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The magnetic properties of black phosphorene nanoribbons are investigated using static and
dynamical mean-field theory. Besides confirming the existence of ferromagnetic/antiferromagnetic
edge magnetism, our detailed calculations using large unit-cells find a phase-transition at weak
interaction strength to an incommensurate (IC) magnetic phase. A detailed Fourier analysis of the
magnetization patterns in the IC phase shows the existence of a second critical interaction strength,
where the incommensurate phase changes to an antiferromagnetic (AFM) or ferromagnetic (FM)
phase. We demonstrate that the difference of the ground state energies of the AFM and FM phase
is exponentially small, making it possible to switch between both states by a small external field.
Finally, we analyze the influence of strain and disorder on the magnetic properties and show that
while the IC phase is robust to Anderson type disorder, it is fragile against strain.

I. INTRODUCTION

Phosphorene, a novel promising 2D material, has re-
cently attracted much attention owing to its anisotropic
bandstructure [1–3]. It is a bilayer puckered honeycomb
lattice of black phosphorus with a peculiar bandstruc-
ture exhibiting Dirac cones in the bulk. Because of its
bandstructure, phosphorene has been studied in many
theoretical works, particularly in the context of trans-
port studies [4–7]. Compared to the transition metal
dichalcogenide materials, phosphorene has a high charge
carrier mobility (∼ 100 cm2/Vs) at room temperature [1],
making it favorable for electronic applications. More-
over, zigzag phosphorene nanoribbons (ZPNR) exhibit
two quasi-flat edge states, which are completely isolated
from the bulk states [8–10], in contrast to the other 2D
hexagonal lattice structures such as graphene [11] and
silicene [12]. The nature of these isolated edge states
originating from a large hopping parameter between two
out-of-plane zigzag chains has been discussed in Ref. [8].
Furthermore, a recent study addressed the Ruderman-
Kittel-Kasuya-Yosida (RKKY) exchange interaction in
ZPNRs. It found two different characteristic periods of
the RKKY interaction mediating the magnetic interac-
tion between impurities [13].

Motivated by theoretical predictions [14–16] and ex-
perimental confirmations [17] of edge magnetism in
zigzag graphene nanoribbons, edge magnetism has also
been explored in phosphorene in Ref. [18]. This first
study found that ZPNRs display a magnetic state at
the edge in the absence of a Peierls distortion. How-
ever, edge magnetism vanished in the fully relaxed struc-
ture. On the other hand, the authors of Ref. [19] have
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shown that edge magnetism of ZPNR, can survive even
with structural relaxation. In another paper, the authors
consider tilted black phosphorene nanoribbons (TPNRs)
exposed to an external electric field. They found that
the magnetic ground state can be switched by an elec-
tric field from antiferromagnetic (AFM) to ferromagnetic
(FM) [20]. Furthermore, a quantum Monte Carlo calcu-
lation demonstrated a high Curie temperature for edge
magnetism of ZPNR [21]. However, previous studies have
mainly considered small unit cells focusing on commen-
surate FM and AFM states. Magnetic states such as
spiral phases or incommensurate phases have not been
analyzed. Furthermore, the effect of strain and disorder
on the magnetic states still remains unclear.

In this work, using a tight-binding (TB) Hubbard
model, we numerically study the edge magnetism of ZP-
NRs using static mean-field theory (MFT) and dynami-
cal mean-field theory (DMFT). Although QMC must be
considered superior to our mean-field approaches, our
(D)MFT is much faster and thus makes it possible to
analyze large unit cells and incommensurate magnetic
phases. Furthermore, mean-field theories have proven to
at least qualitatively, sometimes even quantitatively, cor-
rectly describe magnetism in hexagonal 2D systems[22],
although being numerically less expensive. A similar
combination of techniques has been used to analyze edge
magnetism in zigzag graphene nanoribbons [23] and nan-
odots [24].

In this paper, we demonstrate the existence of an in-
commensurate magnetic phase at the edge of ZPNR for
weak interaction strengths Uc1 . U . Uc2. With increas-
ing interaction strength, this incommensurate magnetic
phase undergoes a phase transition into the ferromag-
netic or antiferromagnetic phase at Uc2, which has been
reported by previous studies. We show that the difference
in the ground state energies of these two states is expo-
nentially small, making it easy to switch between both
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states. Besides, to gain more insight into the realization
of magnetism in ZPNRs at weak interaction strengths,
the purpose of this paper is to analyze the effects of
strain and defects on the magnetic state. Such perturba-
tions of the material are ubiquitous in 2D materials [25–
31]. Moreover, studies on strain in nonmagnetic phos-
phorene show some intriguing features: A first-principle
study predicted a semiconductor-semimetal-metal transi-
tion under perpendicular compression [29]. In Ref. [30],
an emergence of a peculiar Dirac-shaped dispersion for
tensile strain in the zigzag edge is proposed. In another
work, it was shown that tensile or in-plane strain, to-
gether with spin-orbit interaction, gives rise to a topo-
logical phase transition [31]. However, the only study
which analyzes the effect of strain on ZPNRs magnetism
is found in Ref. [19]. It predicts that at a critical compres-
sive strain along the zigzag edge (about 5%), the ground
state changes from an AFM semiconductor to a nonmag-
netic metal. Thus, we here address the effect of strain
and Anderson type disorder on the magnetic properties
of ZPNRs and find that while the IC phase is very sen-
sitive to strain and disappears fast, it is robust against
Anderson type disorder. We also notice that the second
critical point Uc2 shifts to larger values. Thus, one can
predict that the AFM/FM magnetic phase disappears
under large strain.

The paper is organized as follows: In Sec. II, we in-
troduce the theoretical model and formalism used in the
numerical calculations. In Sec. III, we discuss results ob-
tained. Finally, we summarize and conclude our results
in Sec. IV.

FIG. 1. A schematic view of the ZPNR: The yellow area
corresponds to the unit cell, which consists of four atoms.
The black arrows show the hoppings up to the fifth nearest-
neighbor hopping included in our TB model. The red (blue)
circles indicate the upper (lower) layers. The black box is the
ribbon unit cell in the y-direction. In the text, Ny refers to
the number of ribbon unit cells in the y-direction. The width
of the unit cell is specified by Nx, which includes N = 4×Nx

phosphorus atoms.

II. MODEL AND FORMALISM

In order to study the magnetic properties of ZPNRs,
we use the following tight-binding model

H =
∑
ij,σ

tijc
†
iσcjσ + U

∑
i

(
ni,↑ −

1

2

) (
ni,↓ −

1

2

)
, (1)

where the first summation runs up to the fifth nearest
neighbor, and tij is the hopping integral proposed in
Ref. [32]. These hopping parameters are t1 = −1.220 eV ,
t2 = 3.665 eV , t3 = −0.205 eV , t4 = −0.105 eV , and
t5 = −0.055 eV , which are shown by arrows in Fig. 1.
Furthermore, we include a local density-density interac-
tion. Thus, this model corresponds to a one-band Hub-
bard model. To tackle the interaction, we use static and
dynamical mean-field theory. At the static mean-field
level (MFT) level, all quantum fluctuations are neglected,
and the SU(2) spin symmetry must be broken artificially
in order to capture the formation of local moments. An
extension of the MFT to account for the local moment
formation is the dynamical mean-field theory (DMFT).
The DMFT approximation accounts for temporal fluctu-
ations and thus includes local charge fluctuations beyond
static MFT. Indeed, the accuracy of DMFT to predict
the critical point, Uc, in the honeycomb lattice has been
reported recently in Ref.[22, 33].

A. Static mean-field theory (MFT)

Evaluating the Coulomb interaction term in the mean-
field approximation leads to two potentials terms, di-
rect and exchange term, which must be solved self-
consistently. In the case of the Hubbard model in the
collinear approximation, only the direct potential term
is nonzero, and one obtains

U
∑
i

(
〈ni,↑〉ni,↓+ni,↑〈ni,↓〉−〈ni,↑〉〈ni,↓〉−

ni,↑ + ni,↓
2

+
1

4

)
where niσ = c†iσciσ is the number operator and 〈niσ〉
is the average electron occupation number for spin-down
(↓) and spin-up (↑) electrons on lattice site i. We focus on
the undoped ZPNR with exactly one electron per lattice
site, i.e., we work with the half-filled Hubbard model.

To calculate the magnetic ground state of Hamilto-
nian Eq. (1), we start with a few initial, specific or ran-
dom, configurations for the average electron occupation
number 〈niσ〉. Then, by diagonalizing the Hamiltonian,
we calculate updated electron occupation numbers. This
procedure is repeated until the convergence criteria, cho-
sen as η = 10−8, is achieved on the average electron oc-
cupation number. This self-consistent solution provides
the local magnetization mz

i = (ni↑ − ni↓)/2 on each site.
Finally, the energies of different states are compared to
find the ground state.
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B. Dynamical mean-field theory (DMFT)

A recent study has shown that the transition to the
magnetic state in Graphene is captured remarkably well
by the inclusion of local charge fluctuations [22] in
the framework of a single-site dynamical mean-field the-
ory [34]. Thus, to go beyond the static MFT and to
include local fluctuations, we also use the real-space dy-
namical mean-field theory (DMFT) to obtain a magnetic
solution of the ZPNR. As in Ref. [33], each atom of a
8× 48 large cluster is mapped onto its own quantum im-
purity model by calculating the Green’s function and the
local hybridization function,

Gij(ω) = (ω −H−Σ(ω))−1ij (2)

∆i(ω) = G−1ii (ω) + Σii(ω), (3)

where i and j are indices for the positions of the atoms,
H is the matrix of the tight-binding Hamiltonian on the
finite lattice, Σ(ω) is the diagonal matrix including the
self-energies of all atoms Σij(ω) = Σij(ω)δij, Σii is the
self-energy of the atom i, Gij is the Green’s function
matrix, and ∆i is the hybridization function of atom i.
The hybridization function together with the local inter-
action strength completely defines a quantum impurity
model necessary in DMFT, which makes it possible to
calculate magnetic states in large clusters[22, 33, 35, 36].
The quantum impurity model is then solved using the
numerical renormalization group (NRG)[37, 38], which
can calculate dynamical correlation functions and self-
energies with high accuracy[39].

III. RESULTS AND DISCUSSION

In this section, we present the numerical results ob-
tained by static and dynamical MFT. The ZPNR geom-
etry is shown in Fig. 1. The geometry is specified by
two parameters, Nx and Ny, which are the width and
the length of the cluster. We use open boundaries in
the x-direction. A single ZPNR unit-cell is shown as a
black box in Fig. 1. For our static MFT calculations,
we use Ny = 120 unit-cells in y-direction and apply pe-
riodic boundary conditions. Thus, our calculation in-
cludes N = 4×Nx ×Ny phosphorus atoms. The ribbon
width plays an essential role in the creation of the edge
states [9], and it has been shown that the ribbon width
must be larger than about 3 nm for stable edge mag-
netism, which corresponds to Nx = 7 in this work.

A. The pristine ZPNRs

We first consider a finite ribbon cluster. Later, we
exploit translation symmetry and extend our study to an
infinite ribbon. We focus here on the single-particle gap
and the edge magnetization in our analysis, which are two
practical observables to understand the magnetic features
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FIG. 2. Evolution of the single-particle gap (a) and the edge
magnetization (b) as a function of the Hubbard interaction
U/|t1|. Results for different ZPNR widths Nx = 7, 8, 9 are
plotted with different symbols. In panel (a), the inset shows
an exponential curve-fitting of the gap evolution as a function
of 1/Nx at U/|t1| = 0.8. In panel (b), the inset shows the
evolution of the maximum magnetization mz

max versus the
Hubbard interaction. Three different regimes are labeled and
highlighted as: (I) nonmagnetic, (II) gapped-IC, and (III)
gapped-AFM (or gapped-FM) regions. The ribbon length is
fixed at Ny = 120, and the periodic boundary condition is
implemented in the y-direction.

of ZPNRs. The single-particle gap is here defined as one
half of the charge gap, ∆sp = (En−1 − 2En + En+1)/2,
where En is the ground-state energy in the sector with
n electrons. The edge magnetization is defined as mz =

1
Nedge

∑Nedge

i∈edge |〈mz
i 〉|. The temperature is set to zero.

Figure 2 shows the evolution of the single-particle gap
(a) and the edge magnetizations (b) as a function of the
Hubbard interaction U/|t1|, calculated by static MFT.
The gap is zero for interaction strengths U < Uc1 '
0.2|t1|. At this point, the edge magnetism starts to ap-
pear. For 0.2 . U/|t1| . 0.6, the magnetization at the
edge is not homogeneous. Precisely at the critical point,
Uc1, the magnetization pattern of one edge is an anti-
ferromagnetic state, whose existence has been reported
in Ref. [19]. Further increasing the interaction strength,
the magnetic state becomes an incommensurate (IC) an-
tiferromagnetic state (see the left panel in Fig. 3 and
Fig. 4). A more detailed analysis is given in the next
section. As can be seen from Fig. 2(a), the gap starts to
increase from the first critical point Uc1 ' 0.2|t1|. Sur-
prisingly, the band gap forms a cusp, and decreases for
stronger interaction strengths until it reaches the second
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FIG. 3. Three different magnetic spatial configurations for
U/|t1| = 0.3 (left panel) and 1.0 (middle and right panels)
of the Hubbard interaction. The width and length of the
ribbons are Nx = 7 and Ny = 120. Since we here use a very
long ribbon, we only show a portion of the ribbon in the y-
direction. The blue and red circles display the two different
local spin directions. We call the magnetic configuration in
the left, middle, and right panel as IC, AFM, and FM phases.

critical point Uc2 ' 0.6|t1|. Beyond Uc2 ' 0.6|t1|, the
gap shows a linear growth with the Hubbard interaction.
The magnetic configuration in this region is illustrated
in the middle panel of Fig. 3, and we refer to it as the
AFM phase. While the magnetization along the edges
is homogeneous, the magnetization is exactly opposite at
both edges. This configuration has also been predicted
by DFT [18] and QMC [21]. However, besides this AFM
phase, we here find another magnetic solution illustrated
in the right panel of Fig. 3. In this magnetic configura-
tion, both edges are ferromagnetically aligned, and inter-
estingly its gap and magnetization behavior are almost
the same as in the AFM case. Comparing the ground
state energies of the AFM and the FM states, we find an
exponentially small energy difference of O(10−6) (see Ta-
ble.I). It is worth mentioning that to find the AFM or the
FM states, a proper initial guess is necessary while find-
ing the IC phase does not require such an initial guess.
We highlight and label the ZPNRs phases in Fig. 2 as fol-
lows: (I) nonmagnetic, (II) gapped-IC, and (III) gapped-
AFM (or gapped-FM ) regions.

It is intriguing to see that an FM state in a half-filled
Hubbard model has a slightly lower ground state energy
than the AFM state. However, we might explain this fer-
romagnetic state by using the argumentation of Stoner
ferromagnetism: The wavefunctions of the edge states of
the left and the right edges have some overlap with each
other if the width of the ZPNR is finite. This overlap
will lead to an additional positive energy contribution
in the case of an AFM state, which can be prevented
by ferromagnetically aligning both edges. Thus, the fer-
romagnetic state has slightly lower energy. The situa-
tion could be similar to graphene zigzag ribbons, where
a sharp semiconductor (AF) to metallic (FM) transition
occurs by varying the ribbon width, which is seen exper-
imentally [17] and theoretically [40].

Figure 2(b) shows the edge magnetization mz. To cal-

culate the edge magnetization, we only consider lattice
sites along the border of the zigzag edge. The general be-
havior is consistent with the gap evolution. A small mag-
netization appears at the first critical point Uc1 ' 0.2|t1|
and increases very slowly with U until the second critical
point Uc2 ' 0.6|t1|. Beyond Uc2, the edge magnetization
mz saturates. We note that our results of phase (III) are
in agreement with the quantum Monte Carlo result re-
ported in Ref. [21], which predicted long-range order for
U > 0.5 eV at zero temperature. The inset of Figs. 2(b)
shows the maximum of the edge magnetization mz

max.
Interestingly, it captures both the first and the second
critical point consistent with the gap evolution.

To obtain more insight into the effect of the ribbon’s
width on the gap and the magnetization, we present in
Fig. 2 data of different widths as a comparison. One can
see that the gap does not depend on the ribbon width for
Nx = 7, 8, 9, for which the data collapse on top of each
other. However, for ribbon widths smaller than Nx < 7,
we find that the gap depends on the width. The inset in
Fig. 2(a) displays the gap evolution with the inverse rib-
bon width, fitted by an exponential curve. We find that
the edge magnetization, mz, also collapses on a single
curve for Nx > 6. In particular, all data show the same
saturation value in the region-(III). However, we note
that the QMC calculation [21] for room temperature has
shown that the magnetization decreases with the ribbon
width.

Let us now analyze the IC phase in more detail by ac-
cessing the real space data of the local magnetization,
mz
i . The real-space data of the local magnetization,

mz
i , reveals how an antiferromagnetic state at one edge

changes into the ferromagnetic state when increasing the
interaction strength. The local magnetization and its
Fourier transformation (FT) are shown in Figs. 4 for dif-
ferent interaction strengths. For small U/|t1| = 0.25, the
local magnetization pattern is an antiferromagnetic state
along one edge, as also demonstrated by the FT with a
single peak at νmax = π. By increasing U , one can see
how the local magnetization starts to change. The single
peak in the FT splits into two, which move away from π.
Finally, for a Hubbard interactions larger than U > Uc2,
the maximum in the FT occurs at νmax = 0, which sig-
nals a fully aligned ferromagnetic state along one edge.
In Fig 5, we show the position of the maximum in the
FT νmax/π plotted as function of U/|t1|. It can be seen
how the maximum decreases from 1 to 0 within the IC
phase.

Now, we use the translational symmetry of the lat-

U/t1 0.8 0.9 1.0
E[eV]/N -3.1342389394 -3.0761689920 -3.0181486070

FM
E[eV]/N -3.1342358713 -3.0761659724 -3.0181456815

AF

TABLE I. Ground-state energy per atom for the gapped-AFM
and the gapped-FM phase for three interaction strengths.
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FIG. 4. The left panels present the local magnetic modulation mz
i at one edge of the ZPNRs, and the right panels give their

corresponding Fourier transformation for different Hubbard interactions U/|t1|. The lattice parameters are the same as in
Fig. 2.
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FIG. 5. The position of the maximum amplitude in the
frequency domain as a function of the Hubbard interaction
U/|t1| in Fig. 4.

tice and probe the magnetic features of an infinite rib-
bon. To this end, we focus on the energy dispersion
of an infinite ribbon. For a given wavenumber k and
spin σ the mean-field Hamiltonian has N states Ψkσ(x)
with energy εkσ(x). By implementing the iterative self-
consistent technique [23] in the Brillouin zone (BZ), we
can recover the magnetization configuration in ZPNRs.
It worth to mention that the magnetic unit-cell in the IC
phase is much larger than the lattice unit-cell. Thus, we
use an unfolding technique to extract the spectral func-
tion. Detailed information about the unfolding is given
in the appendix A.

In Fig. 6, the spectral function of the edge states and
the corresponding gap evolution are illustrated. We show
that the quasi-flat bands of the edges are isolated from
the bulk bands, which is the most prominent feature of
ZPNRs. It is already known that the hopping t4 term
is responsible for the dispersion of these flat bands [8].
We also note that these quasi-flat modes are almost dou-
bly degenerate. As shown in Fig. 6 in the non-magnetic
region (Ū ≡ U/|t1| = 0.2), these bands are degenerate
at the BZ boundaries and split toward the BZ center.
Indeed, this splitting becomes smaller for wider ribbons.
The following reasoning may explain this: increasing the
width of the ZPNRs will reduce the interaction between
both edges, leading to the decrease of the edge splitting
at the BZ center. When entering the magnetic phase
(Ū & 0.2), the bands split at the kb = ±π/2 points at
the Fermi energy. With increasing interaction strength,
the gap size increases, and spectral weight is shifted at
k = 0 above the Fermi energy and at kb = ±π below
the Fermi energy. This shift of spectral weight causes
the single-particle gap to decrease before entering the
ferromagnetic phase (region-(III)). Finally, the spectral
weight above and below the Fermi energy form two quasi-
particle bands for U > 0.6. In region-(III) with commen-
surate (here, gapped-AFM) edge magnetism, one band is

shifted toward higher energies, and both bands are sepa-
rated. The gap is clearly visible in this phase, and we can
read off the gap in the energy dispersion. The gap evolu-
tion is thereby similar as in Fig. 2 directly calculated by
the energy. We find a gap opening when entering the IC
phase. The gap width forms a maximum in the IC phase,
decreases towards the AFM phase, and finally increases
linearly in the AFM phase.

To further validate our MFT results, we will now show
DMFT results. As mentioned above, DMFT has proven
to predict the critical point in Graphene adequately when
compared to lattice-QMC. We here use DMFT for a clus-
ter with parametersNx = 8 andNy = 48. Our results are
summarized in Fig. 7. For weak interaction strengths,
0.7 < U/|t1|, we find a nonmagnetic solution. We note
that any (even a magnetic) initial guess for these in-
teraction strengths converges to the same nonmagnetic
state. Furthermore, we find a stable magnetic state at
the edges of ZPNR for U/|t1| > 1.4, which corresponds
to phase (III) in MFT. As with MFT, we can find a sta-
ble AFM and a stable FM state. As in Graphene, local
fluctuations included by DMFT shift the critical point to
stronger interaction strengths compared to static MFT.
More interestingly is the question about the existence of
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FIG. 6. Top and middle panels show spectral spectrum which
extracted by unfolding energy spectrum of extended unit-cell
with Ny = 120. The bottom panel shows the evolution of
single-particle gaps. Regions are as follows: (I) nonmagnetic,
(II) gapped-IC, and (III) gapped-AFM. The width of the rib-
bon is fixed at Nx = 7.
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FIG. 7. DMFT calculations of edge magnetization (top panel)
as a function of Hubbard interaction U/|t1| for a ZPNR width
Nx = 8. Two different regimes are labeled and highlighted
as: (I) nonmagnetic, and (II) AFM gapped (or FM gapped
) regions. Bottom panels show the spectral functions A(E)
for three different Hubbard interactions. The ribbon length
is fixed at Ny = 48 and the periodic boundary condition is
implemented in the y-direction.

the IC phase. For interaction strengths U/|t1| < 1.4, we
do not find a converged magnetic solution. However, for
0.7 < U/|t1| < 1.4, we find a small magnetization at the
edges of ZPNR, which does not vanish when iterating the
DMFT calculation. If we start the DMFT in this regime
with an inhomogeneous magnetic state, the magnetiza-
tion configuration changes in each iteration without com-
pletely vanishing, but we cannot find a converged solu-
tion. We note here that to find an incommensurate state
with DMFT, a large cluster and an appropriate initial
guess are necessary. Thus, we interpret these DMFT cal-
culations as an attempt to stabilize an incommensurate
state. However, as we cannot find a converged solution,
we cannot calculate further properties of this phase.

An advantage of DMFT over static MFT is that spec-
tral functions can readily be calculated and include life-
time effects due to correlations. The spectral functions
calculated by DMFT are shown in Fig. 7. In contrast
to static MFT, DMFT already includes modifications of
the spectral function in the nonmagnetic phase (I). For
U/|t1| = 0.8 (converged nonmagnetic solution), we find
some (blurred) spectral weight below the quasiparticle
band at k = 0. This spectral weight should correspond to
the splitting of the quasiparticle band at the center of the
BZ, which is smeared out because of correlations. Fur-

thermore, we find some spectral weight above the quasi-
particle band at kb = ±π. With increasing interaction
strength, spectral weight is particularly transferred from
the quasiparticle band lying at the Fermi energy to en-
ergies below the Fermi energy, slowly forming a second
band. At the same time, the spectral weight moves to
higher energies at kb = ±π. These two processes finally
form two bands, which are clearly visible for U/|tt| = 1.6
with a gap between them. While in static MFT, the
formation of a gap takes place when entering the AFM
phase (III), in DMFT this separation already starts in
the nonmagnetic phase due to local fluctuations.

Finally, we want to examine the above mentioned
gapped-FM phase in more detail, which coexists with
the gapped-AFM phase. We repeat the previous calcu-
lations, using a proper initial guess to obtain the FM
phase. The results are depicted in Fig. 8. We note that
when both edges are ferromagnetically aligned, we can
also find the IC phase. The gap evolution reveals a small
dome in the region-(II). The gap opens at the first crit-
ical point, Uc1, forms a maximum and then decreases
when approaching the second critical point Uc2. In the
region-(III), the gap increases linearly with the Hubbard
strength interaction. It is interesting to note that the
energy dispersion of the AFM state (Fig. 6) and the FM
state (Fig. 8) are almost identical. However, while in
the AFM state, all edge modes are spin-degenerate, in
the FM state, the edge modes above the Fermi energy
have a definite spin-directions and the edge modes below
the Fermi energy exhibit an opposite spin direction. Fur-
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FIG. 8. Same as Fig.6, but for the FM case. Regions are as
follows: (I) nonmagnetic, (II) gapped-IC, and (III) gapped-
FM. Red and blue lines in the spectral functions correspond
to different spin-directions.
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FIG. 9. Energy dispersion of ZPNR shown for three different
strengths of tensile strain εz = 0.0%, 10%, 20% in the ab-
sence of the Hubbard interaction U . The two quasi-flat edges,
isolated from the bulk, are colored in gold. The width of the
ribbon is the same as in Fig. 4. The horizontal red line marks
the Fermi level.

thermore, there is a slight additional splitting of the edge
modes around k = 0 in the FM state, which is absent in
the AFM state. This small splitting is responsible for the
energy difference between the AFM and the FM state.

B. Strain effects

Next, we want to study the impact of strain and dis-
order on the magnetic state. To study strain effects, we
follow the approach developed in Ref. [41, 42]. We will
focus here on the tensile strain in the normal direction to
the phosphorene plane [43]. By applying an axial strain,
following the Harrison relation [44], the strain-induced
modified hopping parameter in the linear regime can be
written as ti ≈ (1−2αixεx−2αiyεy−2αizεz), where αji are
coefficients related to the structure of phosphorene and
εj is the strain in the j-direction.

Before exploring strain effects on the magnetic fea-
tures, we briefly comment on the energy dispersion under
strain. Figure 9 presents the energy dispersion for three
different strengths of tensile strain εz = 0.0%, 10%, 20%
in the absence of the Hubbard interaction. It can be
seen that the tensile strain has a significant impact on
the band structure: The edge modes are split, which is
accompanied by a compression of the bulk bands. Even
for strain εz = 20%, the degeneracy of the edge modes at
the BZ boundaries survives, while one of the split levels
crosses the Fermi energy at k = 0. We also note that for
strain εz = 10%, the bulk band gets flattened, which is
analogous to the strain-induced Landau Levels effects in
graphene [45–48].

0.0 0.5 1.0

U/|t1|
0.0

0.1

0.2

0.3

0.4

m
z

(c)

0.0 0.5 1.0

U/|t1|

(d)

0.00

0.05

0.10

0.15

0.20

∆
sp

(a)

Nx = 7

Nx = 8

Nx = 9

(b)

εz = 0%

εz = 10%

εz = 20%

10−2 10−1

εz

10−1

FIG. 10. Panels (a) and (c) show the gap and edge mag-
netization for different ribbon widths at fixed tensile strain
εz = 10%. In panels (b) and (d), we fix the ribbon width,
Nx = 7, and show three different strengths of tensile strain
εz = 0.0%, 10%, 20%. The inset in panel (d) shows a log-log
plot of the mz evolution as a function of the tensile strain
strength at U/|t1| = 0.8 (the line is a power-law fit).

We now explore the evolution of the gap and the
magnetization as a function of the Hubbard interaction
in the presence of tensile strain. Figures 10 (a) and
(c) show the results for different ribbon widths with
fixed strain εz = 10%. Figures 10 (b) and (d) show
the results for three different strengths of tensile strain
εz = 0.0%, 10%, 20% with a fixed ribbon width Nx = 7.
One profound effect of tensile strain is the destruction
of the intermediate IC phase. For εz = 20%, the IC
phase has almost vanished. We furthermore notice that
the second critical point, Uc2, shifts to a larger value.
Thus, the tensile strain has a tremendous impact on edge
magnetism. This can be understood by the following ex-
planation: under tensile strain, the t2 and t4 hopping
parameters change more strongly than the others. As
shown in Fig. 9, the tensile strain splits the edge modes
and increases their width. The increased bandwidth of
these modes makes a larger interaction strength neces-
sary to stabilize the AFM phase. Furthermore, as men-
tioned earlier, the t4 hopping term is important for the
shape of the edge mode and thus plays an essential role in
stabilizing the IC phase. Extrapolating the magnetiza-
tion mz to larger values of tensile strain for U/|t1| = 0.8,
shown in the inset of Fig. 10(d), we find that magnetism
should vanish at about εz = 50%, which is much higher
than the prediction by first principles in Ref [19]. We note
that a strain of about εz = 50% is already big enough to
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destroy the whole structure of the edge modes. Thus,
at the MFT level, we can conclude that a magnetic to
nonmagnetic transition is not feasible.

C. Disorder effects

To study the effects of disorder, we include an addi-
tional term along the edges in the Hamiltonian Hw =∑
i,σ wini,σ, corresponding to non-magnetic disorder. wi

is the strength of the disorder at site i, which is randomly
chosen in the interval [−w/2;w/2]. Because the transla-
tional symmetry along the y-direction is broken, we solve
for the ground state in a finite cluster with Ny = 120 us-
ing the periodic boundary condition. To be independent
of a special configuration of the disorder, we average over
100 different realizations. The influence of the edge dis-
order on the magnetic phases is presented in Fig. 11. It
can be seen that both, the gap and edge magnetization,
are robust against disorder. We have not found any de-
viation in the saturation value of the edge magnetization
in the gapped-AF(FM) phase. Moreover, the evolution
of the gap also indicates the existence of the gapped-IC
phase in the disordered system. This is in contrast to
the result of strain in the preceding section. However,
as mentioned before, the hopping parameters t2 and t4,
play an essential role in stabilizing the edge states and
its corresponding magnetic features. Thus, introducing
Anderson type disorder will not destabilize these states.

0.0

0.1

0.2

0.3

∆
sp

w = 0.0|t1|
w = 0.2|t1|

0.0 0.2 0.4 0.6 0.8 1.0

U/|t1|

0.0

0.2

0.4

m
z

w = 0.0|t1|
w = 0.2|t1|

FIG. 11. Evolution of the single-particle gap (upper panel)
and edge magnetization (lower panel) as a function of the
Hubbard interaction U . Data for clean and disorder cases
wi/|t1| = 0.0, 0.3 are shown. The width of the ribbon is the
same as in Fig. 4.

IV. SUMMARY

We have investigated the edge-state magnetic prop-
erties of black phosphorene nanoribbons using a tight-
binding model with an electron-electron Hubbard inter-
action U . Our study aimed to explore the magnetic fea-
tures of large clusters of black phosphorene nanoribbons
for which numerically expensive techniques such as den-
sity functional theory and quantum Monte Carlo tech-
niques are not feasible. Thus, to study the model, we
have used a combination of static and dynamical mean-
field theory (DMFT). While our calculations for large
U are in agreement with previous results, we find an
incommensurate magnetic phase for weak interactions.
Performing a detailed Fourier analysis of the magnetiza-
tion evolution in the incommensurate (IC) phase, we find
a second critical interaction Uc2 at which the IC phases
changes to an antiferromagnetic (AFM) or ferromagnetic
(FM) phase. Finally, we have analyzed the influence of
strain and disorder on the magnetic properties. Our re-
sults show that while the IC phase is robust to Anderson
type disorder, it is fragile against strain.
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Appendix A: Unfolding of the Green’s function

When calculating the band structure for the long-range
spin-density waves, we use extended unit cells including
many layers in the y-direction. This yields a folded band
structure, which is difficult to compare with the ferro-
magnetic or nonmagnetic state. We therefore unfold the
band structure using the Green’s function as described
here. When calculating the cluster Green’s function with
open boundary conditions in the x-direction, but includ-
ing ky momentum dependence in the y-direction we ob-
tain

G
k′y
y′1,y

′
2
(ω) =

(
ω + iη −Hk′y

)−1
y′1,y

′
2

, (A1)

where 0 ≤ y′1,2 < Ny correspond to the y-component
of different lattice sites in the unit cell and Hky is the
Hamiltonian for the momentum ky. Because we do not
change the x-coordinate, we neglect it for convenience.
To calculate the unfolded Green’s function, we need to
calculate

Gky (ω) =
1

N

∑
y1,y2

exp (−iky(y1 − y2))Gy1,y2(ω) (A2)
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where 0 ≤ y1,2 < N and N the is number of lattice
sites of the full lattice which includes M unit cells with
Ny atoms, thus N = MNY . We can calculate Gy1,y2(ω)

from the cluster Green’s function as

Gy1,y2(ω) =
1

M

∑
k′y

G
k′y
y′1,y

′
2
(ω) exp

(
ik′y(n1 − n2)

)
(A3)

y1 = n1Ny + y′1 (A4)

y2 = n2Ny + y′2 (A5)

We can now calculate the unfolded Green’s function as

Gky (ω) =
1

N

∑
y1,y2

exp (−iky(y1 − y2))
1

M

∑
k′y

G
k′y
y′1,y

′
2
(ω) exp

(
ik′y(n1 − n2)

)
=

1

NM

∑
n1,n2

∑
y′1,y

′
2

∑
k′y

exp (−iky((n1 − n2)Ny + y′1 − y′2))G
k′y
y′1,y

′
2
(ω) exp

(
ik′y(n1 − n2)

)
=

M2

NM

∑
y′1,y

′
2

∑
k′y

δNyky,k′y
exp (−iky(y′1 − y′2))G

k′y
y′1,y

′
2
(ω)

=
1

Ny

∑
y′1,y

′
2

exp (−iky(y′1 − y′2))G
Nyky
y′1,y

′
2
(ω) (A6)

Finally, we can calculate the spectral functions as shown
in the main text as

Aky (ω) = − 1

π
Im
(
Gky (ω)

)
(A7)
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Nayuta Takemori, Fakher F. Assaad, Andreas Honecker,
and Javad Vahedi, “Hubbard model on the honeycomb
lattice: From static and dynamical mean-field theories to
lattice quantum monte carlo simulations,” Phys. Rev. B
101, 125103 (2020).

[23] J. Fernández-Rossier and J. J. Palacios, “Magnetism
in graphene nanoislands,” Phys. Rev. Lett. 99, 177204
(2007).

[24] S. Bhowmick and V. B. Shenoy, “Edge state magnetism
of single layer graphene nanostructures,” The Journal of
Chemical Physics 128, 244717 (2008).

[25] G. Gui, J. Li, and J. Zhong, “Band structure engineer-
ing of graphene by strain: First-principles calculations,”
Phys. Rev. B 78, 075435 (2008).

[26] B. Wang, J. Wu, X. Gu, H. Yin, Y. Wei, R. Yang, and
M. Dresselhaus, “Stable planar single-layer hexagonal sil-
icene under tensile strain and its anomalous Poisson’s
ratio,” Applied Physics Letters 104, 081902 (2014).

[27] Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang,
S. Qin, and J. Li, “Mechanical and electronic properties
of monolayer MoS2 under elastic strain,” Physics Letters
A 376, 1166 – 1170 (2012).

[28] S. M. Tabatabaei, M. Noei, K. Khaliji, M. Pourfath, and
M. Fathipour, “A first-principles study on the effect of
biaxial strain on the ultimate performance of monolayer
MoS2-based double gate field effect transistor,” Journal
of Applied Physics 113, 163708 (2013).

[29] A. S. Rodin, A. Carvalho, and A. H. Castro Neto,
“Strain-induced gap modification in black phosphorus,”
Phys. Rev. Lett. 112, 176801 (2014).

[30] M. Elahi, K. Khaliji, S. M. Tabatabaei, M. Pourfath,
and R. Asgari, “Modulation of electronic and mechanical
properties of phosphorene through strain,” Phys. Rev. B
91, 115412 (2015).

[31] E. Taghizadeh Sisakht, F. Fazileh, M. H. Zare, M. Zare-

nia, and F. M. Peeters, “Strain-induced topological
phase transition in phosphorene and in phosphorene
nanoribbons,” Phys. Rev. B 94, 085417 (2016).

[32] A. N. Rudenko and M. I. Katsnelson, “Quasiparticle
band structure and tight-binding model for single- and bi-
layer black phosphorus,” Phys. Rev. B 89, 201408 (2014).
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