈ H1(RN ). Then,

ϕ̃ ∈ H+ and we have

〈L+f, ϕ〉 = 〈f, L+ϕ〉 = 〈f, L+ϕ̃+ µ+(ϕ, φ+)φ+〉 =
〈

L+f̃ , ϕ̃
〉

+

〈

〈g, φ+〉

µ+
φ+, µ+(ϕ, φ+)φ+

〉

= 〈g, ϕ̃〉+ (ϕ, φ+) 〈g, φ+〉+ (ϕ,∇Q) · 〈g,∇Q〉

=〈g, ϕ〉.
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This means that L+f = g in H−1.
The same is proved in the case of 〈g,Q〉 = 0. �

Proposition B.2. For any g, h ∈ Y, there exists f ∈ Y such that L+f = g + 1
|y|2σh. Similarly, for any g, h ∈ Y

such that
〈

g + 1
|y|2σ h,Q

〉

= 0, there exists f ∈ Y such that L−f = g + 1
|y|2σ h.

proof. We prove only for L+. Since Y ⊂ H1
rad(R

N ), the existence of H1-solution is clearly from Proposition B.1.
Firstly, based on a classical argument of elliptic partial differential equations, we have f ∈ C∞(RN \ {0}). From

the maximum principal,

∀α ∈ N0
N∃Cα, κα > 0, |x| ≥ 1 ⇒

∣

∣

∣

∣

(

∂

∂x

)α

f(x)

∣

∣

∣

∣

≤ Cα(1 + |x|κα)Q(x)

holds. Since g + 1
|y|2σ h ∈ Lp(RN ) for some p > max{N

2 , 1}, we have f ∈ L∞(RN ) (see [6]). Furthermore, since

−∆f + f =

(

1 +
4

N

)

Q
4
N f + g +

1

|y|2σ
h ∈ Lp(RN ),

we have f ∈ W 2,p(RN ) →֒ C0,γ(RN ) for some γ ∈ (0, 1). Namely, f ∈ Y. �

Proposition B.3. The system (Sj,k) has a solution (P+
j,k, P

−
j,k, βj,k, c

+
j,k) ∈ Y2 × R

2.

proof. We solve

(Sj,k)



















L+P
+
j,k − F+

j,k − βj,k
|y|2

4
Q−

1

|y|2σ
F

σ,+
j,k − c+j,kQ = 0,

L−P
−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k −

1

|y|2σ
F

σ,−
j,k = 0.

For (Sj,k), we consider the following two systems:

(S̃j,k)



















L+P̃
+
j,k − F+

j,k − βj,k
|y|2

4
Q−

1

|y|2σ
F

σ,+
j,k = 0,

L−P̃
−
j,k − F−

j,k + ((k + 1)α+ 2j)P̃+
j,k −

1

|y|2σ
F

σ,−
j,k = 0.

and

(S′
j,k)



















P+
j,k = P̃+

j,k −
c+j,k

2
ΛQ,

P−
j,k = P̃−

j,k − c−j,kQ−
((k + 1)α+ 2j)c+j,k

8
|y|2Q.

Then, by applying (S′
j,k) to a solution for (S̃j,k), we obtain a solution for (Sj,k).

Firstly, we solve

(S̃0,0)











L+P̃
+
0,0 − β0,0

|y|2

4
Q−

1

|y|2σ
Q = 0,

L−P̃
−
0,0 + αP̃+

0,0 = 0.

For any β0,0 ∈ R, there exists a solution P̃+
0,0 ∈ Y. Let

β0,0 :=
4σ‖| · |−σQ‖22

‖| · |Q‖22
.

Then, since

(

P̃+
0,0, Q

)

2
= −

1

2

〈

L+P̃
+
0,0,ΛQ

〉

= −
1

2

〈

β0,0
|y|2

4
Q+

1

|y|2σ
Q,ΛQ

〉

=
1

2

(

β0,0

4
‖| · |Q‖22 − σ‖| · |−σQ‖22

)

= 0,
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there exists a solution P̃−
0,0 ∈ Y. By taking c+0,0 = 0, we obtain a solution (P+

0,0, P
−
0,0, β0,0, c

+
0,0) ∈ Y2 ×R2 for (S0,0).

Here, let H(j0, k0) denote by that

∀(j, k) ∈ ΣK+K′ , k < k0 or (k = k0 and j < j0) ⇒ (Sj,k) has a solution (P+
j,k, P

−
j,k, βj,k, c

+
j,k) ∈ Y2 × R

2.

From the above discuss, H(1, 0) is true. If H(j0, k0) is true, then F±
j0,k0

is defined and belongs to Y. Moreover, for

any βj0,k0 , there exists a solution P̃+
j0,k0

. Let be βj0,k0 such that

〈

−F−
j,k + ((k + 1)α+ 2j)P̃+

j,k −
1

|y|2σ
F

σ,−
j,k , Q

〉

= 0.

Then, we obtain a solution P̃−
j0,k0

. Here, we define

c−j0,k0
:=











P̃−
j0,k0

(0)

Q(0) (j0 + k0 6= K + 1),

0 (j0 + k0 = K + 1, and P̃−
j0,k0

(0) 6= 0),

1 (j0 + k0 = K + 1, and P̃−
j0,k0

(0) = 0),

c+j0,k0
:=



















0 (j0 + k0 ≤ K),

0 (j0 + k0 = K, and P̃+
j0,k0

(0) 6= 0),

1 (j0 + k0 = K, and P̃+
j0,k0

(0) = 0),
2P̃+

j0 ,k0
(0)

Q(0) (j0 + k0 ≥ K + 2).

Then, we obtain a solution for (Sj0,k0). This means that H(j0+1, k0) is true if j0+k0 ≤ K+K ′−1 and H(0, k0+1)
is true if j0 + k0 = K + K ′. In particular, H(0,K + K ′ + 1) means that for any (j, k) ∈ ΣK+K′ , there exists a
solution (P+

j,k, P
−
j,k, βj,k, c

+
j,k) ∈ Y2 × R2.

Furthermore, P±
j,k(0) 6= 0 for j + k = K + 1 and P±

j,k(0) = 0 for j + k ≥ K + 2 hold. �

Proposition B.4. For P±
j,k, ΛP

±
j,k ∈ H1(RN ) ∩ C(RN ). Namely, P±

j,k ∈ Y ′.

proof. Regarding ΛP±
j,k ∈ H1(RN ), proving ylP

±
j,k ∈ H2(RN ) is sufficient. Since

L+(ylP
+
j,k) = ylF

+
j,k + βj,k

|y|2yl
4

Q+
yl

|y|2σ
F

σ,+
j,k + c+j,kylQ

and
∣

∣

∣

∣

yl

|y|2σ
F

σ,+
j,k

∣

∣

∣

∣

≤
1

|y|2σ−1
|F σ,+

j,k | ∈ L2(RN),

we have ylP
+
j,k ∈ H2(RN ). Similarly, we have ylP

−
j,k ∈ H2(RN ).

Regarding ΛP±
j,k ∈ C(RN ), proving y · ∇P±

j,k ∈ C(RN ) is sufficient. Firstly,

L+(y · ∇P+
j,k) = y · ∇(F+

j,k + βj,k
|y|2

4
Q+

1

|y|2σ
F

σ,+
j,k + c+j,kQ) + 2(F+

j,k + βj,k
|y|2

4
Q+

1

|y|2σ
F

σ,+
j,k + c+j,kQ)

− 2P+
j,k2

(

4

N
+ 1

)

Q
4
N P+

j,k −
4

N

(

4

N
+ 1

)

Q
4
N

−1y · ∇QP+
j,k

holds. Since y
|y|2σ · ∇F

σ,+
j,k ∈ Lp(RN ) for some p > max{N

2 , 1}, we have L+(y · ∇P+
j,k) ∈ Lp(RN ). Therefore, we

have y · ∇P+
j,k ∈ C(RN ). Similarly, we have y · ∇P−

j,k ∈ C(RN ). �

Proposition B.5. For P±
0,K+K′ ,

1

r2
P±
0,K+K′ ,

1

r

∂P±
0,K+K′

∂r
∈ L∞(RN ),

where r = |y|.
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proof. We prove only for P+
0,K+K′ .

Let fk := P+
0,K+k for k ∈ N. Here, f1(0) 6= 0 and fk(0) = 0 for k ≥ 2 hold. Moreover, Let

Fk := fk −

(

1 +
4

N

)

Q
4
N fk − F+

0,K+k − β0,K+k
r2

4
Q− c+0,K+kQ.

If r−qfk converges to non-zero as r ց 0 for some q ∈ [0, 2σ) or r−qfk converges as r ց 0 for some q ≥ 2σ, then

rN−1 ∂fk+1

∂r converges to 0 as r ց 0. Indeed, if N = 1, then fk ∈ W 2,p(RN ) →֒ C1(RN ) for some p > 1. Therefore,

since fk is an even function, ∂fk
∂r (0) = 0 holds. On the other hand, for N ≥ 2,

1

rN−1

∂

∂r

(

rN−1 ∂fk+1

∂r

)

= Fk+1 −
1

r2σ
fk(16)

holds. If r−qfk converges as r ց 0 for some q ≥ 2σ, then r−2σfk is bounded. Therefore, for some sufficiently large

p, we have fk+1 ∈ W 2,p(RN ) →֒ C1(RN ). Accordingly, rN−1 ∂fk+1

∂r converges to 0 as r ց 0. On the other hand, if
r−qfk converges to non-zero as r ց 0 for some q ∈ [0, 2σ), the right hand of (16) diverge +∞ or −∞ as r ց 0.

Therefore, rN−1 ∂fk+1

∂r is increasing or decreasing as r ց 0, meaning rN−1 ∂fk+1

∂r converges in [−∞,∞]. Let

C := lim
rց0

rN−1

∣

∣

∣

∣

∂fk+1

∂r

∣

∣

∣

∣

.

Then, for any ǫ > 0, there exists r0 > 0 such that
∣

∣

∣

∂fk+1

∂r

∣

∣

∣
≥ (C − ǫ)r−(N−1) for any r ∈ (0, r0). On the other hand,

fk+1 ∈ W 2,p(RN ) →֒ W 1,N (RN ) for some p > N
2 and

∣

∣

∣

∂fk+1

∂r

∣

∣

∣
= |∇fk+1|. Therefore, we have

∞ >

∫

B(0,r0)

|∇fk+1(x)|
Ndx ≥ CN

∫ r0

0

C − ǫ

r(N−1)2
dr.

Since
∫ r0
0

r−(N−1)2dr = ∞, we obtain C − ǫ ≤ 0. Consequently, we have C ≤ 0, meaning C = 0.
Let σ1 := 0 and C1 := f1(0). Moreover, let

σk+1 :=

{

1− σ + σk (σk < σ)
1 (σk ≥ σ)

, Ck+1 :=

{ −Ck

2σk+1(N−2(σ−σk))
(σk < σ)

Fk+1(0)−02(σk−σ)Ck

2N (σk ≥ σ)
.

In particular, if σk < σ, then Ck 6= 0. Then,

lim
rց0

1

r2σk
fk(r) = Ck(17)

holds. For k = 1, it clearly holds. Moreover, for k ≥ 2,

lim
rց0

1

r2σk−1

∂fk

∂r
(r) = 2σkCk

holds. Indeed, if (17) holds for some k, then rN−1 ∂fk+1

∂r converges to 0 as r ց 0 in both cases σk < σ and σk ≥ σ

from the above discuss. We assume σk < σ. Since

1

rN−1

∂

∂r

(

rN−1 ∂fk+1

∂r

)

= Fk+1 −
1

r2(σ−σk)

1

r2σk
fk,

for any ǫ > 0, there exists r0 > 0 such that

(−Ck − ǫ)rN−1−2(σ−σk) ≤
∂

∂r

(

rN−1 ∂fk+1

∂r

)

≤ (−Ck + ǫ)rN−1−2(σ−σk)

for any r ∈ (0, r0). Integrating in [0, r], we have

−Ck − ǫ

N − 2(σ − σk)
r1−2(σ−σk) ≤

∂fk+1

∂r
≤

−Ck + ǫ

N − 2(σ − σk)
r1−2(σ−σk).

Integrating in [0, r] again, we have

−Ck − ǫ

(2− 2(σ − σk))(N − 2(σ − σk))
r2−2(σ−σk) ≤ fk+1 ≤

−Ck − ǫ

(2− 2(σ − σk))(N − 2(σ − σk))
r2−2(σ−σk).
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Therefore, we have

lim
rց0

1

r2σk+1−1

∂fk+1

∂r
(r) = 2σk+1Ck+1, lim

rց0

1

r2σk+1
fk+1(r) = Ck+1.

On the other hand, we assume σk ≥ σ. Then, for any ǫ > 0, there exists r0 > 0 such that

(Fk+1(0)− 02(σk−σ)Ck − ǫ)rN−1 ≤
∂

∂r

(

rN−1 ∂fk+1

∂r

)

≤ (Fk+1(0)− 02(σk−σ)Ck + ǫ)rN−1

for any r ∈ (0, r0). Integrating in the same way as for σk < σ, we have

Fk+1(0)− 02(σk−σ)Ck − ǫ

N
r ≤

∂fk+1

∂r
≤

Fk+1(0)− 02(σk−σ)Ck + ǫ

N
r.

Moreover, since
Fk+1(0)− 02(σk−σ)Ck − ǫ

2N
r2 ≤ fk+1 ≤

Fk+1(0)− 02(σk−σ)Ck + ǫ

2N
r2,

we have

lim
rց0

1

r2σk+1−1

∂fk+1

∂r
(r) = 2σk+1Ck+1, lim

rց0

1

r2σk+1
fk+1(r) = Ck+1.

Consequently, we obtain Proposition B.5 if K ′ is sufficiently large. �

Appendix C. Proof of Lemma 3.2

In this section, we only outline the proof of Lemma 3.2. See [9, 12] for detail of the proof.

Definition C.1. For λ > 0 and γ ∈ R, define Tλ,γ : H1(RN ) → H1(RN ) as

Tλ,γu := λ
N
2 u(λ·)eiγ .

Definition C.2. Define
L2
Λ(R

N ) :=
{

u ∈ L2(RN )
∣

∣ Λu ∈ L2(RN )
}

,

where Λ := N
2 + x · ∇.

Definition C.3. Let X be a normed space. For x ∈ X and r > 0, we define

BX(x, r) := {y ∈ X | ‖x− y‖X < r} .

Definition C.4. We define ε̃ : R>0 ×R2 ×H1(RN )×R → H1(RN ), P̃ : R>0 ×R2 → H1(RN ), and S : R>0 ×R2 ×
H1(RN )× R → R3 as

ε̃(λ̃, b̃, γ̃, u, l) := λ̃
N
2 u(λ̃·)eib̃|·|

2/4−iγ̃ − P̃ (λ̃, b̃, l),

P̃ (λ̃, b̃, l) := Q+
∑

(j,k)∈ΣK+K′

(

b̃2j(|l|λ̃)(k+1)αP+
j,k + ib̃2j+1(|l|λ̃)(k+1)αP−

j,k

)

,

S(λ̃, b̃, γ̃, u, l) :=
((

ε̃(λ̃, b̃, γ̃, u, l), iΛP̃ (λ̃, b̃, l)
)

2
,
(

ε̃(λ̃, b̃, γ̃, u, l), | · |2P̃ (λ̃, b̃, l)
)

2
,
(

ε̃(λ̃, b̃, γ̃, u, l), iρ
)

2

)

,

respectively.

Here, S : R>0 ×R2 ×H1(RN )×R → R3 is a continuous function and S : R>0 ×R2 ×H1(RN )× (R \ {0}) → R3

is a C1 function.

Proposition C.5. There exist R, l, b > 0, γ ∈ (0, π), λ ∈ (0, 1), and a unique function S̃ : BH1 (Q,R)× (−l, l) →

(1−λ, 1+λ)× (−b, b)× (−γ, γ) such that S̃(Q, 0) = (1, 0, 0) and S(S̃(u, l), u, l) = 0 for (u, l) ∈ BH1(Q,R)× (−l, l).

Furthermore, S̃ is a continuous function.

proof. This proposition is proved by the implicit function theorem considering ε̃(1, 0, 0, Q, 0) = 0 (see Lemma 2 in
[12]). �

Definition C.6. For (u, l) ∈ BH1 (Q,R)× (−l, l), define
(

λ̃(u, l), b̃(u, l), γ̃(u, l)
)

:= S̃(u, l).
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Proposition C.7. The function S̃ from Proposition C.5 is a C1 function in BH1 (Q,R)× (0, l).

proof. If R, l, b, λ, and γ are sufficiently small, then D(λ̃,b̃,γ̃)S(u, l) is a regular matrix for any (u, l) ∈ BH1(Q,R)×

(−l, l).
For any (u0, l0) ∈ BH1(Q,R)× (0, l), we have

S(λ̃(u0, l0), b̃(u0, l0), γ̃(u0, l0), u0, l0) = 0.

Therefore, there exist Ru0,l0 , lu0,l0 , bu0,l0 > 0, γu0,l0 ∈ (0, π), λu0,l0 ∈ (0, 1), and a unique function S̃u0,l0 :

BH1 (Q,Ru0,l0)× (l0 − lu0,l0 , l0 + lu0,l0) → (1− λu0,l0 , 1 + λu0,l0)× (−bu0,l0 , bu0,l0)× (−γu0,l0 , γu0,l0) such that

S̃u0,l0(u0, l0) = S̃(u0, l0), S(S̃u0,l0(u, l), u, l) = 0 for any (u, l) ∈ BH1(Q,Ru0,l0)× (l0 − lu0,l0 , l0 + lu0,l0).

Moreover, S̃u0,l0 is a C1 function. According to the uniqueness, S̃ = S̃u0,l0 holds in a neighbourhood of (u0, l0). �

Definition C.8. For any l, δ > 0, we define

Ul,δ :=

{

u ∈ H1(RN )

∣

∣

∣

∣

inf
λ∈(0,l),γ∈R

‖λ
N
2 u(t, λ·)eiγ −Q‖H1 < δ

}

.

Proposition C.9. For any δ such that is sufficiently small, the domain of λ̃, b̃, and γ̃ are extended to Ul,δ. This
extension is a unique and γ̃ is a polyvalent function.

proof. For any u ∈ Ul,δ, there exist l ∈ (0, l) and γ ∈ R such that Tl,γu ∈ B(Q, δ). Then, we define the extension
as

λ̃(u) := lλ̃(Tl,γu, l), b̃(u) := b̃(Tl,γu, l), γ̃(u) := λ̃(Tl,γu, l)− γ.

See [9] for well-definedness and the uniqueness. �
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