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Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the
current Noisy Intermediate-Scale Quantum (NISQ) era. This paper combines hybrid quantum-classical compu-
tation and quasi-probability decomposition to propose two variational quantum algorithms, called Variational
Entanglement Detection (VED) and Variational Logarithmic Negativity Estimation (VLNE), for detecting and
quantifying entanglement on near-term quantum devices, respectively. VED makes use of the positive map cri-
terion and works as follows. Firstly, it decomposes a positive map into a combination of quantum operations
implementable on near-term quantum devices. It then variationally estimates the minimal eigenvalue of the final
state, obtained by executing these implementable operations on the target state and averaging the output states.
Deterministic and probabilistic methods are proposed to compute the average. At last, it asserts that the target
state is entangled if the optimized minimal eigenvalue is negative. VLNE builds upon a linear decomposition of
the transpose map into Pauli terms and the recently proposed trace distance estimation algorithm. It variation-
ally estimates the well-known logarithmic negativity entanglement measure and could be applied to quantify
entanglement on near-term quantum devices. Experimental and numerical results on the Bell state, isotropic
states, and Breuer states show the validity of the proposed entanglement detection and quantification methods.

I. INTRODUCTION

It is widely believed that we are now in the Noisy Interme-
diate Scale Quantum (NISQ) era [1], where quantum comput-
ers with 50-100 qubits are available while noise in quantum
gates severely limits the quantum circuits that can be executed
reliably. It thus becomes important to make the best use of
today’s NISQ devices to design practical applications. One
promising scheme for near-term quantum applications is the
variational quantum algorithms (VQA) [2], which have been
applied to solve many tasks including Hamiltonian ground and
excited states preparation [3, 4], quantum state distance esti-
mation [5, 6], quantum metrology [7, 8], and quantum data
compression [9–11]. These variational quantum algorithms
involve evaluating and optimizing loss functions that depend
on parameters in parameterized quantum circuits (PQC). They
are regarded as well-suited for execution on NISQ devices by
combining quantum computers with classical computers. We
refer the readers to [12, 13] for a detailed review on VQA.

Quantum entanglement [14], the most nonclassical mani-
festation of quantum mechanics, has been identified as invalu-
able resource enabling a tremendous number of tasks rang-
ing from quantum information processing [15, 16], quantum
cryptography [17–19], quantum algorithms [20–22], quan-
tum communication [23, 24], to measurement-based quantum
computing [25–28]. As so, the ability to manipulate quantum
entanglement is the cornerstone to achieve real applications
of quantum technologies. A number of theoretical and ex-
perimental methods have been proposed in the past 20 years
for entanglement detection and quantification [14, 29, 30].
For example, entanglement can be detected via entangle-
ment witnesses [31, 32], Bell’s inequalities [33], quantum
Fisher information [34], realignment criterion [35, 36], range
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criterion [37], and majorization criterion [38], to name a
few. These methods commonly assume that prior informa-
tion about the target state is known. A direct way to obtain
such information is to perform quantum state tomography and
reconstruct the density matrix [39, 40]. However, tomogra-
phy becomes unrealistic as the number of required measure-
ment settings scales exponentially with the size of the system.
Briefly speaking, though there are many methods proposed for
detecting and quantifying quantum entanglement, they are not
specially designed for near-term quantum devices and thus are
not directly applicable in most cases, rendering reliable detec-
tion and quantification of quantum entanglement on near-term
quantum devices a vital challenge.

In this paper, we combine VQA and the quasi-probability
decomposition technique [41–47] to propose the Variational
Entanglement Detection (VED) and Variational Logarithmic
Negativity Estimation (VLNE) algorithms, aiming to detect
and quantify quantum entanglement on near-term quantum
devices, respectively. VED uses criteria based on positive
maps as a bridge and works as follows. Given an unknown
target bipartite quantum state, it firstly decomposes the cho-
sen positive map into a linear combination of NISQ imple-
mentable quantum operations. Then, it variationally estimates
the minimal eigenvalue of the final state, which is obtained by
executing these quantum operations on the target state and av-
eraging the output states. Two methods are proposed to com-
pute the average: the first one averages the output states ac-
cording to the quasi-probability distribution, and the second
one estimates the average via the sampling technique and is
probabilistic. At last, it asserts that the target state is entan-
gled if the optimized minimal eigenvalue is negative. Fol-
lowing the idea of VED, VLNE variationally computes the
well-known log-negativity entanglement measure, building on
a linear decomposition of the transpose map into Pauli terms
and the recently proposed trace distance estimation algorithm.
Our main contributions can be summarized as follows:

1. We combine VQA and the quasi-probability decompo-
sition technique to propose the VED framework, con-
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tributing a feasible solution for detecting entanglement
on near-term quantum devices.

2. We combine VQA and the quasi-probability decompo-
sition technique to propose the VLNE algorithm that
could estimate the well-known logarithmic negativ-
ity [48], which may lead to various applications in near-
term quantum information processing.

Experimental and numerical results reveal the validity of the
proposed entanglement detection and quantification methods.

Our paper is structured as follows. In Sec. II, we set the no-
tations and briefly summarize the entanglement criteria based
on positive maps. In Sec. III, we present our first main re-
sult: the VED framework. In Sec. IV, we elaborate on three
prominent positive maps to illustrate how the VED framework
is applied. In Sec. V, we present our second main result: the
VLNE framework, which estimates the logarithmic negativ-
ity entanglement measure. In Secs. VI and VII, experiments
on IBM-Q and numerical simulations on Paddle Quantum are
conducted on various bipartite quantum states of interests to
show the validity of the proposed methods. We finally con-
clude in Sec. VIII.

II. PRELIMINARIES

A. Notations

In this section, we set the notation and define several quanti-
ties that will be used throughout this paper. We will frequently
use symbols such asHA andHB to denote Hilbert spaces as-
sociated with quantum systemsA andB, respectively. We use
dA to denote the dimension of the system A. The set of linear
operators acting on A is denoted by L(HA). We write an op-
erator with subscript to indicate the system that the operator
acts on, e.g., XAB , and write XA := TrB XAB . For a linear
operator X ∈ L(HA), we define its modulus |X| :=

√
X†X ,

where X† is the adjoint operator of X . The trace norm of X
is defined as ‖X‖1 := Tr |X|. We use X ≥ 0 to indicate that
A is positive semidefinite. A quantum mapN that transforms
linear operators to linear operators in the system A is abbre-
viated as NA→A. We use the calligraphic letters (e.g., N , R,
and O) to represent linear quantum maps and use idA to rep-
resent the identity map on system A. We say NA→A is trace-
preserving if Tr[N (X)] = Tr[X] for arbitrary X ∈ L(HA),
is positive if N (X) ≥ 0 for arbitrary X ≥ 0, and is com-
pletely positive if idR ⊗ N is positive for arbitrary reference
system R.

Given a Hermitian operator X in system A, we denote by
λmin(X) its minimal eigenvalue. We have the following vari-
ational characterization:

λmin(X) = min
|ψ〉
〈ψ|X|ψ〉, (1)

where the minimization ranges over the set of pure states on
system A.

We use R to represent the real field. We introduce the sign
function sgn : R → {±1, 0} as ∀x < 0, sgn(x) = −1;

∀x > 0, sgn(x) = 1; and sgn(0) = 0. All logarithms are in
base 2 in this paper.

B. Pauli operators and Pauli channels

The four Pauli operators in the qubit space are defined as

I ≡ σ0 :=

(
1 0
0 1

)
, X ≡ σ1 :=

(
0 1
1 0

)
, (2a)

Y ≡ σ2 :=

(
0 −i
i 0

)
, Z ≡ σ3 :=

(
1 0
0 −1

)
. (2b)

They provide a basis for the qubit linear operators, i.e., arbi-
trary qubit linear operator can be decomposed w.r.t. this basis.
For the n-qubit case, one can construct a set of Pauli opera-
tors, which we call the Pauli set, as

Pn :=

{
n⊗
k=1

σqk

∣∣∣∣∣ qk = 0, 1, 2, 3

}
≡ {I,X, Y, Z}⊗n . (3)

The n-qubit Pauli set has size |Pn| = 4n. Note that Pn forms
a basis for the n-qubit linear operators. One can see from (3)
that each Pauli operator P ∈ Pn can be represented uniquely
by a quaternary sequence:

q = q1 · · · qn, with qk = 0, 1, 2, 3. (4)

As so, we use Pq to represent the n-qubit Pauli operator that
is uniquely determined by the sequence q. Since each qubit
Pauli operator is unitary, so is each n-qubit Pauli operator,
due to the construction. Given a Pauli operator P ∈ Pn, we
denote by P(·) := P (·)P † its induced Pauli channel.

C. Entanglement detection via positive maps

Let ρAB be a bipartite quantum state in the composite sys-
tem AB. By definition ρAB is separable if it can be decom-
posed into a convex combination of tensor products of states
describing local systems as [49]

ρAB =
∑
x

px|ψx〉〈ψx|A ⊗ |φx〉〈φx|B , (5)

where px ≥ 0,
∑
x px = 1, and {|ψx〉}x and {|φx〉}x are

two sets of pure states in systems A and B, respectively. Oth-
erwise, ρAB is entangled. Given the definition, it is natural
to ask whether a given unknown bipartite quantum state is
separable or entangled, known as the separability problem.
This problem has been shown to be NP-hard [50, 51]. There
are many separability criteria that have been proposed to de-
termine the separability or entanglement of bipartite quantum
states as necessary conditions [14, 29].

One of the most celebrated criteria for distinguishing sep-
arable states from entangled states are the positive map crite-
rion. The core of the positive map criterion is that one subjects
a subsystem of ρAB to a positive (but not completely positive)
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map NB→B that preserves the positivity of inputs. If ρAB is
a product state, i.e., it is of the form ρA ⊗ ρB , the resulting
operator ρA ⊗ N (ρB) is still positive. Consequently, due to
the linearity, an arbitrary separable state is mapped into some
positive operator by this map. On the other hand, if ρAB is en-
tangled, the output operator NB→B(ρAB) may be no longer
positive; the transpose map is a prominent example [52]. That
is to say, the negative spectrum of the output operator indicates
entanglement of the input state. Mathematically, the positive
map criterion states that a bipartite quantum state ρAB is sep-
arable if and only if for arbitrary system C and arbitrary pos-
itive (but not completely positive) map NB→C , it holds that
NB→C(ρAB) ≥ 0 [31].

Despite its proven efficiency in entanglement detection,
the positive map criterion is not directly applicable in prac-
tice, especially on recent NISQ devices. This is an immedi-
ate consequence of the fact that generically positive but not
completely positive maps do not represent physically imple-
mentable quantum operations [53] and thus cannot be realized
in near-term quantum devices. In the following, we show how
to overcome this obstacle and employ the positive map crite-
rion to detect entanglement on NISQ devices.

III. QUANTUM ENTANGLEMENT DETECTION

In this section, we integrate variational quantum algorithms
with the quasi-probability decomposition technique [41–47]
to propose a bipartite entanglement detection framework spe-
cially designed for near-term quantum devices, using positive
map criterion as a bridge. For simplicity, we assume A and
B are two n-qubit quantum systems throughout this section.
However, we remark that the proposed framework can applied
to bipartite systems with different dimensions directly.

Let ∆ be a discrete set of quantum operations that are im-
plementable in the near-term quantum devices. For example,
one may choose ∆ to be the set of implementable operations
introduced in [45, 46]. Alternatively, one may set ∆ to be the
set of Pauli channels induced by Pauli operators from the Pauli
set (3). For a positive (but not completely positive) and trace-
preserving mapNB→B , we assume that it can be decomposed
w.r.t. ∆ as

N (·) =
∑
O∈∆

rOO(·), rO ∈ R. (6)

Note that such a decomposition always exists if ∆ contains a
universal basis [45]. The trace-preserving condition imposes∑
O rO = 1. We emphasize that there must exist negative co-

efficients rO since otherwise,N is completely positive. Given
a bipartite quantum state ρAB , we have

σAB := NB→B(ρAB) =
∑
O∈∆

rOOB→B(ρAB). (7)

To see if ρAB can be detected by N , i.e., if ρAB is en-
tangled from N ’s perspective, we need to check if the out-
put state σAB has a negative eigenvalue or not. Denote by
λmin(σAB) as the smallest eigenvalue of σAB . By the posi-
tive map criterion, if ρAB is separable, then it must hold that

λmin(σAB) ≥ 0. Equivalently, if λmin(σAB) < 0, we safely
conclude that ρAB is entangled and it can be detected by the
positive map NB→B . This highlights the importance of com-
puting or estimating λmin(σAB) in entanglement detection.

A. Deterministic detection

As we have argued, σAB cannot be obtained directly via
N (ρ) since N does not represent physically implementable
quantum operations. Fortunately, the decomposition (7) em-
powers us an effective way to simulate the role of N and re-
construct σAB as an average of a set of output states, obtained
using quantum circuits implementable in near-term devices.
This decomposition technique, combined with the variational
quantum algorithm, enables a general framework that esti-
mates λmin(σAB), whose value can witness the entanglement
of the input state ρAB . We call this framework the Varia-
tional Entanglement Detection (VED). The core idea is to use
the linear decomposition (7) of the target state σAB and the
framework goes as follows. First of all, by (1) it holds that

λmin(σAB) = min
|ψ〉AB

〈ψ|σAB |ψ〉 (8)

= min
|ψ〉AB

∑
O∈∆

rO〈ψ|O(ρAB)|ψ〉, (9)

where the minimization ranges over all pure bipartite quan-
tum states |ψ〉AB in AB. We use a variational quantum cir-
cuit with parameters α to prepare the test state |ψ〉. More
precisely, we choose a parametrized quantum circuit ansatz
that generates a unitary U(α) and prepare the test state via
|ψ〉 = U(α)|0〉⊗2n. Each inner product 〈ψ|O(ρ)|ψ〉 in (9)
can be estimated via the canonical Swap Test subroutine [54],
as bothU(α) andO can be implemented in near-term devices.
However, this subroutine costs a total number of 4n+1 qubits
and requires a 4n-qubit SWAP gate, which is resource con-
suming when n becomes large. Here we explore the special
structure of the overlap 〈ψ|O(ρ)|ψ〉 and propose an qubit ef-
ficient estimating procedure which uses 2n qubits and avoids
the use of expensive SWAP gate. First of all, notice that

〈ψ(α)|O(ρAB)|ψ(α)〉 (10)

= Tr
[
O(ρAB)Uα|02n〉〈02n|U†α

]
(11)

= 〈02n|U†αO(ρAB)Uα|02n〉, (12)

where the second equality follows from the cyclic property
of trace function. Since each O is implementable on near-
term quantum devices, we may use ρAB as input to the
quantum circuit implementing O, and estimate the overlap
〈ψ|O(ρAB)|ψ〉 using the quantum circuit illustrated in Fig. 1.
The overlap is obtained by counting the relative frequency of
the measurement outcome 02n. Then, we repeat the estima-
tion procedure |∆| times, where |∆| is the size of ∆, to obtain
the overlaps for different O in (9). With these data in hand,
we compute the following loss function

L(α) :=
∑
O∈∆

rO〈ψ(α)|O(ρAB)|ψ(α)〉. (13)
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FIG. 1: The simplified quantum circuit that estimates the over-
lap 〈ψ|O(ρAB)|ψ〉 in (12) for a given implementable operation O,
where |ψ〉 := Uα|0〉⊗2n is the parameterized input state.

At last, we perform gradient-based optimization methods in-
cluding SGD [55] and Adam [56] to minimize the loss func-
tion L(α) by varying the parameters α, whose value will de-
termine the separability of the input state ρAB . More pre-
cisely, if L(α) is negative, we conclude that ρAB is entangled,
since by the positive map criterion, separable states cannot
yield a negative spectrum.

Taking into account the noise in NISQ quantum devices, we
may introduce a tolerance threshold δ > 0 so that L(α) < −δ
implies the input state is entangled. This threshold δ can be
set with prior knowledge about the noise characterization on
the NISQ devices. What’s more, for the purpose of entangle-
ment detection, it is unnecessary to minimize L(α) since the
condition L(α) < 0 is sufficient to assert that the input state
is entangled. Based on this observation, we can terminate the
optimization procedure that minimizes the loss function L(α)
in advance to save the optimization cost. The detailed VED
framework is summarized in Algorithm 1. We name it the de-
terministic VED to distinguish it from the probabilistic frame-
work described in the next section.

Algorithm 1 Deterministic VED
1: Input: 2n-qubit quantum state ρAB , decomposition (6) of the

positive mapN , parameterized quantum circuits U(α) with ini-
tial parameters α, and tolerance δ;

2: Initialize L(α) = 0;
3: for all O ∈ ∆ such that rO 6= 0 do
4: Apply Uα to |0〉⊗2n and obtain test state |ψ〉 = Uα|0〉⊗2n;
5: Input ρAB and compute the overlap cO := 〈ψ|O(ρAB)|ψ〉

using the quantum circuit in Fig. 1;
6: Update the loss function L(α) = L(α) + rOcO ,

where rO is given by the decomposition (6);
7: end for
8: Perform optimization methods to minimize L(α); terminate the

optimization if the error tolerance is satisfied: L(α) < −δ;
9: Output ”Entangled” if the optimized L(α) < −δ.

B. Probabilistic detection

In Algorithm 1, we have used a brute-force approach, where
we iterate over the set of implementable operations ∆, to es-
timate the loss function L(α). Actually, L(α) can be esti-
mated in a probabilistic way using the sampling technique, by
virtue of the quasi-probability decomposition (6). This new
method would be beneficial when the number of decomposed
operations in (6) with non-zero coefficients is large while the
sampling cost is relatively low. Now we describe the sam-

pling method accurately. First of all, notice that the decompo-
sition (6) induces a quasi-probability distribution {rO}O∈∆

over ∆. From this quasi-probability distribution, we can con-
struct a probability distribution {pO}O∈∆ using the canonical
technique, i.e.,

pO :=
|rO|
γ
, γ :=

∑
O∈∆

|rO|. (14)

Substituting (14) into (13) yields

L(α) = γ
∑
O∈∆

sgn(rO)pO〈ψ(α)|O(ρAB)|ψ(α)〉 (15)

= EO [γ sgn(rO)〈ψ(α)|O(ρAB)|ψ(α)〉] , (16)

where E(X) denotes the expectation of the random variable
X , and the expectation in (16) is evaluated w.r.t. the proba-
bility distribution {pO}O∈∆. Based on (16), we propose Al-
gorithm 2, which can be viewed as a probabilistic version of
Algorithm 1. In particular, Algorithm 2 replaces the brute-
force approach (steps 3-7) in Algorithm 1 with the sampling
approach, yielding a probabilistic algorithm.

Algorithm 2 Probabilistic VED
1: Input: 2n-qubit quantum state ρAB , decomposition (6) of the

positive mapN , parameterized quantum circuits U(α) with ini-
tial parameters α, error tolerance δ, and fail probability ε.

2: Initialize L′(α) = 0;
3: Compute γ defined in (14) and set M = 2γ2 log(2/ε)/δ2;
4: for all m = 1, · · · ,M do
5: Apply Uα to |0〉⊗2n and obtain test state |ψ〉 = Uα|0〉⊗2n;
6: Sample a quantum operation O(m) from ∆

according to the probability distribution {pO}O∈∆ in (14);
Let r(m) be the coefficient of O(m) in (6);

7: Input ρAB and compute the overlap c(m) := 〈ψ|O(m)(ρ)|ψ〉
using the quantum circuit in Fig. 1;

8: Compute L(m) = γ sgn(r(m))c(m);
9: end for

10: Compute the loss function L′(α) = 1
M

∑M
m=1 L

(m);
11: Perform optimization methods to minimize L′(α); terminate the

optimization if the error tolerance is satisfied: L′(α) < −δ;
12: Output ”Entangled” if the optimized L′(α) < −δ.

Let’s analyze Algorithm 2 in depth. First, we remark that
the obtained L′(α) in step 11 of Algorithm 2 is an unbi-
ased estimator of true value L(α) due to (16). Second, since
|L(m)| ≤ γ, we can apply the Hoeffding inequality [57] to
ensure that M = 2γ2 log(2/ε)/δ2 number of samples would
estimate the true value L(α) within error δ with success prob-
ability no less than 1− ε, i.e.,

p (|L′(α)− L(α)| ≤ δ) ≥ 1− ε. (17)

This confirms the validity of the sampling procedure (steps
4-9) of Algorithm 2. We call γ the sampling cost since it de-
termines M , the number of samples required to achieve the
desired precision. At last, we examine the success probability
of the algorithm, given the success probability condition (17)
of the sampling procedure. Assume the optimization proce-
dure repeats K times. The overall success probability of Al-
gorithm 2 is no less than 1−Kε, as a direct corollary of (17)
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and the union bound. That is to say, if Algorithm 2 outputs
”Entangled”, ρAB is entangled with probability larger than
1−Kε.

To summarize, we have proposed two variational entangle-
ment detection methods. Algorithm 1 is deterministic in the
sense that whenever it outputs ”Entangled”, one can safely as-
sert that ρAB is entangled. On the other hand, Algorithm 2
is probabilistic in the sense that even if it outputs ”Entan-
gled”, one can only declare that ρAB is entangled with certain
success probability. Nevertheless, when the number of de-
composed operations in (6) with non-zero coefficients is large
while the simulation cost γ is relatively low, the latter method
may be beneficial. In this case, one can reduce the number of
iterations via sampling and thus save computational resources.
Algorithm 2 scarifies precision for efficiency in entanglement
detection.

IV. PROMINENT POSITIVE MAPS

In Sec. III we have outlined the general deterministic and
probabilistic VED frameworks for detecting entanglement via
positive map criterion. In this section, we elaborate on three
prominent positive maps—the transpose map [52], the reduc-
tion map [58], and the enhanced reduction map [59, 60]—to
illustrate how the deterministic VED framework works. We
choose the set of NISQ implementable quantum operations ∆
to be the set of Pauli channels induced by Pauli operators from
the Pauli set (3), i.e.,

∆ :=
{
P
∣∣ P(·) = P (·)P †, P ∈ Pn

}
. (18)

For each of the three positive maps under consideration, we
firstly decompose it w.r.t. ∆ as (6) and then adopt the varia-
tional framework summarized in Algorithm 1 to fulfill entan-
glement detection. However, we remind that not all positive
maps can be decomposed w.r.t. the set of Pauli channels.

Here are remarks for the three criteria under consideration.
First, the reduction criterion is strictly weaker than both the
transpose criterion and the enhanced reduction criterion, in
the sense that the states that can be detected by the first cri-
terion can also be detected by the latter two criteria. Second,
there is no inclusion relation between the PPT criterion and
the enhanced reduction criterion. That is, there are states that
can be detected by one but not by the other. As so, given an
unknown state, one may execute VED twice, one adopts the
PPT criterion, and the other adopts the enhanced reduction
criterion. The state is necessarily entangled if at least one of
these two VEDs output ”Entangled.” We also show by exam-
ple how VED works in qutrit systems in Appendix A, utilizing
the Choi map [61, 62].

A. PPT criterion

A necessary condition for entanglement detection is the
positive partial transpose (PPT) criterion [52], which we
briefly review as follows. Let ρAB be a bipartite quantum

state. We can express it as

ρAB =
∑
ijkl

αijkl|i〉〈j|A ⊗ |k〉〈l|B , (19)

where {|i〉}i and {|k〉}k are the computational bases of A and
B, respectively. Its partial transpose with respect to system B
is defined as

ρTB

AB := (idA ⊗ TB)(ρAB) (20)

=
∑
ijkl

αijkl|i〉〈j| ⊗ (|k〉〈l|)T (21)

=
∑
ijkl

αijkl|i〉〈j| ⊗ |l〉〈k|, (22)

where TB denotes the transpose map on system B. The
PPT criterion says that if ρAB is separable, then ρTB

AB ≥ 0.
Conversely, the negative spectrum witnesses entanglement of
ρAB . What’s more, the PPT criterion is not only necessary
but also sufficient for separability of the 2 ⊗ 2 and 2 ⊗ 3
cases [31, 63, 64].

We begin with the two-qubit bipartite quantum state case.
Notice that the qubit transpose map admits the following de-
composition w.r.t. ∆ specialized in (18):

T (ρ) =
ρ+XρX − Y ρY + ZρZ

2
, (23)

whereX,Y, Z are the Pauli matrices defined in (2). The valid-
ity of this decomposition can be checked by direct calculation.
Substituting (23) into (22), we obtain

ρTB

AB := (idA ⊗ TB)(ρAB) (24)

=
1

2
(ρ+XBρXB − YBρYB + ZBρZB), (25)

where the quantum operation XBρABXB should be under-
stood as (IA ⊗ XB)ρAB(IA ⊗ XB), and similarly for Y ρY
and ZρZ. Adapting the decomposition (25) into Algorithm 1,
we successfully apply the proposed VED to accomplish the
PPT criterion in the qubit case.

Now we show the above detection method can be gener-
alized to the multi-qubit bipartite quantum state case. Let
B ≡ B1B2 · · ·Bn be a composite system with n qubits, i.e.,
Bi represents the i-th qubit system. A key observation is that
the transpose operation satisfies the tensor product property:
transposing the composite systemB is equivalent to transpos-
ing the local qubit systems Bi individually. More precisely,

TB =

n⊗
i=1

TBi
, (26)

where TBi
is the transpose operation on the i-th qubit.

Eqs. (26) and (23) together give TB a linear combination into
Pauli channels of 4n terms in total. Using this decomposi-
tion, we may apply VED (Algorithm 1 or Algorithm 2) to
accomplish the multi-qubit PPT criterion deterministically or
probabilistically.
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B. Reduction criterion

In this section, we first review the reduction criterion [58]
and then propose a variational algorithm implementing this
criterion within the VED framework described in III.

RB→B(XB) := Tr[XB ]IB −XB , (27)

which is known as the reduction map. The reduction criterion
says that if a bipartite quantum state ρAB is separable, then it
must hold that

σAB := (idA ⊗RB→B) (ρAB) ≥ 0. (28)

Equivalently, if σAB has negative eigenvalues, then ρAB is
entangled. It is based on this observation that our variational
algorithm works.

To apply the framework in III, we have first to decompose
RB→B into a linear combination of Pauli channels. Indeed,
we can do so since

RB→B(ρB) := Tr[ρB ]IB − ρB (29)

=
1

2n

∑
q∈{0,1,2,3}⊗n

Pq(ρB)IB − ρB (30)

=
1− 2n

2n
ρB +

1

2n

∑
q 6=0

Pq(ρB), (31)

where 0 ≡ (0, · · · , 0) of size n, and the second equality fol-
lows from the twirling property of Pauli channels [65, Exer-
cise 4.7.3]. Using this decomposition, we can call Algorithm 1
or Algorithm 2 to accomplish the reduction criterion.

Specially, in the qubit case where n = 1, the reduction map
is of the form

RB→B(ρ) =
−ρ+XρX + Y ρY + ZρZ

2
. (32)

As one might see, deterministic VED using the reduction
criterion is not efficient in the multi-qubit case since it has
to compute exponentially many numbers of overlaps: for a
2n-qubit bipartite quantum state, one has to compute 4n over-
laps. In Section IV E, we consider another version with better
efficiency by exploring the simple structure of the reduction
map (27).

On the other hand, probabilistic VED using the reduction
criterion is also not efficient due to the sampling cost γ ≈ 2n

for R. This observation leads to a simple way to improve the
efficiency of the probabilistic VED. For example, we intro-
duce the trace-preserving reduction map, defined via

R̂B→B(ρ) :=
1

2n − 1
RB→B(ρB). (33)

One can check that as a positive map, R̂ has the same en-
tanglement detection range as the original reduction map R.
On the contrary, the sampling cost of R̂ is γ = 1 + 1/2n,
which is exponentially smaller than that of R. This implies
that probabilistic VED using the trace-preserving reduction

map R̂ is very efficient in terms of the number of samples con-
sumed. However, the efficiency is achieved at the cost of the
high precision required in estimating the minimal eigenvalue
of R̂(ρAB), which decreases exponentially in n in general.
We point out this is a trade off between efficiency and preci-
sion. Similar arguments can be applied to the transpose map
and the enhanced reduction map discussed in the next section.

C. Enhanced reduction criterion

In this section, we consider an enhanced version of the re-
duction map [59, 60] for bipartite quantum states. This en-
hanced criterion is based on an elementary positive map which
operates on state spaces with even dimension. It is known
that the enhanced reduction criterion detects many bound en-
tangled states (states that satisfy the PPT criterion). As be-
fore, we first review this enhanced reduction criterion and
show how to combine it with the VED framework proposed
in Sec. III to detect entanglement.

Define the following anti-symmetric unitary in a n-qubit
Hilbert space:

Ua = antidiag(1,−1, 1,−1, · · · , 1,−1), (34)

where antidiag means anti-diagonal. For example, when n =
2, the corresponding anti-symmetric unitary has the form

Ua =

 0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 = X ⊗ iY. (35)

Indeed, one can check that the n-qubit Ua can be decomposed
w.r.t. the Pauli set as Ua = X ⊗ · · · ⊗ X ⊗ iY , where there
are n− 1 X operators in the tensor product. Based on Ua, we
define the following map [59]

KB→B(ρB) := RB→B(ρB)− UaTB(ρ)U†a , (36)

where RB→B is the reduction map defined in (27) and TB
is the transpose map defined in (22). This map has been
shown to be positive but not completely positive [59]. What’s
more, this map improves the reduction criterion and can de-
tect bound entangled states that cannot be detected by the PPT
criterion. Substituting the Pauli decomposition (31) of R and
the Pauli decomposition (26) of TB into (36) and regrouping
the Pauli terms, we obtain a Pauli decomposition of K, where
there is a total number of 4n Pauli terms. Using on this de-
composition, we can use VED (Algorithm 1 or Algorithm 2)
to accomplish the enhanced reduction criterion.

D. Discussion on the measurement cost

Note that another way to detect and quantify entanglement
of a state ρAB is to obtain its density matrix via quantum state
tomography [66]. Full density matrix reconstruction of an un-
known (nA+nB)-qubit state in the worst-case costs exponen-
tial copies of the state [67, 68], e.g., Ω̃(4nA+nB ) measurement
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results are necessary to reconstruct a matrix close to ρ in the
sense of trace distance [68]. Using the learned density matrix,
we can either numerically apply a positive map on it or com-
pute the fidelity between ρAB and any entangled target states.
However, such methods are resource-demanding compared to
the VED framework.

To use the decomposed maps for entanglement detection on
the state ρAB , we can apply them either to subsystem A or to
subsystem B, which requires poly(D)4min{nA,nB} measure-
ment results with circuit depth D in gradient-based optimiza-
tion loops. Besides the measurement cost, methods based on
state tomography need vast memory to store and process the
density matrix on a classical computer, which are resource-
demanding as well. The VED framework, on the other hand,
doesn’t require such classical memory and post-processing.

E. VED based on reduction criterion without decomposition

In Sec. IV B we have shown how VED uses the reduction
criterion to detect entanglement; it works by decomposing the
reduction map R into a linear combination of Pauli channels
and then variationally estimate the minimal eigenvalue of the
averaged output state.

Here we propose another variational entanglement detec-
tion algorithm for the reduction criterion, motivated by the
simple structure of the reduction map. The intuition behind
this protocol is as follows. We know that ρAB is entangled
if RB→B(ρAB) is not semidefinite positive. Using (1), this
means that

min
|ψAB〉

〈ψ|RB→B(ρAB)|ψ〉 (37)

= min
|ψAB〉

〈ψ|(IA ⊗ ρB − ρAB)|ψ〉 (38)

= min
|ψAB〉

{Tr[ψBρB ]− Tr[ψABρAB ]} < 0, (39)

where the minimization ranges over all pure bipartite quan-
tum states |ψAB〉 in system AB, ψAB ≡ |ψ〉〈ψ|AB and
ψB := TrA ψAB . From Eq. (39), one can see that it suffices to
compute the difference of two overlaps and then variationally
estimate the minimal eigenvalue. The crucial point is that the
number of overlaps is independent on the dimension of the
n-qubit system B. This new detection method could save a
large amount of computing resources when n becomes large.
The improved VED based on the reduction criterion is sum-
marized in Algorithm 3.

Algorithm 3 Improved VED based on reduction criterion
1: Input: 2n-qubit quantum state ρAB , parameterized quantum cir-

cuits U(α) with initial parameters α, and tolerance δ;
2: Apply U(α) to |00〉AB on system AB and obtain the test state
|ψ〉AB = U(α)|00〉AB ;

3: Compute the overlap between state ψB and ρB on subsystem B
using the Swap Test and obtain c1 = Tr[ψBρB ];

4: Apply U(α) to |00〉AB on system AB and obtain the test state
|ψ〉AB = U(α)|00〉AB ;

5: Compute the overlap between state ψAB and ρAB using the
Swap Test and obtain c2 = Tr[ψABρAB ];

6: Compute the loss function L(α) = c1 − c2;
7: Perform optimization methods to minimize L(α); terminate the

optimization if the error tolerance is satisfied: L(α) < −δ.
8: Output ”Entangled” if the optimized L(α) < −δ.

We remark that this idea can also be adopted to improve the
efficiency of VED using the enhanced reduction criterion.

V. QUANTUM ENTANGLEMENT QUANTIFICATION

One of the most well-known entanglement measure is the
logarithmic negativity [69, 70], which has various applications
in quantum information theory. For a bipartite state ρAB , its
logarithmic negativity is defined as

EN (ρAB) := log ‖ρTB

AB‖1. (40)

Based on the recently developed near-term quantum algorithm
for trace distance estimation [6] and the fact thatEN is defined
via the transpose map TB , we introduce a variational quantum
algorithm to estimate EN using an ancillary qubit system R.
According to [6, Corollary 3], it holds that

‖ρTB

AB‖1 = 2 max
U

Tr |0〉〈0|RQR − Tr ρTB

AB (41)

= 2 max
U

Tr |0〉〈0|RQR − 1, (42)

where QR = TrAB QABR, QABR = U(ρTB

AB ⊗ |0〉〈0|R)U†,
and the maximization ranges over all unitaries on the compos-
ite system ABR. Note that the second equality follows from
the fact that TB is trace-preserving. Following the idea of
VED, we may decompose the transpose map TB appeared in
the operator QABR (correspondingly, QR) into a linear com-
bination of Pauli terms via (25) and (26), compute the overlaps
in (42) one by one, and then variationally estimate the max-
imal value. For illustrative purposes, we give Algorithm 4,
the Variational Logarithmic Negativity Estimation (VLNE),
as an example of estimating the logarithmic negativity of a
two-qubit quantum state ρAB . However, we emphasize that
method outlined in Algorithm 4 can be easily generalized to
quantify multi-qubit bipartite entanglement, as the transpose
operation satisfies the preferable tensor product property (26).
What’s more, Algorithm 4 can be modified to use the sam-
pling technique to estimate the average state, following the
idea illustrated in Algorithm 2.
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|0〉 Ry(α1) Rz(α3) • }
|ψ〉

|0〉 Ry(α2)

FIG. 2: Parameterized two-qubit quantum circuit U(α) used for
preparing the test state ψAB(α) on the ibmq-santiago hardware.
The parameters α are randomly initialized as (α1, α2, α3) =
(3.2292, 4.8579, 5.4691).

Algorithm 4 Variational Logarithmic Negativity Estimation
1: Input: a 2-qubit quantum state ρAB and parameterized circuits
UABR(α) with initial parameters α;

2: Apply UABR(α) respectively to

ρAB ⊗ |0〉〈0|R, (43)
(IA ⊗XB)ρAB(IA ⊗XB)⊗ |0〉〈0|R, (44)
(IA ⊗ YB)ρAB(IA ⊗ YB)⊗ |0〉〈0|R, (45)
(IA ⊗ ZB)ρAB(IA ⊗ ZB)⊗ |0〉〈0|R, (46)

and obtain the states σ(0), σ(1), σ(2), σ(3), respectively.
3: Obtain oj = Tr[σ

(j)
R |0〉〈0|R] for j = 0, 1, 2, 3 by measurements

on system R.
4: Compute the loss function L1 := −(o0 + o1 − o2 + o3)/2.
5: Perform optimization methods to minimize L1(α);
6: Compute β = 2|L1| − 1 as the estimated trace norm of ρTB

AB ;
7: Output log β as the estimated logarithmic negativity.

One may also evaluate the entanglement measures [71–73]
based on the sandwiched Rényi relative entropy [74, 75] of
order 1/2, making use of the recently proposed variational
quantum algorithm estimating the fidelity between two quan-
tum states [6].

VI. EXPERIMENTS IN IBMQ

In this section, we discuss how to apply the VED frame-
work to detect the two-qubit maximally entangled state |Φ〉 :=

(|00〉+ |11〉)/
√

2 on IBM-Q superconducting quantum hard-
ware accessible to the public. The specific quantum device
used is ibmq-santiago (5 qubits) with a quantum volume of
32. The positive map adopted here for detection purpose is
the qubit reduction mapRB→B defined in Eq. (27). After im-
plementing the decomposed reduction map by 4 Pauli terms as
Eq. (32), we use a parametrized quantum circuit U(α) to pre-
pare 4 identical test states ψAB(α) = U(α)|00〉〈00|ABU†(α)
and compute the loss function defined in Eq. (13). The PQC
used is depicted in Fig. 2 with three randomly initialized pa-
rameters α = (α1, α2, α3). During the optimization proce-
dure, we apply the gradient descent algorithm [76] to guide
the learning process where the analytical gradient is calcu-
lated via the following parameter-shift rule [77]:

∂L(α)

∂αj
:=

1

2

[
L
(
αj +

π

2

)
− L

(
αj −

π

2

)]
. (47)

Due to the finite sampling restriction for measurements,
the optimization procedure essentially falls into the regime
of Stochastic Gradient Descent (SGD) [55]. The optimized
loss values converges to Lmin ≈ −0.43. The gap between
the experiment data and simulation result λmin = −0.5 is due
to various hardware noises on the ibmq-santiago processor.
One can further adopt error mitigation methods [12] to im-
prove the result. This result proves the validity of our VED
framework. Note that if we adopt the termination setup in Al-
gorithm 1, it will require much fewer optimization iterations
(4 to 5 rounds are sufficient) to obtain the detection result.
As mentioned in Ref. [78], the communication bottleneck be-
tween the IBM-Q hardware and classical optimizer blocks us
from efficiently conducting experiments without any specified
reservation. This leads to a 9-minutes waiting time on aver-
age for each circuit evaluation from the IBM-Q cloud service.
As a comparison, we conduct numerical simulations on Quan-
tum Leaf platform and receive a similar result by repeating the
simulation on qiskit-Aer simulator. We summarize the exper-
imental and numerical results in Fig. 3.
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Quleaf Simulator

FIG. 3: Estimated λmin by VED using the reduction criterion on the
Bell state |Φ〉. The red curve records the results from ibmq-santiago
with shots = 8192 for each circuit evaluation. The blue curve records
the simulation results on Quantum Leaf platform using the Baidu
Quleaf simulator [79]. Learning rate in the gradient descent algo-
rithm is set to be LR = 0.5.

VII. NUMERICAL SIMULATIONS

In this section, we carry out numerical simulations that ap-
ply VED to detect a variety of bipartite quantum states of
interest to investigate the performance of VED and its moti-
vated entanglement quantification algorithm. All simulations,
including optimization loops, are conducted using the Pad-
dle Quantum [80] toolkit on the PaddlePaddle Deep Learning
Platform [81, 82].

https://quantum-hub.baidu.com/
https://quantum-hub.baidu.com/
https://quantum-hub.baidu.com/
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A. Entanglement detection

For the entanglement detection purpose, we adopt the cir-
cuit ansatz shown in Fig. 4 to prepare the test state |ψ〉AB .
It consists of parameterized single-qubit gates U3(θ, φ, ϕ) =
Rz(φ)Ry(θ)Rz(ϕ) and circular layers of CNOT gates. Note
that this ansatz can be easily generalized to multi-qubit case.

U3(θ0,0, θ0,1, θ0,2) • · · · U3(θ2,0, θ2,1, θ2,2)

U3(θ0,3, θ0,4, θ0,5) • · · · U3(θ2,3, θ2,4, θ2,5)

U3(θ0,6, θ0,7, θ0,8) •
×2
· · · U3(θ2,6, θ2,7, θ2,8)

FIG. 4: Three qubit parameterized ansatz U(α) used for VED. The
quantum circuit within the dotted block is repeated twice.

1. Four-qubit isotropic states

The four-qubit isotropic state family is defined as [83, Eq.
(32)]

ρiso
AB(p) := pΦAB + (1− p)IAB

16
, (48)

where p ∈ [0, 1] is a parameter, ΦAB is the four-qubit maxi-
mally entangled state, and IAB is the identity operator inAB
in which A ≡ A1A2 and B ≡ B1B2. The qubit systems
A1 and A2 are at Alice’s hand, while the qubit systems B1

and B2 are at Bob’s hand. Intuitively, the isotropic state is
a convex combination of the maximally entangled state ΦAB
and the maximally mixed state IAB/16. It has been shown
that ρiso

AB(p) is separable (w.r.t. the A:B cut) if and only if
p ≤ 1/5 [83].

We numerically carry out Algorithm 1 together with the
three prominent positive maps—the PPT criterion, the re-
duction criterion, and the enhanced reduction criterion—
introduced in Sec. IV, using four-qubit isotropic states as in-
puts. The minimized loss values of these three maps obtained
by our simulations on the isotropic states are represented by
different markers in Fig. 5. As can be seen from this figure,
VED can successfully identify the range of p for which the
corresponding isotropic state can be detected by each positive
map. The markers representing results from simulations fall
on the lines that give the minimums of the loss function L(α),
verifying the validity and viability of our VED framework.
Note that for detecting entanglement in four-qubit isotropic
states, all three maps are both necessary and sufficient. How-
ever, this phenomenon is not universal for all four-qubit states,
as we shall see in the experiment using Breuer states.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Reduction map (the)

Enhanced reduction map (the)

Transpose map (the)

Reduction map (sim)

Enhanced reduction map (sim)

Transpose map (sim)

FIG. 5: Numerical results on the four-qubit isotropic states defined
in (48). Each line depicts the smallest eigenvalue of every isotropic
state with parameter p ∈ [0, 1] under the corresponding map. This
line of the smallest eigenvalues is a lower bound of the loss function
L(α). Each marker depicts the minimized loss value obtained by
simulations (sim) of Algorithm 1 on a chosen isotropic state, aligning
with the theoretical line.

2. Four-qubit Breuer states

As we have mentioned in Sec. IV C, there are states that can
be detected by the enhanced reduction criterion yet cannot be
detected by the PPT criterion. In this section, we use the pro-
posed VED framework to numerically consolidate this state-
ment. The four-qubit Breuer state family is defined as [59, Eq.
(7)]

ρBreuer
AB (λ) :=


1−λ

3 0 0 0
0 1+2λ

6
1−4λ

6 0
0 1−4λ

6
1+2λ

6 0
0 0 0 1−λ

3

 , (49)

where λ ∈ [0, 1] is a parameter, A ≡ A1A2, and B ≡ B1B2.
The qubit systems A1 and A2 are at Alice’s hand while the
qubit systemsB1 andB2 are at Bob’s hand. It has been shown
that ρBreuer is separable (w.r.t. the A:B cut) if and only if
λ = 0 and can be detected by the enhanced reduction crite-
rion [59]. On the other hand, it has positive partial transpose
if and only if λ ≤ 1/6 [59], witnessing the power of the en-
hanced reduction criterion.

Following the same line of the case of the isotropic state,
we carry out Algorithm 1 on the three criteria using four-qubit
Breuer states as inputs. The minimized loss values obtained
by our simulations on selected Breuer states are represented
in Fig. 6 by markers, which again aligns with the theoretical
lines. From the numeric results, we can see that while the en-
hanced reduction criterion is sill necessary and sufficient for
entanglement detection in the four-qubit Breuer states, nei-
ther the reduction criterion nor the PPT criterion can detect
all entangled states in the Breuer state family, attesting the ad-
vantage of the enhanced reduction criterion in this case.



10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Reduction map (the)

Enhanced reduction map (the)

Transpose map (the)

Reduction map (sim)

Enhanced reduction map (sim)

Transpose map (sim)

FIG. 6: Numerical results on the four-qubit Breuer states defined
in (49). Each line depicts the smallest eigenvalue of every Breuer
state with parameter p ∈ [0, 1] under the corresponding map. This
line of the smallest eigenvalues is a lower bound of the loss function
L(α). Each marker depicts the minimized loss value obtained by
simulations (sim) of Algorithm 1 on a chosen Breuer state, aligning
with the theoretical line.

B. Logarithmic negativity estimation

For simulations of variational entanglement quantification
with logarithmic negativity, we adopt the hardware efficient
ansatz used for trace distance estimation in [6] where the cir-
cuit depth is 4. The simulations are carried out on two-qubit
isotropic states, which is defined as

ρiso
AB(p) := pΦAB + (1− p)IAB

4
, (50)

where ΦAB is the two-qubit maximally entangled state. As
shown in Fig. 7, the logarithmic negativity of a two-qubit
isotropic state is positive if and only if its parameter p >
1/3, which matches the range of p where the corresponding
isotropic states are entangled. The estimated logarithmic neg-
ativities by our method, which are represented by markers in
Fig. 7, agree with the precisely calculated values given by the
blue line.

VIII. CONCLUSION AND OUTLOOK

In this work, we combined two novel techniques that find
crucial applications in the NISQ quantum devices, the vari-
ational quantum algorithms and the quasi-probability decom-
position method, to propose the Variational Entanglement De-
tection (VED) and Variational Logarithmic Negativity Esti-
mation (VLNE) frameworks, contributing feasible solutions
to detect and quantify entanglement on near-term devices.
VED is built upon the positive map criterion and works as
follows. Firstly, it decomposes a chosen positive map into a

linear combination of NISQ implementable quantum opera-
tions. Then, it variationally estimates the minimal eigenvalue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

Theoretical

Estimated

FIG. 7: Numerical results on the two-qubit isotropic states. The
blue line represents the precisely calculated logarithmic negativity of
isotropic states with parameter p ∈ [0, 1]. The yellow markers depict
the estimated logarithmic negativity by simulations of Algorithm 4
on selected isotropic states.

of the output state of some positive map acting on the tar-
get bipartite state. Two methods are proposed to generate the
output state: the first one averaged the output states accord-
ing to the quasi-probability distribution; the second one es-
timated the average via the sampling technique. At last, it
asserts that the target state is entangled if the optimized min-
imal eigenvalue is negative, guaranteed by the positive map
criterion. We elaborated three well-known positive maps to
illustrate how the VED framework is applied. Following the
idea of VED, VLNE variationally computes the log-negativity
entanglement measure, relying on a linear decomposition of
the transpose map into Pauli terms and the recently proposed
trace distance estimation algorithm. Experimental and numer-
ical results on various bipartite states of interest have validated
the proposed entanglement detection and quantification meth-
ods.

We expect that the VED framework can be upgraded to de-
tect more entangled states. A crucial step towards this aim is
to explore what kind of positive maps can be decomposed into
a linear combination of Pauli channels. In Sec. V we showed
by case how to variationally compute the log-negativity en-
tanglement measure. It would be meaningful to design novel
quantum algorithms to estimate other distance-based entan-
glement measures [72, 84–87].
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Appendix A: Qutrit entanglement detection via the Choi map

In this Appendix, we show by example how VED can be
adapted to detect the entanglement of an unknown two-qutrit
state via the celebrated Choi map [61, 62]. To be specific, the
Choi map is defined as follows

ΦC(ρ) :=

ρ1,1 + ρ2,2 −ρ1,2 −ρ1,3

−ρ2,1 ρ2,2 + ρ3,3 −ρ2,3

−ρ3,1 −ρ3,2 ρ3,3 + ρ1,1

 , (A1)

where ρi,j is the element of ρ in the i-th row and j-th column.
This map is the first known example of a positive map that is
indecomposable (i.e., it cannot be decomposed into a sum of
a completely positive map and a completely copositive map).
The Choi map in particular can be used to detect entangle-
ment of some PPT states (states that can not be detected by
the transpose map).

For the qutrit system, the generalized Pauli matrices are de-

fined through the unitary boost and shift operators

X =

0 0 1
1 0 0
0 1 0

 and Z =

1 0 0
0 ω 0
0 0 ω2

 , (A2)

where ω := e2πi/3 is the 3-th root of unity. The Choi map can
be decomposed w.r.t. X and Z as follows:

ΦC(ρ) =
1

3
[X2Zρ(X2Z)† +X2Z2ρ(X2Z2)† +X2ρ(X2)†]

+
2

3
[ZρZ† + Z2ρ(Z2)†]− 1

3
ρ. (A3)

Based on (A3), one could adopt the deterministic VED in
Algorithm 1 or the probabilistic VED in Algorithm 2 to detect
entanglement on qutrit systems by considering

min
ψ(α)
〈ψ(α)|ΦC(ρAB)|ψ(α)〉, (A4)

where the test state ψ(α) can be generated by parameterized
quantum circuits.
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