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MINIMAL MASS BLOW-UP SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS
WITH AN INVERSE POTENTIAL

NAOKI MATSUI

ABSTRACT. We consider the following nonlinear Schrodinger equation with an inverse potential:

z% +Au+|u\%u:|: ;uzo
ot |x|2e

in RN, From the classical argument, the solution with subcritical mass (||ull2 < ||Q]]2) is global and bounded in
H! (RN ). Here, @ is the ground state of the mass-critical problem. Therefore, we are interested in the existence
and behaviour of blow-up solutions for the threshold (||uolly = [|Q||5). Previous studies investigate the existence
and behaviour of the critical-mass blow-up solution when the potential is smooth or unbounded but algebraically
tractable. There exist no results when classical methods can not be used, such as the inverse power type potential.
However, we construct a critical-mass initial value for which the corresponding solution blows up in finite time.
Moreover, we show that the corresponding blow-up solution converges to a certain blow-up profile in virial space.

1. INTRODUCTION

We consider the following nonlinear Schrodinger equation with an inverse potential:

Ou

(NLS+) { "ot
’u(to) = U

1
+ Au+ u|Vu+ ——u =0,
|z[2

in RY, where

0 e (omn{¥a)).

Then, (NLS+) is locally well-posed in H'(R™) (e.g., see [4]). This means that for any ug € H*(RY), there exists a
unique maximal solution v € C (=T, T*), H-Y(RM))NC((~T%, T*), H'(RY)). Moreover, the mass (i.e., L2norm)
and energy E of the solution are conserved by the flow, where

1 244
Jully, X

1 2
E(u) ::§||Vu||2—2+i ully X F
N

1 —0o
Sl =l

Furthermore, there is a blow-up alternative

T* <oco = lim ||[Vu(t)|5 = occ.
t AT

1.1. Critical problem. Firstly, we describe the results regarding the mass-critical problem:

Ou 4
(CNLS) iy + Au+ |u|Nu =0,
’u(to) = Up-

In particular, (NLS+) with o = 0 is attributed to (CNLS).
According to a classical variational argument ([I6]), there exists a unique classical solution of

CAQ+Q QY Q=0, QeH'®RY), Q>0, Qisradial
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(see [T [7]) which is called the ground state. For u € HY*(RY), if |lulz = [|Ql2 (lullz < [|Q]l2; [[u]l2 > [|Q]l2), we
say that u has a critical mass (subcritical mass, supercritical mass, respectively). Here, E¢it(Q) = 0 holds, where
E..it is the critical energy. Moreover, the ground state () attains the optimal constant for the Gagliardo-Nirenberg

inequality
4
24 2\ [l \ ¥ o o
il < (1+—)( 19l
e ~ ) Ual, :

w(u 1 ul|? o |UH2)%
Eeriv(w) 2 5 [[Vul; <1 (IIQ|2 )

This inequality means that for any initial value with subcritical mass, the corresponding solution for (NLS) is global
and bounded in H'(RYM).
Regarding critical mass, we consider

Therefore, for any u € H'(RY),

which is the solitary wave solution u(t, z) = Q(x)e’ to which the pseudo-conformal transformation

1 1 |2
U ——,:l:f et
It|= t t

u(t,z) —
applied. Then, S is also a solution for (CNLS) and

1
HﬂﬂM:Hﬂb,HVﬂWBNET

meaning S is a minimal-mass blow-up solution. Furthermore, up to the symmetries of the flow, the only critical-mass
finite blow-up solution for (CNLS) is S ([10]).
Regarding supercritical mass, there exists a solution for (CNLS) such that

log|log [T — t||

Iu@ll, ~ | =

(tT7)
(02 13)).

1.2. Main results. For (NLS+), it is immediately clear from the classical argument that if an initial value ug has
a subcritical mass, then the corresponding solution is global and bounded in H!(RY).
In contrast, regarding critical mass in (NLS+), we obtain the following result:

Theorem 1.1 (Existence of a minimal-mass blow-up solution). For any energy level Ey € R, there exist tg < 0
and a critical-mass radial initial value u(tg) € X*(RY) with E(uo) = Fy such that the corresponding solution u for
(NLS+) blows up at T* = 0. Moreover,

1 T b =2, (t)
u(t) - —=P(t,— e "T x0T
(¥ A% ( A(f))

holds for some blow-up profile P, positive constants C; (o) and Ca (o), positive-valued C* function A, and real-valued
C! functions b and 7 such that

PH) = Qin H'BY), A1) = Cu(o)lt™ (1+0(1)), b(t) = Coo)lt| ¥ (1+0(1)), ()" =0 (|#]55%)
ast 0.
Here, X! is defined as

=0 (t,0)

1

sti={ue H (RY) | zue L* (RY)}.
On the other hands, the following results hold in (NLS—).
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Theorem 1.2 (Non-existence of a radial minimal-mass blow-up solution). Assume N > 2. If ug € H  (RY) such
that ||ugll2 = ||Q]|2, the corresponding solution u for (NLS—) is global and bounded in H!(R™).

See Appendix [Al for the proof.

Theorem 1.3. For any § > 0, there exists ug € %2 such that ||ug||2 = ||Q||2 + ¢ and the corresponding solution u
for (NLS—) blows up at finite time.

This is a consequence of [9].

1.3. Outline of proof. We will now outline the proof for Theorem [Tl

In Section 2] we describe some basic statements that are used in the proof of Theorem [I1]

In Section 3] (and Appendix [B)), we construct a blow-up profile and introduce the decomposition of functions.

From Section [H to Section [ we prove Theorem [[LT] using the technique described in Le Coz-Martel-Raphaél [g]
and Martel-Szeftel [14].

In Section Bl we set an initial value and decompose the corresponding solution for (NLS+) into a core part and
remainder part. By rescaling the time variable, we consider an equation for the remainder part in rescaled time
and estimate the modulation equations of the parameters for decomposition.

In Section [6 by using the coercivity of the linearised Schrodinger operator, we estimate the energy of the
remainder part.

In Section [7 by using bootstrapping, we justify the arguments in Sections

In Section [B] we restore the time variable.

In Section @ we complete the proof of Theorem [I1]

1.4. Previous results. We describe previous results regarding the following nonlinear Schrodinger equation with
a potential:

Ou
(PNLS) ale—|—Au—|—|u|Nu—|—Vu—O

u(to) = uo
in RV,
Theorem 1.4 ([9]). We assume that V € (LP(RN)+ L>®(RY)) N C*(RY) for some p € [1,00] N (&, 00] and
VV € LYRYN) + L>®(RY) for some ¢ € [2,00] N (N, 00]. Then, there exist ¢ty < 0 and a critical-mass radial initial
value u(tg) € LY (RY) such that the corresponding solution u for (PNLS) blows up at T* = 0. Moreover,

u(t) — ~ Q( e * ®?
() At)Z (t>

holds for some positive-valued C' function A, real-valued C'' functions b and v, and RV -valued C! function w such
that

=0 (t,70)

»i

M) = [t (1 +0(1)), bt) =]t/ 1+0o(1), O =0(t™"), [wt)=o(t])
ast 0.

Theorem 1.5 (Carles [2]). If V = E - z for some E € RV, then (PNLS) has a finite time blow-up solution

2R\ i =2EE 1 Bipay B2
(2) S(t,I) = — Q (I +t ) e ( 4 2t + ‘ ‘ )
In particular, ||S||2 = ||Q]|2-

Theorem 1.6 (Carles and Nakamura [3]). If V = w|z|? for some w > 0, then (PNLS) has a finite time blow-up
solution

i wlz|? — @ ¢ |z|2 tanh( % >

3) S(t,a) = Lo ( = ) c (s oy~ sy )
‘QSmh(%)‘7 2smh(7)

In particular, ||S||2 = ||Q]|2-
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Theorem 1.7 (E. Csobo and F. Genoud [B]). Let N > 3 and V = rz for some 0 < ¢ < M. Then, (PNLS)
has a finite time blow-up solution

N
Ao N Ao i =l? JriﬁJri,y
t = (T—n TtT—¢ 70
S(t.z) <T—t> Q<T—t>e ’

where T, v € R, A\g > 0, and Q is a unique radial positive classical solution of
& 4
—Ap + W@—gp+ lpl¥ o = 0.
Moreover, S is a minimal-mass blow-up solution.

Finally, we introduce the result of Le Coz, Martel, and Raphaél [§] based on the methodology of seminal work
Martel and Szeftel [14] for

Ou

(DPNLS) { ‘3¢

u(0) = up.

+ Au+ |u|%u + elulP~tu =0,

Theorem 1.8 (Le Coz, Martel, and Raphaél [§]). Let N =1,2,3, 1 <p<1+ %, and € = 1. Then, for any energy
level Ey € R, there exist tp and a radially symmetric initial value ug(tg) € H*(RY) with

[u@®)ll2 = [Qll2, E(u(to)) = Eo
such that the corresponding solution u for (DPNLS) blows up at 7* = 0 with a blow-up rate of
C(p) + ot ~0(1)

|t| TV

IVu(t)lle =

where C(p) > 0.

Theorem 1.9 ([8]). Let N =1,2,3, 1 <p <1+ %, and € = —1. If an initial value has critical mass, then the
corresponding solution of (DPNLS) is global and bounded in H!(R™).

1.5. Comments regarding the main results. We present some comments regarding Theorem [[LT] below.

In Theorem [[L3] Theorem [[L6 and Theorem [[L7] the blow-up solutions are explicitly constructed by the trans-
formation of a solitary wave. In contrast to these, the method used in Theorem [[.1]is not classical. In particular,
Theorem [[.1] is the first result for a unbounded potential without algebraic properties.

In terms of blow-up rates, we have |t|_1+% — |t|~2 as o — 1. This blow-up rate is different from the Theorem
[L7 This may be since (NLS+) is not locally well-posed in H! when ¢ = 1. Moreover, since C;(0) — 0o as 0 — 1,
the limit dose not make sense.

The potential in Theorem [[.4] is smooth. However, the potential in Theorem [[.1]is singular at the origin. This
difference reflect in the blow-up rate.

The method in Theorem [l could also be applied to nonlinear terms of the form || =27 |u|P~tu.

1.6. Notations. In this section, we introduce the notation used in this paper.
Let

N:= ZZl, NO = ZZO'

Unless otherwise noted, we define

1
— |z

(o) = Re | u@p@de. [ul, = (/ N|u<x>|ﬁdx)%, FE=lalte P =g

By identifying C with R?, we denote the differentials of f and F by df and dF, respectively. We define

|2+%'

A;:%m-v, L+;=—A+1—(1+%>Q?¢, L :=—A+1-QW.

Then,
L—Q =0, L+ (AQ) = _2Q7 L_ (|£L'|2Q) = _4AQ7 L+p = |.’L'|2Q
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hold, where p is the unique radial Schwartz solution of L p = |z|?Q. Furthermore, there exists p > 0 such that
Vue HL 4(RY), (L, Reu,R: 2 1 2 2Q)2 2
rad ) + hewu, eu>+ <L* Imualmu> Z/LHu”Hl L ((RGU,Q)Q—F(RG’UJ, |$| Q)2+(Imu7p)2)

(e.g., see [Tl 12| [T4] [T5]). We introduce
7= {ue H™(RY) | |z|™u € L*(RY)}.

Additionally, we denote by Y the set of functions g € C*°(RY \ {0}) N C(RY) N HL ;(RY) such that

Vo € NoV3Cy, ko > 0, |2] > 1= ’(g) g(x)
T

< Co(l +[z))™Q(x)

and by ) the set of functions g € Y such that
Ag € HY(RN) N CRY).

Finally, we use < and 2 when the inequalities hold except for non-essential positive constant differences and =
when < and 2 hold.

2. PRELIMINARIES

We provide the following statements regarding notations without proofs.

Proposition 2.1. For any o € No™, there exists a constant C, > 0 such that ‘(8%)& Q(x)’ < CoQ(z). Similarly,
()" p(@)| < Call + [a])"= Q(2) holds (e.g., [ B).
Lemma 2.2. For the ground state @,
(@) = gl
holds.

Lemma 2.3. For an appropriate function w,

2 2 Np
(|:1:|21”w,Aw)2 = —p|||a:|pwH2, (—Aw, Aw)s = vasz (Jw|Pw, Aw)s = ml\ﬂf“ﬁig

hold.
Lemma 2.4 (Properties of F and f). For F and f,

OF OF ., OBef 9mf
- Y HIm T 9Re

S F(ele)) = 1(:(6) - 5 = Re (£ )
4F(2)(w) = J() - w = Re (f(2)),

) ) - = dF(2)w2) -,

S AF () (w(5)) = dF () (w(s)) - 5= + F(a() - S
% /RN (F(z(z) + w(z)) — F(2(z)) — dF (2(x))(w(z))) dz = f(z +w) — f(2),
Ly (ReZ) +il_(ImZ) = —AZ + Z — df(Q)(2)

hold. When identifying C with R2, - is the inner product of R2.
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3. CONSTRUCTION OF A BLOW-UP PROFILE

In this section, we construct a blow-up profile P and introduce a decomposition of functions.
For K € N, we define
Sko={ (k) €N’ |j+k<K }.

Proposition 3.1. Let K, K’ € N be sufficiently large. Let A(s) > 0 and b(s) € R be C! functions of s such that
A(s) + [b(s)] < 1.

(i) Ezistence of blow-up profile. For any (j,k) € X1k, there exist real-valued functions P P x € V' and
Bk € R such that P satisfies

P 1 lyl?
—+AP-P P @
igs +f(P)+A e, 1
where a = 2 — 20, and P and 0 are defined by
Ploy) =Qw)+ 3 (B)P AP () + ib(s) A VP )

(j,k)GEK+K/

0(s) := Z b(s)P \(s)FTDag;

(j,k)EEK+K/

Y p=v,

Moreover, for some ¢’ > 0 which is sufficiently small,

/ 10X ob
€'lyl a - on ov 2 2 a\K+2
e \I/HH <A <‘b+)\as |5+ 9‘) + (6% 4\
holds.
(ii) Mass and energy properties of blow-up profile. Let define
1 T EPLIC N CT (s)
Pyp~(s,2) = —FP (s,—)e T2 T
0= SoE e
Then,
d 10X
’d—SIPx,b,vH% SA (‘b+——‘ ’—+b2 D + (07 AN,
d 1 10X
—E(P . b - e b2 b2 P K+2
'ds (Proa)| 3 )\('+/\85 ’ * ’ (7429
hold. Moreover,
b2 2 A%(b% + \%)
2 a—2
() SEPu) - 1 11 (5 - o2 )| s o
holds, where
4oy~ Qll3
B:=Poo=—r1 12 -
IyleQll3
proof. See [§] for details of proofs.
We prove (i). We set
Zi= > bNePh i Y pTINeps
(k) ES Ky k1 (4,k)ES K 4kt

Then, P = Q + A\“Z holds. Moreover, let set
O(s):= > bls) ()t
(J,k) €S K 4 kv

ly|?
ly|2 4

P
@::i%—+AP—P+f(P)+/\°‘ YL P+0Q,

where P

o P € V' and Bk, ¢y € R are to be determined.
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Firstly, we have

0P ,
=—i > ((k+Da+2j)pIAEDepl

85 )
(J,k) €S K 4 kv
+i S0 PPN pEsT L § ik e et L g
§,k>0 §,k>0
where
o 1 OA 25\ (k1) ot -
OO = (bt 1o > (k+1)ab¥r (iPf, —bP;)
(J,k)EX iy v
b .
+ <a +b2 - 9> ST vk (2iPY — (25 + 1)bP;,)

(j,k)EZK+K/
2P 4
and for j,k > 0, F} ,j’ consists of Pfk, and B/ for (j', k') € x4k such that &' < k—1and 7 <j+1or
P
k" <k and j* < j — 1. Only a finite number of these functions are non-zero. In particular, F;% o belongs to )’

G5t
and Fy%s " =0.
Next, we have

AP—P+|PI¥P =~ > p#EaGtDep pho—i 3T puEz\GEep po
(J,k)ES k4 k7 (J,k)EX k4 i
+ Z b2j)\(k+l)aFj]j}€+ +l Z b2j+1)\(k+l)aFj‘]j}g_ +(I)f,
J:k=0 j,k>0
where
K+K'+1 1
O =fQ+NZ)= D LA FQONZ, - XZ)
k=0

and for j, k > 0, ij consists of @, P, / » and By g for (j', k') € Zgik such that ¥ <k —1and j/ < j. Only a

finite number of these functions are non-zero. In particular, ij }ci belongs to J' and FO{ ’Oj[:O.

Next, we have
1 . 1
)\Q—P _ <b2j)\(k+l) FO’ bQJ)\(k+1)O¢ FU7 ) ,
|y|2a' Z | |2a J.k | |2a J:.k

j+k>0
where (
Q j=k=0
' 0 (k=0)
ot =1 0 (j>1, k=0) o _ { )
J.k ) ) .k P B> 1
PjJ,rk—l (k > 1) J,k—1 ( )
Finally, we have
|y| j « |y|2 j ot + . - o 0, —
1 —P= Z bQJ)\(kJrl) ﬂ],kTQ"’ Z b2g)\(k+1) Fj7k 1 Z b23+1)\(k+1) Fj7k
R rer Jk>0 Jk>0

and for j, k > 0, F k consists of Q, P / r» and By g for (",k') 6 Y kax such that & <k —1and 5/ < j. Only a

finite number of these functions are non-zero. In particular, F belongs to V' and Ey 0, Oi—O
Here, we define

oP
Fjik = Fy% * 4 Foe,’oia
(I)>K+K/ — Z b2j)\(k+1)0¢Fj<f'k +i Z b2g+1)\(k+1)o¢Fj—k7
(j»k)€2K+K/ (jvk)€2K+K/

1

— oL , K+K' K+K'+2 + N (K+K'+2 -
D= @5 4 @f 4 oPHHE L \(KFK +2)a Py g +ibAET +)QWPO,K+K"

ly|>



8 N. MATSUI

’ . . .
Then, ®>%+K" i5 a finite sum and we obtain

oP ly?
— +AP-P A —P+06
za + + f(P)+ M 1 + 0
‘ 2
_ Z b2])\(/€+1)01( L P k+ﬁ], |y| Q+| |20FJU]€++FJT]g+C;‘:kQ)
(J,k) €S K 4 kv
+i pIrINEEDe (P (k4 1o+ 2§) P + ——F% " + F,
J:.k J,k | |2a J:.k J,k
(4,k)ES k4 k1
+ .

For each (j, k) € X4k, we choose recursively ijfk €Y and B, C;L,k € R that are solutions of the systems

Ly P}, -8 WQ S - @ =0
+ - 3.k _|y|20 Jko TRk T
(Sj,k)
L_Pp; — Fj + ((k+1)a+2j) Py — Iy |2o etk =
and satisfy
1

ch,=0({+k<K), VP k|eL°°(RN).

lyl? ”’“’II

See Appendix [Bl for details.
In the same way as Proposition 2.1 in [g], for some € > 0 which is sufficiently small, we have

10
< Ay
w3 (sl 1))

eé'h/\@f” < \E+K'+2)a
Hl ~Y )

/ apP
e€ \y\(pﬁ

WK || (2 4 o) KR
Moreover,
\y\eQH (b2 +AQ)K+2
holds. Therefore, we have
/ 10X

6|y|\1/H < )\@ —_ZZ
‘ o~ +)\83

‘— - D + (B2 A

where ¥ := & — OQ).

Next, we prove only (@) of (ii). The rest is the same as in [§]. We have

« «@ A” -0 « —0o 2
NE(Pyi) =5 IVQ+AVZI3~ [ @+ x2)ds = o Iyl Q+ Xyl 2

b, o b a
= 5(Q+iX*Z,AQ + X*AZ)> + = [I1y]Q + Al 2113
Here,

SIVQIE = [ F@ds. (VN2 =—@2:+ [ dF@0e2)i
RN

RN

1 1 2
S QIE = £ @l 52, (1@.AQ) =
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hold and we have

(Q,\*Z), = Z p27 )\ (1) (Q,Pj-f-k)z _ O(X)‘(bz +A9Y),

(4,k)EX K4 k7, JHE>1

BIAZAQ = b Y pHAke (P ( 5 k,AQ) — O(b2\%).
(k) ES Ky k1

Therefore, we have

2L up) = [ (FQ+X2) - FQ) - aP@ ) o
S RN

- —HIyIQllz 5 +—H|y|Q||2+0(>\“(b2+A“))
and
| (FQ+X"2) = F(@) - aP(Q)(x2)) do = O(™).
Consequently, we have the conclusion. O

Lemma 3.2 (Decomposition). There exist constants [, \,b,7 > 0 such that the following logic holds.
Let I be an interval, let 6 > 0 be sufficiently small, and let u € C(I, H'(RN)) n CH(I, H 1(RY)) satisfy that
there exist functions A € Map([I, (0,1)) and v € Map(I,R) such that

Vtel, H)\ Y u(t, \(t)y) QH

Then, (given 7(0)) there exist unique functions A € C*(I, (0,00)) and b, 7 € C'(I,R) that are independent of X and
~ such that

_ 1 &) iR S A
(5) u(t,z) = e (P+¢é) (t, S\(t)) ® ,
A(t) € (A1 =X, A1 +N),
b(t) € (=b,b),
(1) € | (=7 =) +2mm, 5 — 4(t) + 2mn)
meZ

hold and ¢ satisfies the orthogonal conditions
(£,iAP), = (,]yI*P), = (£,ip), =0

in I. In particular, X and b are unique within functions and 4 is unique within continuous functions (and is unique
within functions under modulo 27).

A summary of the proof is described in Appendix [Cl See [9] for details of the proof. Also see [8] [12].

4. APPROXIMATE BLOW-UP LAW

In this section, we describe the initial values and the approximation functions of the parameters A and b in the
decomposition.

Lemma 4.1. Let

28\ © _: 2
Aapp(s) := (% : ) 57, Dbapp(s) = —.

2 -«
Then, (Aapp, bapp) is a solution of
0b LoXN
— + b — =0,

Os AOds
ins>0.
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Lemma 4.2. Let define Cy := HIE%’”Q and 0 < A\g < 1 such that == + Coro®™® > 0. For X € (0, \o], we set
! 2

1

Ao
F(N) ::/ dp.
NSt 2B gz

Then, for any s; > 1, there exist by, Ay > 0 such that

A2 by B -
Yo ()E —lSe Y, Fa)=s1, E(Pyb.,) = Fo.
Ao | | Bapno1) ’NSl o (M) =51, E(Pa ) = Eo
Moreover,
2 a
F(A) SATE AR
aAs /528
2—a
holds.

proof. The method of choosing A\; and the estimate of F are the same as in [§] and is therefore omitted.
Setting h(b) := \*E(Px, p,), we have

) =3 1118 (1 = 527 ) + 0" 0% + %)

2
20
2—«

1
5 11Q3 (12  bapolo)? -

Then, since )\ is sufficiently small if s; is sufficiently large, we have

h(0) —~ M7Eo = —4 IW1QI35 A

(N Aapp<s1>a>> O + M%),

— /\12E0 + O(/\12a) <0,

2
A1) - M2 B0 = L1IulGIE (1 = _ﬂ

Therefore, there exists b; € (0,1) such that h(b1) = A\;>Ey and we have
1612 = bapp(51)] S A 4 A = Aapp(51)* T+ A (|02% = bapp(51)*] + Aapp(s1)* + M%)

_4 —
<81 @481 2.

Oz)\la — )\1200> + O()\la(l + )\10[)) > 0.

ot

Consequently, we have the conclusion. O

5. UNIFORMITY ESTIMATES FOR DECOMPOSITION

In this section, we estimate modulation terms.

Let define
« « 2/ -
€= 44—« <§ 2 — a)

For t; < 0 which is sufficiently close to 0, we define
=|C |
Additionally, let A\; and b; be given in Lemma for s; and 3 = 0. Let u be the solution for (NLS+) with an
initial value
(6) u(ty,x) := Py, p,.0(2).

Then, since u satisfies the assumption of Lemma B2 in a neighbourhood of ¢;, there exists a decomposition
(Aty,bt, 7,5 €1, ) such that () in a neighbourhood I of #;. The rescaled time s;, is defined as

t1 1
S¢,(t) := 51 — = dr.
w0=n- A (72

ole
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Then, we define an inverse function s;, ~! : s4, (I) — I. Moreover, we define

by, = Stlilv Aty (S) = :\(ttl (S))a be, (S) = B(ttl (S>)a

Tt (8) = ﬁ(ttl (S))7 €ty (S7y) = é(ttl (S)7y)
If there is no risk of confusion, the subscript ¢; is omitted. In particular, it should be noted that u € C((=T%,T*), L2(RY))
and |z|Vu € C((—=Ty, T*), L*(RY)). Furthermore, let I, be the maximal interval such that a decomposition as () is

obtained and we define J;, := s (I+,). Additionally, let so (< s1) be sufficiently large and let s’ := max {sg, inf Jg, }.
Let 0 < M <min{$,2 — 2} and s, be defined as

s, := inf {o € (s',51] | [@) holds on [0, s1]},

where
_ A(s)2 b(s) _
7 e(s)|? +b(5)?|||yle(s)||3 < s72K, ’ a—l’—i— — 1] <s™™M,
7) Ie(5) 3 + s 2 yle(5) 3 oE U
Finally, we define
10X 0b oy
Mod = —=— +b,— +b0>—6,1— —|.
© ()\ 9s TVas T ’ 8s>

In the following discussion, the constant € > 0 is a sufficiently small constant. If necessary, so and s; are
recalculated in response to € > 0.

Lemma 5.1 (The equation for ). In Jg,,

0e 1

168+Aa—a+f(P+5)—f(P)—)\ |y|2‘75
_i(LtoA _ N b g\ P _ (LA lyP®
z()\as—l—b)A(P—i-s)—i—(l 8S)(P—I—a)—i—(as—i—b 9) 1 (P+¢) )\85+b b 5 (P+e)
(8) =-U

holds.
Lemma 5.2. For s € (s, s1],

I(e(5), Q)| < s~ EFD | Mod(s)| < s~ K+2), Hef’IyI\yHH1 < 5K+
hold.

proof. Let
Sux 1= inf{ S €[S, s1] ’ |(e(7), P)a| < 7=+ holds on [s, 51]. }

We work below on the interval [s.., s1].
According to the orthogonality properties, we have

d _(.0e . O(AP)
9) O_ds (’LE,AP)2—<285,AP)2+(ZE, Ep )2
ey (o) s (o2
(10) = ik GelyPP), = (5 b))+ (iea?Gl )
d . e
(11) = (ig,p)y = (z%,p)2.

For (@), we have

12 (1. %5:2), = (1= 530742))_= 06~ 1 00 Mod(s)
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and

(i%,AP)Q _ <L+ Ree+iL_Tme — (f (P+¢) - f(P) — df(Q)(&)) +Aa|y|1205
+i (ig)\—kb)A(PJrs)— (1—%) (P+e)— (gb+b2 9) %(P—i—a)
1A

10X ly[?
+</\as+b>b (P+¢)+ U, AP K

According to Aijfk € HYRY)NnCRY),

1
|(Ly Ree, AP),| + |(iL_Tme, AP),| + ‘ <A“W5,AP) = O(s~E+2),

2
(iAP,AP), = (P,AP), =
(U,AP), = ( —2EE) 4 O(s! [ Mod(s))),
(ly*P,AP), = =[[[y|QII3 + O(s™?)
hold. Here, we have

f(P+e) = f(P)=df(Q)(e) = f (P +e) = f(P)—df(P)(e) + df (P)(e) — df (Q)(e).
Firstly, we consider (f(P +¢) — f(P) — df(P)(g)) AP. For N < 3, according to Taylor’s theorem, we have

|(F(P+e) = f(P) = df(P)(2) AP| S(1+|y|")(P + |e) ¥ ~'[e[*Q
SO+ M@+ )V PR,
On the other hand, we assume N > 4. If Q < 3| A“Z], then 1 < A*(1 + |y|*). Therefore, we have
|(F(P +e) = f(P) = df (P)(e) AP| S A*(1+ [y]") (@ + [e] V) e|-
If 3|]A“Z| < @ and @ < 3|e|, then we have
[(f(P+2) = F(P) = df (P)(@)) AP| < (1+ [yM)Q¥ e
If 3] < @, then P — || > £Q > 0. According to Taylor’s theorem, we have
(f(P+¢) = f(P) = df (P)(e)) AP| S(1+ [y|")(P — e)¥ ' |e*Q
SA+yMQ™ e,
Therefore, we have
(F(P+e) = f(P) = df (P)(e), AP), = O(s~ ).
The same calculation for (df (P)(g) — df (Q)(g)) AP yields
(df (P)(e) = df (Q)(€), AP), = O(s™+2),

Accordingly, we have

<i%,/\p>2 - _—H|y|QH ( b2 —9> +O0(s™FH2) 4 O(s7 ' Mod(s))
and by ([@) and (I2)),
? +0% =0 =0(s"5)) + O(s7"| Mod(s)]).
The same calculations for (I0) and () yield
%% 4 b=0(s~E+2) 4 O(s7! | Mod(s)]), 1— % = O(s~E+2) 4 O(s7| Mod(s)]).

Consequently, we have
[ Mod(s)| < s~ Jle W) < 5=,
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Finally, since
[P(s1)]13 = IP(s)II3 + 2(e(s), P(5))2 + [l(s)]I3,
we have

d

d
ds T

6Pl S IR+ [

s1
< 572K —|—/ (7’72| Mod(7)| + 772(K+2)) dr

~

PGB

s=

< S_(K+3)'

Therefore, if sg is sufficiently large, then we have s,. = s,. Moreover, we have
|((5), @2l S 1(e(s), P(s))a] + A |(e(s), Z)a| S 57 FH2),

6. MODIFIED ENERGY FUNCTION

In this section, we proceed with a modified version of the technique presented in Le Coz, Martel, and Raphaél
[8] and Martel and Szeftel [14]. Let m > 0 be sufficiently large and define

1 1., o 1|2
3l + 02 alell — [ (F(P+e) = F(P) = dF (PN dy = 30 Iyl
1

S(s,e) = )\—mH(s,s).
Lemma 6.1 (Coercivity of H). For s € (s., s1],

2 — 2
el + 6% ylell; + O(s™>F D) < H(s,e) S el + 0% lllylells

H(s,e):

hold.
proof. If N < 3, then we have

F(P+¢)— F(P)—dF(P)(¢) — %dQF(P)(s, €)

S (IPIF=1 el 31 e
For N > 4, if 2|¢| > | P|, then we have

F(P + )~ F(P) ~ dF(P)(e) ~ 1 F(P)(z,2)| £ [e|#+2

If 2[¢| < |P|, then |P| > 0 and |P| — |¢| > | P|. Therefore, we have

F(P +2) ~ F(P) ~ dF(P)(&) ~ 2*F(P)(=,2)| £ (1P|~ e} ¥ 7 e < Jef#+2

Therefore, we obtain
1
L (P2 = P2y - aPe)e) - 5@ F(PYe2) ) dy = o)
RN
Similarly, if N < 3, then we have

SEFPIER) -~ PFQEa)| £ (QF 4 ez i) [Pz,

For N > 4, if 2|]A\*Z| > @, then we have

SPF(P)e,2) — sPFQ)e,0)| N Z|F o]

If 2(\*Z| < Q, then Q — [A\*Z| > Q. Therefore, we have

SEFPIE) - JEFQE)| S0 @ NZ)F T 2 £ (14 |-l
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and

[, (3EF(PIe2) = 3@PQE) ) dy = oflelfy).

Accordingly, we have

H£||ip - /RN d’F(Q)(e,e)dy = (Ly Ree,Ree) + (L_Tme, Tme)
1
> pllell — " ((Ree, Q)3 + (Ree, [y’ Q)3 + (Ime, p)3)

1 o 2 .
= sl = (€ QB+ (& sPP)2 = X (e P 2)2)” + (e.i0)3)
= pllellip +O(s72F+2),
Consequently, we have the lower estimate. The upper estimate is clearly. g

Corollary 6.2 (Estimation of S). For s € (s., s1],

s (N3 +87 el + O(s™2052)) £ 5(5,€) £ 5oz (el + 82 lylel?)
hold.
Lemma 6.3. For s € (s, s1],
(13) ((f(P+e) = F(P),Ae)y| S llellFn +57°F
holds.
proof. Calculated in the same way as in Section 5.4 in [§], we have
V(F(P+e¢)— F(P)—dF(P)(¢g))
=Re (f(P+¢)V (P+8) — f(P)VP —df(P)(e)VP — f(P)Vg)
=Re ((f(P +e) = f(P) = df (P)(e)) VP + (f(P +¢) — f(P)) V&)

and
(F(P+6) = £(P).0e) = Re [ (1(P+2) = f(P) Azdy
e [ (5 U+~ JPNE- (P +2) ~ ()= POy VP = N (F(P-+2) ~ F(P) = dF(P)) ) dy
Firstly,
(f(P+¢) = [(P)E| +|F(P +¢) = F(P) = dF(P)(e)| S((1+ ly|)Q + [e|¥)[e]?
holds.

Next, we consider (f(P +¢) — f(P) —df(P)(g))y - VP. For N < 3, we have
(F(P+2) = f(P) = df (P)(e))y - VP| S (1+]y")(@ + ) ¥ ' [e[*Q.
For N > 4,if Q < 3|]A“Z], then 1 < A*(1 + |y|*). Therefore, we have
(F(P+2) = f(P) = df (P)(e))y - VP| S N1+ [y|")(@F +[e] V) e|Q.
If 3|]A*“Z| < @ and @ < 3e|, we have
[(F(P+e) = F(P) = df(P)(€))y VP S (L+[y")Q¥|e]*
If 3le] < @, then P — |e| > £Q > 0. Therefore, we have
|((P+e) = f(P) = df(P)(e))y - VP| S (1+[y)Q' ¥ |ef*.

Consequently, we have the conclusion. 0



MINIMAL MASS BLOW-UP SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS WITH AN INVERSE POTENTIAL 15

Lemma 6.4 (Derivative of H in time). For s € (s, s1],

d _
—H(s,2(3)) 2 =b (Ilelfn + 82 llylel3) + O(s=2+)
holds.

proof. Firstly, we have

0H O0H Oe
T (o.5(6) = o)+ (G el 15509 ).
Here,
0H A
— =—Ac+e+2%ylPe — (f(P+e)— f(P) — —5¢
Oe ly|
AO(
=L, Ree +iL_Tme +20%|y*c — (f(P +¢) — f(P) — df(Q)(¢)) — PEaR
oH _ Jb 9 oP aX® 1 0\ o
o —allulelf~Re [ (7(P+e) = 1(P) — dr(PYE) Gody — 255 S ol
hold. Therefore, we have
0H _ _
25 2 ~Vlllylells = s72blelF + O(s7).
Let define
10X 0y ob |y|2 10X |y|2
Modopv—z(/\8 b)Av (1 85)0 (8 + b — 9) 1 v+ 3 s +b 2v.
Then,
0e  OH 91 12
Z%—E—2b |y| E+M0dop(P+5) \IJ

holds. Moreover, we have

(150 i) = (15 ). 2y + Moy (P +2) ¥ )

Secondly, we have
0OH
(ig(s, o), —2b2|y|25) = — 4b2(iVe, ye), + (z (|P tel¥ - |P|%) P, —2b2|y|2a)2
2
= —4b? (iVe, ye)y + O ||| 3 + s~ 3K)
Z = b (IVel3 + 0*[[ly%el3) + O |lell7: + s~°F).
Thirdly,

(i%—lj(s,a(s)),ModopP> — O(s~(BK+2)y, (ia—H(S,g(s))7\I}) _ O(s~2K+2)

Oe 5

2
hold.
Finally, since

(@ (F(P+e) = f(P)),ike)y| + (i (F(P +e) = F(P)).|yl*e),| = Ollellzp) + O(s*F),
we have .
O _ 2 2 2 —(5K+2)
(15 et Mo ) =0 (b (el + 8 1le13) ) + O~ 572,
Consequently, we have the conclusion. O

Lemma 6.5 (Derivative of S in time). Let m > 0 be sufficiently large. Then,

da b 2 (2K +3)
250290 2 5 (lellEe + 82 llylell3 + O(s~ <+

holds for s € (ss, s1].
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proof. From Lemma [6.4] we have

%S(s,s(s)) =— m%%%fl(s e)+ )\imdiH(s (s))
10X 1 b 1 d
— (L) —H s — %y
<)\8 +))\m (ss)+m)\ (s,e )+)\md (s,e(s))
b _ _
> ((m = C (IlelFn + 8 llylels) + O(™25+2) = ¢ (|l + 82 llylell3) + O(s~ ) ).
Therefore, we have the conclusion if m is sufficiently large. O

7. BOOTSTRAP

In this section, we use the estimates obtained in Section [l and the bootstrap to establish the estimates of the
parameters.

Lemma 7.1 (Re-estimation). For s € (s, s1],

14 ()13 +b(s)? |yle(s)]3 < s~ 3K+,
A(s)® b(s) .
(15) 704—1‘+ 1< s sk
Aapp(8) 2 Dapp (3)

holds.
proof. We prove (I4) by contradiction. Let C; > 0 be sufficiently large and define

st i=inf {o € (s2,1] | el + ()2 llyle(@ll} < Crr 25 (r € [o,s]) }
Then, st < s; holds. Here, we assume that sy > s.. Then, we have

le(s1) 17 +b(s1)? lllyle(s)ll = Crsy>HHY.

Let Ct > € and define

sp = sup {o € (som] | [o(r)3 + () w3 = G0 (r € [sg.0])}
Then, we have s; > s;. Furthermore,

2 2 _
lle(si)llz + b(s1)? llyle(s)]l5 = Cist 2(K+1)
Then, according to Corollary [6.2] and Lemma [6.5] we have

C _ Cs
o (el + 82 lylell3 — ©'s~204D) < 5(s,0) < 122 (el + B2 llylel3)

b _ d
v (el + 8 llglells — es™204D) < Z5(s,e).

in (s, $1]. Therefore, we have

C1(Cy — C")sy 21

—

=1 (o) + blsn)? (sl — Csy =204
SA(st)™S(st,e(s1))
<N(s1)" S s, 2(s50)

=G ig:;m (H e(sp)l7p +b(s1)” |||y|5(5i)||§)
Cgci igil; Si 2(K+1)

—2m 8172(K+1)

St
<(1+4€)CoCy S¢_2Tm s 205+

—2(K+1)

St



MINIMAL MASS BLOW-UP SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS WITH AN INVERSE POTENTIAL 17

and since K — 2+ > 0, we have

Ol(OT — O/) < (1 + G)CQC;I;.
Since C} is sufficiently large, it is a contradiction. Therefore, s; < s.. On the other hand, s; > s, is clearly.
Accordingly, s, = si.

Next, since
cd T (Kt2)+d —(K+1)+4
|E(Prp,q(8)) — Eo| < | EBpa(s)dry < |7 adr $s “
S1 S S=T S
we have
2.3 b2 203 _ 8 8 _
2 — S XY O\ < N | = - L\ 2 — _R(P E (P E < 74

o TN EN e e T e P e g ) — Bl S0

From the definition of F, we have

|F'(s) =1 S 572
Therefore, we have

ls = F(A\s) S s
since F(A(s1)) = s1. From definition A,pp,, we have

UL P
As)2
and
)\(5)5g 1< /\(8)5g )\app(sg)2 1 §87%+527§.
)\app(s) 2 )\app(s) 2 /\(S) 2
Finally, we have
6(5)? = bapp(s)?| S 574 572 57
and
b
() —1‘<s 5452
bapp(s)
Consequently, we have the conclusion. O
Corollary 7.2. If s is sufficiently large, then s, = s'.
Lemma 7.3. If sq is sufficiently large, then s’ = s;.
proof. See [9] for the proof. O

8. CONVERSION OF ESTIMATES

In this section, we rewrite the estimates obtained for the time variable s in Lemma [l into estimates for the
time variable ¢.

Lemma 8.1 (Interval). If s¢ is sufficiently large, then there is ¢y < 0 which is sufficiently close to 0 such that for
t1 € (to, 0),

[to,t1] € st, " ([s0, 51]),

Csuy ()75 = It S 1% (¢ € [to, 1))
holds.

proof. Since t;,(s1) = t; and s; = [C71¢;|7 7=, we have

/S " Aapn(7)? (;‘;T((TT)) - 1) ( ;‘;:(TT)) + 1) dr = / : Ay (7)? = Xapp(7)?) dr

=t (51) — 1ty (S) + 6(5117§ - 517‘*)
= |ty ()] — Cs~ ="

|
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Therefore, we have

|t (5)] — Cs™ ="

S1 51 o 4—a
,S/ Aapp(T)2T7Md7',§/ T @ MdTS ms (T+M)

Accordingly,
i—a _d—a
[t (8)| = s™ 7o e |t| & s, (t)" = .
O
Lemma 8.2 (Conversion of estimates). Let
_2
_ 2 (0% 2ﬁ “ 2 o
Cri=C"7 | o , Cpi=—C T,
g <2 2—a> T
For t € [to,tl],
) = Gl (1465, (0) 5 bu() = Gl™ (14, 0)),
- < 7[{ < a(K—1)
e @l ST lylén @)l S [H =
hold. Furthermore,
oM oM
sup_[ex, (0] S 1T, sup e, (6)] S 1415,
t1€[t,0) t1€[t,0)
proof. Let R
Aty ()
Xt (t) == o
C)\|t|470‘
Then, we have
A, () Aapp (81, (1)) 1 2 ant
(O] = [ B — 1] | et Napp (512 (1)) = Calt] 757 | S ¢85
At )‘app(stl(t)) C)\|lf|ﬁ C)\|t|4% P !
The same is done for €, (). O

9. PROOF OF THEOREM [ 1]
See [8,[] for details of proof.

proof of Theorem[Il Let (t,)nen C (to,0) be a monotonically increasing sequence such that lim,, r t, = 0. For
each n € N, u,, is the solution for (NLS+) with an initial value

un(tna I) = PAl,nqbl,'nJO(I)

at t,, where by , and A\, are given by Lemma [L2] for ¢,,.
According to Lemma with an initial value 4, (t,) = 0, there exists a decomposition

1 pdu® =,
un(tjgp) = ﬁ(P"'gn) (t7~i>e 13X, (t)2+ 'Yn(t)'
An(t) An (%)
Then, (un(to))nen is bounded in X!, Therefore, up to a subsequence, there exists uo(tg) € X! such that
Un(to) = Uso(to) In X, wn(to) = uso(to) in L*(RY)  (n — o0),

see [8, @] for details.

Let uqo be the solution for (NLS+) with an initial value us(tg) and T* be the supremum of the maximal existence
interval of ue.. Moreover, we define T := min{0,T*}. Then, for any 17" € [to,T), [to, T'] C [to, t,] if n is sufficiently
large. Then, there exist ng and C(I”,t) > 0 such that

sup ||un||Loo([t01T/]’El) S C(T’, to)
n=no

holds. According to Lemma B.2 in [9],
Un = Use 0 C ([to, T"], L*(RY))  (n — 0)
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holds. In particular, u, () — us(t) in X! for any ¢ € [tg,T). Furthermore, from the mass conservation, we have
e ®)ll2 = [uselto)lle = lim ua(to)ll2 = lim un(t)lla = lim [Ptz = Q2
Based on weak convergence in H!(R") and Lemma B2l we decompose us, to
1 ibee® x4
Uso(t,2) = ——= (P +E0) (ﬂ#)e T Xz T (t),
Ao () Ao (1)

where an initial value of Yoo is Yoo (fo) € ([to| ™" — , [to| ™" + 7| NF(ucs(to)) (Which is unique, see [9]). Furthermore,
for any t € [to,T), as n — 00,

Sn(t) = Aoelt), Balt) = boolt), €O 5 =0 &y (1) S e(t) 3!
holds. Consequently, from a uniform estimate of Lemma R2], as n — oo, we have
~ 2 ~ o
Aoo(t) = CA |7 (T4 €55(1),  boo(t) = Co [t]*== (1 + €5 4(1)),

a(K—1
—a

~ oK . )
e @l S 1E*= 5 llylesc(®)ll2 S [t

oM
r00)] S 11,

Consequently, we obtain that u converges to the blow-up profile in X'.
Finally, we check energy of u.,. Since

1
E(un) — E (Pxn,z;n,an) = /0 <E’(Pxn,5mn FTES, b ) 5xn,an,an> dr

and E'(w) = —Aw — |w|¥w — |y| 27w, we have

E(un) - E (Pf\n,i)n,%) =0 (%2”571”111) =0 (|t|afi«l4) .
o (%Ilémllm) =0 (|t|afi;“) .

Jim E (Pxn,zsn,an) =E (me,zsm,aw)

Similarly, we have

E(ux) — E (PS\DQ,BN,%O)

From the continuity of E, we have

and from the conservation of energy,

E (wn) = E (un(ta)) = E (P, , 5,.,.4..) = Fo.
Therefore, we have
E(use) = Eo 4 0t 70(1)
and since F (uoo) is constant for ¢, F (us) = Eo. O
APPENDIX A. PROOF OF THEOREM

In this section, we describe the proof of Theorem

Proof of Theorem[[.3. We assume that u is a critical-mass radial solution of (NLS—) and blows up at T*. Let a
sequence (t,)nen be such that ¢, — T as n — T* and define

[VQ||2 x
An = —————, vp(x) = Ay T ulty, Apx).
[Vu(ts)|
Then,
[vallz = Qll2,  [[Vunll2 = [VQ2
hold. Moreover,
E(v,
Ey = E(u(ty)) > Eeit(u(ty)) = ( 2).

An
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Therefore, we obtain
limsup E(v,) < 0.

n—roo
From the standard concentration argument (see [12 §]), there exist sequences (x,,)nen C RY and (7, )nen C R such
that _
V(- — ) = Q in HY(RY) (n — o0).
Moreover, up to a subsequence, we have
vpe’ — Q in HY(RY) (n — o).

Indeed, if (2, )nen is unbounded, we may assume x,, — oo as n — oo. Then, since v,, decay uniformly by the radial
lemma, we have
. i 2 2 . i 2
0= lim |jn(- —zn)e™ = Q|3 =2[|QU5n — lim 2 (va(- — 2n)e™, Q) 1 = 2|Qllz -

It is a contradiction. Therefore, (z,,)nen is bounded. We may assume that (z,,)nen is a convergent sequence. Let
define g := lim,, oo T,,. Then, we have

e = Q(- + o) in HY(RY) (n — o0).

Since v,, and @ are radial, we obtain xg = 0.
Here, we have

I Feute) = 1l
n)ll2 N7
Therefore, since Egit(u) > 0, ,
Ey = E(u(ty)) > M[{%ﬂb — o0 (n— o0).
It is a contradiction. ! ]

APPENDIX B. SOLUTIONS FOR (S 1)

In this section, we construct solutions (P;fk, Py Bk, cjk) € V'? x R? for systems (S.%x) in Proposition Bl

Proposition B.1. For any g € H~}(R") such that <g, g—g> =0(j=1,...,N), there exists f € H'(R") such
that L, f = g in H~'. Similarly, for any ¢ € H~*(RY) such that (g, Q) = 0, there exists f € H*(RY) such that
L_f=gin H "

proof. Let ¢4 be the ground state of Ly and uy be the eigenvalue of ¢y. Then, py < 0 and we may assume
||#4 |2 = 1. Let define Hy which is subspaces of H!(R") by

0Q 0Q

6,@17'”76,@]\[

L
H+ = Span {¢+7 } s H_ = Span {Q}J— )

then H. is Hilbert space and
3Cs > O0Vf € Hy, (Lif, f) > C| fln
hold, where double sign correspond. Therefore, from the Lax-Milgram theorem,
Vge HiAfr € Hy, Lyfy =gin H}
hold, where double sign correspond.
Here, let <g, 867%> =0, f:=f+ %qﬁ, and @ 1= — (0,01 )dy — (p, VQ) - VQ for each ¢ € H'(RY). Then,
@ € Hy and we have

(Lifop) =(f, Lyp) = (f, L1& + pi(p, ¢4 )b4) = <L+f, 95> + <<g’—i+>¢+7ﬂ+(907¢+)¢+>

"
=(9,0) + (¢, 04) (9. 04) + (¢, VQ) - (9, VQ)
=(g,¥)-
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This means that L, f = g in H L.
The same is proved in the case of (g, Q) = 0. O

Proposition B.2. For any g,h € ), there exists f € ) such that Ly f = g+ #h. Similarly, for any g,h € Y
such that <g + #h, Q> = 0, there exists f € Y such that L_f =g + #h.
proof. We prove only for L. Since Y C H) (RY), the existence of H'-solution is clearly from Proposition [B1l

Firstly, based on a classical argument of elliptic partial differential equations, we have f € C°°(RY \ {0}). From
the maximum principal,

9\
Vo € NONHCQ, Ra > O, |$| >1= ‘(%) f(x) < Oa(l + |x|NG)Q(x)

holds. Since g + #h € LP(RYN) for some p > max{Z, 1}, we have f € L>(RY) (see [6]). Furthermore, since

4 4 1
we have f € W2P(RYN) — C%7(RY) for some 7 € (0,1). Namely, f € ). O

Proposition B.3. The system (S; ) has a solution (PJ ko Li s Bikes €5 ) EV? xR

proof. We solve

|y|2 1 o,+
LJFPJ'J,F/@ - FjJ,rk - ﬂﬂ?kTQ - | |2aFj,k - ;ka =0,
(Sj k) Y

For (S} %), we consider the following two systems:

Ly PY —Ff —B; gy 1 FoF =0
+ gk 5.k Q 1 — Y,

- 4 20~ 4,k
(S50) ) [yl | !
L P, = Fip + ((k+ Da+2j) P — G Ffo=0.
and

+ P+ CJ'rk

— J

/ Pjyk = Pjyk - 7AQ,
(S],k)

(k+1)a+ 2j)c;:k
8

Then, by applying (57 ) to a solution for (S;.), we obtain a solution for (S; ).
Firstly, we solve

PM = P7 - ¢ i@ — |y|2Q

I (0 S RN | e SR S g
(S0,0) ' T4 |ly|>o

L—po_,o + aﬁo‘fo = 0.
For any f5p0 € R, there exists a solution Ij’(;fo € ). Let

1ol |-7QI3

Poo = a2

Then, since

~ 1 - 1 1
(Pin@), = 3 (1P Q) = 5 ( OOMW, =0.80) = 5 (2201101 - oll - 1 qI3) =0,
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there exists a solution POTO € Y. By taking ¢ = 0, we obtain a solution (Pyy, Py, Bo.0: ¢go) € Y2 x R? for (So ).
Here, let H(jo, ko) denote by that

V(j, k) € Exyrry k< koor (k=koand j < jo) = (Sjx) has a solution (PJTk,PJTk,Bj)k,CIk) € )? x R%

From the above discuss, H(1,0) is true. If H(jo, ko) is true, then Fjjg,ko is defined and belongs to ). Moreover, for
any 35,k there exists a solution ]5]7(': ko L€t be Bj; k, such that

_ N 1
<_F]7k+((k+1)a+2])P]Tk— WFjvk 5 > =0.
Then, we obtain a solution PJ; ko Here, we define
P . (0) .
B xel0) (Jo + ko # K +1),
Cjoko " 0 (jo+ko=K+1, and Pk, (0) # 0),
1 (jo+ko =K +1, and P, (0) = 0),
0 (.70 + kO SNK)u
. 0 (jo + ko = K, and P}/, (0) # 0),
Cjo,ko = ) 1 (j() + ko = K, and P]t,ko(o) = O),
it © jo+ ko > K +2
Q) (o + ko = K +2).

Then, we obtain a solution for (S}, x,). This means that H(jo+1, ko) is true if jo+ko < K+ K’'—1and H(0,ko+1)
is true if jo + ko = K + K’. In particular, H(0, K + K’ + 1) means that for any (j, k) € Y4k, there exists a
solution (P;rk, Py, Bk c;fk) €)? x R2

Furthermore, P;,(0) # 0 for j + k = K + 1 and PJ;(0) =0 for j + k > K + 2 hold. O

Proposition B.4. For P7;, AP}, € H'(RY) N C(RY). Namely, P, € V',

proof. Regarding APjik € HY(RY), proving ylejE,C € H%(RY) is sufficient. Since

vy Y o,
L+(yleJ,rk) = yle—f_k + Bk 4 Q+ |y|27 Fj7k+ + c;kle

and

Y1 o,+
e i

o,+
— |y|2071 |Fj,k | € L2(RN)7

we have y P, € H*(RY). Similarly, we have y, P}, € H*(RY).
Regarding APfk € O(RY), proving y - VP;F,C € C(RY) is sufficient. Firstly,

1 5
I ;:r + c;ka)

1, yl?
For —l—c;ka) +2(ij,c +Bj,k%Q+ ]

2
Y
Li(y-VPf) =y V(E + Bj,k%Q + y[2o 9

4 4 4 (4 4 _
- 2Pj—3_’f2 (N N 1) QNPJT*’C N <N N 1) Q¥ "y VQPJTIC
holds. Since # : VF;T}:F € LP(RY) for some p > max{Z,1}, we have L (y - VPJT]C) € LP(RY). Therefore, we
have y - VPJTk € C(RY). Similarly, we have y - VP, € C(RY). O

Proposition B.5. For POiKJrK,,

+
[ 10F; ki i 1°(RN
2o KkyR T g € (RY),

where r = |y].
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proof. We prove only for P(ir KK
Let fi := PJKHC for k € N. Here, f1(0) # 0 and f;(0) = 0 for k£ > 2 hold. Moreover, Let
r2
4
If =9 f) converges to non-zero as r N\, 0 for some g € [0,20) or 9 f, converges as r \, 0 for some g > 20, then
TN_l% converges to 0 as r \, 0. Indeed, if N = 1, then f € W2P(RY) — CY(RY) for some p > 1. Therefore,
since fi is an even function, %(0) = 0 holds. On the other hand, for N > 2,

1 9 10fk+1 1
(16) N1 9y (TN 1—3T ) = Flp1 — Tz_gfk

holds. If r=9f; converges as r \, 0 for some ¢ > 20, then 27 f;, is bounded. Therefore, for some sufficiently large
p, we have fry1 € W2P(RY) — CL1(RY). Accordingly, TN_l% converges to 0 as r N\, 0. On the other hand, if
r~9 f converges to non-zero as r N\, 0 for some ¢ € [0,20), the right hand of (6] diverge +o0c or —oo as r N\, 0.

4 4
Fy = fr — <1+ N) QY fk _FO-t_K—i-k = Bo.k+k Q_CS:K-HCQ'

10 . . . . 10 .
Therefore, rV =1 % is increasing or decreasing as r \, 0, meaning 7V 1 % converges in [—oo, co]. Let
. 1| Ofk+1
C :=lim V1! Ofrtr .
N0 or

Then, for any e > 0, there exists g > 0 such that ’% > (C —€e)r~ =1 for any 7 € (0,7¢). On the other hand,

fes1 € W2P(RN) — WHLN(RN) for some p > & and ‘%

= |V fg+1|. Therefore, we have

T0 O _
00 > / \V frra ()N da > ON/ %dr.
B(0,r0) o -

Since for r~(N=Dgp = 00, we obtain C' — e < 0. Consequently, we have C' < 0, meaning C' = 0.
Let 01 := 0 and C; := f1(0). Moreover, let

- —2(oc—0 k<O

et = { l—o+op (o <o) Chory = { SN ( )

1 (ok 2 0) B (O-0 0 (5, > o)

In particular, if o < o, then Cy # 0. Then,
1

(17) B Ji(r) = Ci
holds. For k =1, it clearly holds. Moreover, for k > 2,
1 Ofk

Tl\‘lf% —T2Uk*1 W(T) = 20’ka

holds. Indeed, if ([IT) holds for some k, then rN_l% converges to 0 as 7 N\, 0 in both cases o, < o and o, > o
from the above discuss. We assume o3, < o. Since

1 0 0 1 1
(TN_I—le) =1 — 55— T,

rN=19r or r2(o—ok) y20

for any € > 0, there exists ro > 0 such that

(—Cp — eyN-1-20-0) < % <TN—1 %) < (=Cp + eyrN-1-2=00)
for any r € (0,79). Integrating in [0, 7], we have
_—Gze pi=2le—on) < 01 < —Crte pi=2o=on),
N —2(c — oy) - Or T N-20—oy)
Integrating in [0, r] again, we have
—Cp —¢€ p2-2o—0r) < Fors < —Cj —¢ F2—2(0—0%)

(2—2(c —0k))(N —2(c — o)) (2—2(c—0k))(N —2(c —01))
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Therefore, we have

. 1 Ofrt1 1
B R (r) = 20541Ck1, lim, oy Jer1(r) = Crgr.

On the other hand, we assume o > 0. Then, for any € > 0, there exists g > 0 such that

or or
for any r € (0,79). Integrating in the same way as for o}, < o, we have
Fip1(0) = 02(0x =)y — € < Ofir _ Frir(0) - 02 =), + €
N or ~ N ’

(FkJrl(O) _ OQ(okfo)Ok _ 6)TN71 < g < N— 1afk+1> < (FkJrl(O) _ 02((%70)0]@ + 6)TN71

Moreover, since

Fr11(0) — 02(0'k—0')0k — 67°2 < - Fr11(0) — 02((7k—(7)Ck + 6727

2N fenr < 2N
we have . of .
, k+1, \ _
}1{(% 7201 or (r) = 20k+1Ck1, 11{‘% 720kt fret1(r) = Cht1.
Consequently, we obtain Proposition [B.Alif K’ is sufficiently large. O

APPENDIX C. PROOF OF LEMMA
In this section, we only outline the proof of Lemma See [9] [12] for detail of the proof.
Definition C.1. For A > 0 and v € R, define T , : H*(RY) — H*(RY) as
T\ ~yu:= /\%u(/\-)e”.
Definition C.2. Define
LARY) :={ue L*R"Y) | Aue L*R") },

where A := % +x-V.
Definition C.3. Let X be a normed space. For x € X and r > 0, we define

Bx(x,r) ={ye X | ||lz—vyllx <7}.

Definition C.4. We define £ : Rog x R?2 x H'(RN) x R — H'(RY), P: Ry x R? = HY(RY), and S : Rsg x R? x
HY(RY) xR — R? as

N D, A, u, 1) = S\%U(S\-)eig"‘z/%ﬁ — P(A\,b,0),
P(;\,B,l) —Q+ Z (EQj(|l|5‘)(k+l)aPJTk+i52j+1(|l|5‘)(k+l)apfk)=
(4,k)EZ K k7
N L ~/X T ~ A DN T ~/X T ~ 12PN ~X T ~ .
SO b,F,u,l) = ((E(A,b,%u,l),zAP()\,b,l))2, (5(A,b,7,u,l),| | P(A,b,z))2,(E(A,b,%u,l),zp)2),

respectively.

Here, S : Rsg x R2 x HY(RY) x R — R3 is a continuous function and S : R x R? x H}(RY) x (R\ {0}) — R?
is a C'! function.

Proposition C.5. There exist R,1,b > 0, 7 € (
(1=X,14X) x (=b,b) x (—7,7) such that 5(Q,0
Furthermore, S is a continuous function.

0,7), X € (0,1), and a unique function S : By (Q, R) x (—I
) = (1,0,0) and S(S(u,1),u,1) = 0 for (u,l) € By (Q, R) x (—1,1).

proof. This proposition is proved by the implicit function theorem considering £(1,0,0,Q,0) = 0 (see Lemma 2 in

[12]). g
Definition C.6. For (u,l) € By1(Q, R) x (—1,1), define

X(u,l),l;(u,l)ﬂ(u,l)) = S(u, ).
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Proposition C.7. The function S from Proposition [CHis a C! function in By (Q, R) x (0,1).
proof. If R, 1, b, \, and 7 are sufficiently small, then D(XE’;Y)S(U, 1) is a regular matrix for any (u,l) € B (Q, R) X

(—1,1).
For any (uo,lo) € By1(Q, R) x (0,1), we have
S(A(uo, o), b(uo, lo), 7 (uo, lo), uo, lo) = 0.
Therefore, there exist Ru0710,7u0710,5u0110 > 0, Yyou, € (0, ), Xuo,lg € (0,1), and a unique function S’uo,lo

BH1 (Qv Ruoylo) X (ZO - Zuo,loa ZO + Zuo,lo) — (1 - Xuo,lm 1+ Xumlo) X (_Euo,lmguo,lo) X (_7u07l077u0,l0) such that

Suo.lo (W0, lo) = S(uo,lo), S(S’uO,lO (u,1),u,l) =0 for any (u,l) € By1(Q, Ruy.1,) % (lo —Zu0,10710 +Zu0,l0)'

Moreover, Sy, ;, is a C* function. According to the uniqueness, S = S,,, ;, holds in a neighbourhood of (ug,ly). O

Definition C.8. For any [,0 > 0, we define

Ups = {u € H'(RY)
AE(0,0),yER

inf ||/\%u(t, A)e = Q< 5} .

Proposition C.9. For any § such that is sufficiently small, the domain of A, b, and 7 are extended to U; 5. This
extension is a unique and 7 is a polyvalent function.

proof. For any u € Uj ;, there exist [ € (0,1) and v € R such that 7; ,u € B(Q,d). Then, we define the extension

as
/\(u) = l)‘(ny’)’ua Z)a b(u) = b(n77u7 l)v :Y(u) = /\(T'ly’)’ua Z) -7
See [9] for well-definedness and the uniqueness. O
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