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Highly unconventional behavior of the thermodynamic response functions has been experimentally
observed in a narrow gap semiconductor samarium hexaboride. Motivated by these observations, we
use renormalization group technique to investigate many-body instabilities in the f -orbital narrow
gap semiconductors with band inversion in the limit of weak coupling. By projecting out the double
occupancy of the f -states we formulate a low-energy theory describing the interacting particles in
two hybridized electron- and hole-like bands. The interactions are assumed to be weak and short-
ranged. We take into account the difference between the effective masses of the quasiparticles in
each band and find that there is only one stable fixed point corresponding to the excitonic instability
with time-reversal symmetry breaking for small enough mismatch between the effective masses.

I. INTRODUCTION

Anomalous behavior of thermodynamic response func-
tions at low temperatures more often than not remains
a hallmark of strong interparticle correlations in quan-
tum materials.1 Among many examples of such materi-
als are cerium- and iron-based superconductors which de-
velop superconducting order and exhibit unusual temper-
ature dependence in heat capacity and in London pene-
tration depth correspondingly.2–6 These thermodynamic
anomalies are likely governed by the system’s proxim-
ity to the underlying magnetic quantum phase transition
which mediates a strong interactions between the con-
stituent quasiparticles.7–10

Correlated insulators, just like superconductors dis-
cussed above, may also exhibit anomalous thermody-
namic properties which are not necessarily related to the
strong exchange interactions between the local magnetic
moments. In a most recent example, quantum oscilla-
tions in magnetization and a low-temperature upturn in
the heat-capacity have been observed in a correlated nar-
row gap semiconductor samarium hexaboride.11,12 The
experimental interest in this material, which dates back
to 1960s,13,14 has been recently revived in relation to
its unconventional transport properties: below T ∗ ' 5K
the Ohm’s law breaks down so that the bulk develops a
gap with respect to the current carrying excitations while
only surfaces remain metallic.15 Theory proposals which
would explain such a behavior focus on the possibility of
the inversion of even- and odd-parity bands in the high-
symmetry points of the Brillouin zone.16–20 As a result
of the band inversion, the surfaces of the sample remain
metallic even though the bulk remains fully insulating.

The model with an inverted band structure can also
be used in the calculation of the quantum oscillations in
magnetization.21–26 A self-consistent theory of the low-
temperature upturn in the heat capacity likely demands
that one would need to go beyond a non-interacting low-
energy theory. Such an attempt was made by Knolle
and Cooper, who formulated a low-temperature the-
ory first by projecting out the double occupation on
the f -orbitals and, then included the interaction terms,
which ultimately lead to the formation of excitons and

magnetoexcitons.27 It is not a priori clear, however,
which instability - if any of the two - would be the leading
one. Furthermore, one may consider a scenario in which
superconductivity competes with the excitonic-type of in-
stability upon doping these materials with carriers.

In what follows, we address this problem by formulat-
ing the low-energy theory with an effective action which
includes the short-ranged interactions allowed by sym-
metry of the problem. Specifically, we consider a generic
two-band model with a hybridization gap as a starting
point. The one band is assumed to be electron-like, while
the other one is hole-like. The hybridization depends lin-
early on momentum, which corresponds to the case of the
d- and f -orbital bands, while the parabolic dispersion
relation is assumed for both bands. We will not make
any specific assumptions on the position of the chemical
potential at the beginning of the renormalization group
flow. Importantly, since within our theory the band pa-
rameters as well as hybridization amplitude have been
renormalized from their bare values by projecting out
the doubly occupancy on f -orbitals, so that the effec-
tive masses for conduction and valence band quasipar-
ticles are not equal. Consequently, the emerging many-
body instabilities can be studied by employing the renor-
malization group (RG) technique. We find that for an
arbitrary ratio between the effective masses of the con-
duction and valence bands there is a fixed point which
corresponds to an instability favoring the formation of
magnetic excitons.

This paper has been structured as follows. In the next
Section we provide the details on the model, discuss the
relevant approximations and write down the low-energy
theory with the two-particle interactions included. In
Section III we analyze the low-energy theory using the
renormalization group approach and derive the renormal-
ization group flow equations for the corresponding cou-
pling constants in both particle-hole and particle-particle
channels. Section IV is devoted to the discussion of the
results and conclusions.
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II. MODEL

When discussing the materials with partially filled f -
orbitals, the Anderson lattice model is usually the start-
ing point. Since the contact interactions between the
f -electrons is the largest energy scale in the problem,
in order to formulate the low-energy theory one usually
projects out the doubly occupied states on f -orbitals.1

This procedure leads to the renormalization of the pa-
rameters in the Anderson model Hamiltonian. This low-
energy model Hamiltonian is our starting point.

A. Single-particle action

We consider the following single particle Hamiltonian:

Ĥ0 =
∑
k

Ψ†a(k)

[
εc(k)τ̂0 Φ̂k

Φ̂†k εf (k)τ̂0

]
ab

Ψb(k), (1)

where Ψ†k = (c†k↑, c
†
k↓, f

†
k↑, f

†
k↓), k = (kx, ky, kz) is

the momentum, τ̂0 is a 2×2 unit matrix, Φ̂k is a 2×2
hybridization matrix to be specified below and c, f are
fermionic annihilation operators for the conduction and
valence bands. It is convenient to write the single particle
dispersion relation as25

εc(k) =
k2

2mc
+
Eg
2

+ µ0, εf (k) =
k2

2mf
+
Eg
2
− µ0, (2)

where Eg < 0 is the energy gap, µ0 is the energy shift
and it is implicitly assumed that mf > mc. It will be
convenient to introduce m±

−1 = mc
−1±mf

−1 and k2
F =

−2m+Eg. If we now set µ0 = −k2
F /4m− it follows

εc(k) =
k2 − k2

F

4m+
+
k2 − k2

F

4m−
≡ ξk + εk,

εf (k) =
k2 − k2

F

4m−
− k2 − k2

F

4m+
≡ ξk − εk.

(3)

The specific form and momentum dependence of ma-
trices entering into (1) is determined by the type of the
hybridizing orbitals. Here we consider the fairly stan-
dard form corresponding to the hybridization between
even- and odd-parity orbitals with angular momentum
transfer of ∆l = 1:

Φ̂k = V

(
kz kx − iky

kx + iky −kz

)
. (4)

With the help of the Dirac matrices, listed in the Ap-
pendix A, the single-particle part of the action reads

S0 =

∫
x

Ψ†(x)

(
∂

∂τ
− µ+ ξk̂14 +

3∑
a=0

Σada
k̂

)
Ψ(x), (5)

where µ is the chemical potential, x = (r, τ) and

Σ0 = γ0, Σ1 = γ0γ1, Σ2 = γ0γ2, Σ3 = γ0γ3,

d0
k = εk, d1

k = V kx, d2
k = V ky, d3

k = V kz.
(6)

Clearly, when mc = mf , the term proportional to 14 is
zero.

B. Interactions

The most general form of the Lagrangian density de-
scribing weak repulsive interactions is28,29

Lint = g̃1

(
Ψ†Ψ

)2
+ g̃2

(
Ψ†τ1σ0Ψ

)2
+ g̃3

(
Ψ†τ2σ0Ψ

)2
+ g̃4

(
Ψ†τ3σ0Ψ

)2
+ g̃5

[(
Ψ†τ2σ1Ψ

)2
+
(
Ψ†τ2σ2Ψ

)2
+
(
Ψ†τ2σ3Ψ

)2]
+ g̃6

[(
Ψ†τ3σ1Ψ

)2
+
(
Ψ†τ3σ2Ψ

)2
+
(
Ψ†τ3σ3Ψ

)2]
+ g̃7

[(
Ψ†τ0σ1Ψ

)2
+
(
Ψ†τ0σ2Ψ

)2
+
(
Ψ†τ0σ3Ψ

)2]
+ g̃8

[(
Ψ†τ1σ1Ψ

)2
+
(
Ψ†τ1σ2Ψ

)2
+
(
Ψ†τ1σ3Ψ

)2]
.

Here ~τ are Pauli matrices act in the band space, while
~σ are Pauli matrices in spin space. Since L = T − U ,
the generic behavior corresponds to the case when all
coupling constants g̃i are negative, i.e. all interactions are
assumed to be repulsive from the outset. Furthermore, I

introduce basis matrices ~Γ according to

Γ1 = 14, Γ2 = τ0σ1, Γ3 = τ0σ2, Γ4 = τ0σ3,

Γ5 = τ1σ0, Γ6 = τ1σ1, Γ7 = τ1σ2, Γ8 = τ1σ3,

Γ9 = τ2σ0, Γ10 = τ2σ1, Γ11 = τ2σ2, Γ12 = τ2σ3,

Γ13 = τ3σ0, Γ14 = τ3σ1, Γ15 = τ3σ2, Γ16 = τ3σ3.

(7)

Importantly, each of these matrices satisfies

(Γa)
†

= Γa = (Γa)
−1
. (8)

Below we will show that not all interaction terms are
independent from each other and, as a result, Eq. (7)
can be further simplified.28–30

C. Fierz identity

Thus, we have eight coupling constants, gj < 0, How-
ever, only four of these matrices (and the corresponding
couplings) are independent. To prove this, let us employ
the following Fierz identity28–30(

Ψ†(x)MΨ(x)
) (

Ψ†(y)MΨ(y)
)

= − 1

16

∑
ab

Tr
(
MΓaMΓb

) [
Ψ†(x)ΓbΨ(y)

]
×
[
Ψ†(y)ΓaΨ(x)

] (9)

along with the relation

δilδkj =
1

4

16∑
a=1

ΓaikΓajl. (10)
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Consider now the following vector

~V =
{(

ΨΓ1Ψ
)2
,
(
ΨΓ2Ψ

)2
+
(
ΨΓ3Ψ

)2
+
(
ΨΓ4Ψ

)2
,(

ΨΓ5Ψ
)2
,
(
ΨΓ6Ψ

)2
+
(
ΨΓ7Ψ

)2
+
(
ΨΓ8Ψ

)2
,(

ΨΓ9Ψ
)2
,
(
ΨΓ10Ψ

)2
+
(
ΨΓ11Ψ

)2
+
(
ΨΓ12Ψ

)2
,(

ΨΓ13Ψ
)2
,
(
ΨΓ14Ψ

)2
+
(
ΨΓ15Ψ

)2
+
(
ΨΓ16Ψ

)2}
.

This choice is matched by the following vector of cou-
plings ~g = (g̃1, g̃7, g̃2, g̃8, g̃3, g̃5, g̃4, g̃6). Employing (9)

along with the definition of vector ~V above, the following
system of linear equations

∑8
j=1 FijVj = 0 obtains with

F =
1

8



5 1 1 1 1 1 1 1
3 3 3 −1 3 −1 3 −1
1 1 5 1 −1 −1 −1 −1
3 −1 3 3 −3 1 −3 1
1 1 −1 −1 5 1 −1 −1
3 −1 −3 1 3 3 −3 1
1 1 −1 −1 −1 −1 5 1
3 −1 −3 1 −3 1 3 3


(11)

The vector of the eigenvalues of this matrix is ~λ =
(1, 1, 1, 1, 0, 0, 0, 0). Since there are four zero eigenval-
ues, we have only four independent coupling constants.
It will be conveniet to keep the interaction terms with
couplings g̃1, g̃2, g̃3 and g̃4. Lastly, with the help of
(11) we can express the remaining interaction terms in
terms of the independent ones, which is equivalent to
the following change of the coupling constants: g1 =
g̃1 − g̃5 − g̃6 − 2g̃7 − g̃8, g2 = g̃2 + g̃5 + g̃6 − g̃7 − 2g̃8,
g3 = g̃3−2g̃5+ g̃6− g̃7+ g̃8 and g4 = g̃4+ g̃5−2g̃6− g̃7+ g̃8.
Thus, the interaction part of the Lagrangian density be-
comes

Lint(r, τ) = g1

(
Ψ†Ψ

)2
+ g2

(
Ψ†τ1σ0Ψ

)2
+ g3

(
Ψ†τ2σ0Ψ

)2
+ g4

(
Ψ†τ3σ0Ψ

)2
.

(12)

Note, that even though g̃j < 0, the renormalized coupling
constants gi can be either positive or negative.

III. RENORMALIZATION GROUP ANALYSIS

A. Scaling at the tree level

Each fermionic field is separated into slow (k < Λ/s)
and fast (Λ/s < k < Λ) mode, Ψ = Ψ< + Ψ>. At the
tree level, we need to integrate out the fermions within
the shell of momenta Λ/s < |k| < Λ. I have

S0< =

β∫
0

dτ

∫
|k|<Λ/s

d3k

(2π)3
Ψ†<(k, τ)

(
∂

∂τ
− µ

+ξk14 +
∑
a

Σadak

)
Ψ<(k, τ).

(13)

Let us rescale momentum back to its initial region k′ ≤ Λ
with k = k′/s and τ = s2τ ′ and replace the fermionic
fields accordingly to keep the action invariant:

Ψ(k′, τ ′) =
1

ζ
Ψ<(k′/s, s2τ ′). (14)

It follows

S0 =
ζ2

s3

β/s2∫
0

dτ

∫
|k|<Λ

d3k

(2π)3
Ψ†(k, τ)

(
∂

∂τ
− s2µ

+Σ0d0
k + s

3∑
a=1

Σadak

)
Ψ(k, τ).

(15)

Thus, the action remains invariant under the following
scale transformation (s = et): T ′ = s2T , µ′ = s2µ,
V ′ = sV , m′± = s2m±, k′F = skF , ζ = s3/2, where the
last expression ensures that the action will remain in-
variant and T is the temperature. Clearly, with respect
to tree-level perturbations, hybridization coupling V is a
relevant variable under the renormalization group flow.
However, hybridization grows slower than the chemical
potential.

B. RG equations: particle-hole channel

We now proceed with expanding the action in the pow-
ers of the interaction up to the second order in powers of
gj ’s and integrating out the ’fast’ modes. The effective
action in terms of the ’slow’ modes is

〈
e−S[Ψ]

〉
0>

= e−S0[Ψ<]−Sint[Ψ<]〈e−Sint[Ψ<,Ψ>]〉0>

= e−S0[Ψ<]−δS[Ψ<],
(16)

where the 〈...〉0 denotes the averaging over the gaussian
action and the interaction part of the action Sint is de-
termined by the Lagrangian density (12).

We continue with the computation of the average over
the fast modes (16) using the cumulant expansion. In-
tegrating out the fast modes in the momentum shell
k ∈ [Λ/s,Λ] and rescaling the resulting correction to the
effective action using (14) one may find the corrections
to the coupling constants. The details of the calculation
are presented in Appendix B. The resulting flow equa-
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tions for the four coupling constants are

dg1

d ln s
= −mΛ

4π2

[
2g1g4 + η (g1 + g4)

2

+η
(
g2 − g3)2

)]
,

dg2

d ln s
=
mΛ

2π2
[(1− η)g1g2 + ηg1g3 + (1 + η)g3g4

−g2g3 − (2 + η)g2g4 − g2
2

]
,

dg3

d ln s
=
mΛ

2π2
[(1− η)g1g3 + ηg1g2 + (1 + η)g2g4

−g2g3 − (2 + η)g3g4 − g2
3

]
,

dg4

d ln s
= −mΛ

4π2

{
(1 + η)

[
g2

1 + (g2 − g3)2 + g2
4

]
+2ηg1g4} .

(17)

Here we use m = m+ for brevity, Λ is the ultraviolet
cutoff. Note, that the second and third equation are
symmetric with respect to g2 ↔ g3. Lastly, parameter
η describes the mismatch between the effective masses,
Eq. (B23), so that the case of two bands with equal
effective masses corresponds to the limit η → 0.

To analyze Eq. (17) it will be convenient to work with
the coupling ratios.30 It will be convenient to choose the
following coupling ratios: v1 = g1/g4, v2 = g2/g4 and
v3 = g3/g4. The flow equations in terms of these vari-
ables are easily derived from (17), so we will write these
compactly as

g4
dv1

dg4
= R1(η; v1, v2, v3)− v1,

g4
dv2

dg4
= R2(η; v1, v2, v3)− v2,

g4
dv3

dg4
= R2(η; v1, v3, v2)− v3.

(18)

Since the second and third equations are symmetric with
respect to an interchange of v2 and v3, we can determine
the fixed points analytically since in order to satisfy the
second and third equation simultaneously, we need to
require that v∗2 = v∗3 = v∗⊥. The fixed point for the first
equation is given by the roots of the following equation:

(v∗1 − 1)(v∗1 + 1)

(
v∗1 +

η

1 + η

)
= 0, (19)

while the fixed point for the remaining two equations is
either v∗⊥ = 0 or v∗⊥ = (1/4)[(1 + η)(v∗1 + 1)2 − 2]. Thus,
independent of the value of the parameter η, Eq. (19),
there are six fixed points.

Our stability analysis of the flow equations around each
fixed point shows that there is only one stable fixed point

(”sink”),
(
− η

1+η , 0, 0
)

when the initial value of the cou-

pling constant g4 > 0. The remaining five fixed points
are all unstable at least in one of the directions in the
space of coupling constants. When the initial value of
the coupling g4 < 0 the flow of the couplings reverses

FIG. 1: (color online). Renormalization group flow of the cou-
pling constant ratios for the case of small mismatch between
the effective masses, η = 0.125. We find that there are six
fixed points overall in this case. Five fixed points (light green
circles) are always unstable. The remaing one (solid red cir-
cle) is stable when g4 > 0 and becomes unstable when g4 < 0.
Without loss of generality we chose to limit the presentation
to a case of g2 = g3 = g2(3) and we also assumed that at the

beginning of the RG flow (mΛ/4π2)g4 = 0.1.

and a stable fixed point becomes a source. The resulting
RG flow diagram is presented in Fig. 1.

Given the nature of the materials under discussion,
this case is not physically relevant for us. Nevertheless,
for completeness, we note that the value of |g1/g4| at
the stable fixed point equals zero for η = 0 and then
it increases with an increase in η, which means that in
the absence of mass anisotropy the stable fixed point is
a non-interacting one, provided g4 > 0. Lastly, we note
that the chemical potential does not effect the flow of the

coupling constants as long as µ� Λ2

2m holds.

C. Particle-hole channel susceptibilities

To investigate the leading instability at the stable fixed
point in the particle-hole channel we need to analyze the
flow of the corresponding susceptibilities. To do that, we
modify the action S → S + ∆S with30

∆Sp-h = −χ(1)
ph

∫
dτ

∫
d3k

(2π)3
Ψ†(k, τ)Ψ(k, τ)

−
16∑
a=2

χ
(a)
ph

∫
dτ

∫
d3k

(2π)3
Ψ†(k, τ)Γ̂aΨ(k, τ).

(20)

Each terms here can be written as a sum of two mo-
mentum integrals: one with k ≤ Λ/s and another with
Λ/s ≤ k ≤ Λ. The goal is to determine the change of the
susceptibilities under the RG flow by perturbation the-
ory in powers of the coupling constants. The flow equa-
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tions for the susceptibilities are obtained by expanding
the exponent (16) in powers of Sint[Ψ<,Ψ>] + ∆S[Ψ>]
and integrating fermions whose momenta lie in the outer
shell Λ/s ≤ k ≤ Λ. Thus the part of the action with the
susceptibilities becomes

∆Sp-h = s2

β∫
0

dτ

∫
|k|≤Λ

d3k

(2π)3

16∑
a=1

χ
(a)
ph

{
Ψ†kΓ̂aΨk

+
∑
S
gSΠΓaSΨ†kΓ̂aΨk −

∑
S
gSΨ†kΥΓaSΨk

}
,

(21)

where k = (k, τ), the summation is performed over the
set S = {Γ1,Γ5,Γ9,Γ13} and we use the following nota-
tions

ΠUS =

∞∫
−∞

dωn
2π

∫
Λ/s≤p≤Λ

Tr [Gp(iωn)UGp(iωn)S] ,

ΥUS =

∞∫
−∞

dωn
2π

∫
Λ/s≤p≤Λ

SGp(iωn)UGp(iωn)S.

After we rescale the momenta and the fermionic fields
so that the action takes its original form, the following
equations for the corresponding susceptibilities are

d lnχ
(j)
ph

d ln s
= 2, (1 ≤ j ≤ 4, 13 ≤ j ≤ 16),

d lnχ
(5)
ph

d ln s
= 2 +

mΛ

2π2
(1− v1 + 3v2 + v3)g4,

d lnχ
(6,7,8)
ph

d ln s
= 2 +

mΛ

2π2
(1− v1 − v2 + v3)g4,

d lnχ
(9)
ph

d ln s
= 2 +

mΛ

2π2
(1− v1 − v2 + 3v3)g4,

d lnχ
(10,11,12)
ph

d ln s
= 2 +

mΛ

2π2
(1− v1 + v2 − v3)g4.

(22)

By performing the numerical solution of the flow equa-
tions (17) around the stable fixed point, we find
that when both v2(s) and v3(s) approach zero from
above or when v3(s) approaches zero from above, while
v2(s) approaches zero from below, the fastest grow-
ing susceptibility corresponds to the order parameter
φs = 〈Ψ†α ((τ1 ± iτ2)σ0)αβ Ψβ〉, which describes the spin-
singlet excitonic order. In the opposite case, when both
v2(s) and v3(s) approach zero from below the fastest
growing susceptibility describes the emergence of the

magneto-excitonic order with the order parameter ~φt =
〈Ψ†α ((τ1 ± iτ2)~σ)αβ Ψβ〉. Thus, we confirm that the lead-
ing instabilities in the particle-hole channel are the insta-
bilities leading to the formation of an excitonic insulator.
It remains to be seen whether the superconducting insta-
bility may develop faster or not.

D. Particle-particle channel: renormalization
group equations

In order to investigate the superconducting instability,
the Lagrangian density (12) can be recast into the form
describing the interactions in the particle-particle chan-
nel. This goal can be accomplished with the help of the
Fierz identity(

Ψ†(x)MΨ(x)
) (

Ψ†(x)MΨ(x)
)

=
1

16

∑
ab

Tr
(
ΓaMΓbMT

) (
Ψ†(x)ΓaΨ∗(x)

)
×
(
ΨT (x)ΓbΨ(x)

)
.

(23)

The fermionic nature of the fields Ψ implies that the
only non-vanishing terms are those with Γa such that
Γaij = −Γaji: this relation holds for only six matrices
(a = 3, 7, 9, 10, 12, 15). Furthermore, with the help of
the Fierz identities we have

(
Ψ†Ψ

)2(
Ψ†τ1σ0Ψ

)2(
Ψ†τ2σ0Ψ

)2(
Ψ†τ3σ0Ψ

)2
 =

1

4

 1 1 1 1 1 1
1 1 −1 −1 −1 −1
−1 1 −1 −1 −1 1
1 −1 −1 −1 −1 1



×



(
Ψ†(x)Γ3Ψ∗(x)

) (
ΨT (x)Γ3Ψ(x)

)(
Ψ†(x)Γ7Ψ∗(x)

) (
ΨT (x)Γ7Ψ(x)

)(
Ψ†(x)Γ9Ψ∗(x)

) (
ΨT (x)Γ9Ψ(x)

)(
Ψ†(x)Γ10Ψ∗(x)

) (
ΨT (x)Γ10Ψ(x)

)(
Ψ†(x)Γ12Ψ∗(x)

) (
ΨT (x)Γ12Ψ(x)

)(
Ψ†(x)Γ15Ψ∗(x)

) (
ΨT (x)Γ15Ψ(x)

)

 .
(24)

Introducing the following notations:

S1(r, τ) = iΨT (x)Γ3Ψ(x) = ΨT (x)(iτ0σ2)Ψ(x),

S2(r, τ) = iΨT (x)Γ15Ψ(x) = ΨT (x) (iτ3σ2) Ψ(x),

T3(r, τ) = iΨT (x)Γ7Ψ(x) = ΨT (x) (iτ1σ2)) Ψ(x),

T (1)
4 (r, τ) = iΨT (x)Γ9Ψ(x) = ΨT (x) (iτ2σ0) Ψ(x),

T (2)
4 (r, τ) = iΨT (x)Γ10Ψ(x) = ΨT (x) (iτ2σ1) Ψ(x),

T (3)
4 (r, τ) = iΨT (x)Γ12Ψ(x) = ΨT (x) (iτ2σ3) Ψ(x).

we can now write down the Lagrangian density describing
the interactions in the particle-particle channel:

Lint =

2∑
j=1

ujS†j (r, τ)Sj(r, τ) + u3T †3 (r, τ)T3(r, τ)

+ u4

3∑
m=1

T (m)†
4 (r, τ)T (m)

4 (r, τ).

(25)

where the newly introduced (pairing) coupling constants
are u1 = (g1 + g2− g3 + g4)/4, u2 = (g1− g2 + g3 + g4)/4,
u3 = (g1 + g2 + g3 − g4)/4 and u4 = (g1 − g2 − g3 −
g4)/4. Thus, just like in the case of particle-hole channel,
we have ended up with four independent couplings. By
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expanding the operators (25) we can interpret S1(r, τ) as
the pairing operator in the s-wave channel, while S2(r, τ)
as the pairing operator leading to s±-wave pairing. The
remaining operators account for the pairing in either odd-
parity and/or spin-triplet channel.

The renormalization group equations for the couplings
uj can now be derived following the same procedure used
to derive Eqs. (17). It is worth mentioning here that
in this case, that the first four diagram in Fig. 4 give
the same contribution (up to a numerical pre-factor) to
the effective action and, importantly, only a contribution
from the diagram (E) contains the mass anisotropy pa-
rameter η. The resulting RG equations in this case read:

du1

d ln s
=
mΛ

2π2

[
(u1 − u2)(u3 + 3u4)− 2(1 + 2η)u2

1

]
,

du2

d ln s
=
mΛ

2π2

[
(u2 − u1)(u3 + 3u4)− 2(1 + 2η)u2

2

]
,

du3

d ln s
=
mΛ

4π2

[
(u1 − u2)2 + u2

3 − 3u2
4 + 6u3u4

]
,

du4

d ln s
=
mΛ

4π2

[
(u1 − u2)2 + (u3 − u4)2 + 4u2

4

]
.

(26)

As we have mentioned above these equations have been
obtained independently of our earlier calculation, so one
can readily check that upon expressing the coupling uj ’s
in terms of the coupling constants gj ’s for the particle-
hole channel interactions, we recover the RG equations
(17).

The fixed point(s) of the equations above (26) can be
found using the same strategy as we have used above.
Since the right-hand-side of the last equation (26) can be
written as a sum of the squares, we consider the ratio of
the couplings λa = ua/u4. We find that just like in the
particle-hole case, there are six fixed points: five unstable
ones and one stable (”sink”) when initial value of the
coupling u4 < 0. The results for the flow of the couplings
are presented in Fig. 2. The stable fixed point - ”sink”
- is determined by λ∗3 = 1 and λ∗1 = λ∗2 = (1/4)(2λ∗3 −
(λ∗3)2 − 5)/(1 + 2η).

E. Particle-particle channel susceptibilities

To determine the leading channel for the pairing insta-
bility, we need to evaluate the corresponding susceptibil-
ities. Introducing the source terms into the action

∆Sp-p = −
∑
i

∆Γi

∫
k

ΨT (k, τ)Γ̂iΨ(k, τ), (27)

Here the summations is performed over matrices i =
3, 7, 9, 10, 12, 15 and k = (τ,k). The subsequent calcu-
lation is completely analogous to the one above for the
susceptibilities in the particle-hole channel. Specifically,
after integrating out the fast modes for the renormaliza-
tion of the source term (20) and keeping in mind that

-2 -1 0 1 2 3 4
u

3
/u

4

-2

-1

0

1

u s/u
4

FIG. 2: Renormalization group flow of the coupling constant
ratios in the particle-particle channel for the case of small mis-
match between the effective masses, η = 0.125. We find that
there are six fixed points overall in this case. Five fixed points
(solid orange circles) are always unstable. The remaning one
(solid red circle) is stable when u4 < 0 and becomes unstable
when u4 > 0. Without loss of generality we chose to limit the
presentation to a case of u1 = u2 = us and we also assumed
that at the beginning of the RG flow (mΛ/4π2)u4 = −0.1.

Γiνµ = −Γiµν we find

∆Γi(s)ΨT
<(k)Γ̂Ψ<(k) = s2∆Γi(1)ΨT (k)Γ̂iΨ(k)

− s2∆Γi(1)
∑
S
gS

∫
dω

2π

Λ∫
Λ/s

p2dp

2π2

Γ(i)
νµGµγ(p, iω)SγδΨδ(k)Gνα(−p,−iω)SαβΨβ(k).

(28)

The momentum and frequency integrals appearing here
have been computed already (see Eqs. (B17,B21) in Ap-
pendix B). The equations for the flow of the functions

∆
(i)
pp(s) are

d ln ∆Γ3

d ln s
= 2− (1 + 2η)(u1 + u2 + u3 − u4)

mΛ

π2
,

d ln ∆Γ15

d ln s
= 2− (1 + 2η)(u1 + u2 − u3 + u4)

mΛ

π2
,

d ln ∆Γa

d ln s
= 2, (a = 7, 9, 10, 12).

(29)

Since the only stable fixed point exists for u4 < 0, the
fastest divergent susceptibility is clearly determined by
the ratio (u1 +u2 +u3−u4)/(u1 +u2−u3 +u4). Numer-
ical analysis of these equations shows that susceptibility
∆Γ3 corresponding to the singlet s-wave pairing is the
one diverging fastest. Furthermore, we find that while
the leading divergence corresponds to the singlet pairing,
the strongest divergence is still governed by the excitonic
instability.
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IV. CONCLUSIONS

As the recent experimental studies have shown, the
materials which may exhibit the physical effects we have
discussed so far are disordered either due to alloying or
due to the presence of vacancies in the nominally sto-
ichiometric compounds. This is especially relevant for
the excitonic instabilities, which are prone to slightest
anisotropy of the underlying band structure let alone the
presence of disorder. Since our results so far ignored the
presence of disorder, we cannot claim with certainty that
the excitonic instability will still be the leading one in
that case. This problem, however, requires a thought-
ful and careful treatment and, as such, goes beyond the
scope of the present study.

Other avenues for further investigation of the problems
related to the one discussed here concern the renormaliza-
tion of the chemical potential especially when the system
has been doped and, as a result, the superconducting in-
stability develops faster than the excitonic one. Lastly,
we would like to mention the situation when the s-orbital
band inverts with the f -orbital one, which would mean
the hybridization matrix element will have Vk ∝ k3, so
upon integrating out the fast modes it will be the lead-
ing determining factor in renormalization of the coupling
constants. With this being said, the specific focus of our
the future studies depend mainly on the appearance of
new experimental data.

To conclude, we have studied the problem of weak cou-
pling many-body instabilities in narrow gap semiconduc-
tors with odd-parity band inversion. Our study has been
mainly motivated by recent experimental and theoretical
work addressing thermodynamic properties of samarium
hexaboride. By employing the renormalization group
technique we find that the leading instability is towards
the formation of an excitonic order. Depending on the
microscopic details of the model the leading excitonic in-
stability may or may not break the time-reversal symme-
try.
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Appendix A: Dirac matrices

We use the following definition of the Dirac matrices

γ0 =

(
σ̂0 0
0 −σ̂0

)
, γ1 =

(
0 σ̂x
−σ̂x 0

)
,

γ2 =

(
0 σ̂y
−σ̂y 0

)
, γ3 =

(
0 σ̂z
−σ̂z 0

)
,

γ5 =

(
0 σ̂0

σ̂0 0

)
.

(A1)

Here σ̂0 is a 2×2 unit matrix and σ̂a (a = x, y, z) are
Pauli matrices.

Appendix B: Renormalization group equations:
auxiliary expressions

1. Cumulant expansion

To calculate the average entering into equation (16) we
will employ the cumulant expansion. It reads:

〈e−Sint[Ψ<,Ψ>]〉0> ≈ e−〈Sint〉+ 1
2 (〈S2

int〉−〈Sint〉2)+... (B1)

To avoid the complications arising from the antisym-
metrization of the interaction (12), we will formally con-
sider the interaction part of the action for general cou-
pling in the form

Sint =
∑
ST

∏
j=1,2

∫
drj

∫
dτjUST (12)

×
(
Ψ†(1)SΨ(1)

) (
Ψ†(2)T Ψ(2)

)
,

(B2)

where we used the notation

UST (12) =
gST

2

∫
dτ

∫
dr

2∏
j=1

δ(r− rj)δ(τ − τj) (B3)

and we defined Ψ(j) = Ψαj
(rj , τj) (j = 1, 2). Using these

notations, for the correction to the action we find

1

2
(〈S2

int〉 − 〈Sint〉2) =
1

2

∑
SS′

∑
T T ′

∑
1234

UST (12)US′T ′(34)〈
(
Ψ†(1)SΨ(1)

) (
Ψ†(2)T Ψ(2)

) (
Ψ†(3)S ′Ψ(3)

) (
Ψ†(4)T ′Ψ(4)

)
〉

− 1

2

∑
SS′

∑
T T ′

∑
1234

UST (12)US′T ′(34)〈
(
Ψ†(1)SΨ(1)

) (
Ψ†(2)T Ψ(2)

)
〉〈
(
Ψ†(3)S ′Ψ(3)

) (
Ψ†(4)T ′Ψ(4)

)
〉
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FIG. 3: Diagram containing a single fermionic loop, which
appear in the expansion of the effective action (B4). The
solid lines represent the single-particle propagators, while the
dashed lines represent the interaction (B2). The momenta
of the internal solid lines lie on the ’fast’ momentum shell
Λ/s ≤ k ≤ Λ.

and each Ψ = Ψ< + Ψ>. Note that the correction to the
action is defined as

∆Sint = −1

2
(〈S2

int〉 − 〈Sint〉2). (B4)

There are five different non-zero contributions to (B4).
The diagram describing the fist contribution is shown on
Fig. 4.

a. Diagram A. Analytical expression for the diagram Fig. 3 is given by

1

2

∑
US1T1(12)US2T2(34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

) (
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉A

= −1

8

∑
S1T1

∑
S2T2

gS1T1gS2T2

∫
1

∫
2

{(
Ψ†(1)S1Ψ(1)

)
Tr [T1G(1− 2)S2G(2− 1)]

(
Ψ†(2)T2Ψ(2)

)
+
(
Ψ†(1)S1Ψ(1)

)
Tr [T1G(1− 2)T2G(2− 1)]

(
Ψ†(2)S2Ψ(2)

)
+
(
Ψ†(1)T1Ψ(1)

)
×Tr [S1G(1− 2)T2G(2− 1)]

(
Ψ†(2)S2Ψ(2)

)
+
(
Ψ†(1)T1Ψ(1)

)
Tr [S1G(1− 2)S2G(2− 1)]

(
Ψ†(2)T2Ψ(2)

)}
= −1

2

∑
S1S2

gS1gS2

∫
1

∫
2

(
Ψ†(1)S1Ψ(1)

)
Tr [S1G(1− 2)S2G(2− 1)]

(
Ψ†(2)S2Ψ(2)

)
.

(B5)

b. Diagrams B & C. The correction to the action from the diagram (B) , Fig. 4(b,c), reads:

1

2

∑
US1T1(12)US2T2(34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

) (
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉B

=
1

8

∑
S1T1

∑
S2T2

gS1T1gS2T2

∫
1

∫
2

×
{(

Ψ†(1)S1G(1− 2)S2G(2− 1)T1Ψ(1)
) (

Ψ†(2)T2Ψ(2)
)

+
(
Ψ†(1)T1G(1− 2)S2G(2− 1)S1Ψ(1)

) (
Ψ†(2)T2Ψ(2)

)
+ (S2 ↔ T2)

}
=

1

2

∑
S1S2

gS1gS2

∫
1

∫
2

(
Ψ†(1)S1G(1− 2)S2G(2− 1)S1Ψ(1)

) (
Ψ†(2)S2Ψ(2)

)
.

(B6)

Finally, the last two contributions to the action can be described by the two diagrams in Fig. 4(d,e). For the diagram
(D) we derive the following expression

1

2

∑
US1T1(12)US2T2(34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

) (
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉D

=
1

2

∑
S1S2

gS1gS2

∫
1

∫
2

(
Ψ†(1)S1G(1− 2)S2Ψ(2)

) (
Ψ†(2)S2G(2− 1)S1Ψ(1)

)
.

(B7)

Similarly, for the diagram (E) we find

1

2

∑
US1T1(12)US2T2(34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

) (
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉E

=
1

4

∑
S1S2

gS1gS2

∫
1

∫
2

{(
Ψ†(1)S1G(1− 2)S2Ψ(2)

)2
+
(
Ψ†(1)S2G(1− 2)S1Ψ(2)

)2}
.

(B8)

We would like to remind the reader that the integration in the internal fermionic lines is limited to the momentum
shell [Λ/s,Λ].
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FIG. 4: Remaining four diagrams in one-loop approximation, which appear in the expansion of the effective action (B4). The
solid lines represent the single-particle propagators, while the dashed lines represent the interaction (B2). The momenta of the
internal solid lines lie on the ’fast’ momentum shell Λ/s ≤ k ≤ Λ.

2. Single-particle propagator

These expressions can now be used integrate out the
fast modes. To do that, we use the expression for the
single particle propagator

Gk(iωn) =

(
(iωn + µ− ξk)14 −

∑
a

Σadak

)−1

= −
(iωn + µ− ξk)14 + γ0d

0
k +

∑
a
γ0γad

a
k

(ωn − iµ+ iξk)2 + E2
k

,

(B9)

where ωn = πT (2n + 1) are Matsubara frequencies

and Ek =
√

(d0
k)2 + (dxk)2 + (dyk)2 + (dzk)2 is the renor-

malized single-particle spectrum.

3. Particle-hole channel at T = 0

Here we will evaluate the one-loop diagrams on the
momentum shell p ∈ [Λ/s,Λ]. Recall that in the limit
T → 0

T
∑
ωn

→
∫
dω

2π
(B10)

We adopted the following notations s = et, so for the
infinitesimally narrow shell Λ/s = Λe−δt ≈ Λ(1 − δt).
Next we consider an expression for the fermionic loop in
particle-hole channel

P̂l(Λ, µ) =

Λ∫
Λ(1−δt)

k2dk

2π2

∫
dΩk

4π

∞∫
−∞

dω

2π
Gk(iω)⊗Gk(iω)

(B11)
and here we use the compact notation G ⊗ G ≡
Gα1α2

Gα3α4
. Integration over frequency

∞∫
−∞

dωn
2π

(iωn + µ− ξk)2

[(ωn + i(ξk − µ)2 + E2
k]2

=
1

4E3
k

[ϑ(x1 + 1)− ϑ(x1 − 1)] ,

(B12)

where x1 = (µ − ξk)/Ek. It will also be convenient to
work with function F1(x) which is defined according to:

F1(x) =
1

2
sign(1 + x1) +

1

2
sign(1− x1). (B13)

It is straightforward to integrate over frequency which
yields (δt� 1):

P̂1(Λ, µ) =

Λ∫
Λ(1−δt)

k2dk

2π2

∫
dΩk

4π
F1

(
µ− ξk
Ek

)
×

{
− 1

4Ek
(14 ⊗ 14) +

1

4E3
k

∑
ab

dakd
b
k

(
Σa ⊗ Σb

)}
.

(B14)

To the leading order in powers of Λ� kF the hybridiza-
tion term is much smaller than the kinetic energy:

P̂1(Λ, µ) =

Λ∫
Λ(1−δt)

k2dk

8π2
F1

(
µ− ξk
Ek

)

×
{
ε2k
E3

k

(
Σ0 ⊗ Σ0

)
− 14 ⊗ 14

Ek

}
.

(B15)

The value of the remaining integral can be estimated by
taking Λ→∞ and δt� 1. I have

P̂1(Λ, µ) ≈ m+Λ

4π2
F1

(
−m+

m−

)
{γ0 ⊗ γ0 − 14 ⊗ 14} δt.

(B16)
Since m+/m− = (mf − mc)/(mf + mc), in the limit
mf � mc it follows that m+/m− ≈ 1−2mc/mf , so that
F1(−m+/m−) ≈ 1. Note that the pre-factor is propor-
tional to the density of states at the Fermi level per spin
for the free electrons in three-dimensions.
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4. Particle-particle channel at T = 0

For the computation of the diagrams (D) and (E) I will
also need to compute the following integral (δt� 1):

K̂1(Λ, µ) =

Λ∫
Λ(1−δt)

k2dk

2π2

∫
dΩk

4π

×
∞∫
−∞

dω

2π
Gk(iω)⊗G−k(−iω)

(B17)

Just like for the calculation of the particle-hole loop, we
will integrate over ω first and write down the results in
terms of the following functions:

∞∫
−∞

dω

2π

1

[(ω + iµ− iξk)2 + E2
k][(ω − iµ+ iξk)2 + E2

k]

=
C(1)

1 [(µ− ξk)/Ek]

4E3
k

,

∞∫
−∞

dω

2π

[ω2 + (µ− ξk)2]

[(ω + iµ− iξk)2 + E2
k][(ω + iξk − iµ)2 + E2

k]

=
C(2)

1 [(µ− ξk)/Ek]

4Ek
.

(B18)

where functions C(1)
1 and C(2)

1 are defined by

C(1)
1 (x) =

xϑ(1− x)− ϑ(x− 1)

x(1− x2)
,

C(2)
1 (x) =

xϑ(1− x) + (1− 2x2)ϑ(x− 1)

x(1− x2)
.

(B19)

We find

K̂1(Λ, µ) =

Λ∫
Λ(1−δt)

k2dk

2π2

{
ε2k

4E3
k

(
Σ0 ⊗ Σ0

)
C(1)

1

(
µ− ξk
Ek

)

+
1

4Ek
(14 ⊗ 14) C(2)

1

(
µ− ξk
Ek

)}
.

(B20)

Just like in our analysis of the particle-hole channel, by
taking into consideration Λ2/2mµ � 1 and δt � 1, we
arrive to the following expression

K̂1(Λ, µ) ≈ m+Λ

4π2

{
(γ0 ⊗ γ0) C(1)

1

(
−m+

m−

)
+ (14 ⊗ 14) C(2)

1

(
−m+

m−

)}
δt+O(δt2).

(B21)

This expression can be further simplified since is usually
mf � mc so that:

m+

m−
=

mfmc

(mf +mc)

(mf −mc)

mfmc
=
mf −mc

mf +mc
≤ 1. (B22)

Then it follows

C(1)
1

(
−m+

m−

)
= C(2)

1

(
−m+

m−

)
=

(mf +mc)
2

4mfmc
≈ mf

4mc
≡ 1 + 2η.

(B23)

We use these results to compute the corrections to the
coupling constants.
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