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Abstract
In a recent paper Das et al. [J. Chem. Phys. 147, 164102 (2017)] proposed the Fokker-Planck

equation (FPE) for the Brownian harmonic oscillator in the presence of magnetic field and the

non-Markovian thermal bath, respectively. This system has been studied very recently by Hidalgo-

Gonzalez and Jiménez-Aquino [Phys. Rev. E 100, 062102 (2019)] and the Fokker-Planck equation

was derived using the characteristic function. It includes a few extra terms in the FPE and the

authors conclude that their method is accurate compared to the calculation by Das et al.. Then

we reexamine our calculation and which is present in this comment. The revised calculation shows

that both the methods give the same result.
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In a recent paper [1], we derived the Fokker-Planck equations using an alternative method
for the non-Markovian dynamics for a free particle and the harmonic oscillator, respectively.
Then we extend this method for the non-Markovian dynamics in the presence of a magnetic
field. Very recently, the FPE equation for a non-Markovian harmonic oscillator across a
magnetic field has been derived by the characteristic function in Ref.[2]. Here it has been
shown that a few extra terms appear in the FPE compared to Ref.[1]. Then to reexamine
our calculation we started with the relevant Langevin equations of motion [1, 2],

u̇x = −ω2x−

∫ t

0

γ(t− τ)ux(τ)dτ + Ωuy + fx(t) (1)

and

u̇y = −ω2y −

∫ t

0

γ(t− τ)uy(τ)dτ − Ωux + fy(t) , (2)

where ω is the frequency of the Harmonic Oscillator and Ω corresponds to the cyclotron
frequency. The random forces, fx and fy are independent Gaussian noises and they are
related with the frictional memory kernel γ(t − t′) by the standard fluctuation-dissipation
relation, 〈fi(t)fj(t

′)〉 = kBTγ(t − t′)δij where i = x, y and j = x, y. Using the Laplace
transformation the solution of the equations of motion can be written as

g1(t) = x(t)− < x(t) >

=

∫ t

0

H0(t− τ)fx(τ)dτ − Ω2

∫ t

0

H ′

0(t− τ)fx(τ)dτ + Ω

∫ t

0

H(t− τ)fy(τ)dτ,

g2(t) = y(t)− < y(t) > (3)

=

∫ t

0

H0(t− τ)fy(τ)dτ − Ω2

∫ t

0

H ′

0(t− τ)fy(τ)dτ − Ω

∫ t

0

H(t− τ)fx(τ)dτ,

g3(t) = ux(t)− < ux(t) > (4)

=

∫ t

0

Ḣ0(t− τ)fx(τ)dτ − Ω2

∫ t

0

Ḣ ′

0(t− τ)fx(τ)dτ + Ω

∫ t

0

Ḣ(t− τ)fy(τ)dτ,

g4(t) = uy(t)− < uy(t) > (5)

=

∫ t

0

Ḣ0(t− τ)fy(τ)dτ − Ω2

∫ t

0

Ḣ ′

0(t− τ)fy(τ)dτ − Ω

∫ t

0

Ḣ(t− τ)fx(τ)dτ, (6)

where
< x(t) >= A(t)x(0)− B(t)y(0) + C(t)ux(0) +D(t)uy(0) = c1(say), (7)

< ux(t) >= Ȧ(t)x(0)− Ḃ(t)y(0) + Ċ(t)ux(0) + Ḋ(t)uy(0) = c3(say), (8)

< y(t) >= A(t)y(0) +B(t)x(0) + C(t)uy(0)−D(t)ux(0) = c2(say), (9)

< uy(t) >= Ȧ(t)y(0) + Ḃ(t)x(0) + Ċ(t)uy(0)− Ḋ(t)ux(0) = c4(say). (10)

with A ≡ A(t) = χ0(t) + Ω2ω2χ(t), B ≡ B(t) = Ωω2H ′(t), C ≡ C(t) = H0(t) − Ω2H ′

0(t),

D ≡ D(t) = ΩH(t),χ0(t) = 1−ω2
∫ t

0
H0(τ)dτ and χ(t) =

∫ t

0
H0

′(τ)dτ . The last two relations
imply that χ0(0) = 1.0 and χ(0) = 0. Then using the definitions of A(t), B(t), C(t) and D(t)
one may determine the values of H0(t), H

′

0(t) , H(t) and H ′(t) and their time derivatives
at t = 0 comparing the left and the right sides of the appropriate equation (in the set of
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Eqs.(7-10)) for Ω = 0 and Ω 6= 0, respectively. Thus Ḣ0(0) = 1, H ′

0(0) = H(0) = H ′(0) =

H0(0) = 0, Ḣ ′

0(0) = Ḣ(0) = Ḣ ′(0) = 0.
Now we have to define the functions H0(t), H0

′(t), H(t) and H ′(t) which appear in the

above equations. These are the inverse Laplace transformation of H̃0(s), H̃ ′

0(s), H̃(s) and

H̃ ′(s), respectively. Here we have used H̃(s) = sH̃ ′(s) and H̃ ′

0(s) = s2H̃00(s). H̃0(s),
H̃ ′(s) and H̃00(s) are defined as H̃0(s) =

1
s2+sγ̃(s)+ω2 , H̃ ′(s) = 1

(s2+sγ̃(s)+ω2)2+(Ωs)2
, H̃00(s) =

1
(s2+sγ̃(s)+ω2)[(s2+sγ̃(s)+ω2)2+(Ωs)2]

. Here γ̃(s) is the Laplace transform of γ(t).

We now consider the fluctuations in position and velocity, respectively. All the second
moments corresponding to the fluctuations can be represent by the matrix, A′(t) with A′

ij =

〈gi(t)gj(t)〉. Using the matrix, A
′(t) and its inverse, A

′−1(t) one may write the phase
space distribution function for the Langevin equations (1-2). Since the equations of motion
correspond to the Gaussian noise driven linear system then the phase space distribution
function is a Gaussian one [3]. It can be written as

P (x, x(0); y, y(0); ux, ux(0); uy, uy(0); t) = (2π)−2(σ(t))−
1

2 exp

[

−
1

2
g†(t)A′−1

(t)g(t)

]

,

(11)
where σ(t) = A1A2−A2

3−A2
4 and g(t) is a column matrix with the elements g1(t), g2(t), g3(t)

and g4(t)), respectively. In the above equation we have used A′

11 = A′

22 = A1, A
′

33 = A′

44 =
A2, A

′

13 = A′

31 = A′

24 = A′

42 = A3, A
′

14 = A′

41 = A4, and A′

23 = A′

32 = −A4. It is to be noted
here that the rest of the off diagonal elements of the matrix, A′(t) are zero.
Now following the procedure as reported in the recent paper [1] for several linear systems,
one may read the Fokker-Planck equation with the solution (11) as

∂P

∂t
= −

∂uxP

∂x
−

∂uyP

∂y
+H1(t)

[

x
∂P

∂ux

+ y
∂P

∂uy

]

+H2(t)

[

∂uxP

∂ux

+
∂uyP

∂uy

]

− H3(t)

[

∂uyP

∂ux

−
∂uxP

∂uy

]

+H4(t)

[

x
∂P

∂y
− y

∂P

∂x

]

+H5(t)

[

ux

∂P

∂y
− uy

∂P

∂x

]

− H6(t)

[

x
∂P

∂uy

− y
∂P

∂ux

]

+H7(t)

[

∂

∂x

∂P

∂uy

−
∂

∂y

∂P

∂ux

]

+ H8(t)

[

∂2P

∂x2
+

∂2P

∂y2

]

+H9(t)

[

∂

∂x

∂P

∂ux

+
∂

∂y

∂P

∂uy

]

+H10(t)

[

∂2P

∂u2
x

+
∂2P

∂u2
y

]

, (12)

where H1(t), H2(t), H3(t), H4(t), H5(t), H6(t), H7(t), H8(t), H9(t) and H10(t) are relevant
time dependent quantities to account the non-Markovian dynamics properly. The first two
terms in the right hand side of the above equation are usual drift terms in the phase space
description for both Markvian [3] and non-Markovian dynamics[1, 4, 5], respectively. The
next term is corresponding to the harmonic force field[1, 4, 5]. Then contribution from the
dissipative force is considered by the fourth term[1, 4, 5]. The next drift term may be iden-
tified as due to the magnetic force [1, 6]. Although additional drift terms in the presence
of a magnetic field do not appear for the Markovian dynamics[3, 7] but the non-Markovian
dynamics may modify the probability flux. Keeping it in mind and the cross effect of the
magnetic force, one may include additional all possible drift and diffusion terms. Thus sixth
to eighth and ninth to tenth are the additional drift and diffusion terms, respectively. It is
to be noted here that the calculation of the second moment also implies to include ninth
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and tenth terms. If the proposed Fokker-Planck equation is a correct one then fifth to tenth
terms should disappear in the absence of the magnetic field. We will check it after the deter-
mination of all the coefficients. Finally, eleven-th and twelveth terms are the usual diffusion
terms in the phase space description[1, 4, 5]. To avoid any confusion we would mention here
that the diffusion terms with other possible cross derivatives are not considered since the
cross correlation of the fluctuations is zero for the respective case.

Now we are in a position to determine all the coefficients. Then putting the distribution
function (11) in the above equation, we have collected coefficients of x, y, ux, uy, x

2, y2, u2
x,

u2
y, xux, yuy, xuy, yux and sum of other terms which are not having independent variables.

Each coefficient and the sum must be zero to become the distribution function as a solution
of the proposed Fokker-Planck equation. Using this condition we have

H1(t)(A1c3 − A3c1 + A4c2) +H4(t)(A4c3 −A3c4 + A2c2)−H6(t)(A1c4 −A3c2 − A4c1)

+
H7(t)

σ(t)

[

c4(A
2
3 − A2

4 −A1A2) + 2A2A4c1 − 2A3A4c3
]

+
H8(t)

σ(t)
[2A2(A3c3 + A4c4 − A2c1)]

+
H9(t)

σ(t)

[

c3(A
2
4 − A2

3 −A1A2) + 2A3A2c1 − 2A3A4c4
]

+
H10(t)

σ(t)

[

−2c1(A
2
3 + A2

4) + 2A3A1c3 + 2A4A1c4
]

=
σ̇(t)

σ(t)
[A3c3 + A4c4 −A2c1]−

[

Ȧ3c3 + A3ċ3 + Ȧ4c4 + A4ċ4 − Ȧ2c1 −A2ċ1

]

, (13)

H1(t)(A1c4 − A3c2 − A4c1) +H4(t)(A3c3 + A4c4 − A2c1) +H6(t)(A1c3 −A3c1 + A4c2)

+
H7(t)

σ(t)

[

c3(A
2
4 − A2

3 + A1A2) + 2A2A4c2 − 2A3A4c4
]

+
H8(t)

σ(t)
[2A2(A3c4 − A2c2 − A4c3)]

+
H9(t)

σ(t)

[

c4(A
2
4 − A2

3 −A1A2) + 2A3A2c2 + 2A3A4c3
]

+
H10(t)

σ(t)

[

−2c2(A
2
3 + A2

4)− 2A1A4c3 + 2A1A3c4
]

=
σ̇(t)

σ(t)
[A3c4 −A4c3 −A2c2]−

[

Ȧ3c4 + A3ċ4 − Ȧ4c3 − A4ċ3 − Ȧ2c2 −A2ċ2

]

, (14)

H2(t)(A1c3 − A3c1 + A4c2) +H3(t)(A1c4 −A3c2 − A4c1) +H5(t)(A4c3 −A3c4 + A2c2)

+
H7(t)

σ(t)

[

c2(A
2
4 − A2

3 + A1A2)− 2A3A4c1 + 2A1A4c3
]

+
H8(t)

σ(t)

[

−2c3(A
2
3 + A2

4) + 2A3A2c1 − 2A4A2c2
]

+
H9(t)

σ(t)

[

c1(A
2
4 −A2

3 − A1A2) + 2A1A3c3 + 2A3A4c2
]

+
H10(t)

σ(t)
[−2A1(A1c3 −A3c2 + A4c2)]

=
σ̇(t)

σ(t)
[A3c1 −A1c3 − A4c2]−

[

Ȧ3c1 + A3ċ1 − Ȧ1c3 −A1ċ3 − Ȧ4c2 − A2ċ4

]

− [A3c3 + A4c4 −A2c1] , (15)
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H2(t)(A1c4 − A3c2 − A4c1)−H3(t)(A1c3 − A3c1 + A4c2) +H5(t)(A3c3 + A4c4 − A2c1)

+
H7(t)

σ(t)

[

c1(A
2
3 − A2

4 + A1A2) + 2A1A4c4 − 2A3A4c2
]

+
H8(t)

σ(t)

[

−2c4(A
2
3 + A2

4) + 2A4A2c1 − 2A3A2c2
]

+
H9(t)

σ(t)

[

c2(A
2
4 − A2

3 − A1A2)− 2A4A3c1 + 2A3A1c4
]

+
H10(t)

σ(t)
[−2A1(A1c4 − A3c2 −A4c1)]

=
σ̇(t)

σ(t)
[−A1c4 + A3c2 + A4c1]−

[

Ȧ3c2 + A3ċ2 − Ȧ1c4 −A1ċ4 + Ȧ4c1 + A4ċ1

]

− [A3c4 −A4c3 −A2c2] , (16)

H1(t)A3 −H6(t)A4 −
H7(t)

σ(t)
A2A4 +

H8(t)

σ(t)
A2

2 −
H9(t)

σ(t)
A3A2 +

H10(t)

σ(t)
(A2

3 + A2
4)

=
σ̇(t)A2

2σ(t)
−

Ȧ2

2
, (17)

− A3 −H2(t)A1 −H5(t)A4 −
H7(t)

σ(t)
A1A4 +

H8(t)

σ(t)
(A2

3 + A2
4)−

H9(t)

σ(t)
A3A2 +

H10(t)

σ(t)
A2

1

=
σ̇(t)A1

2σ(t)
−

Ȧ1

2
, (18)

A2−H1(t)A1+H2(t)A3+H3A4−H4(t)A4+
H7(t)

σ(t)
2A3A4−

H8(t)

σ(t)
2A2A3−

H9(t)

σ(t)
(A2

3−A2
4+A1A2)

−
H10(t)

σ(t)
2A1A3 = −

σ̇(t)A3

σ(t)
+ Ȧ3, (19)

H2(t)A4−H3A3+H4(t)A3+H5(t)A2+H6(t)A1+
H7(t)

σ(t)
(A2

4−A2
3+A1A2)−

H8(t)

σ(t)
2A2A4+

H9(t)

σ(t)
2A3A4

−
H10(t)

σ(t)
2A1A4 = −

σ̇(t)A4

σ(t)
+ Ȧ4, (20)

and

2H2(t)σ(t) + 2H7(t)A4 − 2H8(t)A2 + 2H9(t)A3 − 2H10(t)A1 = −σ̇(t). (21)

To avoid any confusion it is to be noted here that we have above nine independent re-
lations instead of thirteen as a consequence of the following fact. The coefficients for
the pair, (x2, y2) are same. Similarly, it is true for the pairs, (u2

x, u
2
y), (xu2

x, yu
2
y) and

(u2
x, u

2
y), respectively. Thus we have nine independent relations among ten unknown co-

efficients of the Fokker-Planck equation. Then we need an additional condition. In this
context the comparison between the Fokker-Planck description in the phase space and
the configuration space for the Brownian motion of the Harmonic oscillator may give an
important suggestion. The diffusion term in the configuration space does not appear
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in the phase space description for both Markovian[3] and non-Markovian [1, 4] descrip-
tions. Considering this we have chosen H8 = 0. This choice will be naturally justi-
fied if the distribution function (11) is a solution of the Fokker-Planck equation with
the remaining terms. Using H8 = 0 in the above set of equations one may define nine

coefficients as H1 =
[−Äax(t)−B̈ay(t)−C̈avx (t)−D̈avy (t))]

∆m
, H2 =

[Äbx(t)−B̈by(t)−C̈bvx (t)−D̈bvy (t))]
∆m

,

H3 =
[−Ädx(t)+B̈dy(t)−C̈dvx (t)+D̈dvy (t))]

∆m
, H4 = 0, H5 = 0, H6 =

[−Äcx(t)+B̈cy(t)+C̈cvx (t)−D̈cvy (t))]
∆m

,

H7 =
[

Ȧ4 +H2A4 +H3A3 −H6A1

]

, H9 =
[

Ȧ3 − A2 −H3A4 +H1A1 +H2A3

]

and H10 =

1
2

[

Ȧ2 + 2H1A3 + 2H2A2 − 2H6A4

]

. Here we have used ∆m = (A2 + B2)(Ċ2 + Ḋ2) +

(C2 + D2)(Ȧ2 + Ḃ2) − 2(AC − BD)(ȦĊ − ḂḊ) − 2(AD + BC)(ȦḊ + ḂĊ), ax(t) =
A(Ċ2+Ḋ2)−C(ȦĊ−ḂḊ)−D(ȦḊ+ḂĊ), cx(t) = B(Ċ2+Ḋ2)+D(ȦĊ−ḂḊ)−C(ȦḊ+ḂĊ),
bx(t) = B(CḊ − ĊD) + C(AĊ − ȦC) + D(AḊ − DȦ),dx(t) = B(CĊ + DḊ) − C(AḊ +
CḂ) +D(AĊ −DḂ), ay(t) = B(Ċ2 + Ḋ2) +D(ȦĊ − ḂḊ)−C(ȦḊ+ ḂĊ), cy(t) = A(Ċ2 +

Ḋ2)−C(ȦĊ− ḂḊ)−D(ȦḊ+ ḂĊ), by(t) = A(CḊ− ĊD)−C(BĊ− ĊB)−D(BḊ− ḂD),

dy(t) = A(CĊ + ḊD) + C(BḊ − ȦC) − D(BĊ + ȦD), avx(t) = C(Ȧ2 + Ḃ2) − A(ȦĊ −

ḂḊ)−B(ȦḊ+ ḂĊ), cvx(t) = D(Ȧ2+ Ḃ2)+B(ȦĊ− ḂḊ)−A(ȦḊ+ ḂĊ), bvx(t) = A(AĊ−
ȦC)+B(BĊ− ḂC)−D(AḂ− ȦB), dvx(t) = A(AḊ+ ḂC)+B(BḊ− ȦC)−D(AȦ+ ḂB),
avy(t) = D(Ȧ2 + Ḃ2) + B(ȦĊ − ḂḊ) − A(ȦḊ + ḂĊ), cvy(t) = C(Ȧ2 + Ḃ2) − A(ȦĊ −

ḂḊ) − B(ȦḊ + ḂĊ), bvy (t) = A(AḊ − ȦD) + B(BḊ − ḂD) + C(AḂ − ȦB) and

dvy(t) = A(AĊ − ḂD) + B(BĊ + ȦD) − C(AȦ + ḂB). Thus the determination of the
coefficients automatically implies that the distribution function (11) is a solution of the
Fokker-Planck equation,

∂P

∂t
= −u.∇xP +H1(t)x.∇uP +H2(t)∇u.uP

+ H3(t) [u×∇uP ]z
− H6(t) [x×∇uP ]z +H7(t) [∇x ×∇uP ]z
+ H9(t)∇u.∇xP +H10(t)∇u

2P (22)

Using the definition of the coefficients one may check easily that the distribution function
(11) is a solution of the above Fokker-Planck equation. It constitutes the necessary and
sufficient check of the present calculation. Now we have to compare the above equation
with the Fokker-Planck equation which is derived recently in Ref.[2] for the same equations
of motion and the associated distribution function. Then one can easily find out that the
FPE in [2] contains additional three terms with the coefficients, H4, H5 and H8, respectively.
The remaining terms exactly correspond with each other. At this circumstance our check of
the coefficients, H4, H5 and H8 in the respective Fokker-Planck equation in Ref.[2] suggests
that H4 = H5 = H8 = 0. Thus taking care of all the comments (including typo and
the rearrangement of the Fokker-Planck equation) in Sec.V (in Ref.[2]) which is devoted
for Ref.[1] we conclude that both the methods give the same result. Another point is to
be noted here. From the independent relations among the time dependent coefficients the
present method automatically requires that one of the coefficients in Eq.(22) must be zero.
Then we have chosen that the coefficient in the diffusion term (which appears in the Fokker-
Planck equation in the configuration space) may be zero. Because it is well known that
this term does not appear usually[1, 4–7] in the probabilistic description in velocity space or
phase space for the Gaussian noise driven dynamical systems. With this choice the present
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method predicts automatically other coefficients exactly as the distribution function satisfies
the above equation. To derive the same equation, the method [2] with the characteristic
function does not need such kind of any choice which may offer a shortcut way for the same
destination (as shown in the present case). In other words, all the terms in Eq.(22) and
other case appear automatically in [2]. But the above discussion does not mean that the
present method always need to include a choice as like as the present case. For examples
one may go through the Ref.[1]. Finally, to avoid any confusion we would mention here that
if any choice appears in the method as like in the present case that may not be an arbitrary
one as mentioned above.

Before leaving this issue we would mention that the above equation reduces to the stan-
dard results at the appropriate limits such as at Ω = 0. At this limit A(t) = χ0(t), B(t) = 0,
C(t) = H0(t), D(t) = 0 and A4 = 0. Then H3 = H6 = H7 = 0 and the remaining coefficients

are given by H1(t) = ω̃2(t), H2(t) = β̃(t), H9(t) =
kBT
ω2 [ω̃2(t)− ω2] and H10(t) = kBT β̃(t).

Here we have used β̃(t) = −d ln∆′(t)
dt

, ω̃2(t) = ȦC̈−ĊÄ
∆′(t)

and ∆′(t) =
[

AĊ − ȦC
]

. Thus at

Ω = 0, the Fokker-Planck equation (22)reduces to the standard result[4, 5].
For further check, we consider the condition, ω = 0. Then A ≡ A(t) = 1, B ≡ B(t) = 0,

C ≡ C(t) = H0(t) − Ω2H ′

0(t), D ≡ D(t) = ΩH(t), χ0(t) = 1 and χ(t) =
∫ t

0
H ′

0(τ)dτ . Here

H0(t), H
′

0(t), H(t) and H ′(t) are the inverse Laplace transformation of H̃0(s) = 1
s2+sγ̃(s)

,

H̃ ′

0(s) = s2( 1
(s2+sγ̃(s))[(s2+sγ̃(s))2+(Ωs)2]

), H̃(s) = sH̃ ′(s) and H̃ ′(s) = 1
(s2+sγ̃(s))2+(Ωs)2

, respec-

tively. Then one can easily show that H1 = H4 = H5 = H6 = 0. Thus in the absence of the
harmonic force field the Fokker-Planck Eq.(22) reduces to

∂P

∂t
= −u.∇xP +H2(t)∇u.uP

+ H3(t) [u×∇uP ]z
+ H7(t) [∇x ×∇uP ]z
+ H9(t)∇u.∇xP +H10(t)∇u

2P (23)

with H2 = − C̈Ċ+D̈Ḋ

Ċ2+Ḋ2
, H3 = D̈Ċ−C̈Ḋ

Ċ2+Ḋ2
, H7 =

[

Ȧ4 +H2A4 +H3A3

]

, H9 =
[

Ȧ3 −A2 −H3A4 +H2A3

]

, H10 =
1
2

[

Ȧ2 + 2H2A2

]

and ∆m = (Ċ2 + Ḋ2).

It is to be noted here that the above equation corresponds to the limiting case (absence
of time dependent force fields) of the Fokker-Planck equation which was derived in Ref.[6]
using the characteristic function. Thus the accuracy of the present method is well justified
with the check of the calculation for appropriate limiting conditions. Very recently, using it
the Fokker-Planck equation has been derived in Ref.[8] for the non-Markovian dynamics in
the presence of magnetic field and time dependent conservative force. This equation reduces
to all the standard results at appropriate limits. Thus the present method may be applicable
for any kind of linear Langevin equation of motion which describes additive colored noise
driven non Markovian dynamics with or without frictional memory kernel.

In conclusion, the present calculation suggests that the drift terms, H4(t)
[

x∂P
∂y

− y ∂P
∂x

]

,

H5(t)
[

ux
∂P
∂y

− uy
∂P
∂x

]

and the diffusion term, H8(t)
[

∂2P
∂x2 + ∂2P

∂y2

]

are not relevant quantities

in the Fokker-Planck description of the Brownian motion of a Harmonic oscillator in the
presence of a magnetic field and the non-Markovian thermal bath. At the same, it contradicts
the claim made in Ref.[2] in the context of comment on Ref.[1]. The authors in [2] claimed
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that their method is accurate compared to the calculation by Das et al.[1]. In other words,
the present calculation justifies that both the methods give the same result.
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