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ON THE MULTI-BUBBLE BLOW-UP SOLUTIONS TO ROUGH

NONLINEAR SCHRODINGER EQUATIONS
YIMING SU AND DENG ZHANG

ABSTRACT. We are concerned with the multi-bubble blow-up solutions to rough nonlin-
ear Schrodinger equations in the focusing mass-critical case. In both dimensions one and
two, we construct the finite time multi-bubble solutions, which concentrate at K distinct
points, 1 < K < oo, and behave asymptotically like a sum of pseudo-conformal blow-up
solutions in the pseudo-conformal space Y near the blow-up time. The upper bound
of the asymptotic behavior is closely related to the flatness of noise at blow-up points.
Moreover, we prove the conditional uniqueness of multi-bubble solutions in the case
where the asymptotic behavior in the energy space H'! is of the order (T'—t)3*¢, ¢ > 0.
These results are also obtained for nonlinear Schrodinger equations with lower order
perturbations, particularly, in the absence of the classical pseudo-conformal symmetry
and the conversation law of energy. The existence results are applicable to the canonical
deterministic nonlinear Schrédinger equation and complement the previous work [43].
The conditional uniqueness results are new in both the stochastic and deterministic case.
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1. INTRODUCTION

This work is devoted to the existence and uniqueness of blow-up solutions at multiple
points to the rough nonlinear Schrodinger equations in the focusing mass-critical case.
Precisely, we consider

(1.1) idX = —AXdt — | X[1Xdt — ipXdt +iXdW(¢),
X(0) = X, € H(RY).
Here, W is the Wiener process of the form
N

W(t,x) =Y i¢p(z)Bi(t), = €R? >0,
k=1
where ¢, € C°(R% R), By, are the standard N-dimensional real valued Brownian mo-
tions on a stochastic basis (2,.#,{%#},P), 1 <k < N, and pu = %ch\;l ¢2. The last
term XdW (t) in (LI is taken in the sense of controlled rough path (see Definition 2]
below). In particular, the rough integration coincides with the usual It integration if
the corresponding processes are {.% }-adapted (see [27, Chapter 5]). For simplicity we
assume that N < oo, but the arguments below can be also applied to the case when
N = oo under suitable summability conditions.

The noise here is mainly considered of conservative type, i.e., ReW = 0. In this case,
the quantum system evolves on the unit ball if the initial state is normalized || Xo||z2 = 1
and thus verifies the conservation of probability.

One significant model of nonlinear Schrodinger equations with noise arises from the
molecular aggregates with thermal fluctuations, where the multiplicative noise corre-
sponds to scattering of exciton by phonons, due to thermal vibrations of the molecules.
The noise effect on the coherence of the ground state solitary solution was studied in [T, 2]
for the two dimensional case with the critical cubic nonlinearity. The influence of noise
on collapse in the one dimensional case with quintic nonlinearity was studied in [56].

Another important application is related to the open quantum systems [9], in which
the stochastic perturbation X ¢rdB) represents a stochastic continuous measurement
via the pointwise quantum observable Ry(X) = X¢y, while By represents the output
of continuous measurement, 1 < k < N. We refer to [9, Chapter 2] for more physical
interpretations. See also [59] for other physical applications of Schrodinger equations.

The local well-posedness of equation (1) is quite well known when the stochastic
integration is taken in the sense of Itd or rough path. See, e.g., [5, [10] 18] 58].

However, the situation becomes much more delicate for the large time behavior of
solutions. As a matter of fact, solutions may formalize singularities in finite time in the
focusing mass-(super)critical case.

When the input noise is of conservative type, it was first proved by de Bouard and
Debussche [I7, [19] that the noise has the effect to accelerate blow-up with positive prob-
ability in the mass-supercritical case (i.e., the exponent of nonlinearity is in the region
(1+ %, 1+ ﬁ)). When the noise is of non-conservative type, the explosion, however,
can be prevented with high probability as long as the strengthen of noise is large enough,
which reflects the damped effect of non-conservative noise ([7]). We also refer to [50] for
the global well-posedness below the threshold in the mass-(super)critical case.

Moreover, many numerical simulations have been made to investigate the blow-up
phenomena in the stochastic case. It was observed in [20] 21, 22] that the colored mul-
tiplicative noise has the effect to delay blow-up, while the white noise may even prevent

blow-up. Such phenomena have been also confirmed by the recent numerical results in
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[51, 52]. The noise effects on the energy, global well-posedness and blow-up profiles are
also studied in [51], 52], which partially confirm the conjecture that, in the mass-critical
case the stable blow-up solutions with slightly supercritical mass shall have the loglog
blow-up rate, while in the mass-supercritical case the blow-up rate is of a different poly-
nomial type.

Recently, the minimal mass blow-up solutions have been constrcuted by the authors
in [58], and it is shown that the mass of the ground state characterizes the threshold of
global well-posedness and blow-up in the stochastic case. The log-log blow-up solutions
have been also constructed in [26] in the stochastic case. We also would like to refer
to the recent work [25] for the log-log blow-up solutions with L?-regularity randomized
initial data.

In this paper, we are mainly interested in the blow-up dynamics in the large mass
regime, particulary, the existence and uniqueness of multi-bubble blow-up solutions in
the stochastic case. It should be mentioned that, the presence of noise destroys the
symmetries and several conservation laws, which makes it rather difficult to obtain the
quantitative descriptions of blow-up dynamics.

Before stating the main results, let us first review the existing results for the determin-
istic nonlinear Schrédinger equation (NLS)

10yu + Au + |u|%u =0,
(1.2) iy
u(0) =ug € H (RY),

Equation (L2) admits a number of symmetries and conservation laws. It is invariant
under the translation, scaling, phase rotation and Galilean transform, i.e., if u solves
(T2), then so does

— J— J— 2
(1.3) o(t,z) = )\O—%u<t )\;0’ X S Lo Bo(t)\ tO))eiﬁ—g’-(x—mo)%@(hto)ﬂeo7
0 0 0

d
with v(tg, ) = Agﬁuo(x;—f))ei@'@*m)“'%, where (Ao, 8o, ) € RT xR xR, 29 € RY, t €
R. In particular, the L?-norm of solutions is preserved under the symmetries above, and
thus (L2) is called the mass-critical equation. Another symmetry, particularly important
in the blow-up analysis, is related to the pseudo-conformal transformation in the pseudo-

conformal space ¥ := {u € H'(R?), [|zu|| 12ray < 00},

1 |z|?
(1.4) (—t)Fu(= =), tA0.
The conservation laws related to (L2) contain

(1.5) Mass : M (u)(t) := /Rd lu(t)Pdz = M (up).

(1.6) Energy :  E(u)(t) := %/Rd |Vu(t)|*dr — 2(13;.43—4 /Rd |u(t)|2+§dx = FE(uo).

(1.7) Momentum :  Mom/(u) := Im/ Vuudx = Mom(uy).
R4
An important role here is played by the ground state (), which is the unique positive
spherically symmetric solution to the elliptic equation
(1.8) AQ—Q+ Qi =0.

It is well known that (see, e.g., [62]), the mass of the ground state characterizes the

threshold for the global well-posedness and blow-up of solutions to NLS. More precisely,
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solutions to (L2)) exist globally if the initial data have the subcritical mass, i.e., ||ugl|r2 <
|@Q|| 2, while solutions may formolize singularities in finite time in the critical mass case,
ie., ||ugllrz2 = ||Q||z2- In particular, by virtue of the pseudo-conformal transformation
(T4, one may construct the so-called pseudo-conformal blow-up solutions

d
1.9 Sr(t,z) = (wW(T —1) 2Q(—————
L9 Sita) = @ - ) ey
Note that, ||Sz||r2 = [|Q| 12, and Sp blows up at time 7 with the blow-up rate ~ (T'—#)~!.
Thus, St is the minimal mass blow-up solution.
When the mass of initial data is slightly above ||Q||z2, two different blow-up scenarios
have been observed: the pseudo-conformal blow-up rate ~ (T — )~ and the log-log

blow-up rate ~ %g—m. For the blow-up and classification results in this case we

refer to [IT], 47, 48, [53] and the references therein.

For even larger mass of initial data, the complete characterization of the formation of
singularity is still an open problem. It is conjectured by Merle and Raphaél [47] that
every H' blow-up solution can be decomposed into a singular part and a L? residual,
and the singular part expands asymptotically as multiple bubbles concentrating at a
finite number of points. This conjecture is known as the blow-up version of the soliton
resolution conjecture.

Thus, an important step to understand the singularity formulation in the large mass
regime is to construct multi-bubble blow-up solutions.

In the pioneering work [43], Merle initiated the construction of blow-up solutions con-
centrating at arbitrary K (< oo) distinct points, which behave asymptotically like a sum
of K pseudo-conformal blow-up solutions and thus have the pseudo-conformal blow-up
rate. The multi-bubble solutions with the log-log blow-up rate have been constructed by
Fan [24]. Moreover, Martel and Raphéal [42] constructed blow-up solutions with multiple
bubbles concentrating at exactly the same point. Bubbling phenomena have been also
exhibited in various other settings. See, e.g., [32] for the energy-critical NLS, and [57] for
the nonlinear Schrodinger system. We also would like to refer to [I5], [41] for the gener-
alized Korteweg-de Vries equations (gKDV), [33] 34, B9] for the wave maps, and [106], [44]
for the nonlinear heat equations.

However, one major challenge in the stochastic case is, that the symmetries and several
conservation laws are destroyed, because of the presence of noise. Equation (L) is no
longer invariant under the pseudo-conformal symmetry, which, however, is the key ingre-
dient in the classification of minimal mass blow-up solutions to NLS in [46]. Moreover,
the failure of the conservation law of energy creates a major problem to understand the
global behavior in the stochastic case, which motivates the recent numerical tracking of
the energy in the works [51l [52]. Another important qualitative difference is, that the
perturbation order of profiles is of merely polynomial type in the stochastic case, which
makes it rather intricate to decouple different bubbles, particularly, the remainders in the
corresponding geometrical decomposition. This is different from the previous construc-
tion of multi-bubble solutions in [43] for NLS, where the interactions are exponentially
small in time.

In the present work, in both dimensions one and two, we are able to construct the
multiple bubble blow-up solutions concentrating at K distinct points to the rough non-
linear Schrodinger equation (LII), 1 < K < oo. The constructed multi-bubble solutions
behave asymptotically like a sum of pseudo-conformal blow-up solutions in the pseudo-
conformal space Y near the blow-up time and so have the pseudo-conformal blow-up rate

~ (T —t)~'. The upper bound of the approximation is also obtained and, interestingly,
4

T — i \zfa\Q N 0
Je * Tt T T T e R,




is closely related to that of the flatness of noise at blow-up points. As a matter of fact,
if the noise is more flat at the blow-up points, the approximation can be even taken in
the more regular space H %, and the perturbation orders of the corresponding geometrical
parameters and the remainder can be also improved.

Another novelty of this work is concerned with the uniqueness of multi-bubble solutions.
The uniqueness issue is of significant importance in the classification of blow-up solutions
to dispersive equations. In the remarkable paper [46], Merle obtained the uniqueness of
minimal mass blow-up solutions to NLS, which states that the pseudo-conformal blow-
up solution is indeed the unique minimal mass blow-up solution up to the symmetries
of NLS. Such strong rigidity results were also obtained by Raphaél and Szeftel [55] for
the inhomogeneous nonlinear Schrédinger equation, and by Martel, Merle, Raphaél [41]
for the mass-critical gKdV equation. We also refer to [49] for the conditional unique-
ness result for the Bourgain-Wang solutions, and [36] for the Chern-Simons-Schrodinger
equation.

However, to the best of our knowledge, there are very few results on the uniqueness of
multi-bubble blow-up solutions to dispersive equations.

We prove that, two multi-bubble blow-up solutions to equation (L)) are indeed the
same if they have the same asymptotic blow-up profile within the order (T —#)3*¢, ¢ > 0,
in the energy space H'. Hence, in this asymptotic regime, the H* multi-bubble blow-up
solution is exactly the above constructed solution and so lies in the more regular pseudo-
conformal space . This conditional uniqueness result of multi-bubbles solutions can
be also viewed as similar to the local uniqueness results in the elliptic setting, see, e.g.,
[12, 13, 23]

The existence and conditional uniqueness results are also obtained for a class of non-
linear Schrodinger equations with lower order perturbations (see equations (ZI1) and
(2117 below), particularly, in the absence of the pseudo-conformal symmetry and the
conservation of energy.

In particular, the obtained results are applicable to the single bubble case and give
the existence and conditional uniqueness of minimal mass blow-up solutions for both the
stochastic equation ([LT]) and the deterministic equation (2.17).

We would like to mention that, the existence result is also applicable to the canon-
ical deterministic NLS. The positive frequencies {w;}%, in the construction here are
allowed to be arbitrarily small, and the asymptotic behavior can be taken in the pseudo-
conformal space ¥ instead of the space L2+§, which complement the previous results in
[43]. Furthermore, the conditional uniqueness results are new in both the stochastic and
deterministic case.

The strategy of proof is mainly based on the modulation method developed in [55] for
the minimal mass blow-up solutions to the inhomogeneous nonlinear Schrodinger equa-
tion. See also the recent work [58] in the stochastic setting. One major difference here
is, that the study of multi-bubble solutions requires a delicate localization procedure. A
great effort is dedicated to the decoupling of different bubbles. Particularly, because of
the low polynomial type perturbation orders, the decoupling of the remainders in the
geometrical decomposition is quite delicate. Moreover, a new generalized energy is in-
troduced here, it incorporates the localized functions in an appropriate way such that
different bubbles can be decoupled and, simultaneously, the key monotonicity property
keeps still preserved. Let us also mention that, the proof of the conditional uniqueness
result requires an iterated argument, which is also different from the single bubble case.



We expect the arguments developed here would be also of interest in the further under-
standing of multi-bubble solutions of other dispersive equations.

Notations. For any x = (x1,--- ,74) € R? and any multi-index v = (v1,- -, 1), let
v = 5 vy (@) = (L+ )2, 87 = 971 - 9, and (V) = (I — A)V2,

We use the standard Sobolev spaces H*?(RY), s € R,1 < p < oo. In particular,
LP := H%P(RY) is the space of p-integrable (complex—valued) functions L?* denotes the
Hilbert space endowed with the scalar product (v, w) fRd r)dx, and H® := H%2.
Let ¥ denote the pseudo-conformal space, i.e., ¥ = {u € H1 |x\u € LQ}. As usual, if
B is a Banach space, L9(0,7T; B) means the space of all integrable B-valued functions
f:(0,7) — B with the norm || - ||ze0,r;5), and C([0,T]; B) denotes the space of all
B-valued continuous functions on [0, 7 ] Wlth the sup norm over ¢. The local smoothing
spaces is defined by L*(I; Hg) = {u € " : [, [()*[(V)*u(t, z)Pdzdt < o}, a, 3 € R.

Throughout this paper, the positive constants C' and ¢ may change from line to line.

2. FORMULATION OF MAIN RESULTS

2.1. Main results. To begin with, let us first present the precise definition of solutions
to ([L.I)), in which the noise term is taken in the sense of the controlled rough path. For
more details on the theory of rough paths, see [27] 2§].

Definition 2.1. We say that X is a solution to [LI) on [0,7*), where 7* € (0,00] is a
random variable, if P-a.s. for any p € C, t — (X(t),p) is continuous on [0,7*) and
forany 0 <s<t<Tr,

(X0 = X(s).0) — [ (X 80) + UIXIX, ) = (uXophdr = Y [ 16X, 0BG

Here, the integral fst(iqﬁkX, ©)dBy(r) is taken in the sense of controlled rough path with
respect to the rough paths (B,B), where B = (Bji), Bjrs = f: 0B, +dBy(r) with the
integration taken in the sense of Ité. That is, (ippX, @) € C*([s, t]),

N

(21) 5(<Z¢kX7 @))St = - Z<¢j¢kX(s)7 SO>5Bj,st + 5Rk,st7

j=1
and [|{¢;0x X, ) l|ayis.) < 00, || R ll2a,s, < 00

We mention that, because of the backward propagation procedure in the construction
below, the solution to (L)) is no longer adapted to the filtration {.%#;}. Hence, the
stochastic integration in (ILT]) should be interpreted in the sense of the controlled rough
path, instead of the Ito sense.

The theory of (controlled) rough paths, and the recent development of the theory of
regularity structures [30] and the para-controlled calculus [29] have led to significant
progress in solving singular parabolic stochastic partial differential equations with white
noises. We refer the interested readers to the monograph [27] and the references therein
for more details on these topics.

Throughout this paper we assume that

(A0) (Asymptotical flatness) For any multi-index v # 0 and 1 < k < N,

(2.2) lim (a)?%n(@)] = 0.
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(A1) (Flatness at blow-up points) There exists v, € N such that for every 1 < k < N
and 1 <j <K,

(2.3) Xop(x;) =0, VO < |v| <u,.

Remark 2.2. The asymptotical flatness condition guarantees the local well-posedness of
equation (ILT)) (see [, 5] ), while the flatness condition at blow-up points is mainly for the
construction of multi-bubble solutions. More interestingly, the order v, is closely related
to that of the asymptotic behavior of solutions near the blow-up time. See (2.4]) and (ZI5)
below.

For the frequencies w; > 0 and the blow-up points z; € R?, 1 < j < K, we mainly
consider two cases below:

Case (I). {2;}/<, are arbitrary distinct points in R?, and {w;} (C R™) satisfy that
for some w > 0, \w] w| <eforany 1 <j <K, where € > 0;

Case (II). {wj}]Kzl are arbitrary points in R*, and {:Ej}JK:l(Q R?) satisfy that |z; —
x| > e ! forany 1 < j#1< K, where ¢ > 0.

The existence of multiple bubble solutions is formulated in Theorem below.

Theorem 2.3. (Existence) Consider d = 1,2. Assume (A0) and (Al) with v, > 5.
For every 1 < K < oo, let {0;} C R, {z;}}<, C R? be distinct points, {w;}<, C RF,
satisfying Case (I) or Case (II).
Then, for P—a.e. w there exists e*(w) > 0 sufficiently small such that for any e € (0,e*],
there exists 7 > 0 small enough such that for any T € (0, 7"(w)], there exist Xo(w) € ¥
and a corresponding blow-up solution X (w) to ([T), satisfying that for some C > 0,
¢€(0,1),
K

(2.4) e X (tw) =Y S;(t)]ls < C(T — 1)z e 0,7T),
j=1

where S;, 1 < j < K, are the pseudo-conformal blow-up solutions

_ilemm?
d {L'—.I‘] 4 T—t 2(T t)

25) 8 = @ )R e Fr0™ e (0,1),

Remark 2.4. The asymptotic behavior [24]) yields that the blow-up solution concentrates
at the given K points, i.e.,

K
(2.6) X (tw)” =D Q2000 ast—T.

In particular, || X (t,w)||z2z = K||Q||z2. Hence the multi-bubble solutions are constructed
in the large mass regime, which is different from the minimal mass case in [58]. Moreover,
the asymptotic can be taken in the pseudo-conformal space 3, which improves the H*-
approzimation result in [58].

Remark 2.5. The estimate (24]) also shows that the order of approzimation can be
improved if the noise is more flat at the blow-up points. In the case v, > 6, the ap-
prozimation (24]) can be even taken in the more reqular space H? (see Proposition [7.]]
below). One can also improve the perturbation orders of the geometrical parameters and
the remainder with more flat noise, see estimates ([B.1))-(E4) and Theorem[6.1l below. Let
us also mention that, such asymptotic behavior [24) is exhibited only after the stochastic

solutions are rescaled by the random transformation e=" .
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Remark 2.6. The multi-bubble blow-up solutions were first constructed by Merle in the
pioneering work [43] for NLS in any dimensions, the main blow-up profile in [43] is built
on any functions that decay exponentially, while the frequencies {Wj}jK:1 are required to
have a uniform positive lower bound and the asymptotic behavior is taken in the space
L2+3. In Theorem [2.3, the multi-bubble solutions are constructed in dimensions one
and two and the blow-up profile is built on the ground state, because the corresponding
linearized operators are used in the construction. The gain here is that, in Case (1) the
frequencies are allowed to be arbitrarily small, and in (Z4) the approximation can be
taken in the energy space H', which is important in the proof of uniqueness result below.

Our next main result is concerned with the conditional uniqueness of multi-bubble
solutions, which is the content of Theorem 2.7 below.

Theorem 2.7. (Conditional uniqueness) Consider d = 1,2. Assume (A0) and (Al)
with v, > 5. For any 1 < K < oo, let {0;} C R, {:L’j}le C R? be distinct points,
{w;}2, C R*, satisfying Case (I) or Case (II).

Then, for P—a.e. w there exists e*(w) > 0 sufficiently small such that for any e € (0,e*],

there exists T* > 0 small enough such that for any T € (0,7*(w)], there exists a unique
blow-up solution X (w) to (L)) satisfying

K
(2.7) ||6_W(t’“)X(t,w) — Z S;W)||lm < C(T — t)3+4, tel0,7),
j=1

where C' > 0, ¢ € (0,1), and S; are the pseudo-conformal blow-up solutions as in (2.3),
1<j<K.

Remark 2.8. Theorem [2.7 states that two multi-bubble solutions are the same if they
both have the asymptotic behavior (7)) in the energy space H'. Moreover, it also yields
that any H' solution satisfying (2.7) is ezactly the constructed solution in Theorem 2.3,
which lies in the more reqular Y space.

Remark 2.9. The conditional uniqueness result also holds for the (deterministic) nonlin-
ear Schridinger equations with lower order perturbations (see Theorem[Z13 and Remark
(2108 below), which include the canonical NLS equation. Let us also mention that, these
conditional uniqueness results are new in both the stochastic and deterministic case.

In particular, in the special single bubble case (i.e., K = 1), we have the following
existence and conditional uniqueness of minimal mass blow-up solutions.

Theorem 2.10. Consider d = 1,2. Assume (A0) and (Al) with v, > 5. Let x,,w., V.
be any given points. Then, for P-a.e. w there exists 7"(w) > 0 sufficiently small, such
that for any T € (0,7*(w)] there exists a minimal mass blow-up solution X (w) to (LI
satisfying that
(2.8) le V)X (¢ w) — S.(t)||ls < C(T — )24 ¢ €10,7),
where C >0, ¢ € (0,1), and S, is as in (L) with x,,w., V. replacing a;,w;,V;, respec-
tively.

Moreover, in the case where v, > 11, there exists a unique minimal mass blow-up
solution X (w) to (L)) satisfying that
(2.9) e WED X (¢, w) — Su(t)||m < C(T — 1), tel0,7T).

Remark 2.11. The existence of minimal mass blow-up solutions are proved in the recent

work [58], but with the asymptotic (Z8) taken in the H* space. The conditional uniqueness
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result is new in the stochastic case. It should be mentioned that, the strong uniqueness
of minimal mass blow-up solutions to NLS in the deterministic case was first obtained by
Merle in the remarkable paper [46]. Such strong rigidity results have been also obtained
for the inhomogeneous NLS equations [55] and for the gKdV equations [41]. For the
stochastic equation (L)) the strong uniqueness of minimal mass blow-up solutions is at
present still unclear, due to the lack of the conservation law of energy.

Equation (L)) is indeed closely related to the nonlinear Schrédinger equations with
lower order perturbations. More precisely, by virtue of the rescaling transformation

(2.10) u:=e "X,
we may reduce equation ([LLI]) to the random equation below
(2.11) i@tu+Au+|u|3u+b~Vu+cu:0,
u(0) = uyg,
where b and ¢ are the coefficients of lower order perturbations
N
(2.12) b(t,x) = 2VW (t,x) = 2i Y _ Vr(z)Bi(t),
k=1
d
c(t,x) =Y (0;W(t,x))” + AW (t,2)
j=1

(2.13) ——

d
j=

(Z 0; k() Bi(t))? +1i Z Ay () B (t).

1 1

The key equivalent result has been proved in the recent work [58], based on a delicate
analysis of the temporal regularities. Let us mention that, such transformation is known
as the Doss-Sussman transformation in finite dimensional case, and proves to be also very
robust in the infinite dimensional spaces. One main advantage is that, from the viewpoint
of analysis, it enables one to treat equation (LI)) as a random dynamic system outside
a uniform probability null set, and thus to perform the sharp path-by-path analysis
of stochastic solutions, which is in general not easy by standard stochastic analysis.
Furthermore, the rescaling approach also reveals the structure of stochastic equations,
which becomes more apparent in the reduced nonlinear Schrodinger equations with lower
order perturbations. See, for instance, the stochastic logarithmic Schrodinger equations
in [6], the damped effect of non-conservative noise in [7], and the scattering behavior in
the stochastic setting in [31]. See also the existence and geometrical characterization of
optimal controllers in [8 [65], related to the Ekeland’s variational principle and the theory
of UP — VP spaces.
The solutions to equation (2I1) are defined below.

Definition 2.12. We say that u is a solution to (ZI1)) on [0,7*), where 7* € (0,00] is a
random variable, if P — a.s. u € C([0,7%); HY), |u|au € L*(0,7*; HY), and u satisfies
¢
(2.14) u(t) = u(0) + / ie WAV Ou(s)) + i\u(s)\gu(s)ds, tel0,77),
0

as an equation in H~',

The key equivalent relationship between equations (ILT]) and (2.IT]) is stated in Theorem

2. 13 below.
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Theorem 2.13. ([58, Theorem 2.10]) (i). Let u be the solution to (ZII)) on [0,7*) with
u(0) = ug € H' in the sense of Definition 213, where 7" € (0, 00| is a random variable.
Then, P-a.s., X := e"u is the solution to equation (IT)) on [0, 7*) with X (0) = ug in the
sense of Definition [21.

(ii). Let X be the solution to equation (L)) on [0,7*) with X(0) = Xy, € H' in
the sense of Definition 21, satisfying that P-a.s. || X||cqor;m) + HXH 3 < 00,

2(0,T;H?2))
T € (0,7%), and
|e7®2e WO X (1) — e 2e WO X (s)|| 2 < Ct)(t—s), VO<s<t<T
Then, u = e "X solves equation ZII) on [0,7*) with u(0) = Xy in the sense of
Definition [2.12.

Hence, by virtue of Theorem .13, the proof of Theorems and 2.7 is now reduced
to that of Theorems [Z14] and 2.T3] below corresponding to the equation (2.IT]).

Theorem 2.14. (Existence) Consider d = 1,2. Assume (A0) and (Al) with v, > 5.
Foranyl < K < oo, let {9;}<) CR, {z;}12, CR? be distinct points, and {w;}1~; € RT,
satisfying either Case (I) or Case (II).

Then, for P—a.e. w there exists e*(w) > 0 sufficiently small such that for any e € (0,e*],
there exists 7 > 0 small enough such that for any T € (0,7*(w)], there ezist ug(w) € ¥
and a corresponding blow—up solution u(w) to (ZII) such that

(2.15) llu(t, w) ZS Vs < C(T — )24 ¢ e0,T),

where C' > 0, ¢ € (0,1), and S; are the pseudo-conformal blow-up solutions given by
@3, 1<j<K.

Theorem 2.15. (Conditional uniqueness) Consider the situations as in Theorem
21 Then, for P — a.e. w there exists e*(w) > 0 sufficiently small such that for any

€ (0,e%], there exists T* > 0 small enough such that for any T € (0, 7*(w)], there exists
a unique blow-up solution u(w) to [ZI)) satisfying

K
(2.16) u(t,w) =" Sij(®)|m < C(T —1)**, te0,T),
7j=1

where C' >0, ( € (0,1), and S; are as in (20), 1 < j < K.

Remark 2.16. The existence and conditional uniqueness results of multi-bubbles also
hold for the deterministic nonlinear Schrodinger equation with lower order perturbations
if the Brownian motions {By} in (ZI1)) are replaced by any deterministic continuous
functions, namely,

(2.17) i0pv + Av + [v]4v + a1 - Vi + asu = 0,

where
N d N N

ar(t,x) =20 Vor(@)h(t), as(t,w) ==> (O ddw(x)hi(t))” +i > Aw(x)h(t)
k=1 j=1 k=1 k=1

o satisfy Assumptions (A0) and (Al) and hy € C(RT;R), 1 < k < K. In particular,
these results are applicable to the canonical NLS equation, in which a1,a, = 0. Note
that, the standard pseudo-conformal symmetry and the conservation law of energy are

also destroyed in equation (ZIT).
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2.2. Strategy of proof. By virtue of the equivalent result Theorem .13 we shall mainly
focus on the proof of Theorems .14l and .15 namely, the existence and uniqueness
of multi-bubble blow-up solutions to nonlinear Schrédinger equations with lower order
perturbations (ZIT]).

As mentioned above, the absence of specific symmetries and the conservation law of
energy makes the blow-up analysis rather intricate. A robust modulation method was
developed by Raphaél and Szeftel [55] for the existence and uniqueness of minimal mass
blow-up solutions to inhomogeneous nonlinear Schrodinger equations, which is a canonical
model proposed by Merle [45] to break the pseudo-conformal symmetry. This modulation
method has been recently applied in [58] to construct minimal mass blow-up solutions
for both equations (LLT]) and (2.IT]). The main strategy consists of geometrical decompo-
sitions, a bootstrap device and backward propagation from the singularity.

Here, we use and extend the modulation method to address the multi-bubble problem.
More specifically, we first decompose the solution to (ZI1I) into a main blow-up profile
and a remainder

K
_d — o '
u(t o) = 3N Qi %)e”f + R(t, ), with Q;(t,y) = Q(y)e' Pyl
j=1 J

where (); and R satisfy the orthogonality conditions in (£3) below, which are related
to the null space of the linearized operators around the ground state and ensure the
uniqueness of this decomposition. Such geometrical decomposition enables us to re-
duce the blow-up analysis into those of the five finite-dimensional geometrical parameters
(Aj, @j, Bj,7;,0;) and the infinite-dimensional remainder R. As a first consequence, the
estimate of the modulation equations is derived, which indeed captures the dynamics of
the geometrical parameters. This part is contained in Section [4]

The key unform estimates of the geometrical parameters and the remainder are ob-
tained by using a bootstrap device and the propagation backward from the singularity.
The main efforts here are dedicated to the analysis of the localized mass, the energy and
a new generalized functional.

It should be mentioned that, unlike the single bubble case in [55] 58], the growth
in the unstable direction (); is analyzed via a localized mass, instead of the usual whole
mass. Moreover, we introduce a new generlized energy (£.28) adapted to the multi-bubble
setting. It incorporates the localized functions in an appropriate way, such that different
bubbles can be decoupled while the key monotonicity property keeps preserved. One
delicate problem here lies in the decoupling of the remainders, due to the corresponding
low polynomial type perturbation orders, and, actually, extra decays have to be explored
from the test functions. Furthermore, a refined estimate of the modulation parameter (5 is
derived from the coercivity of the energy, of which the proof requires a careful treatment to
balance the localized functions and the test functions involved in the localized coercivity
of the linearized operators. These constitute the main part of Section

Then in Section[@, the construction of the multi-bubble blow-up solutions follows from a
compactness argument, based on the uniform estimates and integrating the flow backward
from the blow-up time. Let us mention that, the uniform estimates can be also obtained
in the pseudo-conformal space ¥, which improves the previous H!'-estimate in [58] and
also simplifies the compactness argument.

Concerning the uniqueness part in Section [7, the key idea again relies on the mono-
tonicity formula of the generalized energy adapted to the difference of two multi-bubble

solutions, and is to show that the implied a priori bound of the difference is exactly zero.
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More precisely, via the generalized energy (L.4I]) below, we obtain the estimate (see
Theorem [7.6] below)

K

sup D(s) SC(Z Sup MJr/t ZScal]’<S) e D(s) ds).

t<s<T  t<s<T A3 (s) A(s) T—s

where D(t) := ||[Vw(t)||7. + EJK:1 A2 |lw;(t)]1%2 is defined on the difference w, w; = w®;
with the localized function ®;, and Scal; denotes the scalar products of w; and the
unstable directions in the null space. This step requires a careful analysis of the differences
between nonlinearities.

The next step is to control the unstable growth generated by the null space, that is,
we prove that (see Theorem [L7] below), for some ¢ € (0, 1),

Scal;(t) < C(T —t)**¢ sup D(s).
t<s<T
For this purpose, a new renormalized variable is introduced. It satisfies a neat formulation
of equation and enables us to obtain the estimates of the scalar products in Scal; in a
simplified diagonalized form (see Proposition below).

At this stage, by virtue of the two estimates above, we obtain the estimate of D(t) in
a closed form. It should be mentioned that, because of the localization functions in the
multi-bubble case, an extra error 5*% is also involved here. This requires an iterated
argument to show that D(t) is exactly zero, which is different from the single bubble case
in [55].

The remainder of this paper is structured as follows. In Section [3] we first present some
preliminaries including the localization functions, the coercivity of linearized operator,
and the Taylor expansion in the complex situation. Then, Sections [l [l and [@l are mainly
devoted to the proof of the existence of blow-up solutions at multiple points. In Sec-
tion [ we prove the uniqueness of blow-up solutions. Finally, some technical proofs are
postponed to the Appendix, i.e., Section

3. PRELIMINARIES

3.1. Localization. We shall use the localization functions in order to construct the blow-
up profiles concentrating at distinct blow-up points.

For this purpose, we note that, because equation (2.I1) is invariant under orthogonal
transforms, we may take an orthonormal basis {v;}9_, of R?, such that (z; — 2;) - v1 # 0

for any 1 < j # | < K. Hence, we may assume that z; - vy < z9-vy < -+ < T - Vy.
Then,

3.1 _ i 0

(3.1) 0= 15, i (rj41 —xj) - vi} > 0.

Let ®(x) be a smooth function on R? such that 0 < ®(x) < 1, [V®(z)| < Co !,
P(x) =1 for - vy < 4o and ¢(z) =0 for x - vq > 80. The localization functions ®; are
defined by namely,

Oy (x) = D(x —11), Pr(x):=1—P(x—xK_1),

(3:2) Qi(x) :=P(x —a;) —P(r —zj_y), 2<j<K-1.

In particular, we have the partition of unity 1 = ZJK:1 P;.
Lemma [B.1] below enables us to decouple different blow-up profiles and will be used

frequently throughout this paper.
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Lemma 3.1. (Interaction estimates) Let 0 < t* < T, < T < co. For every 1 < j < K,
set

(3.3) Gj(t, ) == A, 2g;(t,

l‘ J—
Aj
where g € CZ(RY) decays exponentially fast at infinity
0”9(y)| < Ce™W, |v| <2,
with C,8 >0, for 1 <j < K, P;:= (\j, 5, 85,75, 0;) € C([t*, T.]; R*F3) satisfies

Uyet®s, with g;(t,y) = gly)e OV OB,

1 Aj(t)
3.4 (t)—z;) - vi| <o, |z, —a: ()] <1, =< L2 _ <2 teltT,],
( ) |(aj( ) x]) V1| >0 |l‘] a]( )| = 9 = |wJ(T—t)\ = [ ]
and |B;] + [y <1,

1) <
(3.5) C’T(1+1r§z%>§(|x]|) <1,

where C' is sufficiently large but independent of T'. Then, there exists 6 > 0 such that for
any 1 < j#1< K, méeN, and for any multi-index v with |v| < 2,

(3.6) / |z — oy|"0"Gi()||z — oy |G (t)|dr < Ce ™, te [t*, T,].
R4

Moreover, for any h € L' or L?, 1 < j #1 < K, m,n € N, and for any multi-index v
with |v] <2,
e *
(3.7) /\x — oq|"0"G(t)||x — ay|™|h|@jdx < Ce” 7= min{||h|| L1, ||| 2}, t € [t7, T3]
Rd

The proof is postponed to the Appendix for simplicity. Lemma Bl actually shows
that the interactions between {U;} and other profiles are very weak, mainly due to the
exponential decay of the ground state.

3.2. Coercivity of linearized operators. We denote () the ground state that solves the
soliton equation (L8). It follows from [14, Theorem 8.1.1] that @ is smooth and decays at
infinity exponentially fast, i.e., there exist C',0 > 0 such that for any multi-index |v| < 3,

(3.8) 107Q(x)] < Ce %l 2 e RY.
Let L = (L, L_) be the linearized operator around the ground state, defined by

L= —-A+1—Qa.

Ul

(3.9) Ly=—-A+1-(1+ %)Q

The generalized null space of operator L is spanned by {Q, zQ, |z|*Q, VQ, AQ, p}, where
A= g[ + 2 -V, and p is the unique H' spherically symmetric solution to the equation

(3.10) Lip =220,

which satisfies the exponential decay property (see, e.g., [38, 42]), i.e., for some C,§ > 0,
1p(2)| + |V ()] < Ceow.

Moreover, we have (see, e.g., [63, (B.1), (B.10), (B.15)])

LJer = 07 L+AQ = _2Q7 L+p = —‘SU|2Q7

L.Q=0, L.2Q=-2VQ, L_|z]*Q = —4AQ.
13
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For any complex valued H! function f = f; + ifs in terms of the real and imaginary
parts, we set

(312) (Lf, f) = /f1L+f1dl‘+/f2L_f2de‘

Let K denote the set of all complex valued H' functions f = f; + ifs satisfying the
orthogonality conditions below

/ Qfidz =0, / +Q fudz = 0, / 2[2Q frdz = 0,
(3.13)

/VQdea: =0, /AQde:c =0, /pfgd:v =0.

The coercivity property below is crucial in the proof of main results.
Lemma 3.2. ([63, Theorem 2.5]) There exists C > 0 such that
(3.14) (Lf ) = Clfllin, VfeK.

We define the scalar products along all the unstable directions in the null space
(3.15) Scal(f) = (f1,Q)* + (f1,2Q)* + {f1, [2[PQ)* + (f2, VQ)* + (2, AQ)* + (fo, p)*,
where f = f; +ifs € H'. As a consequence of Lemma we have
Corollary 3.3. ([58, Corollary 3.2]) There ezist positive constants Cy,Cqy > 0, such that
(3.16) (Lf, f) 2Cil fllin — CoScal(f), Vf e H',
where f1 and fo are the real and imaginary parts of f, respectively.

Corollary 3.4. (Localized coercivity) Let ¢ be a positive smooth radial function on RY,
such that ¢(z) = 1 for |z| < 1, ¢(z) = el for |2| > 2,0 < ¢ <1, and %‘ < C for
some C' > 0. Set pa(x) = ¢ (%), A > 0. Then, for A large enough we have

(3.17)

JUsE 191260 = (14 Q72 - Qi dn = €1 [ (V4P +11P)oade - CaSeal(),

where C1,Cy > 0, and fi, fo are the real and imaginary parts of f, respectively.

The proof of Corollary B4l is similar to that of [58, Corollary 3.3] and is postponed to
the Appendix for simplicity.

3.3. Expansion of the nonlinearity. We shall use the notations that, for any contin-
uous differentiable function g : C — C and for any v, R € C,

1 1
(3.18) ¢'(v,R)-R ::R/ 8zg(v+sR)ds+F/ 0:9(v + sR)ds,
" " 1
(v, R)- R =R’ / " / 0..g(v + stR)dsdt + 2| R|? / " / Dong(v + stR)dsdt
o Jo o Jo

1
(3.19) + R / t / O=g(v + stR)dsdt,
o Jo
where 0,9 and 0g are the usual complex derivatives 0,9 = %(axg —10y9), 0z = %(@g +
i0y9), respectively. Then, one has (see, e.g., [35, (3.10)])

(3.20) glv+ R)=g(v)+d(v,R)-R.
14



Moreover, if d,g and 0z¢g are also continuously differentiable, we may expand g up to the
second order

(3.21) g(v+ R) =g(v) + 0.9(v)R + d9(v)R+ ¢"(v, R) - R*.
In particular, for the complex function f(z) = |z|az with d = 1,2, we have
(3.22) |F(v. R) - R <C(jol# +[R|#) R,
(3.23) f"(v, R) - R?| <C(Jv]a~" + |R|~)| R
It would be also useful to use the expansion, for f(z) = |z|iz with d = 1,2,
144
(3.24) fw+R)=fw)+ f'(v)- R+ f"(v)- R+ O( Z vk RIF),

where

(335) [)-R=0.f@)R+FR= (1 + DliR+ Spfi27R,

1 1 —
['(0) - B =30 f(0)R® + 0.2 f (0)| R + S0 f (0) R
_l 2 4-2-12 2 4-2 2 1 2_ 44 32
(3.26) —d(l )\v| TR + d( )\v| v|R|* + d<d Dv[i~*v°R".

Similarly, for F(z) := m\z|2+8 with d = 1,2, we have the expansion

Flu) =F(v) + %mém + %|v|3v§
- 1, 2. . G
(827) 4 ot R + S (14 D)l R+ 5 md "R’ + O( kzg o2 a=F|RIF).
In most cases in this paper, the high order terms in the expansion of nonlinearity can

be controlled by the Gagliardo-Nirenberg inequality contained in Lemma below.

Lemma 3.5. ([14, Theorem 1.3.7]) Let d > 1 and 2 < p < co. Then, there exists C' > 0
such that

—d(5—3) d(5—4)
(3.28) 1£llzr < CIISIl IVAIlL 7, VfeH".
In particular, for any 1 < p < oo,
(3.29) [fllee < Clfllars VF e LP.

We also have the product rule below.
Lemma 3.6. (Product rule [61], p.105, Proposition 1.1]) For any s > 0,
(3.30) [wvllzse < C(llull Lo [0ll oae + 0]l L Jul[zer2),
where % = qil + q% = % + %, q1,7m1 € (1,00], ga,72 € (1,00).

As a consequence we have

Lemma 3.7. For any complex functions f,g,h and for any l,m,n € N, we have

(3.31) 1 g™ h™ e < Cl gl 12l -
Moreover, we also have
(3.32) 1F'g™n" |y < CUF N gl 7 1Al
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Proof. (B.31) follows from Hélder’s inequality and (3.29). Regarding (3.32), by the

product rule,
1£' 9™ 2" 13 SCUSI 300 1N NGl Tor Ry + LF 1222 91,3 0 N9l T 1211

+ ||f||Lpz||g||qu||h||"HQ - ||h||mz)
Where% 1+l1—|— —i— Ly L ygmdlyn —|— +r31+%.Wethentake

p11 p12 p2 q21 q22 T2 3

P11, @1, 731 close to 2 such that H' is imbedded into the Sobolev spaces H%’p“, H 32
and H2"5. Then, taking into account (329) we obtain (Z32) and finish the proof. [

4. GEOMETRICAL DECOMPOSITION AND MODULATION EQUATIONS

4.1. Geometrical decomposition. For each 1 < j < K, define the modulation param-
eters by P; := (), a;, Bj,7;,0;) € R*3 where \; € R, o; € RY, 3; € RY, v, € R and
0, € R, and set P; := |\;| + |a; — x| +|5;] + |7;], where x; are the given blow-up points,
1<j<K.

We also set P = (P, --,Pg) € REDE p .= Z] , Pj. Similarly, let A\ :=
(A1, -, Ag) € RE and |\| := ZFl |Aj|. Similar notations are also used for the re-
maining parameters.

Proposition 4.1. (Geometrical decomposition) Assume that u € C([t,T.,]; H') for some
t € 0,Ty) andu(T,) = Sp(T.). Then, for T, sufficiently close to T, there existt* < T, and
unique modulation parameters P € C1((t*, T.); REH3IK) " such that u can be geometrically
decomposed into the main blow-up profile and the remainder

(4.1) u(t,z) = U(t,x) + R(t,z), t€[t",T.], v R,
where the main blow-up profile

(4.2) Ult,z) = i U(t,

j=1
with

(4.3) Uj(t,2) = A 2Q;(t,

T Qi) = Q) i,

and R(T,) = 0, the modulation parameters satisfy
(4.4 PyTL) = (wy(T = T2, 25, 0,03(T — To),wr (T — ) + ;).
Moreover, for each 1 < j < K, the following orthogonality conditions hold on [t*,T.]:

Re/(az—ozj)U()E()d:c—O Re/|x—a]\U() (t)dz = 0,

Im/VU t)dzr =0, Im/AU (t)R(t)dx =0, Im/gj =0,

J

where

_d
(46) Qj(tv SL’) = )‘j 2pj(t7
and p is gwen by (B.I0).

Remark 4.2. Proposition[].1] is actually a local version of the geometrical decomposition
as t* may depend on T,. However, as we shall see later, by virtue of the bootstrap estimates

in Theorem [5.1] below we indeed have the global geometrical decomposition on the time

interval [0,T,] C [0,T) if T is sufficiently small. See Theorem [G1 below.
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The proof of Proposition 1] is quite similar to that of [58, Proposition 4.1] and is
mainly based on the implicit function theorem. We mention that, the computations of
the Jacobian of transformation also include the interactions between different profiles
{U; } ', which, however, by Lemma [B.1] only contribute exponentially small errors due
to the exponential decay of the ground state. Thus the Jacobian is still non-zero. The
details are omitted here for simplicity.

4.2. Modulation equations. Let ¢ := %g for any C! function g. For each 1 < j < K,
define the vector of modulation equations by
(4. 7)

Mod; := [ XA+ + N5 + 97|+ [Ny — 265 + IN36; + 7385 + N30 — 1= |8,

and set Mod := ZjK:l Mod,.
The main result of this subsection is formulated in Proposition below.

Proposition 4.3. Assume that u has the geometrical decomposition on [t*,T,] C [0,T)
as in (&) with the modulation parameters P = (X, a, 3,7, 0) € REHEIK  gnd

Ci(T —1t) < |ANt)| < CH(T —1), telthT.],

where C7,Cy > 0. Then, for T small enough and for t* close to T,, we have for any
te[t*,T.],

(4.8)

Mod(t) < C(3_ [Re(Ry, Up)| + PR 2 + | ROIZ: + RO + PP (1) + ¢ 75),

j=1
where C > 0 and v, is the index of flatness in Assumption (Al).

The proof relies mainly on the analysis of the equation of remainder R, the almost

orthogonality of profiles U; and R;, and the decoupling of different blow-up profiles U;
and Up, j # 1.
To be precise, we use the partition of unity 1 = ZJK:1 ®; to get

K
(4.9) R=>"R;, with R;:=R®;.

j=1
Define the renormalized remainder ¢; by

.T—Oéj

d
(4.10) Rj(t,z) = ), g;(t, " )e's.
j

Then, by (Z11) and (@T]), the remainder R satisfies the equation

z&tR+Z AR+ (1+ )|U,\ Rl+—|Ul|a 2UZR, + ioWU, + AU, + |Up] aU))

=1
K
(4.11) :_Hl_HQ_f” UR Z b- V U1+Rl)+C(U1+R1))
=1
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Here, Hy, Hy contain the interactions between different blow-up profiles

(412)  H;:=(1+ )|U|dR+ |U|"2U2R Z 1+ |Ul|de+—|Ul|T2UlRl)

K
(4.13)  Hy =|U]sU =Y U],

=1

and f”(U, R) - R? is defined as in (319) with f, U replacing g and v, respectively.
Using ({.3) we have

. 4 eigj .
DU AU + U0 =~ { = O = 1= 1)@ = 036, + ) -4,
J
T — Qy

)\] >.

(4.14) (>\2% +PQ; — i(Ndy — 28)) - VQ; — i( A A + ) AQ H(t,

The important fact here is, that the modulation equations show up on the right-hand
side of (AI4)) as the coefficients of the five directions in the generalized null space of
the operator L defined in (B.9). This enables us to extract each modulation equation
by applying the almost orthogonality in Lemma [.4] below, which in turn follows from
Lemma [B.J] and the orthogonality conditions in (Z.H]).

Lemma 4.4. (Almost orthogonality) Let t* be as in Proposition[{.3. Then, for t* close
to T, there exists 6 > 0 such that for any 1 < j < K, it holds on [t*,T] that

|Re/(x — o )U;R;dx| + |Re/ |z — o |°U;R;dz| < Ce_%||R||Lz,
(4.15) 5
|Im/VUjde\ + \Im/AUjﬁjdx\ + \Im/gjﬁjd:d < Ce  T||R|| 2.

Proof. By the orthogonality condition (3],

(4.16) Re / (z — o;)U; ()R, =—> Re / z — a;)U;(t) Ry (t)dz,

I#]

which along with Lemma [3.] yields immediately that for some § > 0,
(4.17) |Re/(x — o) )U;(1)R;(t)dx| < Ce*%HRHLz.

The remaining four estimates in (£I3]) can be proved similarly. O
We are now ready to prove Proposition (4.3l
Proof of Proposition 4.3 The proof is similar to that of [58, Proposition 4.3].
Below, we take the modulation equation )\2% +7]2, corresponding to the direction AUj;,
for an example to illustrate the main arguments and to show that the scalar Re(R;, U;)

in the unstable direction U; is also required to bound the modulation equation.
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Taking the inner product of (£11]) with AU; and then taking the real part we get
— Im(9, R, AU;) + Re(AR; + (14 = )|U |iR; + = |U |"2U2 R;, AU;)
+ Re(i@tUj + AU] + |U‘|_Uj, AU>

=—Re(D (AR + (1 + )|Ul|de + —|Ul|d‘2Ul R)) + Hy,AU,)
I#]
- Re(Z(i@Ul + AU + |Ul|%Ul) + Hy, AU;)
1]
— Re(f"(U,R) - R*, AU;)

[™] =

(4.18) —Re(» (b-V(U + R)+c(U+ R)),AU;),

l

where Hy an Hj are given by ({I2) and ([@I3]), respectively.

As we shall see below that, the right-hand side of equation (£I8) merely contribute
negligibly small errors.

Actually, we may take t* close to T, such that (B4) and thus Lemma Bl hold. By
Lemma [3.1], the interactions between different profiles are exponentially small, and thus
we infer that for some § > 0,

1

(4.19) |(Z(ARl+(1+ = NoAk: Rl+—|Ul|d 207R) + Hy, AU < C|A "2~ 75 || R|| 1o,

I#j
Similarly, by (£.14),
(4.20) (10,0 + AU + U iU + Ha, AUS)| < CIA| 2" 757 (1 + Mod),
I#j

For the remainder f”(U, R) - R? containing high order terms of R, using ([3:23)) with U
replacing v, (829) and || Rz < 1, we get

(4.21) [(f"(U,R) - R*,AUp)| < CIN(IRIIZ + | Bll30)-

Regarding the last term involving b and ¢ on the right-hand side of (4.18]), using Lemma
BI and (£3), (AI0) to rewrite it in the renormalized variables we have

Re() (b- V(Ui + R) + c(U; + Ry)), AU;)

=1

(4.22) =Re(A\;'0- V(Q; +¢5) + AQ; +¢;), AQ;) + O(e T (1 + || R 1)),

where Z(y) = b(\jy+a;) and ¢(y) := c(\jy+«;), y € R Then, using (212), (2I3) and

integrating by parts formula we get

Re(A; b V(Q; + ;) +8(Q; +¢;), AQ;)

_21m23k/A¢k Q; +£;)AQ;dy + 2X; 1ImZBk/ (Q; +£,)Vor - V(AQ;)dy

- Z Re /(Z 0k Br)*(Q; + £5)AQ;dy — Imz / AprBr(Q; + ;) AQ;dy,
=1 k=1 k=1
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where ¢y (y) = (0" k) (Njy + «;), |v| < 2. Note that, by the flatness condition (2.3))
and the fact that )¢y € L> for any multi-index v,

(423)  [9du(v)] < OOy +ay — ) M < Ot 0 < ] <

This yields that

(4.24) IRe(A; "0 V(Q; +£5) + &(Q; + £5), AQ)| < CIAI? P (1+ ||R|2).
Thus, we conclude from estimates (AI9)-(@.24]) that

(4.25)
R.H.S. of @IR) < CIA2((e” 75 + P ) (1 + || R||12) + e 7= Mod + || R||% + || R|[%1).
Regarding the left-hand side, by the orthogonality condition (£3]), (£I4) and Lemma
3.1
Im(0, R, AU;) = Im(AR, Q,U;) = Im(AR;, 0,U;) + Y~ Im(AR;, O,U;)
I#j
(4.26) = Im(AR;, 3,U;) + |A|"2O(Mod + e 77) || R| 2.
Then, using the identity (4I4]) and the renormalized variables @;,¢; in (£3) and (4.I0),
respectively, we get
NIm(AR;, U;) = — Re(Ae;, AQ; +1Q,11Q)) + O(Mod| R 2)
=Re(e;, AQ;) + vIm(Ae;, AQ;) — 26;Im(Ae;, V)
(4.27) + O((Mod + P?)||R||12),

where in the last step we used the almost orthogonality (£I5]) and the identity

4 Vi . .
(4.28) AQ; — Q; +Q;]4Q; = |85 — §j|2Qj — 1 AQ; + 2ip; - VQ;.
Furthermore, using ([AI4]), the identities
- L 2)0)e vl
(4.29) AQ; = (AQ + (B -y — 5yly[ Q)b
1 ' 1 2
(4.30) VQ; = (VQ+i(p; — 5%y)Q)€Z(ﬁ’"y7”‘y| ),

and <AQ7 |y|2Q> - _”yQH%Q we have

. 4 1 )
(431)  MRe(iU; + AU, + |U;|1U;, AU;) = —ZH?/QH%()\?%’ +77) + O(Mod|B;]).

Thus, plugging (4.26]), (£27) and (£31]) into (AI8) and rearranging the terms according

to the orders of the renormalized viarable €; we get

(4.32) A% x (L.H.S. of ({IR))
1 . 2 4 2 4 9 o
=— ZH?/QH%()\?%’ +77) + Re(Ag; —e; + (1 + )|Qil7es + —1Qy] °Q3E5, AQ;)

— v Im(Ae;, AQ;) + 28;Im(Ae;, VQ;) + O((Mod + P?)||R| 12 + Mod|B;|).
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By (3.9), straightforward computations show that, if e; = ¢;; + ic; o,
Re(Ac; — &5 + (14 2)IQslie; + 21Q;12Q35, AQy)

= — (Lagin, AQ) = (Lasjon (B -y = 2y)AQ)

(4.33) — (Lot (8; -y = LyP)Q) + O(P?| Rl ).

Note that
Li(B -y = 2lyPAQ = (6; -y — LIy LeAQ +7;A%Q — 26, - VAQ.
Lo(B-y = 2@ = (8- y = 2y L-Q +2,AQ - 28; - VQ.
Taking into account the self-adjointness of L. and Ly AQ = —2Q, L_Q = 0 we get
2 4 2 4_9 o
Re{Agj —e; + (1 + g)|@j|35j + 3|Qj|3 Q755 AQ;)

=2(e;,Q) +2(ei, (8- y — ZIyP)Q)

(434) + Y <A€j72, AQ) — 26] <V€j72, AQ> — 2’)@(5]’72, AQ) + 25] <€j72, VQ>
Moreover, we see that

and by the almost orthogonality (I3,
Im(As;, VQ;) = Im(Vej, AQ;) + Im(s;, VQ;) =Tm(Vej, AQj) + Oe 7[R 12),
which yields that
28 Im(Aej, VQ;) =26,Im(Ve;, AQ;) + O(e™ 7¢|| R 12)
(4:36) =20,(Ve;2.AQ) + O((P* + ¢ 7| R 12).
Thus, we conclude from ([£34), (£3H), ([£30) and the almost orthogonality (@13 that
Re(Ae; &+ (1+ 2)|QilFe; + 21Qi1 @i, AQ)
— v Im(Ae;, AQ;) + 25;Im(Ae;, VQ;)
=2(gj1, Q) + 2(gj2, (B -y — %|y|2)Q> — 275{gj.2, AQ) + 28;(gj2, VQ)
+O((P? + e 70) ||l 12)
(4.37) =2Re(R;, Uj) + O((P? + ¢ )| R| 12)-
This along with (£32)) yields that
N x (LHS. of @I8) = — {IyQIBO, +17) + 2Re(R;, Uj)
(4.38) + O((Mod + P? + ¢~ 7)||R|| 12 + Mod|B;)).
Then, combining (£.25) and (£38) we obtain that for each 1 < j < K,

. __5 __5 Ve
(N5 + 5| <C(Mod(P + | Rz + e 7) + [Re(R;, Uj)| + (e7 7 + P )(1+ || R 2)

(4.39) + PR 2 + IR 72 + | Rl )-
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Similar arguments apply also to the remaining four modulation equations. Actually,
taking the inner products of equation ([EII)) with i(z — a;)U;, iz — «;*U;, VU;, oj,
respectively, then taking the real parts and using analogous arguments as above, we can
obtain the same bounds for [\;é; — 28;], [\jA; + 7, [A28; + Bjv;| and [A20; — 1 —|B;[?],
respectively. We then get

K
Mod;(t) <C(Mod(P + ||R||z2 + ¢ 77) + > [Re(R;, Uj)| + (€777 + P**1)(1 + ||R||2)

j=1
(4.40) + PR g2 + [ RIIZ> + | Rl )-
Therefore, taking T" possibly even smaller such that

N | —

(L+C)(P+ sup [R(H)w +e 7)<
t*<t<T,
and then summing over j we obtain (8] and finish the proof. 0

5. BOOTSTRAP ESTIMATES

This section is mainly devoted to the bootstrap type estimates of the remainder R and
the modulation parameters P, which are the key ingredients in the construction of multi-

bubble blow-up solutions in Section [0l later. The main result is formulated in Theorem
B below.

Theorem 5.1 (Bootstrap). Let € > 0 be sufficiently small, 0 < ¢ < % For any
e € (0,e*], let T =T (M) be small enough, satisfying B1), and fir T, € (0,T) . Suppose
that there exists t* € (0,T.) such that u admits the unique geometrical decomposition
@T) on [t*,T.] and the following estimates hold for k := v, — 3(> 2):

(1) For the reminder term,

(5.1) IVR@)|lz2 < (T =1)", IRz < (T =)™
(11) For the modulation parameters, 1 < j < K,

(52) Xi(t) = wi(T = )] + [ (1) = Wi (T = )] < (T = )",
(5-3) o (8) = ;] + [B;(8)] < (T = )FH7,

(5.4) 16;(8) = (w; X(T = )™+ 9;)] < (T — 1)1+

Then, there exists t, € [0,t*) such that ([LI) holds on the larger interval [t.,T.| and
the coefficients in estimates ([BI)-(BA) can be refined to 1/2, i.e., for any t € [t,,T.],
l<j<K,

(5.5) IVR(#)|r2 < %(T — )% Rz < %(T — )t

(5.6) Aj(8) = wi(T = )] + |r(t) = AT = 1)| < %(T _ e
(5.7) o (t) — @] + |B;(t)] < %(T ) EE

53) 65(6) — (2T = 1)+ 9] < 5(T —

In order to prove Theorem Bl we may take ¢, € [0,t*), sufficiently close to t*, such
that w still has the geometrical decomposition (£II) on the larger interval [t,,T,] (this

is possible because the Jacobian of transformation is continuous in time). Moreover, by
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virtue of the local well-posedness theory and the C*-regularity of modulation parameters,
taking ¢, possibly closer to t*, we have that for any t € [t,, t,],

(5.9) IVR()|[z2 < 2(T = )%, [|[R(t)llz2 < 2(T — )",

(5.10) X (1) = wi(T = )] + [5(8) = wj (T = )| < 2T — 1)1,
(5.11) laj(t) — ;| + |8;(t)] < 2(T — 1)1+,

(5.12) 10,(t) = (W (T = )7 +9,)] < 2T — )"+,

By (5I0) and (5I2), we may also take T sufficiently small such that (3.4]) holds, and
thus Lemma B.1] is applicable below.

Remark 5.2. We infer from (BI0) that for T small enough, \;,~;, P are comparable
with T —t, i.e.,

where C1, Cy are positive constants independent of €.

By virtue of Proposition and Proposition below, we have the refined estimate
for the modulation parameters below.

Lemma 5.3. Assume estimates (5.1)-(B5.4) to hold with T sufficiently small. Then, there
exists C' > 0 such that

(5.14) Mod(t) < C(T — )", vVt € [t,,T.].
Moreover, by equation (2ZI1]), the remainder R satisfies the equation

(5.15) iR+ AR+ (f(u) — f(U))+b-VR+cR = —n,

where

(5.16) n=10U+ AU+ f(U)+b-VU + cU.

The estimates of U;, R and 7 are contained in Lemmas [5.4] and 5.5 below.

Lemma 5.4. Assume estimates (B.10)-(54) to hold and let €; be defined in (EI0). Then,
there exists C' > 0 such that for allt € [t.,T.], 1 < j < K,

le;()llz2 = 1R;(®)llz2 < C(T = )", A IVe(t)lr2 = [ VR;(t)llz2 < C(T —1)",

1002 = 1@z, IVU;@)llz2 + H%)(t)

Lemma 5.5. Assume estimates (5.1)-(B5.4) to hold with T sufficiently small. Then, there
exists a constant C' > 0 such that for t € [t., T.] and multi-indez v with |v| < 2,

(5.17) 10" n(t)]]2 < C(T —t)=+1701,

U b)||2 < O(T — 1)L,

The proof is postponed to the Appendix for simplicity.

The remainder of Section [i]is devoted to the proof of Theorem .1l We first derive the
estimates of the localized mass and energy in Subsection 0.1l and then in Subsection
we derive the key monotonicity property of the generalized energy, involving a Morawetz
type term and localized funcitons, which actually constitutes the most technical part of
this section. The detailed proof of Theorem [E.1] is then given in Subsection We
shall assume estimates (5.10)-(5.4]) to hold on [t,,T,] C [0,7") with T small enough and

satisfying ([B.3]) throughout Subsections EIH53
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5.1. Estimates of localized mass and energy.

Proposition 5.6 (Estimate of localized mass). There exists C' > 0 such that for any
tet, Ty and1 < j <K,

(5.18) QRe/ERjdx + / |R(t)|*®;dz = O(T — t)**+?),

where R; := R®; with ®; the local functions defined in (B.2)).

Remark 5.7. (i). The estimate (5.I8) allows us to control the scalar product along the
direction ) when applying the localized coercivity in Corollary[3.4)
(i1). It should be mentioned that, the proof of (B.I8) relies on the analysis of the

localized mass [ |u|*®;dx, instead of the usual whole mass ||ul|3.. This is quite different
from the single bubble case in [55, 5.

Proof of Proposition Using (4.1)) and Lemma B.Il we have that for some § > 0,
/ Ju|*®;dzx :/ \UP®;dx + / |RI*®;dx + 2Re/UR®jd:c
:/ \UJ*®;dx + / |RI*®;dx + 2Re/7jRjda;+ O(e™ 7 | R||12),
which yields that
2Re [@R)do + [ IROPOds| < | [ u(®)Posde — [ u(T2)Posde
5

(5.19) + | / |u(T)|*®;dx — / |U@®)|?®,dz| + Ce™ 7= || R|| 2.

For the first term on the right-hand side of (5.19), we use equation ([2.I1]) to get

d
7 / u|*®;dx :Im/(QEVu + blu|?) - VO,dx

(5.20) S/ 2[aVul| + |bl|ul?dz,
le—zy|>40,1<I<K

where o is given by (B]). By (5I1), we may take t, close to T, such that |z;(t)—ay(t)| < o
for any t € [t.,T.], 1 <1 < K. This along with (838 and (1) yields that

d
— / u|?®,;dx| gC/ \U + R||VU + VR| + |U + R]*dx
dt |z—ay|>30,1<I<K

K
<COIRIE: + P11V Rl + Y[ QP TR

=1 YI=57

K
+Z/ QP + A 2|V Qi 2dy)
=1 MZ%

__95
<C(I|R72 + | Bl 2 VR 22 + e 7=T),

where § > 0. Hence, we obtain that for some § > 0,
[P~ [ (T Posde

T*
(5.21) SC/|W@MHWMMHWMWW%+%T%
t
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Regarding the second term on the right-hand side of ([5.19), we apply Lemma [B1] to
extract the main blow-up profile U;

/|U(t)|2<1>jdx = / \U;(t)]>®;dx + O(e*%t).

Since

[1vwrads = [1aray+ [ 1@w)P@,0u00+ o) - 1dy.

and for some § > 0,

/\Q(y)|2(1 = ®5(A(t)y + a;(1)))dy < / Q*(y)dy < Ce 7,

|y‘>>\ ®

we infer that
__&_
(5.2 [ 10®Ped = Iz + 0 ).

Similarly, we have
K )
62 [P = |30 S(T)Ped = QI+ O ).
=1

We infer from (5.22) and (5.23) that
(5.24) \/\u(T*)\QCI)jda:—/\U(t)|2<1>jda:\ < Ce 1,
Therefore, plugging (B.21]) and (5.24]) into (5.19) we obtain
2Re [(TR) 0+ [ 1RGP < ([ R+ IR IV Rl s + e ),

which along with (5.9)) yields (B.I8) for 7" small enough and finishes the proof. O

Theorem below contains the estimate of the variation of energy. Unlike the de-
terministic case, the energy ([L6]) is no longer conserved and the corresponding variation
plays an important role in the derivation of the refined estimate of the modulation pa-
rameter /3 later (see Lemma [5.14] below).

Proposition 5.8 (Variation of the energy). There ezxists C' > 0 such that for any t €
[, T,

(5.25) E(u(t)) - E(u(T.))] < C(T - 1)+,

Proof. The proof is quite similar to that of [58, Theorem 5.6], based on the Gagliardo-
Nirenberg inequality (8.28]) and the estimate (£23]) of the spatial functions of noises under
Assumption (A1). Actually, as in [58, (5.20)], we have

d al e

k=1

(5.26) d+22 /A¢k|u i dy — Zlm/ Z@@Bk -V, d.
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This yields that
d K d

|@E(un)| <C||R|3: + C’Z Z (/(|V2¢>k| + A + 10,01V 001 (VU + |U|* ) da

k—

1 j=1
- /(\A%k\ +10,6£V 00 )|U " dz),

which, via the change of variables, can be further bounded by, up to some constant,

K
IR+ > / (T =072 10" del Ay + ) (IVQIP + Qi) + 3 10”6kl (A + )| Q[ dy.

k=1 [v|<2 lv|<4
Thus, using ([A.23) and (5.9]) we obtain

d
—F <c(T—-t)"
S B(ua)| < O(T = 1),

which immediately yields (5.28), thereby finishing the proof. O

5.2. Monotonicity of generalized energy. This subsection is mainly devoted to the
monotonicity property of a new generalized energy, which is the key ingredient in the
proof of the bootstrap estimate (B.5]) of the remainder.

It should be mentioned that, unlike the single blow-up point case in [55 58], the new
generalized energy (5.28) below includes also the localized functions in an appropriate
way, such that the different profiles can be decoupled completely and the key monotonicity
property is still preserved.

More precisely, let x(z) = 1 (]z|) be a smooth radial function on R?, where ¢ satisfies
Y'(r)y=rifr<1,¢(r)=2—¢e"ifr > 2, and

v (r) i)
1 S C) - ,QZ) r Z 0.
o (T)l . (r)
Let xa(z) := A*x(%), A >0, f(u) := lulau, and F(u) = ﬁ\u\”%. We shall also use
the notations f/(U, R) - R and f”(U, R) - R* as in (3I8) and (319), respectively.
We define the generalized energy by

(5.27) |

K
1) = / VR + ; / %?\Rﬁq)jd:c _ Re/F(u) _ F(U) - f(U)Rda

K
’)/j xr — Oéj —
5.28 —1 -VRR®;dz.
G2+ w (VX (") VAR
The key monotonicity property of the generalized energy is formulated in Theorem
below.

Theorem 5.9. There exist Cy,Cy(A), C3 > 0 such that for any t € [t,,T.]
(5.29)

lz—aj]

dI " 1 2 1 2\ T AN 2K * 2k—1
% > 01;)\—]/(|VRJ| —|—)\—j2‘RJ| )6 & diL’—Cg(A)(T—t) —038 (T—t) .

Remark 5.10. Theorem[5.9 yields that the derivative of the generalized energy is almost
positive, up to some error terms, and thus the generalized energy is almost monotone.

We also mention that, the error term of order (T —t)**~! corresponds to the frequencies
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{wj}fil, and the small coefficient £* is important later in the derivation of the bootstrap
estimate (B.B]) of the remainder R, and also in the iteration arguments in the proof of
UNIGUENESS.

In order to prove Theorem [5.9] we separate I into two parts [ = IV + I®) where

(5.30) 1 .= /|VR|2dx+ Z/)\2|R| ®; dx—Re/F( ) — F(U) — f(U)Rdx,

(5.31) 1@ :=)" Im / Vxa)(——2) . VRR®;dx.

Below we treat [ (1 and I® separately in Lemmas 511 and 512l Let us first show the
estimate of /(M)

Lemma 5.11. Consider the situations as in Theorem [1.4. Then, for every t € [t.,T.]
we have that for some C1,Cy > 0,

y 2 4 2 4_o=—2
SR - Z JRe/ FON R + 20T Rda

dt

K

v; ; — 2 2 4_
ZA— o [52)-vo{ 0+ Dulum
j=1 ]
1 1.2 P
*E( )|U|"2UR2 d(d 1)|Uj|d—4U;”Rj2}dx

(5.32) — C(T —t)* — Cye™(T — t)* 1.

Proof. Using the identities
OiF (u) = Re (f(w)ou), 0, f(U) = 0.f(U)0U + 9:f(U)U
and the expansion ([B.21)) we have

dr
dt

=Im(AR + f(u) — f(U),i0,R) — \;*Im(R;, i0, R)
— MNP / |R|*®;dx — Re(f"(U, R) - R*, 8,U).

Then, in view of (B.15), we obtain

1'(1
Z)\)\3Im/|R\<I>dx—Z)\QIm )- R, R;)

—Re(f"(U,R) - R?,,U) — Z AP Im(RV®;, VR)

j=1
K K
— > A "Im(f"(U,R) - R*, R;) = Im(AR = Y AR, + f(u) — f(U),n)
j=1 j=1
K 7
(5.33) —Im(AR = > A72R;+ f(u) = f(U),b- VR+cR) =Y _ I\,
j=1 J=1

where 7 is given by (G.16]).
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As we shall see below, the main orders of 45— are contributed by the first three terms

It(1 : It(2 and I, ?, the fourth term will Contrlbutes the error of order (T'—t)?*~! for which
we shall treat Case (I) and Case (II) separately, while the remaining three terms are of
the negligible order (T — t)*". .

(i) Estimate of [t(,l1)- Since by (5.14), |%§r%| < C]‘f\}?d < CO(T — )1, it follows from

(1) that

(5.34) >

where we also used the inequality ®; > CID? in the last step.

(17) Estimates of 115(,12) and It(’?. We apply Lemma Bl to decouple different blow-up
profiles to obtain

K K
1 2 4 — _
R D) :ﬁlm/ E\Uj\ﬁ’szRfdx - :Re/ f"(Us, Ry) - R20yU;d + O(e77),
j:l J j:l

Then, for each 1 <
of HBEL (5.46),(5.49)

K
I+ I = Z
v
%y

=1
g
d

j < K, straightforward computations show that (see also the proof
)

]

b>:,|<

2 4 2 FRpp—
Re [(L+ IUIIRE + 10470 R

>/|\Q

‘ —[2 2 a_
Re [(529) VG { 30+ DioyliuimP
.7

<.

(5.35) (1+ )|U 42T, R} +

+ 30~ DGR b + 0T - o)
111) Estimate of I () We consider Case (I) and Case (I separately. First, in Case
t,4
(I), since Zjil V&,(x) =0, we see that

K
1 1
I :Z()\ mﬂmwv%vm

j:

Ay — (T = A +w(T — 1)
D12 2
2 AT | RV, | 2| VR

=

VAN

A —w(T =[N +w(T - )|< 127
N2(T — 1) (T —t)?
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<
Il
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Since |w — w;| <e* for any 1 < j < K, using (5.10) and (E.I3]) we see that
A = w(@ = D[N +w(T = 1)

Nw?(T —t)
N =@ (T = O+ [(wy =) (T = D) + (T — 1)
- A?wQ(T—t)

<O(T — )" M 4+ e5(T —t)™h).
This along with (B.9]) yields that
(5:36) L] < CUT =) M4 (T =) 1) < OUT = )" + (T — 1) ).
In Case (II), we see that
K
(5.37) 1 < 3 IV | Rl Rl

j=1 "7

Since |[V®;| < Co~! < Ce* in Case (II), using (5.9) and (5.13) we have

539 <o - (A 4 vRi) < oo - e

(1v) Estimate of 115(,15)- Since
(5.39) U(t)] < C(T —t)7%,
using (323), B28), B29) and (53I) we get
1| <C(T - / U R + |RIE)

3_d

_ _oid d 2 .
(5.40) <C(T — 1) (T — ) 4| RILFIVR| L + | RIGT) < OT — 1)
(v) Estimate of [,5(716). Regarding [t(’lﬁ), since by (B20) and ([3.22),
[f(w) = fO)| = |f'(UR)- Rl < C(|U|7 + |R|7)|R| < C((T — ) + |R|7)|R],

using the integration by parts formula, ([3.29), (59) and the estimate (5.I7) of 7, we
obtain

_ 441
111 <OVl 2| VR g2 + (T = 2| R eIl 2 + | RIE ]l 22)
(5.41) <C(T —t)*.

(vi) Estimate of 115(,17)- The last term 125(717) can be estimated similarly as in the proof of
[58, Lemma 5.10]. Precisely, using the explicit expressions ([2.12) of b, supg<;< | Bi| < 00,
a.s., 1 <k < N, and integration by parts formula we have

Im(AR — A].—?Rj + f(u) — f(U),b- VR
N
ey / V20, (VE, VR)dz| + | / AGy[VRPdz| + (T — 1) 2| |12

/|R\d+1\v¢k VR|d:c+|/ (U) — |RI*R)Vé, - VRda)

(542) <C MCD () = V) = |RER) (Von - VR)ds
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where in the last step we also used Holder’s inequality and the inequality

1 1an
(5.43) IRl < CIRI VR < O —tywtri-bin, vp > 2.
Moreover, by Lemma Bl the last term in (542) is bounded by

4/d K

0.2 / RS g VTl + Cemr
k=1 j=1
4/d K
<CZZ/)\d (R*U; Y6, VR Ay + ay)|dy + Ce 77,
j=1 k=1

which, via (£23)) and (5.43), can be further bounded by

4/d K

74 = Vs —F— K
O3S — ) H I Ry | Rl + Ce 5 < O(T — 1)

=1 k=1

Hence, we obtain

(5.44) IIm(AR = A72R; + f(u) — f(U),b- VR)| < C(T — t)*

and ||c||pee(t. 1000y < 00, using (B.9) and (2.43)

d
2

Similarly, since |U(t)] < C(T —t)~

we get
[Im(AR — A\7?R; + f(u) = f(U), cR)|
1+5
<RI+ (T = ) 2| RIE + D (T =) P Ry,

k=1

(5.45) <C(T —t)*.

Thus, we conclude from (5.44]) and (5.45) that
(5.46) 1871 < C(T — ).

Therefore, plugging estimates (5.34)), (0.39), (5306), (G.38), (G40), (G41) and (EEH)
into (5.33) we obtain (32]) and finish the proof of Lemma BTl

Lemma 5.12. For allt € [t,,T.], we have that for some C(A) > 0,

dI® Ko o L
Z—Z%/AQ A(EY9Y R, Pd +Z”Re/ Xa(TY)(VR;, VR))da
dt i 4)\j Aj
~ ;i T — @ 2 2
+Z—%Re/m< ~ J)-vv{; AT
j=1 " 7
L NPT o R N SN Sty e
(5.47) (L4 TGRS + - (2 = |0 USE;” bda — C(A)(T — 1)

Remark 5.13. The difficulty in the proof of Lemma [2.12 lies in the analysis of the
interactions between the remainders, of which the perturbation order is of only polynomial
type. This is different from the situation in Lemmali 11l, where the interactions involving
U; are very weak, because of the exponential decay of the ground state. The point here is

to gain additional decays from the functions 0"y a, where |v| > 2.
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Proof of Lemma [(.12l Straightforward computations show that

d[(Q) K )‘\j’)/j — )\j")/j X (0%
=Y A (Vya(t2) - VR, R;)
2 » 2R
dt = 22 ;
o - v —
E ] Im (0( VXA( )\] - VR, R;) g 2;QIm AXA j LVR;, 0, R)
J J

K
2
(548) = > (I + I + 175 + 1)),
J=1

We shall estimate [ 15(2),?, 1 < k < 4, separately. The main contributions come from the last

two terms I, @ s and It “a» which requires a delicate analysis of the interactions between
remainders.

E{i)ﬁzﬁstimate of [t(j')l and [S)Q Since sup, |[VZxa(y)(1+ [y])| < C(A), by Lemmas
an

— T — Q; T—o AN+
9 IV — |72 iy . iy . J
XA N =V () A,
_ €T — Oy ﬁ )\jdj_Qﬂj %

J J J

(5.49) <C(A)N;*(Mod; + P;) < C(A)(T — )~

Taking into account | ”’ m‘ < CMOd /D < (T — t)* and () we obtain

12+ 1)) <CA)(T — ||V R| 2| Rl 2 + (T — )| VR| 12| R 12)
(5.50) <C(A)(T — ).

(ii) Estimate of I, t]3 We claim that

T — r—ay
115(3)3 4)\4R6/A2XA( )\j L) |R;|*dx + )@Re/AXA( HIVR;[Pdx

J

(5.51) L Re(Axa(—2)R;, f(U;) - Ry) + O((T — 1)),

2)5 Aj

J

In order to prove (L.E]), we infer from (B.21]) and equation (B.15) that

(5.52)

2
Iy =~75 Az SHRe(Axa(-

-Gy

- JRj, AR+ f'(U)-R+ f"(U,R)-R*+ (b-V + )R +1n).
J
The main contributions come from the terms involving AR and f'(U) - R.

First, since for any j # [, |v — «j| > 40 on the support of R;, taking ¢, close to T" we
may let |z; — ;| < o, and thus | — a;| > 30 on the support R;. By the integration by
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parts formula, for 1 < j #1 < K,

g v -
|2—;2RG/AXA(

J

YR, ATRyda|

T — —
A J x d
Slyhe [ (VR Vi

T — —
VA 1) . VR R;dx
Flggghe [ I VAR
(553) :IKl -+ KQ.

The key observation here is that, because of the decay of 0"y, |v| > 2, the different
remainders R; and R; have weak interactions of order (7" — ¢)?*, which is important for
the bootstrap estimate of the remainder.

To be precise, since

Ax(y) =¢"(Jy)) + (d = D' (JyN)ly| " < Cly| ™", if Jy| > 2,

we have

v AGA
(5.54) < C)\z( . IIR[Fn < CA(T —t)*".

Similarly, since

0, Ax(y) = '"<|y|>|y| <d—1><w"<\y\>§—;—w'<\y\>y—g>scwy\2, if vl >2,

|y]

we get

A

i
(5.55) , < C—2 (== g

X VIV Rl ][ Rjl|z2 < C(T — £)* .

Hence, plugging (5.54) and (5.55)) into (5.53]) we conclude that the interactions between
different remainders R; and R; have the negligible order (7' — t)*", i.e.,

‘2)\2 / <:E ;‘ozj)RjAde‘ <C(T - t)2“

J

This along with the integration by parts formula yields that

Rl R, AR) = 4A4Re [ 2% D )\, e

)|V R[2ds + O((T — 1)),

(5.56) +5 AQ —L Re / Axa(®

Aj
We also apply Lemma [B.I] to obtain

8

YR, f1(U)) - Ry) + O(e ™).

(5.57) Re(Axa("—2)R,, f'(U) - R) = Re(Aya(™

Aj Aj
Moreover, since by ([B.23)) and (£.39),

If"(U,R) - R?| < C([U[i~} + |R[iY)|R|> < C((T — )" + |R|a~)|R],
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using (B.31), (5.9) and (.43) we have

Re(Aya(——2)R;, f"(U, R) - R?)|

|2)\2 A

J
<) [(@ =7 (@~ + R RPds
(5.58) <C(A(T — ) 2[RI + (T — ) R < CANT — ™.
Furthermore, using Holder’s inequality, (5.9) and (B.I7) we have

T %R (b
¢ S (0¥ R+ )

<CANT =) (RN 2V Rl 2 + | R[172) + C(ANT — ) [l z2 ]| Rl 2
(5.59)  <C(A)(T - t)*.

_Re(Aya(

Hence, plugging (£.50), (5.57), (558) and (5.59) into (5.52) we obtain (B.51]), as claimed.

(1) Estimate of 153)4 We claim that

r — O R €T o
1 =g [ Vra( TR, TR — e [ Ava (VR

J

LvxaE) VR, £(U) - Ry) + O((T — 1)),

5:60) =3

Aj

For this purpose, we infer from equation (5.I5) and Lemma Bl that

(2 _ —Q
Iijy = 2)\ L Re(Vxa(™ " ) - (VR; + VRY;),
(5.61) AR+ f'(U;) - Ry + f"(U,R) - R+ (b- V + ¢)R + 1) + O(e" 7).

We first show that
; %) .(VR; + VR®;), AR)
J
1
_Re/ (T ) VR, VE) - A
J J

In order to prove (5.62), using integration by parts formula we see that

(5.62) — Re(Vya(™

)V R, [Pz + O((T — £)).

— Re(Vya(*—) - VR;, AR)
J
1 — _ 1 o o
:Re/—V2XA(x YYVVR,, VR) — —Axa(-—Y)VR, - VRdx
Aj Aj Aj Aj
T — Q —
(563) — Z Re/@kXA( N J)@Rj&klex.
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Then, as in the proof of (5.50), using the decay of 0, x4 with |v| = 2 we obtain that the
interactions between different remainders have negligible contributions and thus

~Re(Vxa(*+) - VR;, AR)

Aj
/ V2XA

(5.64) Z Re/akXA

1<k,l1<d

i Q;
U)(VR;, VE)) - AAAXA( HIVR;[*dx

J j

DO R; 0 R + O((T — 1)),

Similarly, we have

- Re(VXA(x ; O‘j) . VR®;, AR)
J
1<k, l<d
X Q; —
+ Re [ (Vxal )-VR)(VR-V®,)dx
_Re/—v2XA )(VR],VR Z 8]0(,4 )&uR@lR(I) dr
1<k,1<d

(5.65) + O((T — t)*).

Moreover, for the two terms involving dy R in (5.64) and (5.65), we see that the cancel-
lation appears and the integration by parts formula and (B.1]) give
Qi — €T — Q5 —
Re 8]0(,4( ‘ )&dRaqu)j — 8]0(,4( ‘ )81RJ8MRCZI
j j
= — Re/@kXA(x _ Oéj )R@lq)]@klﬁd:c
1 o _ _
:Re/ —AXA(:E @ )GZRR&(I)j + 819)(,4(1‘ a
Aj Aj Aj

(5.66) —|—Re/8kXA(x_a

€T —

J

J ) 81 (I)j 81 Rakﬁdl‘

J )8qu)]alR§dl’ = O((T — t)QH).

J

Thus, plugging (5.64)-(566) into (5.63) we obtain (5.62)), as claimed.

We also apply Lemma Bl to decouple different profiles between {U;} and {R;} to
obtain that, similarly to (B.57),

5 — /
o\ Re(VXA( y ) (VR; + VR®;), f/(U) - R)
27; Re(Vxa( A.aj) (VR + VR;®), f(U)) - Rj) + O(e” 7).

Since |z — Oz]| > 30 on the support of 1 — ®;, we have the exponential decay of U; that
[Uj(x)] < CA;2e %, and thus

T —

N >ww>ﬂm1w:mwmﬁ
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Hence, we obtain

S Re(Va(= ) - (VR, + VR,), /'(U) - R)
2\, )\]
.
(5.6) =BRe(Vxa(11Y) - VR, (U) - Ry) + O 7).
j j
Moreover, using Hélder’s inequality, (5.9]) and (5I7) we easily get
(5. 68)
| Re(VXA( YY) (VR; + VRS;), f'(U)- B>+ (b-V + ¢)R+n)| < C(T — 1)

)‘J

Hence, we conclude from (0.62), (5.67) and (.68) that (B.60) holds.
Now, putting the estimates (5.50), (5.51) and (5.60) altogether we obtain

72
ddt = 4)\4/A2 )R, |2dx+Z%Re/V2

-«
- g Re( —2AXA(

Y\(VR,,VE;)dx

DR+ Ly (EH

LX) VR, F(0) )+ O(T 1)),

J

Because the profiles are decoupled completely, we can treat each profile individually by
using similar computations as in the proof of [58, Lemma 5.11] and thus obtain that the
third term on the right-hand-side above is equal to

K

. T — — (2 2 4
> Ere [ Vi) Vi { S+ DI in
=17 7

1 1,2 _
(5.69) + (1 )\U |4 T5R + (5 — >|Uj\%—4U§Rf}dx,
which immediately yields (B.47]), thereby finishing the proof of Lemma O

We are now ready to prove Theorem

Proof of Theorem [5.9. At this stage, the blow-up profiles are decoupled in (5:32))
and (E4T), up to the acceptance order O((T — t)*), and thus we are able to treat each
profile separately by using similar arguments as in the proof of [58, Theorem 5.8]. For
the reader’s convenience, we sketch the proof below.

Combining (5.32)) and (5.47) altogether and then using the renormalized variable ¢; in
(4I0) we obtain that for all ¢ € [t., T.],

4. 4 4
dt > 7_4 /VQ )(Ve;, VE) dy+/|gj|2dy /(1+g)Q3€§7l+Q35?,zdy
j=1 ]
1 2 2
~ 1 | AQleldy)
K 27 4
4_q 2 2
+ ; i /(AVx(A) y) - VA ((1+ 3)5]‘,1 +ej0)dy
(5.70) = Ce(T =)' = C(A)T — )™

where €;; and ;2 denote the real and imaginary parts of €;, respectively.
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Then, since
[ o vy = [ 1S DIve Py

applying Corollary B4 with ¢(x) := ¢"(]z|), Lemma 4 and Proposition [0, and using
the estimate Scal(e;) < C(T — t)**** we obtain for some C' > 0

K
// ’7 2 2
> G IED e + [Ve;)d ——/A XD,y
o / j j z o j

2y, 4 4
- Z £ / AVY(Y) ) VQQIT (1 + ) + <)y
(5.71) —Ce (T —t)>~ ' = C(A(T — t)*
Taking into account that for A large enough,
L= n ¥
2 < = ney s
Salan ) < zawr( Y,
and
2 4 Yy ] I ni Y
z = N _ < 7
2+ ) AVx(E) - ylIveQt| < 70u(1 %),
we arrive at

a1 " o P
e /w/ (I3l + Ve )y — O (T = 6 = C(ANT 1)

Therefore, as " (r) > de™" for some § > 0, we obtain (5.29)) and finish the proof. [

5.3. Proof of bootstrap estimates. In this subsection we prove the crucial bootstrap
estimates in Theorem .l To begin with, we first obtain the refined estimate for the
modulation parameter .

Lemma 5.14 (Refined estimate for §). There exists C' > 0 such that for all t € [t,,T.],

(5.72) ZIBJ |2<Cz:|w2A2 O]+ C(T =)

Remark 5.15. Unlike single bubble case in [58], the proof of Lemma[5.17) requires the
localized mass in Proposition[54 and also a delicate treatment of the localized function ®;
and the radial function ¢4 in Corollary[3.4), in order to derive the coercivity of energy.

Proof of Lemma [5.14l Using the expansion [B.27) of F(u) = ﬁ|u|2+% we have

B(u) = / VUPdx

1 —
(5.73) + 3R [ IVRF = (L DIUPIRF - 2|20 Rds + o IRIFy.).

-5 4/|U|2+ddx Re/(AU+|U|dU)Rd:c
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Note that, by Lemma 3.1l and the explicit expression (£.3) of U;,

1 2 o 2+d
/|VU\d:c o 4/\U\ da

2
(5.74) :Z 2N ||Q||L2 8)\2”?/QHL2)+O(6 ),
and

K
(5.75) Re/(AU UL R — ZRe/(AUj UL AU Rode + O ™| R 12).
j=1
Taking into account Proposition and rearranging the terms according to the orders
of R we obtain that for 7" small enough,

K
1 — 1
=17

K

2 K
Z el ;2HyQH%2>—ZRe/<Aj sl + U340, o

/|VR|2+Z)\2|R| o, — (1+ )|U| 1|R)> — |U|“2U2Rd
J=1

(5.76) + O((T —t)*).
On one hand, using the identity (428 and the change of variables we get

Re/(AUj )\QU +|U;| ¢ U)Rdx
1 1 ;
611 = [ (4AQ; - 26, V)t + 5Re [ 18 - ZyPase
j j
which along with the almost orthogonality in Lemma [£.4] and (5.IT]) yields that
K
(5.78) \ZRe/(A . A2U U AU Rda| < C|[R||se < C(T — 1)+,
=1

On the other hand, we claim that there exist ¢, C' > 0 such that for the quadratic terms
of R on the right-hand side of (.70,

K
1 2 4 2 4 —
By (u) ::Re/ IVR|? + Zﬁmﬁcpj — L+ D)WUI|RP ~ E|U|a—2U232dx
j=1

J

K
- 1
>c(/ VRE+ 3 5| RP®sda)

s .
(5.79) — CUT = O)MRIT2 + e T |[R]l 7 + (T — 1)**2).
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(Note that, this does not follow directly from Corollary 3.4 because the localized function
®; does not satisfy the conditions there.)
For this purpose, using the partition of unity and Lemma [3.1] we have

K
:ZRe/(|VR|2 |R| )O,; — (14 = )|U| |R|2——|U|"2U2Rd
=1

__95
+O0(e 77 || Rl[72)-

In order to obtain the coercivity of the energy, we use ¢4 () := gbA(x;?j) with ¢4(z) as

in Corollary 3.4l and the renormalized variable €; defined by

l‘—Ozj

_d
R(t,z) = )\j 2§j(t, )60 ,
Aj

to reformulate Es(u) as follows

K
1 2 4 2 4 _ =2
= e [(IVRE + G5l RF)oa; = (1 DIVLRE - S0 207 R ds
j J
"~ 1 ;
=3 [(UVRP + IRA@, = 6a,)dr + ORI
=1 J

She / (VEP + B P)oa — (1+ DQHEP - 20452

<

+ &M“
N |
3§|'—‘

/(|V6J\2+ EP)(@5(\y + a5) — Ga(y))dy + O™ 77| R|72)

1

(5.80) =

'Mw

E +ZE221 + O(e" T || R|12,).

1 J=1

J

Since Q; = Q + O(P(y)*Q), the localized coercivity in Corollary BEL the estimate
Scal(g;) < C(T —t)*** and (51)) yield immediately that there exists ¢; > 0 such that

~ ~ 4~ 4 —
By >A2Re/(|V€j|2 + (&5 pa — (1 + 3)62d|€j|2 - EQdf??dy —C(T = )M R7
>¢; | (|[VR|* + i|R|2)gzs dr — CiscaZ(g) —C(T -t Y R|3
=& )\? A,j A? J L2

1
(5.81) =g /(IVRI2 + 2B dade — C(T = 1) = C(T = ) M| R |7
j

Moreover, set ¢ := min{1,¢;,1 < j < K} > 0. Since ®;(\jy + a;) — ¢ay)) > 0 if
ly - vi| < %, we get
J

c
Buizys [ (VEE+ BE® 0 +a) - alw)dy
i Jlyvil<3E

e (V& + E2)(@; (0 + 05) — 4(y))dy

2
A Jyvalz e
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By the positivity of ®; and the exponential decay of ¢4, the second term on the right-hand
side above is bounded from below by

c 1—¢ " "
N (VEP + BD@ 0+ ) = 6a@Ddy - 5= [ (V5 + E)oady
i Jlyval=32 i vz
c 5 1-¢ 32
Z | |>SU(IVEJI + 1)@ Ny + ;) — daly))dy — VI i €5 -
g Ny val=33 j

This yields that for ¢ close to T,

; 17 50
By 253 [ (V5 )@, 0+ 05) = a0y = 557 5 5

J

- 1 s
(5.82) ZC/(IVRI2 + EIRIQ)(CI)J' — ¢ay)dz — Ce"T7||R|[7.
J

Then, plugging (5.81]) and (5.82)) into (5.80) we obtain (5.79), as claimed.

Therefore taking into account u(7.) = Sr(T) we have

E(u( /|sz |d:p—m |Zs D2 ada

w- 5
-y QI3 + O 7).
=1
and then plugging (B.78) and (2.79) into (B.76) we arrive at

K K

1
> sl ORIl <3 gyl 50 ~ 30|

+1E(u)(t) — E(u)(T)] + O((T = )*),

which, via Theorem (.8 and (5.13), yields (5.72) and finishes the proof. O
We are now ready to prove the bootstrap estimates in Theorem [B.11
Proof of Theorem 511 (i) Estimate of R. On one hand, by (321),

K
1 , 1 L 2 2,
_- - “RP®. — (14 2 _z
T +2]§:1:Re/)\?|R\ [~ (L + DWRIRP - 2Uli20" R d

244
_oyd
+O((T = )22 Y |IRIf) + ORIl | VRI 12,
k=3
which, via (L.13) and (579), yields that for some 0 < ¢ < 1,
1 2
gl
5 - d
= Cle" ™ |Rllfn + (T =) HIRIL + (T = )2 | Rllzp + | Rll2 VR 2)-

I >¢(|VR|%: +

Then, taking 7" small enough we get that

1 2
AIVRI7a + mHRHm)-
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(5.83) I(t) >



On the other hand, Theorem yields that for any ¢ € [t,, T.],

(5.84) %> —C(A)(T — t)* — Ce*(T — t)* 1,

Thus, combining (5.83) and (5.84)) and using the fundamental theorem of calculus we
obtain that for any ¢ € [t., Ty],

%E(||VR(t)||%z+ |R(@)]13) SI(T*)+/t CCE(T — )+ (AT — )

1
(T —t)?
Taking into account I(7,) = 0 we obtain
Ce* 2C(A)
—— |RO|?. < —(T —t)*" + ———
(T—t)2|| ()HL — K,C( ) +(2/{+1)C
which yields (5) immediately, as long as €* and T" are sufficiently small such that
C 2C(A 1
KC (2k+1)c 8
(i1) Estimates of \; and ~;. Since (/\—’)( ) = wj and by (14,

(5.85)  [IVR(®)Z + (T — )+,

A24 — Ao sy
Sy - B2 B < oy

(5.86) <
A3 A3

we infer that for 7' small enough such that CT* < %,

(T N t)fH—GC-

DO | —

Yj Td Vs +1
5.87 - - dr < C(T —t)" <
657) IGO0 -l < [ LGl < O -1 <
This along with (B.14]) yields that

d i Mod 1

— (N —w (T =) = |\ - i< —(T — )5 < (T — t)"+6¢

which implies that for T’ p0551b1y smaller such that CT¢ <

1
27
g d 1 Kk+1+5¢
688 w0l < [ O — (T = )ldr < 5T - 0%,
t

thereby yielding the estimate of \; in (G.6]).
Similarly, by (514]) and (5.87),

d . oh Mod ; .
¢l v = wi(T =) =3+ ;ﬁw - |_ + Clw; — 7|§C(T—t) s
]

which along with ~;(7%) = w3 (T — T.) yields that

[;(t) — w3 (T — 1) < /t * |%(vj(r) — AT —r))dr < C(T — 1)+,

Hence, for T' very small such that CT¢ < % we obtain

1<T . t)““*“,

(5.89) 5 = WA(T = )] < 5

which yields the estimate of ~; in (G5.0).



(i19) Estimates of B; and a;. We use the refined estimate of 8; in Lemma [B.T4] to get
K K
K ’y K
(590 18P <ON N =] O = 1) < O3 (W, — L[4 x57),
j=1 j=1 J
which along with (BI3]) and (5.87) yields that for 7" small enough,
) < C(T _ t)%+1+3< < %(T _ t)g+1+2<.

K
Vit 5+
(5.91) 18] < C (Ajlw; — )\—;\2 + A
=1

Moreover, since «;(T}) = x; and by (L.14) and (E.91]),

Nicvs — 28, 28, Mod 2|3 i

(5.92) éy| = ‘J‘%Ai@ L %‘ < Mok, \f;l < O(T — )5+,

J ] ¥ 7
we infer that for sufficiently small T,

T

* o 1 .

(5.93) (1) = 5] < / [ (r)|dr < C|T — #2712 < (T — )27,

t

which yields (&7).
(iv) Estimate of 0;. By (5.13), (5:88) and (G.91)),

d X —1- 18P 18P | 1 1
_9_ fQT_tfl ,19 — 777 J J - -
< Mod N 13517 N (A —wi(T = )|\ + w; (T — 1))
= )\? A? W?A?(T —t)?
(5.94) <O(T — )25

which yields that for ¢ sufficiently small,
T
_ _ d _ _

1
(5.95) <C(T —t)~115¢ < 5(T — )i
thereby yielding (5.8)). The proof of Theorem [l is complete. O

6. EXISTENCE OF MULTI-BUBBLE SOLUTIONS

In this section, we shall fix £* > 0 to be sufficiently small, and for any 0 < ¢ < &*, take
7* to be very small such that for a large universal constant C'

L]
Nrt < =
1 +1rgnjz%>§(|x]|)7'* <3
For any T € (0,7*), take any increasing sequence {t,} converging to 7" and consider the
approximating solutions u,, satisfying the equation

10, + Au, + |un|§un +((b-V+ou, =0,

6.1 o
61) U (tn) = Z S; (tn),

where the coefficients b, c are given by ([2I2) and (2.I3]) respectively, and S; are the
pseudo-conformal blow-up solutions defined in (), 1 < j < K. We also note that for

each n > 1, t, plays the same role as T, in the previous sections.
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We first have the uniform estimates of approximating solutions in Theorem below.

Theorem 6.1 (Uniform estimates). Forn large enough, u, admits the unique geometrical
decomposition u, = w,+ R, on [0,t,] as in [II), and estimates (LT))-(&4) hold on [0, t,].

Moreover, we have

(6.2) sup ||zu,(t)||2 < C,
te[0,tn]

and for any t € [0, t,],
63 1Bl < O(T 1)~

Proof. The proof of (51))-(54]) is quite similar to that of [58, Theorem 5.1], mainly
based on the bootstrap estimate in Theorem [B.1] and the abstract bootstrap principle
(see, e.g., [60, Proposition 1.21]). For simplicity, the details are omitted here.

Below we prove estimates (62) and (63]). Let p(z) € CY(R? R) be a radial cutoff
function such that ¢(z) = 0 for |z| < r, and ¢(z) = (|z| — r)? for |z| > r, where
r = Qmaxlgng{\ij 1} Note that, ‘VQO| < CQO%

Using integration by parts formula we have for some constant C' > 0 independent of n,

d
pr / [u, |2 odz| = |Im/(2u_nVun + blu,|?) - Vipda|
< | (| Vetn] + [t o3t
lx—x;|>1,1<j<K

01 =c((f V)t +(

lz—a;|>1,1<j<K lo—a;/>1,1<j<K

) ) [ fun P’
By (1)) and the exponential decay of the ground state,

(6.5) | [un(®)[2 + |V () Pda] < C(|Ra(t) 32 + 7).

le—z;|21,1<j<K

Thus, taking into account the uniform estimate (B.I]) we get
d 2 __5 2 1
5 | @ pde] <CUIRa() [ +e20)( [ |un(t) ed)?
(©.6) <O(T = ([ Jualt) i)’
Moreover, using the boundary condition u,(t,) = EjK:1 S;(t,) and R, (t,) = 0 we have
(6.7) | /|un(tn)|2g0dx| < Ce i
Thus, integrating from ¢ to t,, we get for t € [0,t,],
(6.8) / |un () 2pdz < C(T — 1)2F2 4 Ce™ 7 < C(T — t)*+2,
which yields that

/|R )|*pdx <C’/|U |g0dx+/|un )|*pdx)

(6.9) <C(T — )2 4 Ce T2 < (T — )22,
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But p(z) > 1|z|? for |z| large enough. Hence, we infer that for ¢ € [0, t,]

(6.10) [ lewnoPds < ([ lunofods + [ un(o)do) <
and
01 [Ri0Pds < O [ROPeds+ [ IR0 < O -7

Therefore, taking into account (5.I]) we obtain (6.2)) and (6.3]) and finish the proof. O
Proof of Theorem 2.14l Let 7*,&* be as in Theorem[ETland let T € (0, 7*], ¢ € (0, &*]
be fixed below. By virtue of Theorem [6.1, we have the geometrical decomposition

with
K

(6.13) n(tn) = Sr(ty) ==Y Sitn), Rult,) =0,
j=1

where U,, = ZJK:1 U,,; is as in (4.2)) with the modulation parameters P, ; satisfying

Poj(tn) = (Anj(tn), o j(tn)s Bryi(tn)s Vi (tn), Oni(tn))
= (w; (T — )SL’],OM< —ty), w; AT —t,) " +13;).

L]

(6.14)

and S; are the pseudo-conformal blow-up solutions given by ([2.1), 1 < j < K. Moreover,
the uniform estimates (5.))-(5-4) hold on [0, ¢,].

In particular, {u,(0)} are uniformly bounded in ¥, and thus u,(0) converges weakly
to some uy € 2.

We claim that u,(0) indeed converges strongly in L2 i.e.,

(6.15) U, (0) = ug, in L, as n — oo.

This follows immediately from the uniform integrability of {u,(0)}, that is, by (6.2,

1 C
(6.16) sup [[tn (0) || 2(z1>4) < = sup [[2un(0) 12(zj>4) < 7 — 0, as A — oo.
n>1 A =1 A

Thus, by virtue of (GI5) and the L? local well-posedness theory (see, e.g. [4]) we
obtain a unique L?-solution u to (G.1) on [0,7) satisfying that u(0) = ug, and

(617) nll_)ngo ||un — UHC([O,t};LQ) =0, te [0, T)

Moreover, since ug € H', using the H' local well-posedness result (see, e.g., [5]) we also
have u € C([0,¢]; H') for any 0 < ¢ < T. Such solution is indeed the desirable blow-up
solution that explodes at the given K points {x;}5

As a matter of fact, let

(6.18) (Ao s Bogs Yo, Oo) i= (Wi (T — ), 25, 0,3 (T — t),w; (T — 1)~ +19;),
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70,5 (t) .
") Since

and Qo (1, y) = Q(y)e’Posv=
d P R

Unj = S; =N\ = 2o )Qn(t,

Oénj

_d xr — : . ]
Aoj (@nj(t, Aif) an( o )t
n,j )

AN , — 05\ b5
0.7 (Qn]( )\0] ) QO,J (t7 )\07]' ))e

L= Oéoyj)(eign’j _ 61‘00,1-)’

)\07_]
using the change of variables and (5.13) we infer that, if M =1 + max;<j<x |7;],

X, DI

)‘0,]2 H|x‘<Qn,J(t7 )\0 ' J) QO]( ' 2 ))HL2
5J

_d
(6.19) + Ao Qo;(t,

T — Qpj

[2(Un = St)llze <o} l2](Qn (¢, )~ Qualt, 5
]

Ozoj

A2 A
%me 0o, DI () Q| L2

Ow\a

+ CM(]

Cwla

J
Then, taking into account the uniform estimates (5.2))-(5.4]) of the modulation parameters
and the well localized property of Q we get that for T' small enough such that MT <1,

Qn.j — Q.
|2(Un — St)]| 22 <CMZ | — 1]+ |#| + Bnj — Bol
n] n,j
d d
Ani— Ao
+ Vi — Y0,5] + |74| + 105, — 90,j|)

<COM(T —t)2*¢ < (T — )——1+<

where (' is a universal constant, independent of n,t, M, T.
Similarly, we have (see also the proof of [58 Theorem 2.12])

)\0 A j — Qg5
|Un — 57|12 <CZ v . =1+ | =5 4 1Bay = Bogl + +lmg = 704l
j=1 An.g "
XY
+ |20 10,5 — 6o,]) < C(T — 1),
A027j
and
1 )\0' Ay 5 — Qp, 60 Vn,j — 70,5
V0, — VSl <C3 (+ |22 — 1) 4 (2nd = %0g ) e 2]+ | |
Z )\OJ An.j A0, An,j )‘OJ Ao,j
1+ 4 1+4
At = Ny’ 0, ; — 0o ; 5
I ) < O = )3
Ao ” 0.

Hence, we conclude that

(6.20) U (t) = Sr(t)lls < O(T — 1)z 7H<.
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This along with (5.1)) and (6.12) yields that
62 ) = Sr®)ls < (U0 = Sr(B)ls + BBl < T =155,

where C' is independent of n.
Hence, in view of (6.17)), we infer that for some subsequence (still denoted by {n}),

un(t) — Sr(t) = u(t) — Sr(t), weakly in ¥, as n — oo,
which yields that
lut) — Sr(t) s < iminf [lu, (1) — Sz (1)l < C(T — )57,
Therefore, the proof of Theorem 2.14]is complete. O

7. UNIQUENESS OF MULTI-BUBBLE SOLUTIONS

7.1. Geometrical decomposition. In this subsection we obtain the geometrical de-
composition and uniform estimates for the blow-up solution constructed in the proof of
Theorem 214 which, actually, are inherited from those of the approximating solutions.

Let us start with the boundedness of the remainders in the more regular space H %,
which will be used in Theorem later to derive the key monotonicity formula of the
generalized functional defined on the difference.

Below we use the same notations u,u,, U,, R, and t,, as in Section We also set
M = max;<;<k |z;| + 1 and keep using the notation x := v, — 3.

Proposition 7.1. Assume (A0) and (A1) with v, > 5. Then, for T" small enough such
that

(7.1) C(1+ max |z;|)T Ti < -,

1<j<K

l\DI»—t

where C' 1s a large universal constant, independent of €, T, n, we have
(7.2) [Ra(B)|l ;3 < (T =12, tel0,t,).

Proof. We rewrite the equation (B.I13]) of R, as follows
(7.3) iOR, + AR, +b-VR,+cR, =—n, — [(R,) — (f(un) — f(Un) — f(Ry)),
with R, (t,) = 0 and 7, as in (B16), where U is replaced by U, given by (6I12). Then,
applying the operator (V)2 to both sides of (.3]) we obtain

i0((V)2R,) + A((V)2R,) + (b V + ) (V)2 R,)

(74) =l V + e (V)3)Ry — (V)3 — (V)2 [ (Ra) = (V)2 (f (wn) = S (Un) = f(Rn)).
where [b-V + ¢, (V)2] is the commutator (b V +¢) (V)2 — (V)2 (b-V +¢). We regard

([C4) as the equation for the unknown <V) R, and apply the Strichartz estimates and
local smoothing estimates (see [64], Theorem 2.13]) to get

3
< ° 2 44-2d
1Bl gty SCUB-V e (DR + 1T

44-2d
Lird (ttn; L 4Fd )

FIUVVE(FR)) ae2a aca

L 4+d (t,tn; L 4¥d )

(f (un) = f(Un) = f(Rn))| -3)) = > R

L2 (tythl

(7.5) +(V)

Below we estimate each term R;, 1 < j <4, separately.
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(i) Estimate of Ry. Since by Assumption (A0), [0”b| + |0”c| < C(x)~? for any multi-
index v, using the calculus of pseudo-differential operators (see, e.g., [64]) and (&) we
get

1 il
(7.6) Ry < Cl| Rl ranimr ) < C(T = 02| Rulloqeemmy < C(T — 1)
(17) Estimate of Ry. Using (£I4]) and (5.16]) we have the pointwise estimate of 7, that

for any multi-index v with |v| <2 and for y := _x;%,f"
K 4—d ~

‘357711(37)\ < Z)\n,j 2 ‘ayy«)\n,ﬂ) -V + )\2 N)an ‘ + Z )‘n] QMOd Z 81/an|
! e

K
=: Z M+ 72,5,

where b and ¢ are as in ([@ZZZ). Note that, for p := 24 by @Z3),

4+d "’

_d_y4 4 . ~ 9
171,51 e <Z>\ i Aoy ((Angb -V + A0 50)Qn ) e

7j=1

- d(5=3)=4 ) 41 454
Vx R+5—

Z ; AL < (T — t)tosa,

Moreover, by (5.14),
In2,ll e < C(T = )%~ 2 " Mod,, < C(T — )" 4.
Hence, we obtain that for any multi-index v with |v| < 2,
10010 < O(T — £y,
This yields that
(7.7) Ry < |[[nn| a2 a2 < C(T — t)%“‘ﬁ < C(T —t)"~.

LA+ ([tty, ]W XA

(1ii) Estimate of Rs. Using the product rule in Lemma 3.6, (3.29) and (&) we get

3

Z)2 (PRI 20 SCIUTY Rullizll Rl

4 4,
(7.8) <Ol Rull g | Rulli < OT = )R]
which yields that
(79) Ry < (T~ )F 85 |R,

(1v) Estimate of Ry. We first see that
Ry <C[[{x)(f (un) = f(Un) = F(B))ll L2t 03m0)

4/d
1 ; 1 ;
SCZ (”<x>|Un‘1+d ]|Rn‘]”L2(t,tn;L2) + () VUl [Un| 7 ]|Rn‘]”L2(t,tn;L2)

+ @)U 5V R | R | 22 t0:2))
d
(Ryj1+ Rajo+ Ryjs).

4

~

(7.10)

<.
Il
—
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Since |a;| < [x; — o] + 2] < M, 1 < j < K, and sup,cga(y)Q(y) < 0o, we infer that

d
(1) @) mw<2}w (g + )5 2 QUy) < CM(T — )%,
yGR
which along with (5.43]) yields that
_d(ggd gyl : ol
(7.12) RmﬁgMﬂT_wQWWﬁhW%%@MﬂUSOM@—w .

Moreover, since for any 1 < p < oo,
(7.13) [ VUl U370 < OM(T = £)207D7345,
using Holder’s inequality and (2.43]) we get that
e .
Ry gz SCI@) [ VULUnl 77| 226t 0500 | B[ 1.4, 200
(7.14) <OM(T — )23 (7 — ) H =945 < OM(T — )53,

where p, ¢ are any positive numbers such that % + % = %

It remains to treat the last term R, ;3. In the case where j = 1 we have
Rija < CM(T = 1) |V Rullqua, gz < CM(T = 1)72.
In the case where d =1 and 2 < j < 4, using Sobolev’s embedding H*(R) < L>®(R) we
get
Rijs < OM(T — ) 20F G D3R, |12,y < CM(T — 1)

Furthermore, in the case where d = 2 and 2 < j < 4, using the Sobolev embedding

d7
H%’Q(R2) SN Ld%dl(R2) instead we get
d(pd Ly i
Rajs SCM(T =) 308D R o ginon [ Ball ) oot

gCAﬂT—iY'( +HR|bumwﬁMRMbmmwﬁ)

SOMT ~ 0 F|Rall ot
Hence we conclude that

Ii** K—3
(7.15) Ryjs <CM((T —t)" 2[R, HC(“ ]H2)+(T—t) 2).
Thus, plugging (L.12))-([ZI5) into (ZI0) we obtain

3 3
(7.16) Ry < OM((T — )% + (T =) 3| Rall )

Therefore, plugging the estimates (Z.8), (7)), (Z9) and (Z.I8) into (T3] we obtain

K—2 k-3
Boll g oty < CMUT =7 (T =0 | Rull s

Hence, taking 7" very small such that (ZI) holds, we obtain (L.2]) and finish the proof. [
Proposition below shows that, in the case where k > 3 (i.e., v, > 6), one may

enhance the approximation ([ZI5) of u and u,, in the space H 2

Proposition 7.2. Consider the situation as in Proposition [7.1] but with v, > 6. Then,
we have

(7.17) lun(t) = Sr(#)ll 5 < C(T — )29,
47



where ¢ € (0, 1—12) In particular, for the blow-up solution u constructed in Theorem [2.1],
(7.18) lu(t) = Sz(t)] ;3 < C(T — )3+,

and we also have the strong H' convergence that for any t € (0,T),

(7.19) |tn — ullcqog;ary — 0, as n — oo.

Proof. Since

ln () ZS i < | Ralt +ZIIU7J = S0 35

in view of Proposition IHI, we only need to prove that for each 1 < j < K,
(7.20) 1Un () = S0l 3 < C(T — 1)z,

For this purpose, we let (Ao j, o, 5o, V0,4 00;) and Qo ;(t,y) be as in the proof of
Theorem T4l Then, as in (G.I9), we decompose

_d _d T — Qnj\ . T — Qpj — Qo, n
Uiy = 8, =00} = 20.)Qug (6. S50 4 203 (Quy(t, T50) = Quyt, )
n,j n,j 0,7
+ Ao (Qn(t, h\ AOJ) Qo,a( X 1))t 4 Ao Qoj(t, )\7%)(6 Org — %01
0,7 0,7 0,7

=T + Ty + 15 + Ty.
Note that
_d 3
1Tl 5 = (A — )\oj )W,fHQHHf < O(T —t)< 2

Moreover, for T,, we have

— 53 —iom €7 —iag ;€7 Lk—
ITall 5 = Ao 1162 (A0 je "7 Qg (An i) = AGje "5 Q. (Mo 3€)) |2 < C(T — 1)z,
Regarding T35 and T, we have the bounds

_3 L
1T 5 < CAo 2 (18ng — Bogl + [vms — 20,40) < C(T = )20 ¥,

and
_3 _5
17405 = A2 160 — b0, 1Q1 5 < C(T — 1)~ 5+<.

Thus, putting the estimates above altogether we obtain (.20), and thus (Z.I7) follows.
In view of (G.I7) and (ZIT), we also infer that

(7.21) un(t) — Sr(t) = u(t) — Sr(t), weakly in H2, asn— oo,

which yields (ZI8) immediately. Moreover, the strong convergence (TI9) in H' follows
from the strong L? convergence (B17), the uniform H2 boundedness (72) and standard
interpolation arguments. Therefore, the proof is complete. l

Below we show that the constructed blow-up solution v indeed admits the geometrical
decomposition as in Proposition 1] on the maximal existing time interval [0, T").

For each 0 <t < T fixed, Lemma [5.3] yields that the derivatives of modulation param-
eters P, are uniformly bounded on [0, ], and thus P, are equicontinuous on [0,], n > 1.
Then, by the Arzela-Ascoli Theorem, P, converges uniformly on [0,¢] up to some sub-
sequence (which may depend on t). But, using the diagonal arguments one may extract

a universal subsequence (still denoted by {n}) such that for some P := (Py,---,Pk),
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where P; := (\j, o, 85,74, 0;) € C([0,]; R**3), 1 < j < K, and for every ¢ € (0,T), one
has

(7.22) P, — P in C([0,t]; RPHIK),

Then, taking into account the uniform estimates (B5.1)-(5.4]) we obtain that for each
te€[0,7)and for 1 <j < K,

(7.23) IN(t) —wi (T =)+ |v;(t) —wHT —t)| < (T — )=,
(7.24) laj(t) — ;] + | B;(t)| < (T —t)z+HHe,
(7.25) 10;(t) — (w; (T — )71+ 9;)| < (T — )= 1.

In particular, as in Remark[(.2] A;, v;, P are comparable to T'—t, i.e., there exist Cy, Cy >
0, independent of €, 7T, such that

(7.26) Ci(T —1t) < XNj,v;, P<Co(T —t), VO<t<T.
Let

K o K

(7.27) Ult.z) ==Y A 2Qs(t, %)ei% (=Y U(t.2)),
j=1 J j=1

with

(7.28) Q;(t,y) == Q(y)ei(ﬁj(t)-yfiw(t)\yl%7

define p; as in (.6), and define the remainder R by

(7.29) R(t,z) == u(t,z) = U(t,x), 0<t<T,xcR%

Then, for each 0 < ¢t < T', using the explicit expression (27) of U and the convergence
(C22) of mudulation parameters, we infer that (z)?U,, — (2)2U in C([0,t]; H'), U, — U
in C([0,4]; H2), AU, — AU in C([0,1]; L?), and g, ; — o; in C([0,]; L?). Then, in view
of ([6IT) and (Z2])), we obtain that R, — R in C([0,t]; L?) and R,(t) — R(t) weakly in
H?%, which by interpolation yields that R, (t) — R(t) in H".

Hence, in view of (5.J]) and Proposition [[] we get that for 7' = T'(M) small enough
satisfying ((ZI]) and for any ¢ € [0,7T),

(7.30) IRz < (T =), [IRO)lm < (T =) RO ;3 < (T—8)""
Furthermore, the following orthogonality conditions hold on [0,T") for each 1 < j < K:

Re/(x — a;)U;Rdx = 0, Re/ |z — |*U;Rdx = 0,
(7.31)
Im/VUjEd:c =0, Im/AUjEd:c =0, Im/gjﬁd:c = 0.

We also see that the modulation parameters in P are C! functions. Actually, similar
arguments as in the proof of Proposition show that the modulation equations M od,,
can be expressed in terms of the inner products of polynomials of 0¥U, and R,,, where
|v| < 2. Hence, the convergence of 0”U,, and R, also yields that of 75n, which in turn
yields the desirable C'-regularity of the modulation parameter P.

Thus, similarly to Lemma [5.3] we have

Lemma 7.3. There exists C > 0 such that

(7.32) Mod(t) < O(T — )" t€[0,T).
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7.2. Energy estimate of the difference. Below we assume Assumption (Al) with
v, > 11. Let v be any blow-up solution to (Z.I1]) satisfying (210, i.e.,

(7.33) lv(t) Zs Ol <CT—1)**, 0<t<T.
Set

K
(7.34) wi=v—u= ij, with w; == wd;,

j=1

where the localization functions ®; are given by [B2), 1 < j < K. Since k := v, —3 > 8,

it follows from (2.16]) and (7.33) that
(7.35) |w(t)|| g < C(T —t)><.
For 1 < j < K, define the renormalized variable €; by

x — ay(t) ei(0).

(7.36) w;(t,z) == M) 7t e
Set
(7.37) D(t) = [[Vw(t)|}= + i ““K;%iyi
We note that
(7.38) lw; ()] 2 < C(T = t)/D(t), |Jw;t)|lm < C/D(t), 1<j<K.

Moreover, as in (3.15]), we set Scal;(t) := Scal(e;), i.e., for €;1 := Reej, €2 := Ime;,
(7.39)

Seal;(t) = (1, Q)" + (€51, ¥Q)° + (€1, [y°Q)? + (€12, VQ)* + (€2, AQ)* + (€0, ),
which actually measures the deviations of the remainder term ¢; with respect to the six

instable directions of the linearized operator L.
By equation (ZI1), w satisfies the equation

(7.40) iow + Aw + flu+w) — f(u)+b-Vw+cw=0, te(0,T),

and limy 7 ||w(t)|| g2 = 0, due to (Z33).
The strategy to prove that w = 0 is to show that D = 0. As in the proof of the
bootstrap estimate of remainder in Section [l above, such result will be derived from the

estimate of a generalized energy. This leads to the definition of I below

K
-1 N R ) _
]_:§/|Vw| dx+§]§1)\—?/|w| (Idex—Re/F(quw)—F(u)—f(u)wdx

_ aj) - Vuwd,dz.

(741 +) %Im/(VXA)(x .

j=1
Note that, v and w play similar roles as U and R in (5.28), respectively.

Lemma [T A relates the generalized energy I(t) and the two quantities D(¢) and Scal ;(t).
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Lemma 7.4. Fort € [0,T), there exist Cy,Cy,C3 > 0 such that

K

(7.42) CiD(t) = Cy Y

j=1

Scal;(t ~
J

CyD(1).

Proof. We first show that, in the formulation of the generalized energy I, one may
replace the blow-up solution u with the main blow-up profile U given by (L.27)), at the
cost of the error O((T' — t)D(t)), i.e.,

Re/F(u +w) — F(u) — f(u)wdz
(7.43) —Re / F(U +w) — F(U) — f(U)@dz + O((T — ) D(t)).

In order to prove (.43)), using Taylor’s expansion (B.21]) we see that
(7.44)

Re/F(u +w) — F(u) — f(uw)wdx
:Re/F(U +w) — F(U) — f(U)ywdz + (9(/(|U|%—1 + Jw|a™ ! 4 |R|AY)| R jw|dx).

By B.29), (.39) and (Z30),

(7.45) /wﬁ*mmwwsca>w%%ﬂwwmmmpsaT—mmﬁb
Moreover, by ([3.29), (Z30) and (733,
(7.46)

4
atl

4_ 4_ 4
/(led Y Rl RlJwlde < C(IRmlwllfn + [ Rl lwlizn) < CT = H)llwl

Hence, plugging (Z.45]) and (Z.46]) into (Z.44]) and using (Z.38) we obtain (Z.43)), as claimed.
Next we analyze the right-hand-side of (T.43). Note that, by (B.21]),

Re(F(U + w) — F(U) — f(U)w) :%(1 + %)|U|%|w|2 + éwﬁ—%w%z)
(7.47) +O((|U]771 + |w] 2~ w]).

Note that
143 [QUR ol Dufde <O - 6 2l + i) < O - 0D ().

Moreover, a direct application of Holder’s inequality also shows that the last term on

the right-hand-side of ([Z.41]) is bounded by
(7.49) Ol |Vl 2 < C(T — )D(t).
Thus, we conclude from ([Z43)), (Z47), (Z4]) and (Z49) that
leRe/ IVwl|® + i i|w|2<1>. —(1+ g)|U|%|w|2 - g|U|%—2U2m2da;
2 s A3 ! d d

(7.50) +O((T - t)D(t)).
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Arguing as in the proof of (B.79) we have that for some C, Cy > 0,

K
7201</ IVw* + 3 A2 w]*®;dx)
j=1
K
-1 2 -2 -0 2
— Co((T =)D + (T — t) Mwl72 + Y A;*Seal; + e T ||lw]|}n).

j=1

Then, taking 7" small enough such that Cy(2(7T —t) + e_TL—t) < 1Cy, Vt € (0,7, and
taking into account (Z37) and ®; > &3, we get

1 >C4( /|Vw|2+z>\ 2|lw|?®;dx) — —01 CQZA t)Scal,(

>_ Cl CQZA t)Scal,(

d
2

But, since |U(t)| < C(T —t)~ 2, using Hélder’s inequality, (T.37)) and (Z.50) we also have

I(t) < CD().

Therefore, combining two estimates together we obtain (L42) and finish the proof. [
. . o e d[
Similarly to Theorem 0.9, we have the monotonicity property of %

Theorem 7.5. There exist Cy,Cy,C3 > 0 such that for any t € [0,T),

K
C, 1 _lzmayl
RS [ T PRt
j=1 J
5 Scal;(t) D(t)
p— '] — *—
(7.51) C(D(t)+j1 30 ) = ™ .
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Proof. Similarly to (5.33) and (ISEED using equation (.40) we compute

ad Z A;,Im [P = " Gtmd @) - w )~ Re(ru,w) v, 0)

=1 7Y
| 1
—Zplm(wV(P],Vw Z)\— w) - w?, w;)
7j=1 J 7j=1
K

— ZIm(Aw — %wj + flu+w) — f(u),b- Vw + cw)

j=1
K .
A% — A G
=3 A (W a (P - V)
j=1 J J
j j
+ 30 g ) T
K T — y T —
Im(—LA J L ; b
9 o~
(752) = I
j=1

Below we replace the each appearance of u by the blow-up profile U in the terms [t27
It37 ]t5; It6 and It9
(i) Estimate of I,. Since by (BI),

(7.53) /() - w— f/(U)-w| < C(UJT+ | R|T71 + [w|iY)|R]Jwl,

using Lemma [B.1] we get
oot Y g m7@) v, 5) <02 o Q14 Bl Rl
By Holder’s inequality, (8.28), (539), (5.43) and (Z30), we have that for l + l = %,
5 [ Rl sl < (7 = Rl sl < (7 — 07 ol [P
Then, by Young’s inequality ab < %f + bpi,, with p/ = 22, %+ z% =1and 0 < % <1,
52 1 Rl < (7 = 007 + |9, < CD0)
Moreover, by (3.29) and (Z30),
%?/|R|§|wj||w|d$ < O(T )Rl llwllfy < Cllwlfn < CD(2),

and
1 4 _ 142
2 / lwld|RJw;|dz < C(T —t)7?||R|| 2 |w]| i* < Cllwllin < CD(2).
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Hence, we conclude that
~ 1 )
(7.54) Ly == —Im{f(U)w,wy)+ O(D(t)).

(i) Estimate of I,5. Since by (7229,
Re(f"(u,w) - w?, dyu) = Re(f"(u,w) - w?, d,U) + Re(f"(u,w) - w?, O,R),

we shall treat the two terms on the right-hand side separately below.
First, using ([B.19) we see that

(7.55) " (u,w) - w? — (U, w) - w?| < C(|U)472 + | R]a~2 + [w]a~2)| R||w]?,
which yields that

IRe(f"(u,w) - w?, 0,U) — Re(f"(U,w) - w?, 6,U)|

K
(7.56) <CY |00 / (U472 + |R|472 + |w|a~2) | R||w|*dz.
j=1

Note that, by (£14), ||0,U;| 1~ < C(T — £)7272, and by Gagliardo-Nirenberg’s inequality
B.23),

00112 / U2 Rljwfde < O = =4 Rl allw]s < CT - 74wl | Vwll3,
which, via Young’s inequality ab < %p + % with p = fd and ¢ = %, can be bounded by
C(T = )" 2 Va2 |w|?: + |Vl < CT = )2 |w]3 + | Vel < CDE).

Moreover, by Hélder’s inequality, (8.31), (5.43), (Z30) and (Z33),
8.5~ / (RIF + [w )| Rllwl*de <CT — )5 (1RI L lwli + IRl lwl)
<C|lw|zn < CD(1).
Hence, we obtain
(7.57) Re(f"(u,w) - w?, 0,U) = Re(f"(U,w) - w? o,U) + O(D(t)).
Next we show that
(7.58) Re(f"(u,w) - w? 0;R) = O(D(t)).
For this purpose, using equation (5.I5]) we get
IRe(f"(u, w) - w? O, R)| = |[ITm(f"(u,w) - w*, AR + f(u) — f(U) +b-VR+ cR +n)]|.

Note that, by (Z30),
I (f" (u, w) - w®, AR)| <C||R| 3 | f" (u, w) - w?||

1
H?2

(7.59) <O(T = t)*2| f"(u, w) - 0?1

H?2
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Using (8.32), (T30) and ||[U(#)|| g < C(T —t)~! we get
1+4 1+3

1+4 ; 4_ 44 -
1" (s w) - w? <CZHuH ], SCZ(HUHHI“ PRI ]l
=2

144
<OD(T =) 0D 4 (T =y )T = ) 0D ol

(7.60) SC( — )" w3,
which along with (59) and x > 8 yields that
(7.61) I f" (u, w) - w?, AR)| < Cllwllz < CD(2).

Moreover, since
(7.62) [f(u) = FU)] < C({U|* + [R| )[R,
and
(7.63) £y w) - < CUIE 4+ [R[ + wfd ) o,
by (B31)) and (Z.30) we get
(7.64) [T {f" (u, w) - w?, f(u) = f(U) +b- VR+ cR)| < Cllw|jp < CD(1).

Furthermore, using (3.31]), (5.17) and (7Z.63) again we also have

/ _o4d ——1
[T (f" (u, w) - w?, )] SC((T — )72 +||R||}; + HwHHl Dlinll 2l
(7.65) <Cllw||m < CD().

Thus, combining estimates (Z.61), (((.64]) and (7.65]) we obtain (Z.5]]), as claimed.
Therefore, we infer from (Z57)) and (.63 that

(7.66) L5 = Re(f"(U,w) - w? d,U) + O(D(1)).
(iii) Estimate of I,5. Using (Z55) we have

K

~ 1

L5+ IS (U, w) - wy)| < O(T — 1) / (U372 + | RI272 + [w]472)| Rl jew] ;| da
j=1 "

By Holder’s inequality, (3:29), (£39), (C30) and ([Z35]),
(T =02 [ R wPlulde <(T - 0> 482 Rl ol

<C(T = )" ||lw|[fp < CD().

Similarly, using (3.29), (Z30) and (Z35) we also have

. 4 4 441

(T —1) 2/(|R\ 4 Jul42) | Rl Pl dz <CT — ) >(1RI g el + Rl ool )
<CD(t).

Hence, we obtain

(7.67) Ly ==Y —Im(f"(U,w) - w?w;) + O(D(t)).
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(iv) Estimate of I, . Since by (3.20),
(7.68) | f(u+w)— f(u) = (F(U+w) — f(U))] < CU[a" + [w]|a~" + | R[+7Y)|Rl[wl,
taking into account (29) we infer that
Im(f(u+w) = f(u) = (f{U+w) = f(U)), -V + c)w)
C/(IUI + |w[7t + [R|&)| R |w]|(b- V + c)wl|dx

_d4_ 7—1
<CUT — ) 3G 4 ol + IR N R el | bV + )2

<Cllw||fn < CD(1).
This yields that

(7.69) L= — Zlm w]+f(U+w) FU),b-Vw + cw) + O(D(t)).

(v) Estimate of _[t79. The arguments are similar to those in the previous cases (i) and
(1v). Actually, using equation ((Z40) we infer that
— — o
Dyw; + LV a(m—) - (Va; + Vwd;),

_A
2\2 Xl Y 2\, ¥
iAw+i(f(u+w) — f(u) +i(b-V + c)w).
Then, in view of (.68 we see that

Zt,g :Im<

G Axal ) + g Vxa() - (Vs + V), i(f (- w) = S (1)
~ (o + FEV ) (Vs + V)il (U + w) = S(O)

J J

<C(A) /(T — ) Yy | (JU]37 + w|d =t + |R|47Y)|Rw|da
A)/|ij+vw<1>j|(|U|%—1+ lw|a~! + |R|7)|R||w|dz.

Arguing as in the proof of (L34 and ([Z.69]), respectively, we can also bound the two
integrations on the right-hand side above by C'D(t). This yields that

Lo —Im<2)\2 (x;]a) +;TJV (;—jo‘j)-(ij+vw<1>j),
(7.70) iAw +i(f(U+w) — f(U))+i(b-V+c)w) + O(D(t)).

At this stage, we have replaced u by the blow-up profile U in (C52)). Then, arguing as

in the proof of Theorem 5.9 with R replaced by w and using (Z.35) we obtain (Z.5]]) and
thus finish the proof. dJ
As a consequence of Lemma [74] and Theorem [.5] we have

Theorem 7.6. Fort € [0,T), we have that

K

(7.71) sup D(s) < C(Z sup Seal,( / Z Scal D<S) ———ds).

t<s<T =1 t<s<T )\ — S




Proof. By Lemma [74 and Theorem [7H) for t < ¢ < T,

i) <710+ Sii%;f;” -1 +e 3 S —[ o

=1

Scal Scal D(s
z U [ o z e ),

which yields that

K K
~ Scal;(s)  ~ ' Scal;(s) D(s)
sup D(s §C’Dt+§ sup I (t—t sust+/§ I et
t<s<t 5) (D) =1 t<s<t )‘?(5) ( )tgsg%“ (s) A A?(S) T—s

By (Z33), D(t) — 0 as t — T. Hence, letting ¢ — 7" and taking 7' sufficiently small we
obtain ((Z71) and finish the proof. O

7.3. Control of the null space. In view of Theorem [(.0, the last step is to control
the scalar products in Scal;, that is, the growth along six unstable directions in the null
space. The key result is formulated in Theorem [.7] below. Then, at the end of this
subsection, we finish the proof of the main uniqueness result.

Theorem 7.7. For T small enough and for 1 < j < K, there exist C > 0,( € (0,1) such
that

(7.72) Scal;(t) < C(T —t)**¢ sup D(s).

t<s<T
To begin with, we first treat the estimate of the scalar product Re(U;, w).

Proposition 7.8. For 1 < j < K, we have

(7.73) |Re/U]() (t)dz| < C(T —t)*¢ sup /D(s)

t<s<T

Remark 7.9. One may also use equation (.88)) below to obtain the bound

(7.74) \Re/Uj(t)w(t)dx\ = \Re/@ej(t)dy\ < C(T —t)* sup /D(s),

t<s<T

where e; is defined in ([L82) below. Estimate [T13) tmproves (LT4) by a factor (T'—1t),
by exploring the conservation law of mass.

Proof of Proposition [T.8. We first note from (Z34)), v = u + w, that

/ [v(t)?®;dx = / lu(t)|?®;dx + / lw(t)]*®;dx + 2Re(w;, u).
Taking into account u = U + R, Lemma B.1], (Z.30) and (7.33]) we get, for 7" small enough,

Re(w;, u) =Re(w, Uy) + Re(w;, R) + O(e” 7 |[w]]2)
=Re(U;, w) + O((T — £ H|wl|L2).
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Hence, taking into account (Z.35) and ~ > 3 we obtain
1
Re(U(0).w(0) =5 [ o0, — [ u(t)P0,da)
1 K
-5 [ 1wOP2sdz + O(T — 4 (o))

(7.75) ([ 1o®Pedr — [ [u®PBs0) + OT = < u(t) ).

In order to estimate the first term on the right-hand side above, we note that for
te(t,T),

)
2 2 ‘d 2 d 2
lo(t)["@sdr — [ |u(t)[*®;dz = [ (£ [v|*®;dx — o |u|“®;dx)ds
t

(7.76) +(/|v(f)|2<1>jdx—/|u(f)|2<1>jdx).
Similarly to (B.20), we have

d

pr / |v|*®;dx = Im/(2@Vv + blv]?) - V®;d.

Similar equation also holds for u. Then, taking into account v = v+ w and u = U + R

we get
d d
pm / [v|*®;dx — pr / lu|*®;dx
:Im/(Q(EVu +uVw) + 20Vw + b(wu + uw + |w|?)) - VO,dx
—Im 2@VU + UVw) + b(wU + Uw)) - V®,dx
|z—21|>40,1<I<K
(7.77) +Im / (2(WVR + VW) + 20w + bR + R + [w]?)) - V,da,

which along with Lemma [31] integration by parts formula, Hélder’s inequality and (Z.30)
yields that

d d _5
G [ 1Pesde =5 [ 1uposda) <CURLm + [ull + el

(7.78) <O(T — t)**|Jw]| e,

and thus

(7.79) | (% |u|*®;dx — e lu|*®,dx)ds| < C(T —t) sup~||w(s)||Lz.
t t<s<i

Moreover, taking into account (33]) we have
(7.80) lim|/|v(%v)|2<bjdx—/|u(%v)|2¢jdx| = 0.
t—T

Therefore, plugging (Z79) and (Z80) into (Z.76) and passing to the limit £ — T we
arrive at

(7.81) I/Iv(t)IQCI)jdx—/IU(t)IZCDjde < C(T =) sup flw(s)] e,

t<s<T

which along with (Z38) and (Z70) yields (.73)), thereby finishing the proof. O
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Below we estimate the growth in the remaining five unstable directions associated to
the null space of the operator L.
We define the renormalized variables e; and e; by

~ ( T — aj(t)
()
and let e;; := Ree; and ¢e;o := Ime;, where 1 < 57 < K. Note that, the renormalized
variable e; is different from the previous one €; in (Z36). The advantage to introduce
e; and e; can be seen in Proposition [.I2] below, where the estimates of the unstable
directions can be diagonalized in some sense.

Using the Taylor expansions (3.20), (8.21]) we have

(S]IoH

(7.82) w(t,x) = N\;(t)” )00 with €(t,y) = e;(t, y)ei(ﬁj(t)'y—%vj(t)\yIQ)’

(7.83) flu+w)— f(u)=f'(U) w+ Gy,
where
(7.84) G1:= (0.f)(U,R)- Rw+ (0:f)(U,R) - Rw + f"(u,w) - w?.
We further split f/'(U;w) into three parts below
FO) - w=fU)w+ Y fO) - w+ [f(U) - w=3 f () -w]
1] 1=1

(7.85) =: f'(U;) - w+ G2 + Gs.

Note that, G5 contains the blow-up profiles different from U;, and G5 contains the inter-
actions between different blow-up profiles.
Moreover, let G4 denote the lower order perturbations

(7.86) Gy :=b-Vw+ cw,

where b, ¢ are given by (212), [21I3)), respectively.
Then, plugging (Z.83), (Z.85]) and (Z.80) into equation (Z.40) we reformulate the equa-

tion of w as follows
4
(7.87) 0w+ Aw + f1(Uy) -w ==Y G,
=1
The equation of renomalized variable e; is contained in Lemma below, which is,

actually, a consequence of several algebraic cancellations.

Lemma 7.10. For every 1 < j < K, e; satisfies the equation
(7.88)

4
. 2, .4 2 4 . _
N0he; + ey — s + (1 Qe + Q1T = — 37 Hy+ O8] + ()|VE; ) Mods),

=1

where
a0
(7.89) H(t,y) = A 2e e 0l Gy (e, Ay + ), 1<1< 4.
Proof. Using the identity
~ (B y— L |2 - 1 . ~
0ye; = Opee v (3 -y — yRUNEE
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we infer from (Z82) that, if y := =,
J

g d d. . _ . , 2s o~ 1o ~
dw =), ? 2 (= 5)\]')\]'6]' + A?@tejel(ﬁf'yfi”wp) + N5 - ye; — 12A§7j|y|26j
— )\jdj : VEJ — )\])\]y : VEJ + ’l)\?@ﬁé}),
which along with (A7) yields that
o d A 1
iOw :)‘j 2 2610j{2~,yjA'é“j + ’i)\?ate*ez(ﬁj'y_imyﬁ + 'Yjﬁj . y'é'j — Zyjz|y|2’éj
—2if; - VE; — & — |B;°&; + O(((w)*&5] + () IVeE;) Mod;) }.
Then, taking into account the identltles, similarly to (£29) and (4£.30),
(7.90) A = (Ne;+i(B; -y — —w|y| Jej)eCrvmanlvl),

- . 1 (B ]2
(7.91) Ve; = (Ve; +i(B; — ?yjy)ej)e (85y =17l
we come to
Cg_d 1
i&tw :)‘j 2 2e’eﬂ'el(ﬁf’y—ivﬂy‘%{M?@tej + i’YjAej + ‘6] - i’yjy|2€j — QZﬁJ . Vej — €

(7.92) +O((w)*[e5] + ()| Ve;)) Mod }.

Moreover, by (Z.82)), direct computations show that

. : Lo : i85 y— 5% 1wl?)

(7.93) Ae; = (Aej — iyjAe; — |5 — éfyjy| e; +2if; - Vej)e 1 .

Thus, combing (7.92]) and (7.93)) altogether we obtain that, after algebraic cancellations,

g d

i@tw + Aw = )‘j 2 26191'6’(51'?/_%““‘9'2){M?@tej — 6]' + Aej + (9(<y>2|'evj| + (y)|V'éj|)Mod]},

which along with (Z.87)) yields (.88) and thus finishes the proof. O
The contributions of the error terms H;, 1 <[ < 4, are actually negligible, which is the
content of Lemma [Z.TT] below.

Lemma 7.11. Let E belong to the generalized kernels of the linearized operator L, i.e.,
E € {Q,yQ, [y|*Q,VQ,AQ, p}. Then, there exists C > 0,¢,6 € (0,1) such that

(7.04) / (1, )| E)ldy < C(T — 6 o] 12,
(7.95) / (Ha(t,y)] + | Ha(t, ) ) E@)|dy < Ce 7w 2,
(7.96) | / Ha(t, y) E(y)dy| < O(T — ) o] 2.

where v, is the flatness index of the spatial functions of noise in Assumption (Al).

Proof. We first see that, by (.89),
(7.97) /|H1 () E@)dy < C(T — 1)? %/|Gl (t, 2)E(E=)|da.

Since by (B.18), (B19) and (7.84),

(G| < C(IUE" + |R[aD|Rljw] + C(U[T™" + [R[T™ + [w]d ) |w]?,
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taking into account ||E||z~ < oo and using Hélder’s inequality and (8.29]) we obtain
_4d _ o9, d 4
/|H1(t,y)||E(y)|dy <C(T = )" 2wl (T = )" 2| R]| 2 + | R G

_o4d 4 4
+ (T =) 2wl 2 + | Rl Nlwll e + [[wl ),

which along with (Z30) and (Z.35) yields (7.94]).
Moreover, since by ([B.25), (.82) and (.85,

(Galt, 2)| <Y IF(U) - w| < (T —1)7275Q ‘
1#£] ! J
we see from (Z.89) that

Ul

—~
>

~—

Q)

.

—~
>

a; —

oy
(7.98) Ha(t.)] £ €30 QY + L ety
l#3

This yields that

a; — O

[ alE@ <c Y [QHGky+ S le wiEw)dy
I#5

(7.99) <N e 5 ellre < Cem T w1,
1]

where § € (0,1), and the second inequality is due to the exponential decay of the ground
state () and E.
Similarly, by the definition of G5 and (5.39), 1 <1 < K,
— T — p Xr — Ozj

Gyt 0)] < O(T = 1)74 3 Q)R st

I#h J
which along with (Z.89)) yields that

)l

A ;i —
| H3(t,y)| SCZQ(A_ZWF ])\l les(ty)l.
1%

Hence, similarly to (Z.99), we get that for some ¢ € (0, 1),

__d
/ Hy(t, )| Ey)|dy < Ce™ 75 || 2

and thus (.93]) follows.
Regarding Hy, in view of ((T.80d]), (Z.89) and (Z.91]), we obtain

~ , 1 _
Hy(t,y) =\b- (Ve; +i(8; — éfyjy)ej) + A?cej,

where b(t,y) = b(t, Ny +a;j), ¢(t,y) = c(t, \jy + ). Using integration by parts formula
we have

/g Ve;Edy = —/divg Eejdy — /g VEe;dy,

then using Hoélder’s inequality, (Z12), (Z13) and (£23]) we obtain (Z.96]) and finish the
proof. O

By virtue of the identities in (8.11]) and Lemmas[Z.T0land [[.TTlwe are now able to control
the growth of e; along the remaining five unstable directions as stated in Proposition [Z.12]

below.
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Proposition 7.12. Let e; be as in (L82) and e;; := Ree;, ejo := Ime;, Then, for
1 <5 < K and forT small enough we have

(7.100) jt«aj 2 AQ) = 2 2(e;1, Q) + O((T — £ \/D(D)),
(7.101) D s 1PQ) = —415(e;2,0Q) + O((T — 1" \/DW).
(1102) o) =\ e Q) + OT — 177/ D),
(7.103) jt<ej 2, VQ) = — 1)27¢\/D(t)).

(7.104) % (61,5Q) = ~2)%(e,2,VQ) + O((T ~ 12 \/D).

Proof. Let us take <€j2,AQ> as an example to illustrate the arguments. Using
equation (Z.8]) we have

G(e52:0Q) =XRe [ AQ(Ae; — e+ (14 2)QMe; + 2QiT5)dy
4
(7.10) 0,32 0( [ AQHdy) + X2 Mod O [ AQUWE| + (1) T2 )dy).
=1

Note that, by the definition (3.9]) of the operator L., the integration by parts formula
and the identity L, AQ = —2Q in (BT,

(7.106)
Re/AQ(Aej —e;+(1+ %)Q%ej + %Qée_j)dy = —/AQLJrej’ldy = Q/Qeﬂdy.
Moreover, using Lemma [Z.11] and (Z.38) we infer that for each 1 <1 <4,

(7107) A / AQHdy| < C(T — ) Jul|= < C(T — 1Y+ \/D).

We also note from Lemma [I.3 that Mod(t) < C(T —t)**3 < C(T —t)**¢. Then, using
Holder’s inequality, the boundedness of [|{y)?AQ]||;> and

€3]z + Vel 2 < Clllwllzz + AIVwl[r2) < C(T = 1)/ D(#),

we get
Aj_QMOOZjI//\Q(<y>2|?f}| +WIVEDdyl <C(T — 1) [[y)* AQl (11 | 2 + V€l 2)

(7.108) <C(T —t)*"*/D(t).
Thus, plugging (Z.106)-(7.I08) into (Z.103) yields immediately (Z.102]).

Similar arguments apply also to the remaining four estimates in Proposition For
simplicity, the details are omitted here. O

We are now ready to prove the key estimate (Z72)) in Theorem [T

Proof of Theorem [Z.7] Similarly to (Z.39)), we define the growth quantity associated

to e; by
(7.109)
Scal;(t) == (ejq, Q>2 + <€j,1,?/Q>2 + (ej.1, |?/|2Q>2 + (€52, VQ>2 + (€j.2, AQ>2 + (e; 2, P)Q-
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As we shall see below, the two renomalized variables €; and e; defined in (Z.36]) and (.82)
respectively are almost the same up to the negligible error of order O(P + 67%), and
thus the two quantities Scal; and S/Yc?a/lj should be close to each other.
We first claim that for some ¢ > 0,
(7.110) Scal;(t) < C(T — t)**¢ sup D(s).
t<s<T

To this end, we use Proposition and the change of variables to get
(7.111) (es0, Q)] < C(T = 1) sup /Ds),

t<s<T

which along with (I00) yields that

ey AQ)| < C(T — 17 sup /D(s).

t<s<T

Since by (C38), lim;_,7 ||w(t)||z: = 0, we infer that

(7.112) lim (e;1(t), AQ) = 0.

T
This yields that

T
d
(7.113) (s, AQ)| < / L es0, AQ)ds < C(T = £ sup +/D(s).
. ds t<s<T
Then, plugging (ZI13) into (ZI0T) yields
(7.114) esa, Q) < T =0 sup /D)
t<s<

which along with (I02]) yields
(7.115) [(eja, p)| < C(T — )¢ sup /D(s).

t<s<T

We also see from (LI03)) that

(7.116) (61, VQ)| < O = %< sup /D),
t<s<

which along with (.I04]) yields that

(7.117) (e, yQ)| < C(T —)*+¢ sup V' D(s).
t<s<

Thus, combining estimates (ZITT))-(ZII7) altogether we obtain (Z.I10), as claimed.
Next we show that there exist C,d > 0 such that

(7.118) Scal,(t) = Scal;(t) + O(P + e~ 7)|lw(t)] 2.

Then, taking into account (Z.286)), (Z38) and (ZII0) we obtain (Z72).
It remains to prove (ZIIS). For this purpose, by (27), (Z34]), (.82) and the change

of variables,
Re(e;, Q) = Re(w, U;) = Re(w;, U;) + Z Re(w;, U;).
]
Using Lemma Bl to decouple w; and Uj, [ # j, and then using (Z30]) we get
5 5
Re(ej, Q) = Re(w;, Uj) + O(e™ 7 |wl|2) = Re(e;, Q5) + Ole” T [Jw] 12),
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where (); is given by (Z28). Then, using the fact

(7.119) Q= Q+O(P)Q),

we arrive at

(7.120) Re(e;, Q) = Relej, Q) + O(P + 7777 ||| 2.
Similar arguments with slight modifications also yield that

(7.121) Ree;, yQ) =Re(e;, yQ) + O(P + ¢ 7% ) w2,

(7.122) Re(e;, |y[?Q) =Rele;, y2Q) + O(P + & 77) ]| 12,

and taking into account p; = p + O(P(y)?p) we also have
(7.123) Re(ej, p) = Relej, p) + O(P + 7757w 2.
Regarding Im(AQ), e;), using the change of variables and the identity (4.29) we have

m{es, AQ) = [ &AQe Ty

— _1 (T
—

:Im/w(AVjH(ﬂj (5 *)U;)dx

__ ) €T
:Im/wj(AUj+Z(ﬁj ¥ LT + O(e ™5 | z2),
where in the last step we also used Lemma [3.1lto decouple the different profiles w; and Uj,

[ # j, which merely contribute the exponentially small error. Then, using again (£.29),
((C36)), the change of variables and (ZI19) we obtain

m(e;, AQ) :Im/ejAQei(ﬁf'y_in|yQ)dy + (’)(efﬁﬂwHLz)
(7.124) —Tm{e;, AQ) + O(P + ¢ ) |w| 2.
Using similar arguments, but with the identity (£30) instead, we also have
(7.125) Im(e;, VQ) =Im(e;, VQ) + O(P + ¢ ) ||w|| 2.

Therefore, combining estimates (Z120), (Z121), (C122), (C123), (ZI124) and ([E:%])
altogether we obtain (Z.II8) and thus finish the proof of Theorem [l

Now, we are ready to prove the main uniqueness result, i.e., Theorem 2.1l

Proof of Theorem 2.7l First take any e € (0, "], Where e* is sufficiently small and
is to be specified later. Then, let T' be sufficiently small and satisfy (ZI)). We shall use
iteration arguments to show that D = 0.

By Theorem [0, we have for any t € [0,7),

K ' T K '
(7.126) sup D(s) < C} sup Z Scal;(s) +Cl/ Z Scaly(s) Lt D(s) ds.
t 2 ;

t<s<T 1<s<T S A?(S)

Then, in view of Theorem [T.7 and (7.35]) we obtain that for some ¢ > 0,

(7.127) sup D(s) < Cy(T — )¢ sup D(s) + Cye” /T D(s) ds,

t<s<T t<s<T T—s
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where C, is independent of £*. This yields that for 7' even smaller such that C,T¢ < %,

T
D
(7.128) sup D(s) < 2028*/ (s) ds.
t<s<T , 1T'—s
We also infer from (7.35]) and (7.37) that
D(s) < C3(T — 5)**,
where we may take C3 > 1, independent of £*.
Then, plugging this into ([C.I12])) we get
T
205,C5¢e*
(7.129) sup D(s) < 2026*/ Cs(T — 5)**ds < (2738)(T — )+,
t<s<T t 4+¢
But, plugging (Z129) into (ZI28) again we can obtain the refined estimate
205,C5¢e*
(7.130) sup D(s) < (S35 )2( — )4+,
t<s<T 4+ ¢
Thus, iterating similar arguments we infer that for any k£ > 1,
202038* k 4 202038*
7.131 sup D(s) < (—=—)K(T — t)4¢ < (Z==—)F,
(7.131) s D) < (AT -t < (P

where Cy, C's > 0 are independent of ¢* and k.
Therefore, taking ¢* small enough such that QCjﬁ < 1 and using the arbitrariness of

k we infer that D(t) = 0 for any ¢ € [0,7), which yields immediately that w = 0, and
thus v = u. The proof of Theorem 2.7] is complete. O

8. APPENDIX

Proof of Lemma Bl First, using ([84) and the separation of {z;}, we have that
for any t* <t <T,,

(8.1) (;(t) = au(t)) - va| = 100, j #1,
where o is given by (B.]). Note that

A;(t ;
(8.2) max () <c¢, =4 max &, max |a; — oy <2M =2(1+ 1r<nzz>§(|x]|)
<j<

L<GASK N (1) ISGASK Wy 1<AI<K

In order to prove (B.6]), we note that

I/Iﬂf—oa\"lﬁ”Gz(t)Hx—Oéj\’”\Gj(t)\dx
Rd

T —q T — Q;

< T — ¢ —|v|+m+n—d T —Qp T — Qj O arlt " d
<o(r -1 S Sl s
lemtn NY+ 05— Q1 e N o — Qo
<o(r — gy v [ RSy i 1, Sy + S g(w)ldy.

Using (Z.1) we have

Nyt —ar, " —n g 2 y)m
LR < Cyl + (T - 6)7"M) < C(T = 1))
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It follows that
| / [z — |07 Gi(t)||x — oy "G ()| dx
]Rd

Yy o —«
s e 3 ey
< 50

ly-vil>-22 Al

c*)\j

<O(T — 1) W= /

ly-val

— c*)\j

On one hand, in the region {y € R¢: |y - v4] < 22}, by &) and ®2),

— CxAj

A a; — oy (oj — o) - vq A S50

v > — | =L (y - > — T — 0.

Sy + S 2 2y ) 2 0, as
Then, in view of the exponential decay of 0, g, we obtain that

—|v|+m—n m4+n| qu Aj Qj — oy
@ =gy [ et Sy + S ey
lyval< 2% ! !

C*)\l
S
<O(T — ) Hmne e | (y) ™| o < Ce D,

v|+m—n

where ¢; > 0, and we also used sup, 7! e~ < oo in the last step. On the other

hand, in the region {y : |y - v1| > ci‘;\l}, lyl > |y - vi| > ci‘;l — 00, as t — T'. Using the

change of variables and the exponential decay of g we get

—|v|+m—n m4+n| qu Aj Qj —
gt [ e St Sl
Yyvi

—c*)\l

—|\v|l+m—n _S2 m+n 1 v S
SC(T — ) PP 753 | () ™ g () 12| o |0 il |1 < Ce™ 707,

where d; > 0. Thus, combing two estimates above we obtain (3.6).
Regarding (B.7), since for j # [, [(x —z;) - v1| > 40 on the support of ®;, we infer from
[(B4) that |(x — oy) - v1] > 30. Then, using the change of variables and the inequality

)\ +O[—O[‘m —m m —2m m
| < OM(T = )™ )™ < O(T = 1) (y)

J

we get

[ o= a0 Gult)lle — a5 " hfdds

iyl d T— o rT—oy, =y
<o(r - gyt [ T e e, T ()
[(x—z))vi|>4o l l j
—|V|—mTnNn d m-r+n 124
83) <ot [ it )l + ooldy
yvi[>57

Then, using Cauchy’s inequality and the exponential decay of 0”¢g again we obtain that
for t close to T, the right-hand-side of (B3] is bounded by

—|v|—mtn+d —23 min| g, |1 1
C(T — t) Mt | (y)™ )9 gz|2HL2(/\h(Azvaozz)\Qdy)?

53 93

—|v|-m+n _—725 mtn|qu |1 -
<O(T = )7 Mmmmem o= [ (y)™ 10" gl || el 12 < Ce™ 2T |[A] 2,
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[
where 63 > 0 and in the last step we also used sup, roIVI=mine=3 < 50, One can also

bound the right-hand-side of (83]) by

) 1
C(T — t) WS e (™10 g1 ]| e / Iy + o) dy

&
<CO(T — 1) Mmn=8 o= 2| ()™ |0 gy |3 || oo | Bl 11 < Cle™ T ||| 1.

Hence, combining the two estimate together we obtain (B.7), thereby finishing the proof
of Lemma 311 ) N O
Proof of Corollary 3.4 Let f := f(bA Since Vf¢p2 =V f — vqﬁ"‘f we have

JOVIE+1Pros = 1+ D@3 5 - Qs
~ [ 1v7R+ 7R - <1+§>@3f“f—@3f§dx
- [a- o0+ Qs + @i as

(8.4) +i/|%|2|f|2dx—Re qif‘ Vffdr = X;K
Using Corollary B3 we have

(8.5) Ky > G| fllip = CSeal(f),

where C7, C} > 0. Moreover, we claim that there exist C,d > 0 such that

(8.6) Scal(f) < Seal(f) + Ce™"||f][3..

To this end, we see that
(71 Q) = (11.Q) + (7164 (65 — 1), Q).

1
Since on the support of ¢% — 1, |z| > A, by the exponential decay of () we have that for
some 0’ > 0

627 (@)Q% ()] < Cem 3K < Qi ja| > 4,
where we also took A large enough such that §' — A1 > %5’. It follows that
~ 1 1 ~ 1y 1 Clgan
87 (04?03 = 1), Q) < Cllfllezll04 Q% |z (o> |Q2 |2 < Ce™ 24 £l 2,
which yields that
[(f1, Q) = (f1, Q)| < Ce A f]| 12,

Similar arguments apply also to the remaining five scalar products in Scal(f), and thus
we obtain (B0, as claimed.
Hence, we infer from (3) and ([8.0) that for Cy,Cy > 0,

(8.8) Ky > Ci||f|% — CoScal(f).
Regarding the second term K5, we see that
_ 4. 5% = _ =
89 Ko= (- 0003 (14 DT + @ R)dx < Clo3' @l | Flir
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Similar arguments as in the proof of (87) yield that for A large enough ||¢ ;" Q|| o< (> 4) <
Ce™%4 where C,§ > 0. This implies that for A large enough

(8.10) Ky < Ce™ Y fll o

We also note that, since \%| < CA~Y, by Hélder’s inequality,

C -

(5.11) Ko+ Ko < S

Thus, plugging ([B8), (810) and (BII) into (84, we obtain that for A possibly larger

1 Cr,+

$12)  [OVIP+1PI0a - 1+ Q4 — @ e > DT - Coscal(y).

It remains to show that for A large enough,

Cy Cy

(8.13) —||f||H1 ey (VI + 1f ") dade.

To this end, since Vf = Vfgbf1 me we have

Ch =~ C C 1 .
—ﬁWQZJ/UMMwwi/Wmm~;HWx

s10) =2 [P+ VPads + T [ RV Pyn + T [ 1T

Note that, by Holder’s inequality and |M| < CA™Y

ﬁ/(Wm?AML%ﬂﬂWWM:/mei

2
4C,C
(8.15) < (1957 oute+ 25 [11Pode
We also have
Ci [ Vo~ CiC
(5.16) S 1% e < S [P ond

Therefore, combining (812)-(8I6) and taking A large enough such that 451’; + 5 A2 <3

we obtain (RI3)), as claimed. This along with (R12]) yields ([B.I7). O
Proof of Lemma [5.5l Using ([£14) and (5.16]) we have
(8.17)
K K
10" nll 2 < C(T = ) * M Mod + Y 1|0¥ (b- VU, + cUj)llz + 10" (f(U) = D FU)le-
j=1 j=1
Note that,
0" (b- VU2 = Y [[0"b- 0V 12
v1+1v2
K 1
<O(T ~ 0 Y[ @80y + )0V, )Py
7j=1
Since by (ZI12) and {23),

[(070)(N\jy + )| < C(T — )iy =+t
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This yields that

(8.18) 10" (b - VU;)||12 < C(T — t)» =1,
Similarly, using (2.13) and (£23)) again we also have
(5.19) 07 (Ul < C(T — 1y,

Moreover, we have that for 7" small enough,

0 (£(©) = 3 SOz <CT ~ 1y 5 D(S [ U’

k£l
(820) SC(T _ t)*%(%r%)e—%_t < C(T o t)l/*fh/\fl.

Therefore, plugging (8I8)), (819) and ([®20) into (8I7) we arrive at
1#nllr2 < C(T = t)* M Mod + C(T — t)+ 1,
which, via (L.I14) and v, = & + 3, yields (517) immediately. The proof is complete. [
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