
Active cholesterics: odder than odd elasticity

S. J. Kole,1, ∗ Gareth P. Alexander,2, † Sriram Ramaswamy,1, ‡ and Ananyo Maitra3, §

1Centre for Condensed Matter Theory, Department of Physics,
Indian Institute of Science, Bangalore 560 012, India

2Department of Physics and Centre for Complexity Science,
University of Warwick, Coventry CV4 7AL, United Kingdom

3Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France

In equilibrium liquid crystals, chirality leads to a variety of spectacular three-dimensional struc-
tures, but chiral and achiral phases with the same broken continuous symmetries have identical
long-time, large-scale dynamics. In this paper, we demonstrate that chirality qualitatively modifies
the dynamics of layered liquid crystals in active systems in both two and three dimensions due to
an active “odder” elasticity. In three dimensions, we demonstrate that the hydrodynamics of active
cholesterics differs fundamentally from smectic-A liquid crystals, unlike their equilibrium counter-
part. This distinction can be used to engineer a columnar array of vortices, with anti-ferromagnetic
vorticity alignment, that can be switched on and off by external strain. A two-dimensional chiral
layered state – an array of lines on an incompressible, free-standing film of chiral active fluid with a
preferred normal direction – is generically unstable. However, this instability can be tuned in easily
realisable experimental settings, when the film is either on a substrate or in an ambient fluid.

Chiral molecules form a spectacular range of liquid-
crystalline phases [1–3] at thermal equilibrium, of which
the best known is the cholesteric, with a helical struc-
ture in which the molecular orientation, described by a
headless unit vector called the director n̂, spontaneously
twists at a uniform rate q0 along the pitch axis [3]. This
uniform periodic modulation does not break translational
invariance: unlike in a density wave, all surfaces of con-
stant phase are equivalent, and an arbitrary translation
along the pitch axis can be compensated by a rotation
about it. Nevertheless, at scales much larger than 1/q0,
the mechanics of a cholesteric is precisely the same as
that of a smectic A which has an achiral one-dimensional
density modulation. That is, microscopic chirality leads
to a one-dimensional periodic structure, but the asymp-
totic long-wavelength elasticity and hydrodynamics of
this structure show no signature of chirality [4–6]. In
this paper we show that this equivalence does not carry
over to active cholesteric and smectic A phases [7, 8],
thanks to effects that go beyond the “odd elasticity” of
chiral active solids [9].

Recall that active matter is matter with a sustained
supply of free energy, and hence broken detailed bal-
ance, at the scale of its constituents. This microscale
drive manifests itself macroscopically as nonequilibrium
currents and forces [10–19]. Continuum hydrodynamic
theories of fluid [20], liquid-crystalline and crystalline
phases [7, 8, 14, 16, 21–23] of active matter have been
constructed including extensions with chiral asymmetry
[9, 24–32]. In this paper, we construct theories of layered
active chiral systems. Our hydrodynamic theory applies
equally to cholesterics in the strict sense and to smectic
A phases composed of homochiral units. We will refer to
both as active cholesterics. We also construct the theory
of an active two-dimensional (2D) chiral smectic, which
could arise if three-dimensionally chiral particles were re-

stricted to a thin film with a distinguished normal direc-
tion.

Our central finding is that active cholesterics possess a
chiral stress corresponding to a non-existent component
of the strain tensor that yields a force density tangent
to contours of constant mean curvature of the layers. As
a result of this odder than odd elasticity, the undula-
tional instability created by active stresses [7, 8] leads to
spontaneous vortical flow arranged in a two-dimensional
array with vorticity aligned along the pitch axis and al-
ternating in sign in the plane (Fig. 1). This vortex-lattice
state can be switched on or off by means of an externally
imposed uniaxial stress. Lastly, a two-dimensional ac-
tive cholesteric is unstable with an activity threshold that
goes to zero for an infinite system. This tilted-varicose
instability (Fig. 2) is however not inevitable, as we dis-

FIG. 1. The spontaneous vortex-lattice state: the chiral ac-
tive force density (governed by zc) generates counterrotat-
ing circulatory flows, with vorticity Ωz obeying η∇2Ωz =
−zc∇2∇2

⊥u, around the undulations u of the active Helfrich-
Hurault instability.
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cuss later in the paper.
We now show how we obtain these results. A pattern-

formation framework [33] offers a foolproof approach to
the construction of the hydrodynamic equations for ac-
tive cholesterics, equivalent to the traditional route [7, 8]
starting with the equations of motion for an orientation
field and eliminating the fast degrees of freedom. Ac-
cordingly, we begin by extending [34, 35] to define active
model H* : the coupled dynamics of a pseudoscalar den-
sity ψ governed by a conservation law ∂tψ = −∇ · J
and a momentum density ρv whose dynamics in the
Stokesian regime is governed by ∇ · σ = 0, with cur-
rent J = ψv −M∇µ + Ja + Jc and stress tensor σ =
−η[∇v + (∇v)T ] + σψ + pI− σc − σa, where subscripts
a and c denote achiral active and chiral contributions
respectively. Here M is a mobility, µ = δF/δψ is a
chemical potential expressed in terms of a free-energy
functional F [ψ], η is a viscosity, the passive force den-
sity −∇ · σψ = −ψ∇µ is the Onsager counterpart to ψv
[36], and the pressure p imposes overall incompressibility
∇ · v = 0. Ja = λ1ψ∇ψ∇2ψ + λ2ψ∇(∇ψ)2 as familiar
from active models B and H [34, 35, 37–40]. In what
follows we ignore the chiral currents Jc, whose effects on
the dynamics of layered states arise at sub-leading order
in wavenumber [41]. The achiral active stress [34, 35], in
both two and three dimensions, is σa = ζH∇ψ∇ψ while
the chiral active stress is

(σc)ij = z̄c∂l(εijk∂kψ∂lψ), d = 3;

σc = ζ̄cε · ∇ψ∇ψ, d = 2, (1)

where d = 2 corresponds to a thin film of 3D chiral
material with a distinguished normal taken to be along
N ≡ +ŷ, thus inheriting uniquely the two-dimensional
antisymmetric tensor ε with components εij = εikjNk.
Though here written as an antisymmetric stress (σc)ij
can be given in an equivalent symmetric form and is al-
lowed in momentum-conserving systems [31, 41–43].

A Swift-Hohenberg free-energy functional F [41, 44]
allows model H∗ to describe the dynamics of spatially
modulated states ψ = ψ0+ψ1 where ψ1, with zero spatial
average, represents a modulation with wavelength 2π/qs
about a uniform background ψ0. We consider the dynam-
ics about a steady state with a one-dimensional spatial
modulation, ψ1 = ψ0

1(eiφ + e−iφ), with φ = qs(z − u),
describing a periodic array of parallel lines or planes of
constant phase, in d = 2 or 3 respectively, with nor-
mal along ẑ, with small fluctuations u(r, t). We begin
with d = 3. Defining the scaled phase-gradient vector,
which is parallel to the normal of the fluctuating layers,
as n = ∇φ/qs = ẑ−∇u(x, y, z, t) we obtain the dynam-
ical equation of the displacement field of the layers from
their mean positions [41]:

∂tu = v ·n+Λ1n ·∇E+Λ2∇·n(1−2E)−Γu
δF [u]

δu
, (2)

where Λ1 = −2ψ02

1 q
2
s(λ1+λ2) and Λ2 = 2ψ02

1 q
2
sλ2 are ac-

tive, achiral permeative terms, the final term is passive
permeation with Γu = −Mq2s , and E = ∂zu−(1/2)(∇u)2

is the covariant strain. Finally, F [u] = (1/2)
∫

[BE2 +
K(∇2u)2] is the rotation-invariant free energy [3, 45]
which would have controlled the relaxational dynamics
of the cholesteric state in the absence of activity with B
being the layer-compression modulus and K being the
bending rigidity of the layers which can be expressed in
terms of the coefficients in the Swift-Hohenberg free en-
ergy [41]. Force balance for our system takes the form

η∇2vi = ni
δF [u]

δu
+ ∂ip+ ∂j [ζwij + zc∂l(εijkwkl)] (3)

where wij encodes the active stresses from (1) and pre-
ceding. To linear order in displacements, with ⊥ de-
noting directions transverse to ẑ, wz⊥ = w⊥z = ∇⊥u,
wzz = 2∂zu and all other components are 0, ζ =
ψ02

1 q
2
sζH , zc = ψ02

1 q
2
s z̄c and the pressure p enforces three-

dimensional incompressibility ∇ · v = 0. The term pro-
portional to zc in (3) is the chiral active force density. It
is the curl of the vector ∂lwkl and is therefore divergence-
free. Expressed as a vector this chiral active force density
is −zc ẑ × ∇⊥(∇2

⊥u + ∂zzu) and is directed (primarily)
tangentially to contours of constant mean curvature of
the layer undulation, driving the vortical flow shown in
Fig. 1. Like odd elasticity, the zc-term in (3) is a parity-
breaking stress in response to layer displacements. Unlike
the odd elastic force density of two-dimensional chiral ac-
tive solids [9], which arises from an antisymmetry in the
linear relation between stress and strain, this cholesteric
chiral force density (3) arises even when the strain E = 0.

It might seem that zc does not affect the hydrodynam-
ics of the layered state as it appears at a higher order in
gradients than the achiral active force. Indeed, it does
not affect the linear dynamics of the displacement field at
all: the eigenfrequency for displacement fluctuations to
leading order in wavenumber, obtained by projecting (3)
transverse to the wavevector and solving for the velocity
field yields, is ω = −(i/ηq4)(Bq2zq

2
⊥ − ζq2⊥q2). Therefore,

as noted in [7, 8], the dynamics of the displacement field
of cholesterics and smectics are indeed equivalent, with
the layered state having long-range order in three dimen-
sions for ζ < 0 (unlike their equilibrium counterparts
which only have quasi-long-range order in three dimen-
sions) and being unstable for ζ > 0. However, the hydro-
dynamics of active cholesterics differs crucially from that
of smectics through the effect of the chiral active force
on the velocity field in the plane of the layers.

The vortical flow caused by the chiral active force
can be used to control and create a vortex lattice state
[46] with a well defined lattice constant in an active
cholesteric system. This hinges on a mapping between
an externally imposed stress and an internal and active
achiral stress. An external stress can be imposed via
a free energy term Fext[u] =

∫
σ0E, which gives rise
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to a force −σ0∇ · (w + EI) [41]. As a consequence an
achiral active stress acts identically to an external stress
with σ0 = ζ up to an isotropic piece which can be ab-
sorbed into the pressure in an incompressible system and
the instability of an active layered state for ζ > 0 maps
onto the Helfrich-Hurault instability of a passive layered
state under dilative stress [47, 48]. In the externally-
stressed instability a square lattice undulated pattern
u = u0 cos qpx cos qpy (an egg-crate-like structure) is re-
alised [49, 50] and because of this mapping, the same
pattern should be realised beyond the achiral active in-
stability as well. Due to the chiral active force ∝ zc,
the egg-crate-like undulation leads to an in-plane vortic-
ity Ωz ∝ (zcq

2
pu0/η) cos qpx cos qpy, arising spontaneously

from the active instability. This is the vortex lattice de-
picted in Fig. 1.

The correspondence between an external stress and
the active achiral stress allows for a quantitative mea-
surement of the activity. The critical threshold for a
layered state of finite extent d in the z direction is
ζ + σ0 = (2π/d)

√
BK, with the instability setting in

at wavevector qp ≈ (π2B/4d2K)1/4. When ζ is nega-
tive the layered state is stable to the activity and a di-
latative external stress, σ0 > 0, can be applied till the
Helfrich-Hurault instability sets in [51]. This measures
the active stress: ζ = (2π/d)

√
BK−σcr0 . Conversely, for

ζ > 0 the smallest |σ0| that suppresses the spontaneous
Helfrich-Hurault instability, σcr0 yields the active stress:
ζ = |σcr0 |+ (2π/d)

√
BK from which we can calculate the

achiral active stress strength from the knowledge of the
bulk and the bending modulus. The magnitude of the
vorticity is ∝ zc/η. The chiral active force should scale
as zc ∼ ζ` where ` is the length of an elementary active
unit (both ζ and zc are also likely to be functions of the
concentration of the active units). Therefore, in princi-
ple, we can estimate both the chiral and achiral active
stress if an active cholesteric is prepared using living liq-
uid crystals [52], which can be engineered, for instance,
by suffusing a passive cholesteric with bacteria, and ob-
tain a vortex lattice state with a lattice constant deter-
mined by the physics governing passive Helfrich-Hurault
instability in an external field [47, 50].

We now turn to a two-dimensional layered state – an
array of lines in the x − z plane with normals on av-
erage along ẑ – in a chiral, internally driven fluid. As
in the three-dimensional cholesteric state, we obtain the
coupled dynamics of the displacement and velocity field
equations to leading order in gradients: ∂tu = vz and

η∇2v = ẑ
δF [u]

δu
+∇p+∇ · (ζw − ζcε ·w) (4)

where, to linear order in u, wzz = −wxx = ∂zu and
wzx = wxz = ∂xu, ζ = (ψ0

1qs)
2ζH and ζc = −(ψ0

1qs)
2ζ̄c

[41]. In (4), the chiral active force ∝ ζc appears at the
same order in gradients as the achiral active force, un-
like in three-dimensional cholesterics. Further, again un-

FIG. 2. Active instabilities in two-dimensional layered states.
(a) Instability arising from the chiral active force (ζc, here
positive). The layers are indicated by dark red lines, while
the linear flow field at instability overlaid (blue arrows). The
thick black lines indicate confining walls, which create a finite
threshold for the instability. (b) Instability arising from the
achiral active force (ζ) for comparison; same stylings.

like in three-dimensional cholesterics, it will be shown
to affect the displacement field dynamics at linear order.
In fact, the term ∝ ζc is fundamentally distinct from
the force ∝ zc in (3); it is not obtained by averaging
a thin x − z slice of a three-dimensional cholesteric. It
leads to a chiral active force along the layers in response
to both curvature and compression of the layers i.e., a
pure ẑ deformation leads to a force along ŷ, in a direc-
tion determined by the sign of ζc, which is only possible
since the film has a distinguished normal, breaking three-
dimensional rotation invariance, and the layered state
breaks rotation (and translation) invariance in the plane
of the film. This effect is related to the odd elasticity
[9] of chiral active solids, but is odder still. A smectic
breaks translation invariance only along one direction, so
the (linearised) strain is simply

[
0 0
0 ∂zu

]
. Ordinary odd

elasticity would create a stress ∝
[
0 ∂zu
0 0

]
acting along the

layers of the smectic in a direction where there is no elas-
tic mode. Instead, the chiral activity ζc produces both a
simple shear stress σxz = σzx = −ζc∂zu in response to
strain and also a pure shear stress σxx = −σzz = −ζc∂xu
in response to tilt. The chiral active stress implies that
a localised compression of the layer spacing produces a
shear flow parallel to the layers.

We now demonstrate that a periodic array of lines in
a two-dimensional film is generically destabilised due to
the chiral active force. Eliminating the pressure using
the incompressibility constraint in (4), solving for the
velocity field and writing the wavevector q ≡ (qx, qz) =
q(sin θq, cos θq) where θq is the angle between the layer
normal and the wavevector, we obtain the eigenfrequency
to O(q0)

ω = − i

4η

(
B sin2 2θq − 4ζ sin2 θq − 2ζc sin 2θq

)
+O(q2).

(5)
This implies an instability of the layered state for
wavevector direction θq just above (just below) zero for
ζc > 0 (< 0). This generic chiral instability for either sign
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of ζc is distinct from the spontaneous Helfrich-Hurault
[3] instability of active smectics or cholesterics, which is
achiral, arises for positive ζ [7, 8], and grows fastest at
θq ≈ π/2. Eq. (5) implies that in a system confined at a
scale d along x̂ so that the smallest qx ∼ 1/d, the mini-
mum value of the chiral active stress for which the layered
state is unstable ∼ 1/d. Further, this instability requires
both momentum conservation and incompressibility. It is
eliminated if the film is supported on a substrate which
would add a wavevector-independent damping −Γv to
(4). The eigenfrequency for the displacement fluctua-
tions then vanishes at small q as O(q2), and permeative
[3] terms ∇∇u in the displacement equation, subdomi-
nant for a free-standing film, now enter at the same order
in gradients. Of these, terms ∝ ∂2zu are crucial, while
others can be absorbed into redefinitions of ζ and ζc).
The resulting eigenfrequency is

ω = − iq
2

4Γ

(
B sin2 2θq + B cos2 θq − 4ζ sin2 θq − 2ζc sin 2θq

)

(6)
where B is the coefficient of the ∂2zu permeative term
multiplied by the friction coefficient, and the instability
now occurs only if |ζc| > (B/2) + B/2− ζ, for directions
θq ≈ π/4. Compressibility, as in a film bounded by bulk
fluid, at large enough scales [53], is also stabilizing [54].
A detailed solution [41] of the tangent-plane velocity in
this case leads to the eigenfrequency for the displacement
field

ω = − i|q|
4η

[
(B cos2 θq − ζ)(1 + sin2 θq)− 12ζc sin 2θq

]

(7)
Equation (7) yields an instability if |ζc| > [(B/2)− ζ]/8,
for θq ≈ π/4 irrespective of the sign of ζc. We expand on
this in [41]. While a free-standing film with a generically
unstable chiral layered state may be difficult to access ex-
perimentally, films supported on a substrate or immersed
in a bulk fluid can be engineered and the instability as
in (6) and (7) may be observed.

In this paper we have developed the hydrodynamic the-
ory of active chiral, layered states in two and three di-
mensions and demonstrated that the combination of in-
ternal drive and broken-parity qualitatively modifies the
dynamics and stability of these phases unlike in their
equilibrium counterparts. We conclude with a brief dis-
cussion of proposals for experimental realisations, appli-
cations and possible extensions. A three-dimensional ac-
tive or living cholesteric can be constructed by releasing
swimming bacteria into passive biocompatible cholesteric
liquid crystals, yielding a system which should display
the vortex-lattice state we predict. Similarly, introducing
passive chiral particles in an active but achiral fluid also
leads to the chiral active forces discussed in our work,
allowing for the realisation of a wide range of artificial
active cholesteric materials. Furthermore, multiple bio-
logical systems display cholesteric organisation, the most

spectacular of which is DNA in chromatin [55], which
in vivo may be affected by DNA polymerases leading to
chiral active forces of the form that we describe here.

In addition to free surfaces or interfaces of three-
dimensional materials, there are numerous possibilities
for realising a two-dimensional cholesteric phase. For
instance, via the melting of a chiral version [9] of
anisotropic active solids [23] along one direction in anal-
ogy with the emergence of (achiral) smectic phases due
to an anisotropic dislocation-mediated melting of two-
dimensional crystals in which dislocations unbind along
one direction [56–61] (see [62] for a description of dislo-
cations in chiral active solids). Two-dimensional layered
states are also observed in active nematic fluids both in
experiments on motor-microtubule gels [63–65] and sim-
ulations [66] and since these gels are known to be chiral
[67], the physics we describe for two-dimensional, chiral
layered states may be observable there. Chirality has
been shown to be important in epithelial cell layers [30]
and a density modulated phase in these systems will lead
to another realisation of two dimensional cholesterics.
Non-mutual, two-species Cahn-Hilliard models [68, 69]
also spontaneously form banded phases and chiral vari-
ants of these models would lead to two-dimensional
chiral layered states. Finally, two-dimensional smectic
phases in parity-broken systems are also possible in two-
dimensional electron gases [70] and, when they are irradi-
ated by microwave radiation [71], may have a dynamics
equivalent to the one described here. Therefore, there
are abundant possibilities for creating two- and three-
dimensional active cholesteric states.
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In this supplement we present the detailed calculations corresponding to the results in the main
text. In Sec. I we discuss active theories of conserved and non-conserved chiral, scalar order
parameters in momentum-conserved system. We discuss the conserved order parameter case in
Sec. I A, first in two dimensions in Sec. I A 1 and then in three in Sec. I A 2. Then, in Sec. I B,
we discuss the theory of a chiral, scalar non-conserved order parameter in a momentum conserved
fluid, again, first in two dimensions in Sec. I B 1 and then in three in Sec. I B 2. In Sec. II we
use a free-energy of the Swift-Hohenberg form to obtain the hydrodynamic equations for layered
states in two and three dimensions. We first consider it in a two-dimensional system in Sec. II A
and obtain the hydrodynamic equations first starting from the conserved model in Sec. II A 1 and
then from the non-conserved model in Sec. II A 2. We then consider a three-dimensional system
in Sec. II B again first starting from the conserved order parameter in Sec. II B 1 and then from
the non-conserved order parameter model in Sec. II B 2. Then in Sec. III we demonstrate that the
effect of the achiral active stress in a layered state can be compensated by an external stress. In Sec.
IV we show that various distinct ways of introducing activity in a layered system are equivalent to
the theory we construct. In Sec. V we consider the linear theory of chiral, layered states in two
dimensions in Sec. V A ans in three dimensions in Sec. V B. Finally, in Sec. VI we demonstrate that
a three-dimensional chiral layered state can be used to controllably generate vortex lattice phases.

I. ACTIVE CHIRAL, SCALAR FIELDS IN MOMENTUM CONSERVED SYSTEMS

In this section, we construct the generic hydrodynamic theories of a conserved and non-conserved scalar order
parameter field in a chiral, momentum-conserved system. We start with the conserved case and then proceed to the
non-conserved one.

A. Conserved order parameter: Active model H*

For a conserved order parameter, our theory is an extension of the active model H (itself an extension of model
H in the classification of [S1] to active systems) [S2, S3] to include chirality and we dub it active model H*. Like
the usual model H, this will be characterised by a conserved density or order parameter field and an incompressible
velocity field. Just as model H describes binary phase separation in passive systems, active model H* may describe
binary phase separation in active, homochiral systems. We will construct two distinct variants of this model. For the
first variant, we consider a two-dimensional chiral suspension with a distinguished normal direction – i.e., a film that
breaks up-down symmetry. For the second variant we consider a three-dimensional momentum-conserved system.

1. Two-dimensional film

We first consider a suspended thin-film of chiral, active particles in a fluid which breaks up-down symmetry, i.e., has
a distinguished normal direction N which we take to be along the ŷ direction. We further define a two-dimensional
antisymmetric tensor εij = εikjNk (i.e., εxz = 1 and εzx = −1 and other components are 0). With these definitions,
the equation of motion for the two-dimensional concentration or conserved order parameter field of the chiral, active
particles ψ(r, t), where r ≡ (x, z), is

∂tψ = −∇ · (ψv) +M∇2 δF [ψ]

δψ
+∇ · Ja +∇ · Jc + ξψ, (S1)

where ∇ ≡ ∂xx̂ + ∂z ẑ denotes the two-dimensional gradient, Ja contains active achiral currents also present in active
model H and active model B [S2–S6], Jc contains active and passive chiral currents, F [ψ] is a phenomenological
free energy which would have governed the relaxation to the equilibrium state in the absence of activity and ξψ is
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a conserving, Gaussian white noise with the correlation 〈ξψ(r, t)ξψ(r′, t′)〉 = −2D∇2δ(r − r′)δ(t − t′). The active,
achiral currents are

Ja = λ1 ψ∇ψ(∇2ψ) + λ2 ψ∇(∇ψ)2. (S2)

To lowest order in gradients, the chiral current is

Jc = ωvψ∇(ε : ∇v) + ω1ψ∇2ψε · ∇ψ + ω2ψε · ∇(∇ψ)2. (S3)

The first term is a chiral, reactive coupling to the velocity field which can exist even in passive momentum-conserved
systems. The second and third are chiral and active density currents which may be present even in active model B*.
The equation of motion for the two-dimensional in-plane Stokesian velocity field is

η∇2v = ψ∇δF [ψ]

δψ
+∇p−∇ ·

[
(ζH I + ζ̄cε) · (∇ψ∇ψ)ST

]
+ ωv(ε · ∇)∇ ·

[
ψ∇δF [ψ]

δψ

]
+ ξv, (S4)

where the superscript ST denotes symmetrisation and trace-removal, I is the two-dimensional identity tensor, p is
the pressure enforcing the incompressibility constraint ∇ · v = 0, ζH is the coefficient of the achiral active force
[S3, S7, S8], ζ̄c is the coefficient of a chiral active force whose form is similar to the ones in [S9–S12] and ξv is a
conserving Gaussian white noise with the correlation 〈ξv(r, t)ξv(r′, t′)〉 = −2IDv∇2δ(r − r′)δ(t − t′). In the passive
limit, the noise strengths must satisfy the relation D/M = Dv/η. The active forces with the coefficients ζH and ζ̄c are
the only ones allowed at this order in gradients and fields. Eqs. (S1) and (S4) are the general dynamical equations for
active model H* in a two-dimensional up-down symmetry-broken film. Only the form of the free energy F [ψ] needs to
be specified to complete the description. There is no explicitly chiral term in the free energy up to very high orders in
gradients and fields (the first explicitly chiral term contains nine gradients). Therefore, if we wish to describe classic
liquid-gas phase separation, a standard φ4 free energy is sufficient. In this paper we are concerned not with binary
phase separation but one-dimensional periodic states for which we will use a standard Swift-Hohenberg free energy
[S13–S15].

2. Three-dimensional systems

We now consider a bulk, three-dimensional system with three-dimensional density ψ(r, t) and velocity v(r, t) fields
where r = (x, y, z). The dynamical equation for ψ

∂tψ = −∇ · (ψv) +M∇2 δF [ψ]

δψ
+∇ · Ja +∇ · Jc + ξψ, (S5)

with 〈ξψ(r, t)ξψ(r′, t′)〉 = −2D∇2δ(r− r′)δ(t− t′), ∇ being the three-dimensional gradient operator and

Ja = λ1ψ∇ψ∇2ψ + λ2ψ∇(∇ψ)2 (S6)

having the same form as the two-dimensional model but the chiral current is fundamentally modified:

Jc = Ωvψ∇2(∇× v). (S7)

This is a chiral coupling to the velocity also allowed in passive chiral systems and was discussed in [S16] (the other
chiral current discussed in [S16] is nonlinear in the velocity field and we don’t consider it in this paper). Note that
unlike in the two-dimensional films, here we have not introduced a chiral density current. The first such current
appears at sixth order in gradients. Finally, the constitutive equation for the Stokesian velocity field is

η∇2vi = ψ∂i
δF [ψ]

δψ
+ ∂ip− ∂j [ζH∂iψ∂jψ + z̄c∂l(εijk∂kψ∂lψ)]− Ωvεijk∂j∂l∂l

[
ψ∂k

δF [ψ]

δψ

]
+ ξvi , (S8)

where 〈ξvi(r, t)ξvj (r′, t′)〉 = −2δijDv∇2δ(r − r′)δ(t − t′) and p is the pressure that enforces the three-dimensional
incompressibility constraint ∇ · v = 0. In equilibrium, in addition to all active terms being 0, D/M = Dv/η. Unlike
in a two-dimensional film, the chiral active force, with the coefficient z̄c, appears at a higher order in gradients than
the achiral active force. This force has a form similar to the one used in theories of three-dimensional chiral nematic
[S17–S20] and the velocity field resulting from it can be shown to be divergence-free. Though this stress superficially
seems to be antisymmetric, it is allowed in angular momentum-conserved systems; in fact, an equivalent (up to a
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Belinfante-Rosenfeld tensor) explicitly symmetric stress can be constructed [S20, S21] which yields the same velocity
field:

z̄c∂l(εijk∂kψ∂lψ) ≡ z̄c[εilk∂l(∂kψ∂jψ) + εjlk∂l(∂kψ∂iψ)]. (S9)

This completes the dynamics of three-dimensional active model H*. As in the two-dimensional case, the free energy
F [ψ] may have a simple φ4 form if we use these equations to describe liquid-gas phase separation of chiral mesogens.
In this paper, however, we concentrate on layered states.

B. Non-conserved order parameter

We now construct the dynamics of a non-conserved scalar order parameter in chiral, momentum conserved systems.
As in the conserved case, we first discuss a two-dimensional film with broken up-down symmetry and then a bulk,
three-dimensional system and again use a Swift-Hohenberg free energy.

1. Two-dimensional film

We consider a suspended thin-film of chiral, active particles in a fluid which breaks up-down symmetry, i.e. has
a distinguished normal direction N ≡ ŷ. We define a two-dimensional antisymmetric tensor εij = εijkNk. With
these definitions, the equation of motion for the two-dimensional non-conserved order parameter field m(r, t), where
r ≡ (x, z), is

∂tm+ v · ∇m = ωv1∇2(ε : ∇v) + ωv2∇m · ∇(ε : ∇v) + ω1∇(∇2m) · ε · ∇m+ ω2∇m · ε · ∇(∇m)2 + λ1(∇m)2

+ λ2∇2m(∇m)2 + λ3∇m · ∇(∇m)2 + λ4m∇2(∇m)2 + λ5m(∇2m)2 + λ6m∇m · ∇(∇2m)− Γm
δF [m]

δm
+ ξm, (S10)

where ∇ ≡ ∂xx̂ + ∂z ẑ, v(r, t) is the two-dimensional velocity field and ξm(r, t) is a non-conserving, Gaussian white
noise with the correlation 〈ξm(r, t)ξm(r′, t′)〉 = 2Dmδ(r− r′)δ(t− t′). The coefficients ωv1, ωv2, ω1, ω2 and λ1 can all
be functions of m. The first two terms are reactive couplings to the velocity field which are allowed in passive chiral
systems as well. The terms with the coefficients ω1, ω2 and λi in (S10) are active. We now display the equation of
motion for the two-dimensional, in-plane Stokesian velocity field:

η∇2v = −(∇m)
δF [m]

δm
+∇p−∇· [ζH I+ ζ̄cε] · (∇m∇m)ST + (ε ·∇)

[
∇2

(
ωv1

δF [ψ]

δm

)
−∇ ·

{
ωv2(∇m)

δF [m]

δm

}]
+ξv,

(S11)
where the superscript ST denotes symmetrisation and trace-removal, I is the two-dimensional identity tensor, p is
the pressure enforcing the incompressibility constraint ∇ · v = 0, ζH is the coefficient of the achiral active force
[S3, S7, S8], ζ̄c is the coefficient of a chiral active force whose form is similar to the ones in [S9–S12] and ξv is a
conserving Gaussian white noise with the correlation 〈ξv(r, t)ξv(r′, t′)〉 = −2IDv∇2δ(r − r′)δ(t − t′). In the passive
limit, the noise strengths must satisfy the relation Dm/Γm = Dv/η. The active forces with the coefficients ζH and ζ̄c
which are equivalent to the ones in (S4) are the only ones allowed at this order in gradients and fields even though m
is a non-conserved field. Eqs. (S10) and (S11) describe the dynamics of a non-conserved order parameter in a chiral,
momentum conserved active system along with a definition for F [m]. To account for phase transition between a state
with m = 0 and m 6= 0, one would need to use a φ4 free energy. In this paper, we study a distinct question – the fate
of a layered state given (S10) and (S11) and for that, we will use a free energy of the Swift-Hohenberg form [S15].

2. Three-dimensional systems

We now consider a bulk, three-dimensional system with a three-dimensional non-conserved order parameter m(r, t)
and velocity field v(r, t) where r ≡ (x, y, z). The dynamical equation for m is

∂tm+ v · ∇m = Ωv∇m · ∇2(∇× v) + λ1(∇m)2 + λ2∇2m(∇m)2 + λ3∇m · ∇(∇m)2

+ λ4m∇2(∇m)2 + λ5m(∇2m)2 + λ6m∇m · ∇(∇2m)− Γm
δF [m]

δm
+ ξm. (S12)
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Here, ∇ is the three-dimensional gradient operator, v(r, t) is the three-dimensional velocity field and and ξm(r, t) is
a non-conserving, Gaussian white noise with the correlation 〈ξm(r, t)ξm(r′, t′)〉 = 2Dmδ(r− r′)δ(t− t′). We have not
included a chiral term involving only the gradients of m which appears at higher order in gradients. The first term of
the R.H.S. of (S12) is allowed even in passive systems while the terms with the coefficients λi are purely active and
the final term is the passive relaxation. The equation of motion for the velocity field is

η∇2vi = −(∂im)
δF [m]

δm
+ ∂ip− ∂j · [ζH(∂im∂jm) + z̄c∂l(εijk∂km∂lm)] + ∂j

[
εijk∂l∂l

(
Ωv∂km

δF [m]

δm

)]
+ ξvi , (S13)

where 〈ξvi(r, t)ξvj (r′, t′)〉 = −2δijDv∇2δ(r − r′)δ(t − t′) and p is the pressure that enforces the three-dimensional
incompressibility constraint ∇ · v = 0. In equilibrium, in addition to all active terms being 0, Dm/Γm = Dv/η. This
completes the description of a chiral non-conserved order parameter in a momentum conserved system.

II. LAYERED STATES

In this section, we will consider layered states of both systems with conserved and non-conserved order parameters
and derive their dynamical equations. We will first consider a layered state in a two-dimensional film and then in a
three-dimensional system.

A. Layered states in a two-dimensional film

We will start with the dynamics described in Sections I A 1 and I B 1 and derive the dynamical equations for a
layered state – a positionally ordered array of lines – in two dimensions. We will first discuss this for the case of a
conserved order parameter (Sec. I A 1) and then a non-conserved order parameter (Sec. I B 1). As expected, we will
demonstrate that in both cases, the hydrodynamic theory we derive for the layered state will be the same.

1. Two-dimensional layered state in a system with a conserved order parameter

We consider a layered state that can arise in a two-dimensional film that break up-down symmetry, with a chiral,
conserved composition variable and derive its equation of motion starting from (S1) and (S4). We will consider the
effect of activity on a layered state of the composition field ψ that may be realised in the absence of activity, i.e, when
λ1, λ2, ω1, ω2, ζH and ζ̄c in (S2), (S3) and (S4) are set to 0. The composition field ψ may have mean value ψ0 about
which it has a periodic spatial modulation ψ1(r) i.e, ψ = ψ0 + ψ1. The periodically modulated steady-state has no
flow and minimises the standard Swift-Hohenberg free energy i.e., δF [ψ]/δψ = 0 for

F [ψ] = F [ψ0] +
Υ

2

∫
dr

[
−2q2s(∇ψ1)2 + (∇2ψ1)2 +

α

2
(ψ1)2 +

β

4
(ψ1)4

]
, (S14)

with q−1s being the periodicity of the layered state which is reached when the homogeneous state is destabilised for
α < 0. Without any loss of generality, we assume that periodic modulation of ψ is along x̂ i.e., ψ1 forms a state with
a uniformly spaced array of lines whose normals are along ẑ. This implies that the steady state ψ1 is

ψ1|s.s = ψ0
1 [eiφ0 + e−iφ0 ], (S15)

where the amplitude ψ0
1 =

√
|α|/β and the phase is φ0 = qsz. We now consider the hydrodynamic fluctuations of ψ1

about this passive steady-state in the presence of active forces. The fluctuations of the amplitude of ψ1 are massive
and relax to ψ0

1 in a finite timescale. However, the phase fluctuations are hydrodynamic. We therefore take

φ = φ0 − qsu(x, z, t) ≡ qs[z − u(x, z, t)] (S16)

where u is the Goldstone mode of the the broken translational symmetry and denotes the displacement of the periodic
array of layers from their steady state positions. Inserting

ψ1 = ψ0
1 [eiφ + e−iφ] (S17)

into (S14) we obtain a free energy purely in terms of u

F [ψ] = F [ψ0] + 2Υ(ψ0
1q

2
s)2
∫ [
{∂zu− (1/2)(∇u)2}2 + µ2(∇2u)2

]
, (S18)
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where µ ∝ q−1s [S22]. We now define B = (4q2sψ
0
1)2Υ and K = (4q2sψ

0
1µ)2Υ to obtain the standard free energy for a

layered state:

F [u] =

∫ [
B

2

(
∂zu−

(∇u)2

2

)2

+
K

2
(∇2u)2

]
. (S19)

The first term in the free energy is the compression modulus and involves the covariant strain

E =

(
∂zu−

(∇u)2

2

)
. (S20)

We now construct a dynamical equation for u from (S1) and write the velocity equation from (S4) in terms of u. The
phase gradient, which is along the normal to the layers, is qsn = ∇φ (note that n is not a unit vector unlike in [S23]).
The time evolution of ψ reduces to

∂tψ = −iψ0
1qs[e

iφ − e−iφ]∂tu. (S21)

The velocity coupling from (S3) ∇ · [ωvψ∇(ε : ∇v)] yields a term

iωvψ
0
1 [eiφ − e−iφ]∇φ · ∇(ε : ∇v) = iωvψ

0
1qs[e

iφ − e−iφ]n · ∇(ε : ∇v), (S22)

which enters the phase equation. Similarly, the achiral active terms (S2) also contribute to the phase equation:

iλ1Im[∇ · {ψ∇ψ∇2ψ}] = −iψ03

1 λ1∇φ · ∇(∇φ)2[eiφ − e−iφ] = 2iψ03

1 q
3
sλ1n · ∇E[eiφ − e−iφ] (S23)

and

iλ2Im[∇·{ψ∇(∇ψ)2}] = −iψ03

1 λ2[∇φ·∇(∇φ)2+2∇2φ(∇φ)2][eiφ−e−iφ] = 2iψ03

1 q
3
sλ2[n·∇E−∇·n(1−2E)][eiφ−e−iφ].

(S24)

The chiral active term, ω2∇ · [ψε · ∇(∇ψ)2] = ω2εij∂iψ∂j(∂lψ∂lψ) has a term 3iω2ψ
03

1 εij [e
iφ − e−iφ]∂iφ∂j(∂lφ∂lφ).

Using

∂lφ∂lφ = q2s(δlx − ∂lu)(δlx − ∂lu) = q2s(1− 2E), (S25)

we get

3iω2ψ
03

1 εij [e
iφ−e−iφ]∂iφ∂j(∂lφ∂lφ) = 3iω2ψ

03

1 q
3
s [eiφ−e−iφ]εijni∂j(1−2E) = −6iω2ψ

03

1 q
3
s [eiφ−e−iφ]εijni∂jE. (S26)

Similarly, treating the achiral currents and putting all of these together, the displacement field equation is

∂tu = v · n− χvn · ∇(ε : ∇v) + Λ1n · ∇E + Λ2∇ · n(1− 2E)− χ(ε : n∇)E − Γu
δF [u]

δu
+ ξu, (S27)

where we have defined χv = ωv, Λ1 = −2ψ02

1 q
2
s(λ1 + λ2), Λ2 = 2ψ02

1 q
2
sλ2, χ = ψ02

1 q
2
s(2ω1 − 6ω2), Γu = −Mq2s and

〈ξu(r, t)ξu(r′, t′)〉 = 2Duδ(r− r′)δ(t− t′). We now consider the constitutive equation for the Stokesian velocity field.
For this, we consider the term

(∇ψ∇ψ)ST = 2ψ02

1 [∇φ∇φ− I(∇φ)2/2] = 2ψ02

1 q
2
s [nn− (1/2)In · n]

= 2ψ02

1 q
2
s [nn + (E − 1/2)I] = 2ψ02

1 q
2
s [(ẑ−∇u)(ẑ−∇u) + I{∂zu− (∇u)2/2− 1/2}]

= 2ψ02

1 q
2
s

(
−(1/2) + ∂zu− (∂zu)2/2 + (∂xu)2/2 −(1− ∂zu)∂xu

−(1− ∂zu)∂xu (1/2)− ∂zu+ (∂zu)2/2− (∂xu)2/2

)
= −2ψ02

1 q
2
sw. (S28)

With this, (S4) becomes

η∇2v = n
δF [u]

δu
+∇p+∇ · [ζI− ζcε] ·w + χv(ε · ∇)∇ ·

[
n
δF [u]

δu

]
+ ξv, (S29)

where ζ = 2ψ02

1 q
2
sζH and ζc = −2ψ02

1 q
2
s ζ̄c. Eqs. (S27) and (S29) constitute a complete description of a layered state

formed by chiral components in a two-dimensional thin film.
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2. Two-dimensional layered state in a system with a non-conserved order parameter

We will demonstrate that (unsurprisingly) the dynamics of a layered state formed by a non-conserved order param-
eter (Sec. I B 1) is eactly equivalent to that formed by a conserved order parameter. We will closely follow the path
outlined in the last section and consider the effect of activity on a layered state of the field m in the absence of activity.
We will assume that m has a mean value m0 about which it has periodic spatial modulations i.e. m = m0 +m1. As
in the last section we take the free energy to be

F [m] = F [m0] +
Υ

2

∫
dr

[
−2q2s(∇m1)2 + (∇2m1)2 +

α

2
(m1)2 +

β

4
(m1)4

]
, (S30)

with q−1s being the periodicity of the layered state which is reached when the homogeneous state is destabilised for
α < 0. As earlier, we assume that periodic modulation of m is along ẑ. The steady state m1 is

m1|s.s = m0
1[eiφ0 + e−iφ0 ] (S31)

where the amplitude m0
1 =

√
|α|/β and the phase is φ0 = qsx. Considering the soft phase fluctuations,

φ = φ0 − qsu(y, z, t) ≡ qs[z − u(y, z, t)], (S32)

where u is the Goldstone mode of the the broken translational symmetry and denotes the displacement of the periodic
array of layers from their steady state positions, we get

m1 = m0
1[eiφ + e−iφ]. (S33)

Inserting this into (S30) we obtain a free energy purely in terms of u:

F [m] = F [ψ0] + 2Υ(m0
1q

2
s)2
∫ [
{∂zu− (1/2)(∇u)2}2 + µ2(∇2u)2

]
, (S34)

where µ ∝ q−1s [S22]. We now define B = (4q2sm
0
1)2Υ and K = (4q2sm

0
1µ)2Υ to obtain the standard free energy for a

layered state:

F [u] =

∫ [
B

2
E2 +

K

2
(∇2u)2

]
. (S35)

Writing the slow time evolution of m as

∂tm = −im0
1qs[e

iφ − e−iφ]∂tu, (S36)

and following the arguments of the last section we arrive at the equations of motion of u from (S10) and the constitutive
equation for v, depending on u from (S11):

∂tu = v · n− χvn · ∇(ε : ∇v) + Λ1n · ∇E + Λ2∇ · n(1− 2E)− χ(ε : n∇)E − Γu
δF [u]

δu
+ ξu, (S37)

where χv = ωv2, Λ1 = −2m02

1 q
2
s(λ3 + 3λ4 +λ6), Λ2 = 2m02

1 q
2
s(−3λ2 +λ3 + 2λ4 + 2λ5 +λ6), χ = m02

1 q
2
s(2ζmc1− 6ζmc2)

and Γu ∝ Γm. The velocity field equation is

η∇2v = n
δF [u]

δu
+∇p+∇ · [ζI− ζcε] ·w + χv(ε · ∇)∇ ·

[
n
δF [u]

δu

]
+ ξv, (S38)

where ζ = 2m02

1 q
2
sζH and ζc = −2m02

1 q
2
s ζ̄c. These equations are exactly the same as the ones derived in Sec. II A 1

with the difference being hidden in the relation between the phenomenological coefficients of the layered state and
those introduced in Sec. I A 1 and I B 1.

B. Layered states in three-dimensional systems

In this section, we will start with the dynamics described in Sections I A 2 and I B 2 and derive the dynamical
equations for a layered state in three dimensions. We will first discuss this for the case of a conserved order parameter
(Sec. I A 2) and then a non-conserved order parameter (Sec. I B 2). As expected, we will demonstrate that in both
cases, the hydrodynamic theory we derive for the layered state are the same.
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1. Three-dimensional layered state in a system with a conserved order parameter

In this section, we consider a layered state that can arise in a three-dimensional system, with a chiral, conserved
composition variable and derive its equation of motion starting from (S5) and (S8). As earlier, we will consider the
effect of activity on a layered state of the composition field ψ that may be realised in the absence of activity. The
composition field ψ may have mean value ψ0 about which it has a periodic spatial modulation ψ1(r) i.e, ψ = ψ0 +ψ1.
The periodically modulated steady-state has no flow and minimises free energy

F [ψ] = F [ψ0] +
Υ

2

∫
dr

[
−2q2s(∇ψ1)2 + (∇2ψ1)2 +

α

2
(ψ1)2 +

β

4
(ψ1)4

]
, (S39)

with q−1s being the periodicity of the layered state which is reached when the homogeneous state is destabilised for
α < 0. We take the periodic modulation of ψ to be along ẑ i.e., ψ1 forms a state with a uniformly spaced array of
layers whose normals are along ẑ. This implies that the steady state ψ1 is

ψ1|s.s = ψ0
1 [eiφ0 + e−iφ0 ], (S40)

where the amplitude ψ0
1 =

√
|α|/β and the phase is φ0 = qsz. We now consider the hydrodynamic fluctuations of ψ1

about this passive steady-state in the presence of active forces. The fluctuations of the amplitude of ψ1 are massive
and relax to ψ0

1 in a finite timescale. However, the phase fluctuations are hydrodynamic. We therefore take

φ = φ0 − qsu(x, y, z, t) ≡ qs[z − u(x, y, z, t)], (S41)

where u is the Goldstone mode of the the broken translational symmetry and denotes the displacement of the periodic
array of layers from their steady state positions. Inserting

ψ1 = ψ0
1 [eiφ + e−iφ] (S42)

into (S39) we obtain a free energy purely in terms of u,

F [ψ] = F [ψ0] + 2Υ(ψ0
1q

2
s)2
∫ [
{∂zu− (1/2)(∇u)2}2 + µ2(∇2u)2

]
, (S43)

where µ ∝ q−1s [S22]. We now define B = (4q2sψ
0
1)2Υ and K = (4q2sψ

0
1µ)2Υ to obtain the standard free energy for a

layered state

F [u] =

∫ [
B

2

(
∂zu−

(∇u)2

2

)2

+
K

2
(∇2u)2

]
. (S44)

The first term in the free energy is the compression modulus and involves the covariant strain

E =

(
∂zu−

(∇u)2

2

)
. (S45)

The normal to the layers is qsn = ∇φ (note that n is not a unit vector unlike in [S23]). The time derivative of ψ
yields

∂tψ = −iψ0
1qs[e

iφ − e−iφ]∂tu. (S46)

We construct a dynamical equation for u from (S5) and write the velocity equation (S8) in terms of u:

∂tu = v · n + Cvn · [∇2(∇× v)] + Λ1n · ∇E + Λ2∇ · n(1− 2E)− Γu
δF [u]

δu
+ ξu, (S47)

where Cv = −Ωv, Λ1 = −2ψ02

1 q
2
s(λ1 +λ2), Λ2 = 2ψ02

1 q
2
sλ2, Γu = −Mq2s and 〈ξu(r, t)ξu(r′, t′)〉 = 2Duδ(r− r′)δ(t− t′).

Using

(∂iψ∂jψ) = 2ψ02

1 [∂iφ∂jφ] = 2ψ02

1 q
2
s [ninj ] = 2ψ02

1 q
2
s [(δiz − ∂iu)(δjz − ∂ju)]

= 2ψ02

1 q
2
s




(∂xu)2 ∂xu∂yu −(1− ∂zu)∂xu
∂xu∂yu (∂yu)2 −(1− ∂zu)∂yu

−(1− ∂zu)∂xu −(1− ∂zu)∂yu (1− ∂zu)2


 = −2ψ02

1 q
2
swij (S48)
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we rewrite (S8) as

η∇2vi = ni
δF [u]

δu
+ ∂ip+ ∂j [ζwij + ζc∂l(εijkwkl)] + Cvεijk∂j∂l∂l

[
nk
δF [u]

δu

]
+ ξvi , (S49)

where ζ = 2ψ02

1 q
2
sζH and zc = 2ψ02

1 q
2
s z̄c. Eqs. (S47) and (S49) constitute the complete description of an active, chiral

layered state.

2. Three-dimensional layered state in a system with a non-conserved order parameter

In this section, we consider a layered state that can arise in a three-dimensional system, with a chiral, non-conserved
composition variable and derive its equation of motion starting from (S12) and (S13). As earlier, we will consider
the effect of activity on a layered state of the order parameter field m that may be realised in the absence of activity.
The order parameter field m may have mean value m0 about which it has a periodic spatial modulation m1(r) i.e,
m = m0 +m1. The periodically modulated steady-state has no flow and minimises free energy

F [m] = F [m0] +
Υ

2

∫
dr

[
−2q2s(∇m1)2 + (∇2m1)2 +

α

2
(m1)2 +

β

4
(m1)4

]
, (S50)

with q−1s being the periodicity of the layered state which is reached when the homogeneous state is destabilised for
α < 0. We assume that periodic modulation of m is along ẑ i.e., ψ1 forms a state with a uniformly spaced array of
layers whose normals are along ẑ. This implies that the steady state m1 is

m1|s.s = m0
1[eiφ0 + e−iφ0 ], (S51)

where the amplitude m0
1 =

√
|α|/β and the phase is φ0 = qsz. Considering the fluctuations

φ = φ0 − qsu(x, y, z, t) ≡ qs[z − u(x, y, z, t)], (S52)

where u is the Goldstone mode of the the broken translational symmetry and denotes the displacement of the periodic
array of layers from their steady state positions, and inserting

m1 = m0
1[eiφ + e−iφ] (S53)

into (S50) we obtain a free energy purely in terms of u:

F [m] = F [m0] + 2Υ(m0
1q

2
s)2
∫ [
{∂xu− (1/2)(∇u)2}2 + µ2(∇2u)2

]
, (S54)

where µ ∝ q−1s [S22]. We define B = (2q2sm
0
1)2Υ and K = (2q2sm

0
1µ)2Υ to obtain the standard free energy for a

layered state:

F [u] =

∫ [
B

2

(
∂zu−

(∇u)2

2

)2

+
K

2
(∇2u)2

]
=

∫ [
B

2
E2 +

K

2
(∇2u)2

]
. (S55)

The normal to the layers is qsn = ∇φ. The time derivative of m yields

∂tm = −im0
1qs[e

iφ − e−iφ]∂tu. (S56)

We now construct a dynamical equation for u from (S12) and the velocity equation from (S13) in terms of u:

∂tu = v · n + Cvn · [∇2(∇× v)] + Λ1n · ∇E + Λ2∇ · n(1− 2E)− Γu
δF [u]

δu
+ ξu, (S57)

where Cv = −Ωv, Λ1 = −2m02

1 q
2
s(λ3 + 3λ4 + λ6), Λ2 = 2m02

1 q
2
s(−3λ2 + λ3 + 2λ4 + 2λ5 + λ6), Γu ∝ Γm, and

η∇2vi = ni
δF [u]

δu
+ ∂ip+ ∂j [ζwij + ζc∂l(εijkwkl)] + Cvεijk∂j∂l∂l

[
nk
δF [u]

δu

]
+ ξvi , (S58)

where ζ = 2m02

1 q
2
sζH and zc = 2m02

1 q
2
s z̄c. As expected, these are exactly the same equations as those obtained in the

last section.
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III. EQUIVALENCE OF ACTIVE STRESS AND EXTERNAL STRESS

In this section, we will demonstrate that the influence of the achiral active stress in a layered state in an incom-
pressible system is equivalent to an externally imposed stress. To demonstrate this, we introduce an external stress
through the additional term in the free energy

F [u]→ F [u] + F ext[u] = F [u] +

∫
σ0E. (S59)

The force in the momentum density equation due to the external stress is,

fexti = −δF
ext

δu
(δiz − ∂iu). (S60)

δF ext

δu
= −σ0∂j

∂E

∂∂ju
= −σ0∂j(δjz − ∂ju). (S61)

This implies that

fexti = −δF
ext

δu
(δiz − ∂iu) = σ0∂j

∂E

∂∂ju
(δiz − ∂iu) = σ0

(
∂E

∂∂iu

)
∂j

(
∂E

∂∂ju

)

= σ0∂j

[(
∂E

∂∂iu

)(
∂E

∂∂ju

)]
− σ0

(
∂E

∂∂ju

)
∂j

(
∂E

∂∂iu

)
. (S62)

Using

(
∂E

∂∇u

)
· ∇
(
∂E

∂∇u

)
= −∇[∂zu− (1/2)(∇u)2] = −∇E, (S63)

we get

fext = σ0∇ ·
[(

∂E

∂∇u

)(
∂E

∂∇u

)
+ EI

]
= −∇ · σext. (S64)

The isotropic part of σext is, of course, unimportant in an incompressible system since it can be absorbed in the
pressure and

(
∂E

∂∇u

)(
∂E

∂∇u

)
=




(∂xu)2 ∂xu∂yu −(1− ∂zu)∂xu
∂xu∂yu (∂yu)2 −(1− ∂zu)∂yu

−(1− ∂zu)∂xu −(1− ∂zu)∂yu (1− ∂zu)2


 . (S65)

This is exactly equivalent to the active stress in (S48). This implies that the active stress in (S49) is indistinguishable
from an external stress, with σ0 = ζ, up to an irrelevant, isotropic piece. This further implies that all effects of the
achiral active stress in a layered system can be eliminated by exerting an external stress such that σ0+ζ = 0 – such an
externally stressed active layered state would be indistinguishable from a passive layered system without an external
stress.

Exactly the same calculation can be carried out for a two-dimensional layered state. In this case,

σext = −σ0
[(

∂E

∂∇u

)(
∂E

∂∇u

)
+ EI

]
= −σ0

(
∂zu− (∂zu)2/2 + (∂xu)2/2 −(1− ∂zu)∂xu

−(1− ∂zu)∂xu 1− ∂zu+ (∂zu)2/2− (∂xu)2/2

)
. (S66)

This differs from the two-dimensional active stress ζw in (S28) by an isotropic piece ∝ −1/2I, when σ0 = ζ which is
independent of u. Therefore, in both three and two dimensions, an achiral active stress can be compensated by an
external imposed stress.

Of course, from (S47) and (S49) we find that the free energy enters both in the u equation, with a permeative
coefficient Γu, and the velocity equation. Therefore, in passive, externally stressed layered systems, σ0 also enters
(S47) through ∂tu ∝ −Γuσ0∇2u. There is no obligation for a term ∝ ∇2u in the u̇ equation to have the same
coefficient as the active stress ζ. Therefore, strictly speaking, the equivalence between an externally stressed layered
state and one with an achiral active stress is only valid for impermeable systems i.e., one in which Λ1 = Λ2 = Γu = 0.
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IV. EQUIVALENCE OF DIFFERENT ACTIVE MODELS FOR LAYERED STATES

In this paper, we have introduced activity via “active” terms in the equations of motion (see, for instance, (S5)
and (S8) in Sec. I A 2 or the corresponding equations in Sec. I A 1, I B 1, I B 2). However, the same energy function
F [ψ] appears in both (S5) and (S8). That is neither necessary nor inevitable in active systems. We will now show
that taking two different free energies, F1[ψ] in (S5) and F2[ψ] (S8) would not have led to any qualitatively new effect
in the layered state. Since we are interested in the phase dynamics, we assume both the free energies have the same
preferred ψ0

1 . We take

F2[ψ1] =
Υ1

2

∫
dr

[
−2q21(∇ψ1)2 + (∇2ψ1)2 +

α

2
ψ2
1 +

β

4
ψ4
1

]
(S67)

and

F2[ψ1] =
Υ2

2

∫
dr

[
−2q22(∇ψ1)2 + (∇2ψ1)2 +

α

2
ψ2 +

β

4
ψ4
1

]
(S68)

to be the two free energies. Further, as discussed earlier, the wavevector of the layered pattern in an active system
need not be (and, in general, will not be) the one that would be selected in a passive system. In particular, this means
that the selected wavelength of the pattern

ψ1 = ψ0
1 [eiφ0 + e−iφ0 ], (S69)

where ψ0
1 =

√
|α|/β and φ0 = qsz, need not be equal to either q1 or q2 i.e. qs 6= q1 6= q2, in general. Inserting the

form of ψ1 in (S67) and (S68), we obtain

F1[u] = 2Υ1(ψ0
1q

2
s)2
∫ [

q21 − q2s
q2s

{∂zu− (1/2)(∇u)2}+ {∂zu− (1/2)(∇u)2}2 + µ2
1(∇2u)2

]
(S70)

and

F2[u] = 2Υ2(ψ0
1q

2
s)2
∫ [

q22 − q2s
q2s

{∂zu− (1/2)(∇u)2}+ {∂zu− (1/2)(∇u)2}2 + µ2
2(∇2u)2

]
. (S71)

Writing σ1 = 2Υ1(ψ0
1qs)

2(q21 − q2s), B1 = 4Υ1(ψ0
1q

2
s)2, K1 = 4Υ1(ψ0

1q
2
s)2µ2

1, σ2 = 2Υ2(ψ0
1qs)

2(q22 − q2s), B2 =
4Υ2(ψ0

1q
2
s)2, K2 = 4Υ2(ψ0

1q
2
s)2µ2

2, these free energies can be written in the form

F1[u] =
1

2

∫
2σ1E +B1E

2 +K1(∇2u)2 (S72)

and

F2[u] =
1

2

∫
2σ2E +B2E

2 +K2(∇2u)2. (S73)

The dominant effect of the two free energy picture arises from the effective “excess” stress terms σ1 and σ2. As
discussed in the last section, σ2 essentially amounts to a shift of the achiral active stress in (S49). Similarly, σ1
would induce a permeative term with ∂u ∝ Γuσ1∇2u in (S47). Thus, since (S47) already contains active permeative
terms ∝ ∇2u, neither σ1 nor σ2 leads to any qualitatively new dynamics beyond those captured by (S47) and (S49).
Similarly, since (S47) already contains active permeative terms proportional to n ·∇E, the difference between B1 and
B2 also doesn’t lead to any qualitatively new effect (beyond a trivial shift of an active permeative coefficient). The
same conclusion can be drawn about the bending free energies. This implies that i. no qualitatively new phenomenon
can be expected if, in addition to the active terms we have introduced, we also allowed for the possibility of distinct
free energies in different equations and ii. though, in general, the ordering wavevector in an active system is different
from its passive counterpart, this difference only leads to a simple shift in the achiral active stress and implies that
our conclusions, obtained by examining the effect of activity on a passive steady-state, is valid more generally.

Now we discuss a second possible distinction between the model we introduce here and other models of active
layered states. In this work, we construct active stresses out of the dyadic ∇φ∇φ. However, other works on active
layered systems (for instance, [S23, S24]) introduce an active stress proportional to mm where m, distinct from our



11

n = (1/qs)∇φ, is the unit normal m = ∇φ/|∇φ|. We now show that this doesn’t lead to any physics unaccounted for
within our treatment. To demonstrate this, we first calculate the form of the “director active stress”:

σdirij = ζmm = ζ
1

|∇φ|2 ∂iφ∂jφ = ζ
1

1− 2E
(δiz − ∂iu)(δjz − ∂ju) ≈ ζ(1 + 2E)(δiz − ∂iu)(δjz − ∂ju), (S74)

where we have used the relation

|∇φ|2 = q2s [(1− ∂zu)2 + (∇⊥u)2] = q2s(1 + (∇u)2 − 2∂zu) = q2s(1− 2E), (S75)

and where the last approximate equality in (S74) is for small layer deformations. This demonstrates that at small
deformations, the director form of the active stress leads to an extra term ∝ 2ζE(δiz − ∂iu)(δjz − ∂ju). We will
now show that this can be absorbed into a redefinition of the free energy in the velocity equation (but without any
equivalent redefinition in the u̇ equation, for permeative systems). To demonstrate this, we closely follow (III) to
calculate the stress due to the compressive free energy:

σelasij = −BE
(
∂E

∂∂iu

)(
∂E

∂∂ju

)
− BE2

2
δij = −BE(δiz − ∂iu)(δjz − ∂ju)− BE2

2
δij . (S76)

Thus, up to the isotropic piece ∝ BE2/2I which can be absorbed into a redefinition of the pressure, the form of (S76)
is exactly equivalent to the extra term ∝ 2ζE(δiz − ∂iu)(δjz − ∂ju) (for small deformations) that using the director
form of the active stress leads to. This part of the “active stress” can therefore be absorbed into a redefinition of the
compression modulus of the layered sate, but only in the velocity equation. Crucially, therefore, in a layered state
in which permeation is allowed, this amounts to a description with two distinct free energies. However, as discussed
above, such a discussion is not qualitatively distinct from one which starts from (S47) and (S49) – the “different free
energies” can be reconciled with our description with a single free energy via a further shift of an active permeative
coefficient. This implies that, at least for small deformations, our description and one with an active stress ∝ mm
are equivalent up to a redefinition of phenomenological coefficients.

V. LINEARISED THEORY OF CHIRAL LAYERED STATES

We will now consider the linearised theory of chiral layered states. We will first consider a layered state in a
two-dimensional thin film (see Sec. II A) and then a three-dimensional layered state (see Sec. II B). We first consider
a two-dimensional layered state discussed in Sec. II A

A. Linear theory of two-dimensional, chiral layered states

In this section we will examine the theory of linearised fluctuations about a layered state implied by (S27) and
(S29) in Sec. II A 1 or equivalently, (S37) and (S38) in Sec. II A 2. The linearised equations of motion are

∂tu = vz + χv∂z(∂zvx − ∂xvz) + Λ1∂
2
zu− Λ2∇2u+ χ∂z∂xu+ ΓuB∂

2
zu− ΓuK∇4u+ ξu, (S77)

η∇2vx = ∂xp− ζc∇2u− χv∂2z (B∂2zu−K∇4u) + ξvx (S78)

and

η∇2vz = −(B∂2zu−K∇4u) + ∂zp+ ζ∇2u+ χv∂x∂z(B∂
2
zu−K∇4u) + ξvz (S79)

Before analysing these equations of motion, a few comments are in order. The chiral active stress implies that a
curvature, in addition to exerting a force along the normal to the layers (due to the achiral active force), can also
exert a force transverse to the layers. This crucially requires the breaking of up-down symmetry. The term with
coefficient χv in (S77) implies that a z gradient of the two-dimensional vorticity leads to a translation of the layers.
This is a chiral velocity coupling that is present even in equilibrium. This implies that creating a Poiseuille profile of
the velocity transverse to the layers leads to a motion of the layers. That is, unlike in achiral layered states, a flow
transverse to the layers leads to a drift of the layers in chiral layered states. The chiral, active permeative term with
the coefficient χ that tilting a configuration of the layers with a uniform gradient along the layer normal direction
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leads to a drift of the layers. We now embark on an analysis of the linearied dynamics implied by (S77), (S79) and
(S78). Using incompressibility to eliminate the pressure and solve (S79) and (S78) in the Fourier space and inserting
into the Fourier-transformed version of (S77), we obtain to O(q0),

−iωu = − 1

ηq4
[{Bq2zq2x − (ζq2x + ζcqzqx)q2}u+ q2xξvz − qzqxξvx], (S80)

where the noise ξu originally in the ∂tu equation is subdominant to the noise appearing through the coupling to the
velocity field. In the absence of chirality, the achiral active force ζ leads to an effective layer tension [S23, S24] which
is stabilising when ζ < 0 and destabilises the layered state when ζ > 0. However, (S80) implies that the layered state
is unstable for any value of ζc – that is, chiral layered state do not exist in two dimensions. To see this more clearly,
we rewrite the dispersion relation implied by (S80):

ω = − i

ηq2

(
B
q2zq

2
x

q2
− ζq2x − ζcqxqz

)
= − i

η

[
B

4
sin2(2θq)− ζ sin2 θq −

ζc
2

sin(2θq)

]
, (S81)

where θq is the angle between ẑ and the wavevector direction. It is then clear that the relaxation rate is negative,
implying an instability for any sign and value of ζc: for ζc > 0, this instability happens for θq >∼ 0 while for ζc < 0,
the relaxation rate is negative for θq <∼ 0. Since the chiral layered state is generically unstable at small wavenumbers,
the coefficient of the O(q2) term controls the stability at larger wavevectors and is required to obtain the lengthscale
of the patterned state beyond the generic instability. We therefore expand the equation for u to O(q2):

− iωu = − 1

ηq4
{Bq2zq2x − (ζq2x + ζcqxqz)q

2}u− 1

η

(
Kq2x + 2Bχv

q3zqx
q2
− χvζcq2z − χvζqzqx

)
u

−
[
(ΓuB + Λ1)q2z + χqzqx − Λ2q

2
]
u− 1

ηq4
(q2xξvz − qzqxξvx). (S82)

The nonlinear equation of motion of the displacement field, explicitly writing the wavevector index, and retaining
only the lowest order nonlinearities, is

∂tuq +
i

ηk2

[(
ζckzkx + ζk2x −B

k2zk
2
x

k2

)
(q − k)z −

(
ζck

2
z + ζkzkx −B

k3zkx
k2

)
(q − k)x

]
ukuq−k

= −
[

1

ηq4
{Bq2zq2x − (ζq2x + ζcqxqz)q

2}+
1

η

(
Kq2x + 2Bχv

q3zqx
q2
− χvζcq2z − χvζqzqx

)
+
{

(ΓuB + Λ1)q2z + χqzqx − Λ2q
2
}]
uq.

(S83)

The variance of the noise in this equation diverges at small q as 1/q2. This nonlinear equation of motion needs to be
solved, perhaps numerically, for obtaining the steady state in the presence of chirality and activity.

As with the Simha-Ramaswamy instability [S25] however, this instability can be made to acquire a finite threshold
by bounding the system in the y direction. Take qx = π/d i.e., consider a layer of width d along the y direction and
consider a non-permeative state with ζ < 0 for simplicity. Also, assume that χv = 0. In this case, for qz � 1/d,

ω = − i
η

[
B

(
qzd

π

)2

− ζ − ζc
(
qzd

π

)]
(S84)

which is stable at small qz. Unlike the Simha-Ramaswamy instability of active nematics whose threshold vanishes as
1/d2, the threshold for this instability vanishes as 1/d.

The generic, chiral instability is not eliminated for non-permeative layers even when they are placed in contact
with a substrate which acts as a momentum sink. The results for this case can be obtained by replacing η∇2 in (S78)
and (S79) by the wavevector-independent friction −Γ (and a corresponding non-conserving noise) and yields (without
permeation)

−iωu = − 1

Γ

(
B
q2zq

2
x

q2
− ζq2x − ζcqxqz

)
u− q2xξvz − qzqxξvx

Γq2
, (S85)

which is clearly unstable at small wavevectors with a growth rate that now vanishes as ∼ q2. Note that in (S85),
ξv(r, t) is a nonconserving noise (since the momentum density is not a conserved quantity) whose correlator is
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〈ξv(r, t)ξv(r′, t′)〉 = 2DvIδ(r− r′)δ(t− t′). However, this active chiral instability can be prevented by permeation. In
this case, the equation of motion for u is

−iωu = − 1

Γ

(
B
q2zq

2
x

q2
− ζq2x − ζcqxqz

)
u−

[
(ΓuB + Λ1)q2z + χqzqx − Λ2q

2
]
u− q2xξvz − qzqxξvx

Γq2
+ ξu, (S86)

which is not generically unstable (it may, however, be unstable for certain values of the active parameters). When
the active, chiral layered state with permeation is stable, the static structure factor of displacement fluctuations is

〈|u|2〉 =
Dv(q

2
x/q

2) +Du

q2x[B(q2z/q
2)− ζ − ζc(qz/qx)] + Γ[(ΓuB + Λ1)q2z + χqzqx − Λ2q2]

. (S87)

This static structure factor diverges as 1/q2 along all directions of wavevector space. This implies that this phase
has quasi-long-range order in two dimensions. Moreover, in this case, it can be easily checked that there is no
relevant nonlinearity. Therefore, within a pure phase description, permeative two-dimensional chiral layered states on
a substrate can have quasi-long-range order.

A two-dimensional chiral layered state, with an in-plane incompressibility constraint, at the interface of two three-
dimensional momentum conserved fluids is also generically unstable. The calculation for this case is similar to the
one for the Stokesian momentum conserved with the only difference being the form of the mobility: instead of 1/ηq2,
it is 1/2η|q| [S26] and the dispersion relation is

ω = − i

2η|q|

(
B
q2zq

2
x

q2
− ζq2x − ζcqxqz

)
= − i|q|

2η

[
B

4
sin2(2θq)− ζ sin2 θq −

ζc
2

sin(2θq)

]
. (S88)

While unlike a two-dimensional system in which the momentum is completely conserved in the plane, the growth
rate of the instability vanishes linearly with the wavevector in this case, the instability cannot be stabilised by the
permeative terms which appear at subleading order O(q2) in wavevectors.

The more realistic case with a three-dimensional incompressibility constraint i.e., ∇ · v = 0 where v ≡ (vx, vy, vz)
and ∇ ≡ (∂x, ∂y, ∂z) are the three-dimensional velocity field and gradient operator respectively, (but where the pattern
and the active and passive forces are still purely confined to the plane) is more interesting. The force balance equations
in this case are

η∇2vx = ∂xp− ζc∇2uδ(y)− χv∂2z (B∂2zu−K∇4u)δ(y) + ξvx (S89)

η∇2vy = ∂yp+ ξvy, (S90)

and

η∇2vz = −(B∂2zu−K∇4u)δ(y) + ∂zp+ ζ∇2uδ(y) + χv∂x∂z(B∂
2
zu−K∇4u)δ(y) + ξvz, (S91)

where η is the three-dimensional viscosity (we assume that the fluids are viscosity-matched) and p is the pressure
that enforces the three-dimensional incompressibility constraint. Using the three-dimensional transverse projector to
solve for the velocity field and integrating it over all qx, we obtain the dispersion relation for u to lowest order in
wavevectors:

ω =
i

4η|q|

[
−B (2q2zq

2
x + q4z)

q2
+ ζ(q2z + 2q2x) + ζcqxqz

]
=
i|q|
4η

[
−B cos2 θq(1 + sin2 θq) + ζ(1 + sin2 θq) +

1

2
ζc sin(2θq)

]

(S92)
This is not unstable for θq → 0. That is, the instability of the two-dimensional Stokesian layered state is eliminated
when the layered state is formed at the interface of two three-dimensional fluids with three-dimensional momentum
conservation and, crucially, three-dimensional fluid incompressibility.

Finally, if we consider a two-dimensional momentum-conserved system beyond the Stokes regime, we have to replace
the η∇2 on the R.H.S. of (S78) and (S79) by inertia −ρ0∂tvx and −ρ0∂tvz respectively, where ρ0 is the total mass
density field (which is incompressible). This then yields a pair of sound waves with ω = ±c(θq)q

c(θq) =

√
B sin2(2θq)− 4ζ sin2 θq − 2ζc sin(2θq)

4ρ0
. (S93)
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x

z

FIG. S1. The flow field due to the chiral, active force for a distortion of a two-dimensional layered state purely along the normal
direction.

As expected, the sound speed turns imaginary for θq <∼ 0 when ζc < 0 and θq >∼ 0 when ζc > 0.
It is known that the Simha-Ramaswamy instability of a polar, inertial fluid can be eliminated for sufficiently high

motility [S27]. Can an array of motile lines in a chiral active system also escape the chiral generic instability? If
we consider a layered state which is polar in addition to being chiral, the lines will move in the direction of the
polarisation field, which we take to be slaved to the normal to the layers. In this case, ∂tu in (S77) should be replaced
by ∂tu+γ[∂zu−(∇u)2/2] [S28] where γ is a phenomenological coefficient which carries information about the polarity.
Considering only its linear part, the characteristic equation is then modified to

ω2 − γω cos θqq −
B sin2(2θq)− 4ζ sin2 θq − 2ζc sin(2θq)

4ρ0
q2 = 0. (S94)

This has the solution

ω =
1

2

[
γ cos θq ±

√
1

ρ0

√
γ2 cos2 θq +B sin2(2θq)− 4ζ sin2 θq − 2ζc sin(2θq)

]
. (S95)

It is clear that when ζ < 0 and ζc is sufficiently small, the angular factor under the square root is not negative for
any θq. Indeed, it is not negative for small θq, since γ2 cos2 θq ≈ γ2 � 0, thus eliminating the generic instability.
Therefore, inertia always suppresses the instability of polar chiral layered states which would be present in Stokesian
fluids (for a strictly Stokesian fluid, the γ term would only contribute at subleading order in wavenumbers).

B. Linear theory of three-dimensional, chiral layered states

In this section we will examine the theory of linearised fluctuations about a layered state implied by (S47) and
(S49) in Sec. II B 1 or equivalently, (S57) and (S58) in Sec. II B 2. The linearised equations of motion are

∂tu = vz + Cv∇2(∂xvy − ∂yvx) + Λ1∂
2
zu− Λ2∇2u+ Γu(B∂2zu−K∇4u) + ξu, (S96)

η∇2vx = ∂xp+ ζ∂z∂xu+ zc∂y∇2u− Cv∂y∇2(B∂2zu−K∇4u) + ξvx, (S97)

η∇2vy = ∂yp+ ζ∂z∂yu− zc∂x∇2u+ Cv∂x∇2(B∂2zu−K∇4u) + ξvy (S98)

and

η∇2vz = −(B∂2zu−K∇4u) + ∂zp+ ζ(∇2 + ∂2z )u+ ξvz. (S99)
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The Cv coupling which is allowed even in passive layered chiral systems, such as cholesterics, implies that the Laplacian
of an in-plane vortical flow leads to motion of the layers. This is in contrast to achiral layered systems, such as smetics
and lamellar phases, in which in-plane flows do not lead to any displacement of layers within the linear theory. This
implies that while the hydrodynamics of passive smectic and cholesteric phases are equivalent to the leading order,
a distinction between them arises at a subleading order. The active permeative terms in (S96) are both achiral and
are, in principle, present even in active smectics [S23]. The only other effect of chirality arises through the chiral
active stress which, unlike in two dimensions, is nominally subdominant to the achiral active stress. However, we will
demonstrate in this section, and in greater detail, in the next one that this nevertheless has important qualitative
consequences. Before embarking on that, we briefly comment on the leading order displacement field dynamics which
is indistinguishable from an achiral layered state. eliminating the pressure using the constraint of incompressiblity
and eliminating the pressure, we obtain the Fourier-transformed equation of motion for the displacement field which,
to the lowest order in wavenumbers is

−iωu = − 1

ηq2

[(
B
q2zq

2
⊥

q2
− ζq2⊥

)
u− qz(qxξvx + qyξvy) + q2⊥ξvz

]
, (S100)

where q2⊥ ≡ q2x+q2y. The layered state is stable only when ζ < 0. In this case, the static structure factor of displacement
fluctuations is simply

〈|u|2〉 =
Dv

η[Bq2z − ζq2]
, (S101)

which diverges as 1/q2 in all directions of the wavevector space. Therefore, in three-dimensions, chiral, active layered
states, in common with their achiral counterparts, but unlike passive layered states, have long-range order.

We have shown that chirality doesn’t modify the small wavenumber theory of layered states. However, it has a
crucial effect nevertheless. From (S97) and (S98), we see that the chiral active force (which is divergence-free) implies
a vortical flow due to a curvature of the layers. To demonstrate this more clearly, we calculate the z component of
the vorticity field Ωz ≡ ∂xvy − ∂yvx from (S97) and (S98):

η∇2Ωz = −zc∇2∇2
⊥u+ Cv∇2∇2

⊥(B∂2zu−K∇4u), (S102)

with ∇2
⊥ ≡ ∂2x+∂2y , where, as expected, only the chiral active force and the chiral passive coupling to the displacement

field appear. The passive coupling is subdominant to the active one and to lowest order,

Ωz ∼ −
zc
η
∇2
⊥u. (S103)

As advertised earlier, this implies that a curvature of the layers lead to in-plane vortical flows. This is a unique feature
of chiral and active layered states.

VI. BEYOND LINEAR THEORY: SPONTANEOUS VORTEX LATTICE STATES

In the last section we demonstrated that a curvature of layers must, inevitably lead to in-plane vortical flows in chiral,
active layered states in three dimensions. In this section, considering non-permeative layered states for simplicity,
we will demonstrate that the achiral active force can lead to a spontaneous formation of state with periodic layer
undulations in the x− y plane. Then, the effect of the chiral active force would be to create an in-plane vortex lattice
state with counter-rotating fluid vortices. As discussed in the last section, the layered state in an infinite system
is unstable for ζ > 0. Further, we demonstrated in Sec. III that a state with an active stress ζ is equivalent to a
passive layered system under an external stress σ0 = ζ. Therefore, the threshold-free instability of an active layered
state for ζ > 0 maps onto the Helfrich-Hurault instability of an externally stressed layered state, the threshold for
which vanishes with the sample size. In this case, when the layered state is destabilised, a square undulated pattern
(an egg-crate-like structure) is realised. Based on the equivalence of external stress and the achiral active stress, we
therefore argue that a similar pattern should be realised beyond the active instability as well. The wavelength of the
undulations have to be qp ∝

√
ζ/K. Therefore, a displacement field just beyond the instability of the form

u = u0 cos qpx cos qpy (S104)

leads to an in-plane vorticity pattern in a chiral active system from (S103) of the form

Ωz ∝
zcq

2
pu0

η
cos[qp(x+ y)]. (S105)
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FIG. S2. The active chiral flow field due to one dimensional undulations in three dimensional layered states

This is the vortex lattice depicted in the main text. Crucially, this vortex lattice state arises spontaneously from the
active instability. In the main text, we discuss how to control the structure of the vortex-lattice using the mapping
between the active and the external stress. The vortex lattice discussed in the main text results from a distortion
of the layered state in a square, egg-crate-like pattern. However, other distortions are possible; for instance, a one-
dimensional undulatory pattern which we take to be along x̂. In this case, the vortices will get infinitely stretched
along the y direction. We display the flow field generated in that case in Fig. S2.
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