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We describe how to construct generalized string-net models, a class of exactly solvable lattice
models that realize a large family of 2D topologically ordered phases of matter. The ground states of
these models can be thought of as superpositions of different “string-net configurations”, where each
string-net configuration is a trivalent graph with labeled edges, drawn in the xy plane. What makes
this construction more general than the original string-net construction is that, unlike the original
construction, tetrahedral reflection symmetry is not assumed, nor is it assumed that the ground state
wave function Φ is “isotropic”: i.e. in the generalized setup, two string-net configurations X1, X2

that can be continuously deformed into one another can have different ground state amplitudes,
Φ(X1) 6= Φ(X2). As a result, generalized string-net models can realize topological phases that are
inaccessible to the original construction. In this paper, we provide a more detailed discussion of
ground state wave functions, Hamiltonians, and minimal self-consistency conditions for generalized
string-net models than what exists in the previous literature. We also show how to construct string
operators that create anyon excitations in these models, and we show how to compute the braiding
statistics of these excitations. Finally, we derive necessary and sufficient conditions for generalized
string-net models to have isotropic ground state wave functions on the plane or the sphere – a
property that may be useful in some applications.

I. INTRODUCTION

In recent decades, profound connections between the
physics of strongly interacting 2-dimensional systems and
the mathematics of unitary modular tensor categories
(UMTCs) has emerged, through an increasingly well-
developed understanding of topologically ordered phases
of matter. This understanding has culminated in a com-
prehensive picture of how the defining properties of topo-
logical order, such as topological ground state degenera-
cies and non-trivial braiding statistics of the low-energy
point-like excitations (or anyons), are mathematically de-
scribed by the theory of UMTCs[1–6]. This connection
has enabled a very complete understanding of the math-
ematical structure of 2D topologically ordered phases,
and fostered recent developments in our understanding
of the interplay between symmetry and topology both in
2D [7–10] and 3D [11, 12] interacting systems.

In studying the properties of topologically ordered
phases of matter, exactly soluble lattice models realiz-
ing these phases[1, 13–16] have been an indispensable
tool, playing a role analogous to that of tight-binding
Hamiltonians in the study of Fermi liquids. A particu-
larly useful class of models, known as string-net models,
were introduced by Ref. 14. The string-net construc-
tion describes the low energy physics of a 2D topolog-
ically ordered phase through the dynamics of networks
of 1-dimensional, or string-like, objects. Though the re-
sulting Hamiltonians are quite different from the low-
energy Hamiltonians typically studied in the context of
real materials, they are a powerful theoretical tool as they
provide a systematic way of constructing exactly soluble
lattice Hamiltonians realizing a large class of (bosonic)
topological orders.

Following the original string-net construction, several
works[17–21] introduced “generalized” string-net models,
capable of realizing additional topological orders beyond
those of Ref. 14. These generalizations allow string-
net models to realize any topological order associated
with the Drinfeld center of a fusion category [17], which
are believed to be the most general class of (bosonic)
topological orders compatible with gapped boundaries
[17, 19, 22, 23]. Since such gapped boundaries are a
generic feature of string-net Hamiltonians, these general-
ized string-net models therefore comprise the most gen-
eral possible construction of this type. Examples of topo-
logical orders that can be realized by these models include
(i) discrete gauge theories [13]; (ii) Dijkgraaf-Witten the-
ories [15]; and “doubled” topological orders of the form
T × T op where T are T op are two topological orders re-
lated by time-reversal.

One shortcoming of the previous literature on gener-
alized string-net models is that it has mostly focused on
higher level properties of the models, such as their ex-
citations and boundaries, while omitting a detailed dis-
cussion of the models themselves. For example, while
Ref. 17 (see also [24]) and Ref. 18 sketched the construc-
tion of general string-net models, both papers primarily
focused on understanding the dictionary between gener-
alized string-net models and the theory of unitary fusion
categories, as well as the systematic construction of exci-
tations and gapped boundaries. A more detailed discus-
sion of generalized string-net models was given in Ref. 19,
but this discussion was restricted to Abelian string-net
models. More recently, Ref. 21 worked out the explicit
form of the Hamiltonians and ground state wave func-
tions of generalized non-Abelian string-net models but
did not obtain general expressions for the string opera-
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tors that create the anyon excitations in these models.

In this paper, we fill in this gap by providing a con-
crete and detailed discussion of all the basic aspects of
generalized string-net models in the general non-Abelian
case, including ground state wave functions, Hamiltoni-
ans, and string operators for these models. We also derive
necessary and sufficient conditions for string-net models
to have “isotropic” (i.e. topologically invariant) ground
state wave functions on the plane or the sphere – a prop-
erty that may be useful in some applications. An im-
portant feature of our approach is that we derive all the
properties of these models using simple algebraic calcu-
lations that do not require any knowledge of tensor cate-
gory formalism. We also discuss the relationship between
generalized string-net models and the original string-net
construction of Ref. 14 and we show that the original
string-net models correspond to a subset of the models
discussed in this paper. We believe that our more explicit
discussion may be useful in situations where exactly solv-
able models are a primary tool for studying properties of
the associated topological phases, such as how topological
order interplays with symmetry [25, 26], or the possible
phase transitions into and out of these states [27–30].

To carry out our construction, we adopt a philosophy
similar to that of the original string-net construction of
Ref. 14. Namely, we first specify the ground state for our
model, and then show how to construct an exactly solv-
able parent Hamiltonian for this ground state. To define
our ground states, we begin by defining a “string-net” as
a trivalent labeled graph, where the labels must satisfy
certain conditions (or branching rules) at each trivalent
vertex. Next, we specify a set of relations, expressed in
terms of a choice of parameters that we will call F , F̃ , and
Y , that fix the relative coefficients of different string-net
configurations in our model’s ground state. By requiring
that our relations fix the amplitudes of the ground-state
wave function in a consistent manner, we then obtain a
set of consistency conditions that the parameters F , F̃ ,
and Y must satisfy. These consistency conditions turn
out to force us to choose our parameters to be associated
with a unitary pivotal fusion category F . Thus, we derive
the mathematical structure of unitary fusion categories,
rather than assuming it from the start.

The key difference between our generalized string-net
models and the original string-net construction is that
our models relax certain restrictions that Ref. 14 im-
posed on the string-net data. As a consequence, our
string-nets may not be isotropic in the sense that two
string-net configurations X1, X2 which can be continu-
ously deformed into one another may not have the same
ground state amplitude: Φ(X1) 6= Φ(X2). We show that
some non-isotropic string-net states can be transformed
to isotropic ones via local unitary (gauge) transforma-
tions of the string-net data. However, this is not always
the case, and we identify some obstructions to obtain-
ing fully isotropic string-net ground states. Finally, we
identify extra conditions on the input data F , F̃ , and Y
required to ensure that our string-nets are isotropic. We

show that these conditions, together with a tetrahedral
reflection symmetry condition, produce string-nets that
are equivalent to those of Ref. 14.

One notable consequence of the lower symmetry that
we require of our string-net states is that our generalized
models can realize topological phases that break time
reversal symmetry. We illustrate this with several exam-
ples whose quasiparticle statistics are not time-reversal
symmetric.

The paper is organized as follows. In Sec. II, we con-
struct ground state wave functions for general string-net
models. In Sec. III we construct lattice Hamiltonians.
We analyze the low energy quasiparticle excitations of
these models in Sec. IV. In Sec. V, we derive the ad-
ditional constraints for isotropic string-net models. We
then discuss the relation between our construction and
the models of Ref. 14 in Sec. VI. We illustrate our con-
struction with concrete examples in Sec. VII. Several
technical details can be found in the appendices.

II. STRING-NET GROUND STATES

Before discussing model Hamiltonians, we will first de-
scribe how to construct a class of ground-state wave func-
tions which we will call generalized string-net ground
states. We require these wave functions to satisfy certain
conditions which, as we will show in the later sections of
this paper, ensure the following properties. First, they
are ground states of exactly solvable lattice Hamiltonians
that can be expressed as sums of commuting projectors.
Second, low-lying excitations of this Hamiltonian above
the string-net ground states are anyons, and this Hamil-
tonian describes a zero-correlation length fixed point of
a topological phase.

Our string-net ground states are similar to those of
Levin and Wen [14], but with several important dif-
ferences. Both constructions lead to liquid-like ground
states expressed as superpositions over many different
labeled trivalent graphs (i.e. string-nets). Additionally,
in both cases the string-net wave function is required to
be invariant under certain transformations. For exam-
ple, our string-net wave function is scale invariant, in the
sense that if two string-nets differ only by an overall scale,
they appear in our string-net ground state with the same
amplitude. Unlike the string-nets of Ref. 14, however,
we do not require our ground state to be invariant under
arbitrary bendings of the string-nets, or under rotations
or reflections. This is the sense in which our string-nets
are “generalized”; we will explore its implications in more
detail below.

A. String-net Hilbert space

A string-net is a special type of planar graph with la-
beled edges and with vertices that are either bivalent
or trivalent, i.e. of degree 2 or degree 3 (Fig. 1). We
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FIG. 1. A typical example of a string-net with string types
{1, 2}, with dual string types defined by 1̄ = 1 and 2̄ = 2, and
branching rules {(1, 2; 2), (2, 1; 2), (2, 2; 1), (2, 2; 2)}. Bivalent
vertices are marked with dots for clarity. Note that other
(unmarked) corners are not bivalent vertices, but rather kinks
in the piecewise differentiable strings.

will often refer to the edges that make up a string-
net as “strings”, and the fixed, finite set of edge la-
bels {a, b, c, ...} as “string types”. What makes a string-
net different from an ordinary planar graph is that it
satisfies the following additional properties. First, the
strings/edges in a string-net are piecewise differentiable
curves, drawn in the xy plane. Second, when we tra-
verse a string from one endpoint to the other, the tan-
gent vector v̂ has either a strictly positive or strictly neg-
ative y-component throughout the string, without any
sign changes. Here, “y” denotes the vertical direction,
so we will refer to this requirement as the “no vertical
bending” property. One consequence of this property is
that each string carries a natural orientation, which we
always take to be in the +ŷ direction.

Third, every trivalent vertex is of one of the two types
shown in Eq. (2), i.e. with either one incoming and two
outgoing strings or two incoming and one outgoing string
with respect to the ŷ direction. Similarly, every bivalent
vertex is of one of the two types shown in Eq. (1).

The final property of string-nets is that only certain
special combinations of strings (or edges) can meet at the
vertices. In the case of the bivalent vertices, the allowed
branchings are determined by an additional piece of data:
an involution a → ā on the set of string types. We will
refer to the string type ā as the dual of a. Once we fix
this definition of dual string types, the allowed bivalent
vertices are those of the form

a
_
a

a
_
a
. (1)

For the trivalent vertices, the allowed branchings are
specified by a set of branching (or fusion) rules — a collec-
tion of (ordered) triplets {(a, b : c)}. The same branching
rules apply to both “upward” and “downward” vertices:

a b

c a b

c

. (2)

The branching rules cannot be chosen arbitrarily: we
will require that they obey the following associativity

condition: ∑
e

δabe δ
ec
d =

∑
f

δbcf δ
af
d (3)

where δabc is defined by

δabc =

{
1, if (a, b : c) is allowed

0, otherwise.
(4)

The motivation for (3) will become clear below when we
define the F -symbol: we will see that Eq. 3 guarantees
that (F abcd )ef is a square matrix.

Note that the branching rules need not be symmetric
with respect to a, b: δabc 6= δbac in general. However, one
can show1 that the branching rules are always cyclically
symmetric: δabc = δc̄a

b̄
= δbc̄ā .

Expert readers may notice that our definition of string-
net does not allow for the possibility of fusion multiplic-
ity, i.e. our string-nets have the property that there is a
unique way to combine the labels a and b to obtain the la-
bel c. We focus on the unique fusion case throughout this
paper for notational simplicity, but it is straightforward
to generalize all of our constructions to string-nets with
general fusion multiplicity. In the latter case, string-nets
carry an additional label that lives at each vertex (see
Appendix F for details).

To see an example of a string-net, consider a string-
net model with two string types, {1, 2}, with dual string
types defined by 1̄ = 1 and 2̄ = 2, and branching rules
given by {(1, 2; 2), (2, 1; 2), (2, 2; 1), (2, 2; 2)}. A typical
example of a string-net with this data is shown in Fig. 1.
Note that, unlike the original string-net construction of
Ref. 14, we do not draw orientations on the strings: this
is not necessary because we use the convention that every
string is oriented in the upward (+ŷ) direction so there
is no need to explicitly show orientations in our figures.

At this point it is useful to introduce the notion of the
null string, which we will denote by 0 or by a dashed line.
Formally, the null string is a special string type with the
property that (i) 0̄ = 0 and (ii) the allowed branchings in-
volving the null string are {(0, a : a), (a, 0 : a), (a, ā : 0)}.
More physically, the null string is equivalent to having
no string at all: for any string-net, we can erase or add
null strings wherever we want and it does not change the
physical state. Thus, the null string can be thought of
as an accounting trick for treating bivalent and trivalent
vertices in a unified fashion.

We are now ready to define the string-net Hilbert space
H: an orthonormal basis for the string-net Hilbert space
H is given by all possible string-net configurations which
satisfy the branching rules and other conditions. Note
that the spatial configuration of the string-net is impor-
tant here: two string-nets that are geometrically distinct
correspond to orthogonal states whether or not they are
topologically equivalent.

1 Cyclical symmetry follows from associativity (3) together with
the branching rules for the null string (defined below).
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B. Ground state wave function

The ground state |Φ〉 =
∑
X∈HΦ(X)|X〉 of our models

is a superposition of different string-net configurations
|X〉 in H. The state |Φ〉 is described implicitly by the
following local constraint equations:

Φ

 a

 = Φ

 a

 (5a)

Φ

 a b c

e
d

 =
∑
f

F abcdefΦ

 a b c

d

f

 (5b)

Φ


a b

c

d

e

 =
∑
f

F̃ abcdefΦ


a

b c

d

f

 (5c)

Φ

 a b

 =
∑
c

1

Y abc
Φ

 a

b

c

a

b

 (5d)

Φ

 a b

c

d

 = δc,dY
ab
c Φ

 c

 . (5e)

These equations are defined in the Hilbert spaceH where
the configurations on both sides of the equations satisfy
branching rules at every vertex. Here a, b, c, . . . are arbi-
trary string types (including the null string types) and
the shaded regions represent arbitrary string-net con-
figurations which are not changed from one side of the
equation to the other. The symbol δc,d = 1 if c = d

and δc,d = 0 otherwise. The parameters F abcdef , F̃
abc
def are

complex numbers that depend on 6 string types a, b, .., f
obeying the appropriate branching rules: δabe = δecd =

δbcf = δafd = 1. Likewise, Y abc is a complex number
that depends on three string types a, b, c obeying the
branching rule δabc = 1. For the moment, the parame-

ters {F abcdef , F̃
abc
def , Y

ab
c } are arbitrary except for two minor

restrictions: we require that (i) Y abc 6= 0, and (ii) the ma-

trices defined by (F abcd )ef and (F̃ abcd )ef are invertible.2

However, we will soon see that these parameters have to
satisfy nontrivial algebraic equations (16) for the above
constraints to be self-consistent.

We now explain the meaning of these local constraints
or “rules.” The first rule (5a) has been drawn schemati-
cally. This rule means that any two string-net configura-
tions that can be deformed continuously into one another
must have the same amplitude. Here, for a deformation
to qualify as “continuous”, it must be continuous in a
geometric sense and also preserve the graph structure of
the string-net: i.e. the deformation is not allowed to in-
troduce or delete vertices (either bivalent or trivalent)

2 Note that (Fabcd )ef and (F̃abcd )ef are square matrices due to the
associativity constraint (3).

or change the orientation along any of the strings. For
example, Eq. (5a) implies

Φ

 a
b

c_
c

a
_  = Φ

 a

b
c_

c

a
_  = Φ

 a

b
c_

c

a
_  . (6)

In contrast,

Φ

 a
b

c_
c

a
_  6= Φ

 a

b
c

_
c

a
_  6= Φ

 a
b

c_
c

a
_

b

_
b

 . (7)

Here the first equality is not valid because the b string
in the first configuration has been replaced by b̄ in the
second configuration. Likewise, the second equality is
invalid because the third configuration has two extra bi-
valent vertices along the b string.

Moving on to the next two rules (5b)-(5c), these tell
us that when evaluating an amplitude of a string-net, we
can replace any tree-like configuration of the type shown
on the left hand side with the corresponding configura-
tion shown on the right hand side, up to factors of F abcdef

or F̃ abcdef and taking a sum over the internal index f . Sim-

ilarly, rules (5d) and (5e) imply that we can replace the
configuration on the left hand side with the correspond-
ing configuration on the right hand side, up to factors of
1/Y abc and Y abc δc,d, respectively.

The basic idea of (5) is that by applying these local
rules multiple times, one can relate the amplitude of any
string-net configurations to the amplitude of the vacuum
or no-string configuration. Then, by using the conven-
tion3 that

Φ(vacuum) = 1, (8)

the amplitude of any configuration is fully determined.
Thus, once the parameters {F abccde , F̃

abc
def , Y

ab
c } are given,

the rules determine the wave function completely.
An important point is that when applying the above

rules, we are allowed to freely erase null strings or draw
additional ones without affecting the amplitude of a
string-net state. (As we mentioned earlier, the null
strings are essentially a redundancy in our notation so
erasing them or adding them doesn’t change the physical
state at all). This freedom is crucial because erasing the
null string is the main way that we can simplify string-net
configurations and reduce them to the vacuum configura-
tion. For example, by erasing the vacuum string we can
remove any vertex of the type shown in (2) with a = 0
or b = 0:

Φ

 a

 = Φ

 a

 = Φ

 a

 = Φ

 a

 .

(9)

3 This is a natural normalization convention when we consider
infinite-dimensional Hilbert space, e.g. the string-net Hilbert
space on the whole two-dimensional plane.
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We now present some examples illustrating how we can
compute the amplitude of any string-net configuration
using the local rules (5). First we evaluate the following
string-net amplitude:

Φ

(
a
b

c_
c

a
_ )

= Φ

(
a
b

c_
c

a
_ )

= F abc0c̄āΦ

(
a
b c

a
_

a
_

)

= F abc0c̄āY
bc
ā Φ

(
a
_

a

)
= F abc0c̄āY

bc
ā Y aā0 Φ(vacuum)

= F abc0c̄āY
bc
ā Y aā0

(10)

In the first step, we add one null string and then use
Eq. (5b) in the second step. Next we use Eq. (5e) twice
to reduce the graph to the vacuum. Finally, we use the
normalization convention (8).

Next we consider a slightly more complicated example:

Φ

(
a

a
_
a

_
a

)
= Φ

(
a

a

_
a

_
a

)

= F aāaa00 Φ

(
a

a

_
a

_
a

)

= F aāaa00 Y
āa
0 Φ

(
a
_

a

)
= F aāaa00 Y

āa
0 Y aā0 Φ(vacuum)

= F aāaa00 Y
āa
0 Y aā0 .

(11)

In the first step, we continuously deform the graph and
then add a null string. In the second step we use Eq. (5b).
Next, we use Eq. (5e) twice to reduce the graph to the
vacuum. Finally, we use the normalization convention
(8).

As the above examples demonstrate, the quantity Y aā0

often appears in amplitudes for string-net configurations.
The absolute value of this quantity, |Y aā0 |, will play an
important role below, so we give it its own name:

da ≡ |Y aā0 | (12)

We will refer to da as the quantum dimension of the string
type a.

C. Auxiliary rules

Although the local rules (5) are sufficient, by them-
selves, to evaluate any string-net amplitude, it is useful
to introduce two auxiliary rules to simplify calculations:

Φ

 a
b

c
d

e

 =
∑
f

[F abcd ]efΦ

 a

d

f

c

b

 (13a)

Φ


a b

c
d

e

 =
∑
f

[F̃ abcd ]efΦ


a

d

f

c

b

 (13b)

with

[F abcd ]ef = (F cebf )−1
da

Y cea
Y cdf

(14a)

[F̃ abcd ]ef = F cebfad

Y ebd
Y abf

(14b)

Here, (F abcd )−1
fe is the matrix element of the inverse of

(F abcd ) where F abcd is the matrix defined by (F abcd )ef ≡
F abcdef . These two rules (14a-14b) can be derived from the

basic rules (5) (see Appendix A).
To see how (13) facilitates the computation of Φ, we

re-evaluate the second example:

Φ

(
a

a
_
a

_
a

)
= Φ

(
a

a
_
a

_
a

)

= [F̃ 0a
a0 ]āaΦ

(
a

a

_
a

)
= [F̃ 0a

a0 ]āaY
aā
0 Φ(vacuum)

= [F̃ 0a
a0 ]āaY

aā
0 .

(15)

In the first step, we add two null strings and then use
Eq. (13b) in the second step. Next, we erase the null
strings and use (5e) to relate the amplitude of a loop
to the amplitude of the vacuum. Finally, we use the
normalization convention (8). Notice that in terms of
the auxiliary rules (13), we do not need to continuously
deform the graph as in (11) in order to use (5). This
is useful, since in practice it may not be obvious how to
properly deform the graph to use (5) in more complicated
configurations.

D. Self-consistency conditions

In general there are multiple ways to compute the am-
plitude of each string-net configuration, since there are
multiple ways to resolve a diagram using the local rules
(5). If we choose the data {F abccde , F̃

abc
cde , Y

ab
c } in an arbi-

trary way then these different computations will give dif-
ferent answers, i.e. the rules/constraints will not be self-
consistent. Thus we must impose special conditions on
{F abccde , F̃

abc
cde , Y

ab
c } to get self-consistent rules and a well-

defined wave function Φ. In particular, we claim that the
following conditions are both necessary and sufficient for
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h
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h
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k
e

l

F F

F

F

F

(a)

(b)

(c)

(d) (e)

FIG. 2. Two different ways to relate the amplitude of (a) to
the amplitude of (c). Consistency requires the two sequences
of operations give the same result.

the rules to be self-consistent:

F fcdegl F
abl
efk =

∑
h

F abcgfhF
ahd
egk F

bcd
khl (16a)

F̃ abcdef = (F abcd )−1
fe

Y abe Y ecd
Y bcf Y afd

(16b)

F abcdef = F̃ abcdef = 1 if a or b or c = 0 (16c)

Y abc = 1 if a or b = 0 (16d)

Equation (16a) is known as the “pentagon identity” in
fusion category theory. To see why it is necessary for the
rules to be self-consistent, consider the sequence of ma-
nipulations shown in Fig. 2. We can see that the ampli-
tude of the string-net configurations (a) and (c) can be re-
lated to one another in two different ways: (a)→(b)→(c)
and (a)→(d)→(e)→(c). Clearly F must satisfy equation
(16a) for these two relations to be consistent with one
another. The necessity of equation (16b) follows from a
similar consistency requirement (see Appendix A). As for
equations (16c,16d), the necessity of these conditions fol-
lows from our convention that we can freely add or erase
a null string. Proving that equations (16) are sufficient
to ensure self-consistency is harder; we discuss this issue
in Appendix E.

While the conditions (16) are sufficient to construct
a well-defined wave function, our construction aims to
do more: we wish to construct a wave function that is
the ground state of an exactly solvable, Hermitian parent
Hamiltonian. To do this, we impose four more conditions
on F abcdef and Y abc :

(F abcd )−1
ef = (F abcdfe )∗ (17a)

|F abb̄ac0 | =
√

dc
dadb

(17b)

|Y abc | =
√
dadb
dc

(17c)

Y aā0 = (Y āa0 )∗. (17d)

Here da is defined in (12). The significance of the above
constraints (17) is that they ensure the Hermiticity of the

parent Hamiltonian (26) that has |Φ〉 as its ground state
(see Appendix D). Conversely, violating the constraints
(17) can sometimes lead to a |Φ〉 that is not the ground
state of any gapped Hermitian Hamiltonian [31].

Eqs. (16) and (17) are the only conditions that we will

impose on {F abccde , F̃
abc
cde , Y

ab
c }. We will see that, for every

solution {F abccde , F̃
abc
cde , Y

ab
c } to Eqs. (16) and (17), we can

construct both a string-net wave function Φ and an ex-
actly solvable Hermitian parent Hamiltonian that has Φ
as its ground state.

E. Local unitary transformations and gauge
equivalence

Given a solution {F abcdef , F̃
abc
def , Y

ab
c } to Eqs. (16,17),

we can construct an infinite class of other solutions

{F̂ abcdef ,
ˆ̃F abcdef , Ŷ

ab
c } by defining

F̂ abcdef = F abcdef ·
fabe f

ec
d

f bcf f
af
d

ˆ̃F abcdef = F̃ abcdef ·
feabf

d
ec

ffbcf
d
af

Ŷ abc = Y abc

(18)

Here fabc , f
c
ab are complex numbers that depend on a, b, c

and that satisfy

|fabc | = 1, f cab =
1

fabc
,

fabc = 1 if a or b = 0.

(19)

In addition, we can construct solutions by defining

F̂ abcdef = F abcdef

ˆ̃F abcdef = F̃ abcdef ·
geabg

d
ec

gfbcg
d
af

Ŷ abc = Y abc · gcab

(20)

where gcab satisfies

|gcab| = 1, g0
aā = (g0

āa)∗,

gcab = 1 if a or b = 0.
(21)

If two solutions {F abcdef , F̃
abc
def , Y

ab
c } and

{F̂ abcdef ,
ˆ̃F abcdef , Ŷ

ab
c }, are related by one of the above

transformations, we will say that they are “gauge
equivalent”. The reason for this terminology is that
the corresponding wave functions, Φ and Φ̂, are very
closely related: there exists a local unitary transfor-
mation U such that U |Φ̂〉 = |Φ〉. In the case of the
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f -transformation, this local unitary is defined by

U

∣∣∣∣∣∣
a b

c

〉
= fabc

∣∣∣∣∣∣
a b

c

〉

U

∣∣∣∣∣∣ a b

c

〉
= f cab

∣∣∣∣∣∣ a b

c

〉
.

(22)

Similarly, the U associated with the g-transformation is
defined by

U

∣∣∣∣∣∣
a b

c

〉
=

∣∣∣∣∣∣
a b

c

〉

U

∣∣∣∣∣∣ a b

c

〉
= gcab

∣∣∣∣∣∣ a b

c

〉
.

(23)

Here, the above notation means that U multiplies each
string-net basis state by a product of fabc ’s and f cab’s —
one for each of the above (trivalent) vertices.

It is worth noting that the f and g-gauge transfor-
mations have a different status in the fusion category
literature: while the f -gauge transformations (18) are
well-known, the g-gauge transformations (20) are largely
absent. The reason for this is that Y abc is usually chosen
to have a fixed value in the fusion category literature (e.g.
see Eq. (25) below), thus ruling out non-trivial g-gauge
transformations.

F. Simplifying the string-net consistency
conditions

Given that our string-net modes are in one-to-one cor-
respondence with solutions {F abcdef , F̃

abc
def , Y

ab
c } to (16,17),

it is worth pausing to note some simplifications that fa-
cilitate finding a solution. First, notice that Eq. (16b)

completely determines F̃ abcdef in terms of F abcdef and Y abc .

This means that we can essentially forget about F̃ abcdef

and focus on finding {F abcdef , Y
ab
c } that obey the remain-

ing equations: (16a), (16c), (16d) and (17).
Second, the quantum dimensions da are in fact com-

pletely fixed by the branching rules. To see this, take the
square of both sides of (17b) and then sum over c. Using
(17a) gives

dadb =
∑
c

δabc dc (24)

Eq. (24) can be thought of as an eigenvalue equation for
the matrix N(a) defined by [N(a)]bc ≡ δabc : from this
point of view, Eq. (24) tells us that N(a) has an eigen-
vector v whose components are vc ≡ dc, and whose cor-
responding eigenvalue is da. Given that N(a) is a non-
negative matrix and vc is strictly positive, the Perron-
Frobenius theorem implies that da is the largest eigen-
value of N(a)[1]. In particular, da is completely deter-
mined by the branching rules, as we wished to show.

For the last simplification, notice that we can always
make Y abc real and positive using an appropriate g-gauge
transformation (20). After we make such a transforma-
tion, then (17c) implies that

Y abc =

√
dadb
dc

(25)

Hence we can take Y abc =
√

dadb
dc

without loss of general-

ity. Notice that this choice for Y abc automatically satisfies
Eqs. (17c,17d). Other convenient gauge choices for Y abc
are discussed in Appendix B.

Putting this all together, we conclude that F abcdef is the
only quantity that needs to be determined. Thus, the
problem of solving the consistency equations reduces to
finding all F abcdef that obey (16a), (16c), (17a), and (17b)
where da is fixed by the branching rules as discussed
above. Finding such solutions is not trivial; see Refs.
4 and 32 for a discussion of how such solutions can be
found in practice, as well as a discussion of many inter-
esting examples.

G. Examples of solutions to consistency conditions

We now discuss three general classes of solutions to
the consistency conditions (16,17).

1. For any finite group G, we can construct a solution
to the consistency conditions (16,17) by defining the
string types to be the irreducible representations of G,
the dual string type ā to be the dual representation of
a, and the branching rules to be the set of all triplets
{(a, b; c)} such that c appears in the tensor product
a⊗ b. (Here we assume that c appears with multiplicity
of at most 1 for simplicity). Next, we define F abcdef to
be the 6j symbol corresponding to G, and we define
Y abc =

√
dadb/dc where da is the dimension of the

representation a. Like any solution to the consistency
conditions, this solution can be used to construct an
exactly soluble lattice Hamiltonian H with anyon excita-
tions, as we explain later. The topological order in this
model is identical to that of a discrete gauge theory with
gauge group G – also known as the “quantum double”
of G [13] (see Sec. VII A for the example G = Z2).

2. For any finite group G and any cocycle
ω ∈ H3(G,U(1)), we can set the string types to
be group elements g ∈ G, and the dual string type ā
to be the inverse a−1, and the branching rules to be
the set of all {(a, b; c)} such that c = ab. We define
Y abc = 1 and F abcdef = ω(a, b, c) with d, e, f determined
by a, b, c according to d = abc, and e = ab, and f = bc.
In this case, the corresponding lattice model realizes a
Dijkgraaf-Witten theory with group G and cocycle ω –
also known as the “twisted quantum double” of G [15]
(see Secs. VII A-VII C for examples).
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3. Given any topological order T , we define the
string types to be the anyons in T , and the dual string
type ā to be the antiparticle of a, and the branching
rules to be the set of all {(a, b; c)} such that c appears
in the fusion product a× b. (Here we are assuming that
T has no fusion multiplicity for simplicity). Next, we
define F abcdef to be the F -symbol of the anyons in T , and

we define Y abc =
√
dadb/dc where da is the quantum

dimension of anyon a. In this case, the string-net
model realizes a “doubled” topological order of the
form T × T op where T op is the time reversal of T (see
Sec. VII A and VII D for examples).

III. LATTICE HAMILTONIAN

So far we have shown that each solution
{F abcdef , F̃

abc
def , Y

ab
c } to equations (16,17) defines a string-

net wave function |Φ〉 via the local rules (5). In this
section, we show how to construct a corresponding
exactly solvable lattice Hamiltonian whose ground state
is a lattice version of |Φ〉.

A. Definition of Hamiltonian

Our construction takes three pieces of input: (i) a set
of string types and branching rules; (ii) a definition of

dual string types; and (iii) a solution {F abcdef , F̃
abc
def , Y

ab
c } to

the consistency conditions (16), (17). The output of our
construction is an exactly solvable lattice Hamiltonian
whose ground state is the string-net wave function Φ (5)
restricted to the lattice.

To construct our lattice model, we first assign a spin
to each link of the honeycomb lattice. Each spin can
be in one of N states, where N is the number of string
types (including the null string 0). We will label these
states by |a〉, |b〉, |c〉, etc., where {a, b, c, ...} are the string
types. With this notation, we can associate a string-net
configuration to each spin configuration in the obvious
way: if a spin is in state |a〉, we regard the link as being
occupied by a string of type a. Likewise, if a spin is in the
state |0〉, we think of the link as being empty or occupied
by the null string.

The Hamiltonian is of the form

H = −
∑
I

QI −
∑
p

Bp. (26)

Here, the two sums run over all vertices I and plaquettes
p of the honeycomb lattice.

The QI operator acts on the 3 spins adjacent to the

Bp

QI

FIG. 3. The string-net Hamiltonian (26). The QI operator
acts on 3 spins around each vertex (blue dots). The Bp oper-
ator acts on 12 spins adjacent to the plaquette p (red dots).

vertex I (Fig. 3):

QI

∣∣∣∣∣∣a b

c

〉
= δabc

∣∣∣∣∣∣a b

c

〉

QI

∣∣∣∣∣∣ a b

c

〉
= δabc

∣∣∣∣∣∣ a b

c

〉
.

(27)

Note that the QI term penalizes the states that do not
satisfy the branching rules.

The Bp operator has a more complicated structure. It
is a linear combination of more basic operators, Bsp:

Bp =
∑
s

asB
s
p (28)

where the index s runs over the different string types
(including s = 0) and where the coefficient as is defined
by

as =
Y s̄s0∑
t d

2
t

. (29)

Each operator Bsp describes a 12 spin interaction involv-
ing the spins on the 12 links that are adjacent to the
vertices of the plaquette p. The operator Bsp has a spe-
cial structure: First, it annihilates any state that does
not obey the branching rules at the 6 vertices surround-
ing the plaquette. Second, it acts non-trivially on the
inner 6 spins but does not affect the outer 6 spins. Thus
the matrix element of Bsp between two inner spin con-
figurations 〈i1 . . . i6| and |i′1 . . . i6〉 depends on the state
of the outer spins (e1 . . . e6). The matrix elements are
defined by

〈 e1

e2

e3

e4

e5

e6
i1

i3i4

i5

i6

i2

∣∣∣∣∣∣∣∣∣B
s
p

∣∣∣∣∣∣∣∣∣
e1

e2

e3

e4

e5

e6
i'1

i'3i'4

i'5

i'6

i'2

〉
= Bs,i1i2...i6p,i′1i

′
2...i

′
6
(e1e2 . . . e6)

(30)
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where

Bs,i1i2...i6p,i′1i
′
2...i

′
6
(e1e2 . . . e6) =

Y ss̄0 Y i6i1e1 Y i3e3i2
Y e5i4i5

Y
i′6i

′
1

e1 Y
i′3e3
i′2

Y
e5i′4
i′5

×

F s̄i3e3i′2i
′
3i2
F e6i6si′5i5i

′
6
F
i′4s̄i3
e4i4i′3

F i6ss̄i6i′60(F s̄i1e2i′2i
′
1i2
F e5i4si′5i5i

′
4
F i4ss̄i4i′40F

i′6s̄i1
e1i6i′1

)∗

(31)

We emphasize that the above expression is only valid if
the initial and final states obey the branching rules at
each vertex; if either state violates the branching rules,
the matrix element of Bsp vanishes.

We should mention that there is an alternative graph-

ical representation for Bsp which is much simpler. It is
convenient to describe this graphical representation in
terms of the action of Bsp on a bra 〈X| rather than a ket
|X〉. Specifically, Bsp can be thought of as adding a loop
of type-s string around the boundary of p:

〈 e1

e2

e3

e4

e5

e6
i1

i3i4

i5

i6

i2

∣∣∣∣∣∣∣∣∣B
s
p =

〈
s

e1

e2

e3

e4

e5

e6
i1

i3i4

i5

i6

i2

s

s

_
s
_
s

_
s

∣∣∣∣∣∣∣∣∣ . (32)

Then the matrix elements in Eq. (31) can be obtained
by using the local rules (5) to fuse the string s onto the
links along the boundary of the plaquette:

〈 e1

e2

e3

e4

e5

e6
i1

i3i4

i5

i6

i2

∣∣∣∣∣∣∣∣∣B
s
p =

〈
s

e1

e2

e3

e4

e5

e6
i1

i3i4

i5

i6

i2

s

s

_
s
_
s

_
s

∣∣∣∣∣∣∣∣∣ =
∑

i′1,...,i
′
6

〈
s

e1

e2

e3

e4

e5

e6

i1

i3
i4

i5

i6

i2s

s

_
ss _
s

_
s

_
s

i5

i6
i1

i2

i3

i4

i5

i1

i2

i3

'

i6

'i4

' '

'

'

∣∣∣∣∣∣∣∣∣C1

=
∑

i′1,...,i
′
6

〈 e1

e2

e3

e4

e5

e6
i1

i3i4

i5

i6

i2

i6' i1'

i3''i4

i5'
i5 i2

i2'
s

s

_
s
_
s

_
s

_
s

∣∣∣∣∣∣∣∣∣ [F
i′1e2
s̄i2

]i1i′2 [F̃
i′3e3
s̄i2

]i3i′2 [F i5se5i′4
]i4i′5 [F̃ i5se6i′6

]i6i′5 [F
i′4s̄
i40 ]si4 [F̃

i′6s̄
i60 ]si6C1

=
∑

i′1,...,i
′
6

〈 e1

e2

e3

e4

e5

e6
i'1

i'3i'4

i'5

i'6

i'2

∣∣∣∣∣∣∣∣∣ [F
i′1e2
s̄i2

]i1i′2 [F̃
i′3e3
s̄i2

]i3i′2 [F i5se5i′4
]i4i′5 [F̃ i5se6i′6

]i6i′5 [F
i′4s̄
i40 ]si4 [F̃

i′6s̄
i60 ]si6 [F i6i1i′6i

′
1

]s̄e1 [F̃ i4i3i′4i
′
3

]s̄e4C1C2

≡
∑

i′1,...,i
′
6

〈 e1

e2

e3

e4

e5

e6
i'1

i'3i'4

i'5

i'6

i'2

∣∣∣∣∣∣∣∣∣B
s,i1i2···6
p,i′1i

′
2...i

′
6
(e1e2 . . . e6)

(33)

where

C1 = (Y s̄i1i′1
Y s̄i2i′2

Y s̄i3i′3
Y i4si′4

Y i5si′5
Y i6si′6

)−1

C2 = (Y s̄i2i′2
Y i5si′5

)2Y i4i3e4 Y i6i1e1

(34)

By using (14,16), we obtain

Bs,i1i2···6p,i′1i
′
2...i

′
6
(e1e2 . . . e6) =

Y ss̄0 Y i6i1e1 Y i3e3i2
Y e5i4i5

Y
i′6i

′
1

e1 Y
i′3e3
i′2

Y
e5i′4
i′5

F s̄i3e3i′2i
′
3i2
F
i′4s̄i3
e4i4i′3

F e6i6si′5i5i
′
6
F i6ss̄i6i′60×

(F s̄i1e2i′2
)−1
i2i′1

(F i4ss̄i4
)−1
0i′4

(F e5i4si′5
)−1
i′4i5

(F
i′6s̄i1
e1 )−1

i′1i6
.

(35)

Using the constraint (17a), we can rewrite (35) as
Eq. (31).

B. Properties of the Hamiltonian

The first property of the Hamiltonian (26) is that it is
Hermitian. This result follows from two identities:

a∗s = as̄, (Bsp)
† = Bs̄p (36)

Here the first identity follows immediately from the def-
inition (29); the second identity is less obvious and is
derived in appendix D.

In addition to being Hermitian, the Hamiltonian has
several other nice properties:

1. TheQI andBp operators commute with each other:

[QI , QJ ] = 0, [QI , Bp] = 0, [Bp, Bp′ ] = 0. (37)

2. QI and Bp are projection operators.
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The first two commutation relations in property 1 follow
immediately from the definitions of QI , Bp. The third re-
lation, [Bp, Bp′ ] = 0, is non-trivial and is derived in Ap-
pendix C. Likewise, it is easy to see thatQI is a projector,
but the fact that Bp is also a projector is non-trivial and
is derived in Appendix D.

The above properties allow for the exact solution of H.
To see this, note that QI , Bp commute with one another
and hence we can simultaneously diagonalize them. De-
noting these simultaneous eigenstates by |{qI , bp}〉 where
qI , bp = 0, 1 are the eigenvalues, it is clear that |{qI , bp}〉
is an energy eigenstate with eigenvalue

E = −
∑
I

qI −
∑
p

bp.

Using this expression, we can read off the complete en-
ergy spectrum of H (up to determining degeneracies). In
particular, we can see that the ground state(s) of H have
qI = bp = 1, while the excited states have qI = 0 or
bp = 0 for at least one site I or plaquette p. It follows
that there is finite energy gap (∆ ≥ 1) separating the
ground state(s) from the excited states.

The only remaining task is to prove the existence of
at least one state with qI = bP = 1, and determine the
degeneracy of these states. We focus on the simplest
case: a lattice with a disk-like geometry of the type de-
scribed in Appendix G of Ref. 19. In this case, we can
show that there is exactly one state with qI = bp = 1.
To see that there is at least one such state, note that
|Φ〉 =

∏
pBp|vacuum〉 has qI = bp = 1 everywhere,

and furthermore one can check that 〈vacuum|Φ〉 6= 0 so
|Φ〉 6= 0. To see that there is at most one such state, we
use a result derived in Appendix E: there we show that
any state with qI = bp = 1 obeys a lattice version of the
local rules (5). Then, since the local rules can be used
to relate any string-net configuration in a disk geometry
to the vacuum configuration, it follows that there is at
most one state with qI = bp = 1.4 More generally, the
ground state degeneracy depends on the global topology
(or boundary conditions) of our lattice. This topological
ground state degeneracy has been discussed in a num-
ber of works[14, 33], and Ref. 34 gives a prescription for
computing it on a given spatial topology.

So far we have shown that the Hamiltonian H has a
unique ground state and an energy gap in a disk geom-
etry. To complete the picture, we now argue that this
ground state is exactly the wave function |Φ〉 defined by
(5), restricted to string-net configurations that live on
the lattice.

4 While this argument is suggestive, strictly speaking it is incom-
plete since we only know that the continuum local rules are suf-
ficient for relating string-net configurations to the vacuum con-
figuration. To complete the proof, we would need to establish a
similar result for the lattice local rules, which we will not under-
take here.

To prove that the ground state is |Φ〉, it suffices to show
that QI |Φ〉 = Bp|Φ〉 = |Φ〉. The first equality, QI |φ〉 =
|Φ〉, is obvious since |Φ〉 is a linear combination of string-
net configurations, all of which obey the branching rules.
To prove the second equality, Bp|Φ〉 = |Φ〉, we use the
following identity which we will derive below:

Bsp|Φ〉 = Y ss̄0 |Φ〉 (38)

Substituting this identity into the definition of Bp (28)
and observing that

∑
s asY

ss̄
0 = 1, it follows that

Bp|Φ〉 = |Φ〉. All that remains is to prove (38). To
derive this identity, we multiply both sides of Eq. (32) by
|Φ〉 and then use the local rule (5e) to trade the type-s
loop on the right hand side for an extra factor of Y ss̄0 .The
identity (38) follows immediately.

IV. QUASIPARTICLE EXCITATIONS

Having described the string-net Hamiltonian and its
ground state in the previous section, we now turn to its
low-lying excitations. Specifically, we describe so-called
string operators which create point-like quasiparticles at
their endpoints – but no excitations anywhere else – when
acting on the ground state. We show how to extract the
braiding statistics of these quasiparticles by computing
certain ground-state matrix elements associated with the
corresponding string operators.

A. Finding the quasiparticle string operators

We start with finding the quasiparticles in the model
(26). The basic logic is as follows. We will identify a set
of string operators {Wα(P )}, which act along oriented
paths P . We require each string operator to act on the
string-net ground state in a way that is path independent,
i.e. it must give the same state for any choice of path P
connecting the same two endpoints. More formally, path
independence is the requirement that

Wα(P )|Φ〉 ∝Wα(P ′)|Φ〉 . (39)

Path independence is important because it ensures that,
when acting on the ground state, open string operators
only create excitations near their endpoints. More specif-
ically, if P is an open path oriented from i to f , then
acting on the ground state with the open string operator
Wα(P ) creates a quasiparticle α at the string’s endpoint
f , and the corresponding antiparticle ᾱ at the string’s
starting point i. Likewise, for a closed contractible path
P , path independence implies that Wα(P )|Φ〉 ∝ |Φ〉 –
that is, closed string operators do not create any excita-
tions when acting on the ground state.

To construct string operators, we follow the strategy
of Ref. 14: we describe a general ansatz for construct-
ing string operators Wα(P ) in terms of certain input



11

data (Ωα, Ω̄α, nα), and we work out the conditions un-
der which the resulting string operators obey the path
independence condition (39).

First, we explain the input data in more detail. We
start with the third piece of data, nα. This piece of data
is shorthand for a collection of non-negative integers nα,s
where s runs over the different string types. Each inte-
ger nα,s describes the “multiplicity” of the string type
s within the string operator α. The remaining data, Ωα
and Ω̄α, is shorthand for two collections of complex (rect-
angular) matrices, (Ωa,rsbα )σrσs and (Ω̄a,rsbα )σrσs , parame-
terized by four string types a, r, s, b. Here the two matrix
indices σr, σs can take nα,r and nα,s values, respectively.
Like the F -symbol, the matrix elements (Ωa,rsbα )σrσs are
only defined when a, r, s, b obey certain branching rules,
specifically, δrab = δasb = 1, and when nα,r and nα,s are
both nonzero. Likewise, the matrix elements (Ω̄a,rsbα )σrσs
are only defined if δarb = δsab = 1. We should also mention
that we require that the matrix elements (Ωa,rsbα )σrσs and
(Ω̄a,rsbα )σrσs take particular values when a = 0: in that
case (Ω0,rsb

α )σrσs = (Ω̄0,rsb
α )σrσs = δs,rδb,rδσr,σs . This is

necessary to ensure that our string operator has a triv-
ial action when crossing a vacuum string, a = 0, as will
become clear below.

We now explain our ansatz for constructing string op-
erators, Wα(P ) from the above input data. We first spe-
cialize to the case that P is an upward -oriented path,
which is sufficient to identify the quasiparticle types. For
simplicity, we will work in the gauge

Y abc =

√
dadb
dc

(40)

in the following sections.

When Wα(P ) is applied to a string-net state 〈X|, its
action is described graphically by adding a string labeled
by α along the path P under the preexisting string-nets:〈 ∣∣∣∣∣∣Wα(P ) =

〈
α

∣∣∣∣∣∣ . (41)

We then replace the α-string at every crossing with a sum
over string labels r, b, and s, using the rules〈

a  

∣∣∣∣∣∣ =
∑
b,s,r

(Ωa,rsbα )σrσs

√
db

da
√
drds

〈
sa

b

r a

∣∣∣∣∣∣ (42)

〈
α a

∣∣∣∣∣∣ =
∑
b,s,r

(Ω̄a,rsbα )σrσs

√
db

da
√
drds

〈
b

s a

ra

∣∣∣∣∣∣ (43)

Here, (Ωa,rsbα )σrσs and (Ω̄a,rsbα )σrσs are the complex ma-
trices of dimension nr,α × ns,α that define our string op-
erators (see discussion above). The two indices σr, σs
should be thought of as living on the r and s string re-
spectively. The factors of da are included to simplify

the constraints satisfied by Ωα, Ω̄α, which we present
shortly.5

After making the replacements in (43), we obtain the
action of the string operator on any string-net state as
follows. First, we require the string labels r, s to be the
same throughout any region where the path P does not
cross any edges of the initial string-net. Second, along
each such path segment we contract the corresponding
matrix indices σr, σs, etc.. For example,〈

↵
<latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit><latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit><latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit><latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit>

s
<latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit><latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit><latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit><latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit>

t
<latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit><latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit><latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit><latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit>

u
<latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit><latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit><latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit><latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit>

v
<latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit><latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit><latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit><latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit>

∣∣∣∣∣∣ =
∑

b,d,s,t,u,v

Ωa,stbα Ωc,uvdα δt,u

〈
↵

<latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit><latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit><latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit><latexit sha1_base64="g0xWx7kTLY9+aMwFpWQmr9zUmXw=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEVyURQZdFNy4r2As0oUwmJ+3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSQpdmvBEDgKigDMBXc00h0EqgcQBh34wvZ37/UeQiiXiQc9S8GMyFixilGgjjeyGV96RSwgL7BGeTsjIbjotpyy8Cm4FTVRVZ2R/eWFCsxiEppwoNXSdVPs5kZpRDkXdyxSkhE7JGIYGBYlB+Xm5t8BnRglxlEhzhMal+nsiJ7FSszgwnTHRE7XszcX/vGGmo2s/ZyLNNAi6WBRlHOsEz4PAIZNANZ8ZIFQy81ZMJ0QSqk1cdROCu/zlVehdtFzD95fN9k0VRw2doFN0jlx0hdroDnVQF1H0hJ7RK3qzCuvFerc+Fq1rVjVzjP6U9fkDQFSUjw==</latexit>

s
<latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit><latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit><latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit><latexit sha1_base64="IPLIJyyiyGUWQMPrp67GMfbLPnc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjraYelCtu1V2IrIOXQwVyNQblr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LEoaofazxaIzcmGdIQljZZ80ZOH+nshopPU0CmxnRM1Yr9bm5n+1XmrCGz/jMkkNSrb8KEwFMTGZX02GXCEzYmqBMsXtroSNqaLM2GxKNgRv9eR1aF9VPcvN60r9No+jCGdwDpfgQQ3qcA8NaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/ep4z3</latexit>

t
<latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit><latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit><latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit><latexit sha1_base64="q/23RjEfsJaZXEDdSc7eZ9qiFOA=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgEV2FGBF0G3bhMwDwgGUJPp5K06XnQXSOEIV/gxoUibv0kd/6NnWQWmnih4XCriq66QaKkIdf9dtbWNza3tgs7xd29/YPD0tFx08SpFtgQsYp1O+AGlYywQZIUthONPAwUtoLx3azeekJtZBw90CRBP+TDSA6k4GStOvVKZbfizsVWwcuhDLlqvdJXtx+LNMSIhOLGdDw3IT/jmqRQOC12U4MJF2M+xI7FiIdo/Gy+6JSdW6fPBrG2LyI2d39PZDw0ZhIGtjPkNDLLtZn5X62T0uDGz2SUpISRWHw0SBWjmM2uZn2pUZCaWOBCS7srEyOuuSCbTdGG4C2fvArNy4pnuX5Vrt7mcRTgFM7gAjy4hircQw0aIADhGV7hzXl0Xpx352PRuubkMyfwR87nD+ArjPg=</latexit>

u
<latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit><latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit><latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit><latexit sha1_base64="0ivuOvsA1zGj29z/88YG+b8aLnI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWY6KFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/hr4z5</latexit>

v
<latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit><latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit><latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit><latexit sha1_base64="9GJQqpIxrycnmf7p5j4xsmhRYOw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3U2hhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH4/t5vT1BpXksH800QT+iQ8lDzqixVmPSL1fcqrsQWQcvhwrkqvfLX71BzNIIpWGCat313MT4GVWGM4GzUi/VmFA2pkPsWpQ0Qu1ni0Vn5MI6AxLGyj5pyML9PZHRSOtpFNjOiJqRXq3Nzf9q3dSEt37GZZIalGz5UZgKYmIyv5oMuEJmxNQCZYrbXQkbUUWZsdmUbAje6snr0LqqepYb15XaXR5HEc7gHC7BgxuowQPUoQkMEJ7hFd6cJ+fFeXc+lq0FJ585hT9yPn8A4zOM+g==</latexit>

∣∣∣∣∣∣ .
(44)

where the matrix product is taken along the index asso-
ciated with the shared edge label t, i.e.

Ωa,stbα Ωc,uvdα δt,u =
∑
σt

(Ωa,stbα )σs,σt(Ω
c,tvd
α )σt,σv . (45)

The end result is a superposition of new states of the
form 〈X|Wα(P ) =

∑
X′ C(X,X ′)〈X ′|, where 〈X ′| is a

string-net state everywhere except near the endpoints of
P , and C(X,X ′) is a product of matrices Ωα, Ω̄α, with
each matrix corresponding to a crossing between the path
P and a string in the string-net ket 〈X|.

Finally, to define the action of the string operator on
the honeycomb lattice, away from the endpoints of P
we use the local rules to reduce these new string-nets to
string-nets on the honeycomb lattice, as shown for the
plaquette operator in Eq. (33). In this way, the ansatz
(Ωα, Ω̄α, nα) fully defines the lattice action of the string
operator W (P ).6

Before continuing, we should clarify one point about
the string operator multiplicity nα,s. As discussed in
Appendix F, for the most general class of string-nets, ev-
ery vertex carries a matrix index to account for the fact
that there may be more than one state in the string-net
Hilbert space that satisfies the branching rules. This phe-
nomenon is known in the mathematical literature as fu-
sion multiplicity. We emphasize that fusion multiplicity
should not be confused with the string operator multi-
plicity nα,s. In particular, it is possible for nα,s to be
larger than 1 even in string-net models that do not have
any fusion multiplicity (i.e. models with δabc ≤ 1 for all
a, b, c). An example where this occurs is given by the
string-net whose labels correspond to group elements of
the symmetric group S3; the resulting string-net model
contains an excitation B for which nB,0 = 2.

To proceed, we must identify which (Ωα, Ω̄α, nα) sat-
isfy the path independence condition (39). Without loss

5 Because of these factors of da, the Ωα, Ω̄α in this paper have a
different normalization than in Ref. 14.

6 While there is some ambiguity in defining the action of the string
operator Wα(P ) near the endpoints of P , this ambiguity is not
important for our purposes since it does not affect on the quasi-
particle statistics of the excitation created by Wα(P ).
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of generality, we assume that the proportionality con-
stant in (39) for two upward-oriented paths P , P ′ is ex-
actly 1, so that the path independence condition takes
the form:

〈X|Wα(P )|Φ〉 = 〈X|Wα(P ′)|Φ〉 (46)

where away from the end-points of P , 〈X| is an arbitrary
string-net state. To ensure that Eq. (46) is satisfied, it
suffices to check path independence for some elementary
deformations between upward-oriented paths P and P ′,
because larger deformations that fix the points i and f
can be built out of these elementary ones. For upward-
oriented paths, the elementary deformations are:〈

a b

c

α

∣∣∣∣∣∣Φ
〉

=

〈
a b

c

α

∣∣∣∣∣∣Φ
〉

(47a)

〈
a b

c

α

∣∣∣∣∣∣Φ
〉

=

〈
a b

c

α

∣∣∣∣∣∣Φ
〉

(47b)

〈
a

α

∣∣∣∣∣∣Φ
〉

=

〈
a

α

∣∣∣∣∣∣Φ
〉
. (47c)

Algebraically, these graphical relations are expressed as:

∑
a′

Ωa,rsa
′

α (F rabc′a′c)
∗F asbc′a′b′ =

∑
t

Ωc,rtc
′

α Ω̄b,tsb
′

α F abtc′cb′

(48a)

Ω̄a,rsa
′

α = (Ωa,sra
′

α )∗ (48b)∑
s

Ω̄a,rsa
′

α Ωa,sta
′

α = δrt (48c)

where we have used the local rules (16), as well as unitar-
ity of F ’s. In terms of the diagrams above, Eq. (47a) gives
(48a). Likewise, Eq. (47c) gives (48c). As for Eq. (47b),
this condition gives an equation which is the complex
conjugate of (48a) with Ωa,tsbα and Ω̄a,stbα interchanged.
Therefore we can ensure (47b) if (48b) holds together
with (48a). Note that Eqs. (48) are matrix equations,
with products between matrices taken over the indices
as in Eq. (45).

Every solution (Ωα, Ω̄α, nα) to (48) defines a string op-
erator Wα. Thus, our task is find all possible solutions to
(48). We note that for any pair of solutions Ωα and Ωβ
to Eqs. (48), we can always construct another solution
(Ω, Ω̄, n) by taking the direct sum: Ω = Ωα ⊕ Ωβ and
Ω̄ = Ω̄α ⊕ Ω̄β and finally n = nα + nβ . Thus in prac-
tice one need only find solutions that are irreducible, in
the sense that they cannot be decomposed in this way.
Though we do not undertake to prove it here, we conjec-
ture that the irreducible solutions to (48), and the asso-
ciated string operators Wα(P ), are sufficient to construct
every quasiparticle excitation in our models.

Before we discuss the nature of these quasiparticles, it
is useful to construct closed string operators following a

similar logic. To this end, we first define the downward
α-string operator via:〈

a
 

∣∣∣∣∣∣ =
∑
b,s,r

(Ωa,rsbᾱ )σrσs

√
db

da
√
drds

〈
sa

b

r a

∣∣∣∣∣∣〈
a  

∣∣∣∣∣∣ =
∑
b,s,r

(Ω̄a,rsbᾱ )σrσs

√
db

da
√
drds

〈
b

s a

ra

∣∣∣∣∣∣
(49)

In other words, we define a downward-α string operator
to be equivalent to an upward-ᾱ string operator, where ᾱ
is the anti-particle associated with α. The anti-particle
ᾱ is defined by the property that it can annihilate with
α, leaving only the string-net vacuum. In practice, this
means that an upward α string running from i to f can
be joined to an upward ᾱ string connecting the same
two points, such that the resulting closed string operator
leaves the string-net in its ground state. This joining can
be done in the “obvious” way, i.e. near points i and f ,
we connect the string labeled r from Wα to the string
labeled s from Wᾱ, impose the condition r = s, and
contract the corresponding matrix indices. The resulting
joint between upward and downward oriented strings is
path independent if:〈

a

α

α

∣∣∣∣∣∣Φ
〉

=

〈
a α

α

∣∣∣∣∣∣Φ
〉

(50a)

〈
a

α

α

∣∣∣∣∣∣Φ
〉

=

〈
a

α

α

∣∣∣∣∣∣Φ
〉

. (50b)

Algebraically, this implies

∑
a′,r

Ωa,rsa
′′

α Ωa,r̄ta
′

ᾱ F rr̄aa0a′(F
rat
aa′′a′)

∗
√
dr
dt

= (F at̄taa′′0)∗δst̄.

(51)
If there exists an antiparticle ᾱ for which Ωᾱ satisfies

(51), the closed Wα string operators obtained by joining
upward Wα and Wᾱ strings are path independent in the
sense of Eq. (39) at all points, and thus does not create
any excitation when applied to the ground state. Though
it is not obvious from the discussion here, on general
grounds[1] such a solution should always exist, provided
that all quasiparticles in the theory can be created by
string operators of the form described here.

B. Braiding statistics of quasiparticles

After finding the quasiparticles, we are now ready to
compute their braiding statistics. Specifically, we will
compute the S matrix Sαβ and the topological spins θα
and express them in terms of string operators.

Before we compute the S matrix, it is convenient to
first compute the monodromy matrix Mαβ which is re-
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αβ

P2 P1
P3

αβ

P2 P1 P3
=SαβM

FIG. 4. The S matrix is computed by by comparing the
action of Wα(P3)Wβ(P2)Wα(P1) and Wα(P3)Wα(P1)Wβ(P2)
where P1 ∪ P3 forms a closed loop. Specifically, Sαβ =
dαdβ
D

Mαβ .

lated to Sαβ via some normalization factors:

Sαβ = Mαβ
dαdβ
D

. (52)

Here dα is the quantum dimension of the quasiparticle
α and D =

√∑
α d

2
α. (For the definition of “quantum

dimension” of quasiparticles see Ref. 1. For an explicit
formula for dα in the context of string-net models, see
Eq. 60 below).

The monodromy matrix Mαβ is defined in terms of a
three step process in which (1) two particle-antiparticle
pairs (α, ᾱ, β, β̄) are created from the vacuum; (2) the
particle α is braided around the particle β; and (3)
each pair (α, ᾱ, β, β̄) is re-annihilated to the vacuum (left
panel of Fig. 4). To define Mαβ , consider the probability
amplitude for the above braiding process, divided by the
probability amplitude of another process in which each
pair of particles individually follows the same trajectory
in space and time, but the pair (α, ᾱ) is re-annihilated
before the pair (β, β̄) is created (right panel of Fig. 4).
The monodromy matrix Mαβ is defined to be this ratio
of probability amplitudes.

Equivalently, in the language of string operators, Mαβ

is given by the ratio

Mαβ =
〈Φ|Wβ̄(P3)Wα(P2)Wβ(P1)|Φ〉
〈Φ|Wβ̄(P3)Wβ(P1)Wα(P2)|Φ〉

(53)

where P1 and P3 are paths connecting two points i and f ,
and P2 is a third path that encircles the point f (Fig. 4).
Here, the numerator of Eq. (53) describes a process in
which we first create a pair of quasiparticles β, β̄ from
the vacuum at positions f and i respectively, then act
with a closed α-string operator encircling β, and finally
annihilate the β, β̄ pair. The denominator describes a
process in which we first act with the closed α-string
operator, and then create and re-annihilate the β, β̄ pair.

To proceed further, we join the string operators in (53)
into closed loops, which gives the following graphical ex-

pression for Mαβ :

Mαβ =

〈Φ

∣∣∣∣∣∣
αβ
∣∣∣∣∣∣Φ〉

〈Φ

∣∣∣∣∣∣
αβ
∣∣∣∣∣∣Φ〉

(54)

Here we have two closed string operators acting along
two linked paths in the numerator and the same two
closed string operators acting along corresponding un-
linked paths in the denominator. We have used the con-
vention that strings that act earlier (later) appear under
(over) other strings at crossings.

We now proceed to evaluate the numerator and denom-
inator of (54). To evaluate the denominator, it is useful
to first consider the action of a closed string operator α
on the vacuum (empty) state:

〈vacuum|
α

=
∑
s

nα,s

〈
s

ss
_

s
_

∣∣∣∣∣∣ (55)

Multiplying both sides of (55) by |Φ〉 and using the fact
that Wα(P )|Φ〉 ∝ |Φ〉 for any closed string operator
Wα(P ), we deduce that

α

|Φ〉 =
∑
s

nα,sds |Φ〉 (56)

Hence, the denominator of Mαβ is:

〈Φ

∣∣∣∣∣∣
αβ
∣∣∣∣∣∣Φ〉 =

∑
st

nα,snβ,tdsdt (57)

To evaluate the numerator, we use the same strategy:
we first consider the action of the linked string operators
on the vacuum state and then deduce their action on |Φ〉
using the fact that |Φ〉 is an eigenstate of these operators.
In this way, we obtain

〈Φ

∣∣∣∣∣∣ αβ

∣∣∣∣∣∣Φ〉 =
∑
stb

Tr(Ω̄t,ssbα )Tr(Ω̄s,ttbβ )db (58)

Combining the numerator and denominator of Mαβ , and
substituting into (52), we obtain the following general
expression for the S-matrix, consistent with previous
results[18]:

Sαβ =
1

D

∑
stb

Tr(Ω̄t,ssbα )Tr(Ω̄s,ttbβ )db . (59)

Here, we have used a formula that expresses the quantum
dimension of α in terms of string operator data, namely:

dα =
∑
s

nα,sds. (60)
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We will not prove this formula here.
Next, we compute the topological spin of our quasipar-

ticles, defined as the phase acquired by the wave function
when a quasiparticle is rotated by 2π. Here, we will not
attempt to make a concrete connection to the associated
space-time process, but rather observe that, as has been
noted previously [18], in all known examples the topolog-
ical spin can be evaluated as the ratio of amplitudes for
the two processes:

eiθα =

〈Φ

∣∣∣∣∣∣
∣∣∣∣∣∣Φ〉

〈Φ

∣∣∣∣∣∣
∣∣∣∣∣∣Φ〉

. (61)

The two amplitudes can be expressed in terms of
(Ωα, Ω̄α, nα):

〈Φ

∣∣∣∣∣∣
∣∣∣∣∣∣Φ〉 =

∑
s

Tr(Ωs̄,ss0α )ds

〈Φ

∣∣∣∣∣∣
α

∣∣∣∣∣∣Φ〉 =
∑
s

nα,sds.

(62)

Thus, the topological spin of α is given by

eiθα =

∑
s Tr(Ωs̄,ss0α )ds∑

s nα,sds
. (63)

V. ISOTROPIC STRING-NET MODELS

One notable feature of our models is that the minimal
consistency conditions (16) required for the ground state
wave function Φ to be well-defined are not isotropic. Con-
sequently, in general two string-net configurations which
can be continuously deformed into one another need not
have the same ground state amplitude. For example,
while the wave function is invariant under the bendings
shown in Eq. (9), it may not be invariant under vertical
bendings in Eq. (7). In addition, if Y aā0 6= Y āa0 , the corre-
sponding string-net ground state cannot be isotropic on
the sphere. Specifically, isotropy on the sphere requires
that we can pull an (a, ā) loop from the front of the sphere
to the back of the sphere, where, when viewed from out-
side the sphere, it is a (ā, a) loop. The two coefficients
are equal if– and only if– Y aā = Y āa.

In this section, we examine what additional conditions
must be satisfied in order for our string-net ground state
to be isotropic on the plane and on the sphere. To
find these additional constraints, we first discuss how the
ground state amplitude changes under planar deforma-
tions of a string-net configuration. Interestingly, we find
that there are gauge invariant quantities that can prevent
a model from being invariant under such deformations.

We then determine the constraints that the data {F, Y }
must satisfy in order to make these amplitudes invariant
under such planar deformations. Finally, we consider ad-
ditional requirements that must be met for full isotropy
on the sphere, and find that this further restricts the data
{F, Y }. At the end we comment on an additional tetra-
hedral reflection symmetry that was also required in the
construction of Ref. 14.

A. Bending of strings and vertices

We first examine how deforming the string-net config-
uration in the plane affects the associated ground-state
amplitude. By a deformation, we mean a process in
which edges and vertices can be bent, moved and twisted
arbitrarily within the plane, provided that they do not
intersect other segments of the string-net graph. Any
such deformation can be decomposed into a sequence of
bendings of strings and vertices; thus it is thus sufficient
to consider the following elementary bendings of vertices

Φ

(
a b

c

)
=

1

[F̃ 0c
ab ]āc

Φ

(
a

b

c

)
=

1

[F abc0 ]b̄c
Φ

(
a

b

c

)

Φ

(
c

a b

)
=

1

[F 0c
ab ]āc

Φ

(
a

b

c

)
=

1

[F̃ abc0 ]b̄c
Φ

(
a

b

c

)
.

(64)

Eqs. (64) are simply special cases of (13), where one of the
four external legs is the null string. It follows from (17)

that the coefficients {[F̃ 0c
ab ]āc, [F

ab
c0 ]b̄c, [F

0c
ab ]āc, [F

ab
c0 ]b̄c} are

U(1) phase factors. When these phase factors are equal
to one, then two configurations which can be deformed
into one another have the same ground-state amplitude,
and the corresponding model is isotropic. Otherwise, the
model is not isotropic.

Two comments are in order. First, bending a string is
a special case of bending a vertex (64):

Φ


a

_
a

a

 = [F 0a
a0 ]āaΦ

 a


Φ

 a _
a a

 = [F̃ 0a
a0 ]āaΦ

 a

 .

(65)

The phase factor7

γa ≡ [F 0a
a0 ]āa = [F̃ 0ā

ā0 ]aā = F āaāā00 Y
aā
0 . (66)

7 There are two ways to resolve an “M” like diagram made up of
alternating “a” and “ā” strings: one can either use a [F̃ ] rule
on an a line, or an [F ] rule on an a line. This gives the second
equality in Eq. (66).
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associated with bendings of strings is called the
Frobenius-Schur indicator. It follows from (17) that

|γa| = 1, (γa)∗ = γā. (67)

Furthermore, one can always choose the gauge function
f such that

γa =

{
±1, if a = ā

1, otherwise.

Then, we can use the gauge transformation g to trans-
form γ so that γa = 1 if a = ā.

Second, bending a vertex twice by (64) is equivalent to
rotating the vertex:

Φ

(
a

c

b

)
=

1

αc̄abγc
Φ

(
a b

c

)
= αabc̄γcΦ

(
a b

c

)

Φ

(
a

c

b

)
= α̃c̄abγcΦ

(
a b

c

)
=

1

α̃abc̄γc
Φ

(
a b

c

)
(68)

where

αabc ≡ F abc0c̄ā ,
1

α̃abc
≡ F̃ abc0c̄ā . (69)

Notice that when (a, a : ā) is a valid branching, the
quantity αaaa · αāāā is gauge invariant. In this case, if
the solution to (16,17) has αaaa · αāāā 6= 1, then the
corresponding model is not isotropic in any gauge.

B. Constraints for planar isotropy

From Eq. (64), we see that the model is invariant under
elementary bendings if:

[F 0c
ab ]āc = [F abc0 ]b̄c = [F̃ 0c

ab ]āc = [F̃ abc0 ]b̄c = 1. (70)

or equivalently, in terms of {F, Y },

F aābb0c Y
āb
c = 1, F abb̄ac0

Y bb̄0

Y cb̄a
= 1

Y abc =

(
Y āa0

Y ācb

)∗
=

(
Y bb̄0

Y cb̄a

)∗
.

(71)

If we can find a solution to (16,17) and (71), then the
corresponding string-net will be isotropic in the plane.
Though there are gauge-invariant obstructions to obtain-
ing a model with planar isotopy, it is important to note
that unlike the consistency conditions (16), the condi-
tions (71) for isotropy are not gauge invariant.

In addition to invariance under the bending moves
shown in Eqs. (64) and (65), one can show that for string-
nets obeying the condition (70),

[F abcd ]ef = [F̃ cdab ]ēf (72)

and thus the amplitude is invariant under changes of ori-
entation of internal legs

Φ

(
a

b

c
d

e

)
= Φ

(
a

b

c
d

e
_

)
. (73)

Eq. (72) follows from (70) and the equality

[F̃ 0d
eb ]ēd[F

ab
cd ]ef = [F aēc0 ]ec[F̃

cd
ab ]ēf (74)

which can be derived from (16). 8

Finally, with full bending invariance, we can define the
amplitude of a tetrahedron, via:

Φ

(
a

b

ce

d
_

f
_ )

≡ Φ

( )
= F abcdefY

bc
f Y afd Y d̄d0 . (75)

Note that the diagram on the left is not an allowed string-
net diagram in our formalism, and should be interpreted
as a “shorthand” for the diagram on the right. This
shorthand makes sense in models with bending invari-
ance, where other choices of the diagram on the right,
which are related to the one shown here by some number
of bending moves, will yield the same coefficient.

One can check that in string-nets obeying (70), the
amplitude (75) is invariant under 3-fold rotations of the
tetrahedron

Φ

(
a

b

ce

d
_

f
_ )

= Φ

(
b

e

da

f
_

c
_

_

_

)
. (76)

To see this, observe that we can transform the left tetra-
hedron into the right-hand one (as defined by Eq. (75))
through a series of moves that bend or rotate vertices.9

C. Isotropy on sphere

If the ground state string-net amplitudes are to be
isotropic on the sphere, we must also require invariance of
our amplitudes under 2-fold rotations of the tetrahedron:

Φ

(
a

b

ce

d
_

f
_ )

= Φ

(
c

b
ae

d
_f

_

)
(77)

8 Specifically, we can use a graphical consistency condition involv-
ing [F ] and [F̃ ], that relates two different paths between the same
two diagrams: one with coefficient [F̃ 0d

eb ]ēd[Fabcd ]ef , and one with

coefficient [Faēc0 ]ec[F̃ cdab ]ēf .
9 Specifically, we first rotate the (a, b; e) vertex to obtain a (b, ē; ā)

vertex. Next, bend the e edge at the (upward) (e, c; d) vertex
downwards to obtain a (downward) (ē, d; c) vertex. Then rotate
the (downward) (a, f ; d) vertex twice, and bend the d edge up-
wards, to give an (upward) (ā, d; f) vertex. After straightening
out any vertical bends in the edges, we obtain exactly the dia-
gram corresponding to the tetrahedron on the right.
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which can be expressed as

F abcdefY
bc
f Y afd Y d̄d0 = F cd̄ab̄ēf̄ Y

d̄a
f̄ Y cf̄

b̄
Y bb̄0 . (78)

Eq. (78) holds provided that

Y aā0 = Y āa0 . (79)

To show this, we use Eq. (71), as well as the relation

F abcdef = F cd̄ab̄ēf̄ ·
αbēaαabēαecd̄
αafd̄αfd̄aαbcf̄

(80)

which can be derived from Eq. (16). Thus, to have a
string-net ground state that is isotropic on the sphere, in
addition to (71) we must also require (79).10

Interestingly, the condition (79) can always be met by
making an appropriate choice of g-gauge transformation.
However, this gauge choice may not be compatible with
the conditions (70) for planar isotropy, even if there exists
a gauge in which those conditions can be met. We dis-
cuss an example in which we must choose between planar
isotropy and the condition (79) in Sec. VII.

D. Tetrahedral reflection symmetry

The original string-net construction[14] required, in
addition to the conditions discussed above, that ground
state amplitudes also be invariant under the tetrahedral
reflection:

Φ

(
a

b

ce

d
_

f
_ )

= Φ

(
b

d
a f

_

c

e
_

_

)
. (81)

Algebraically, this means that

F abcdefY
bc
f Y afd Y d̄d0 = F ēbf̄

d̄āc̄
Y bf̄c̄ Y ēc̄d̄ Y dd̄0 . (82)

By using (16), we can derive

F abcdefY
bc
f = γb̄[F̃

eb̄
a0 ]ba[F̃ 0c

b̄f ]bc(F
eb̄f
dac )∗Y eb̄a . (83)

Using this, together with (70), Eq. (82) can be simplified
to

(F eb̄fdac )∗Y eb̄a Y afd Y d̄d0 = F ēbf̄
d̄āc̄

Y bf̄c̄ Y ēc̄d̄ Y dd̄0 . (84)

In the gauge where

Y abc =

√
dadb
dc

wawb
wc

(85)

10 Though we do not undertake to show that these conditions are
also sufficient for a fully isotropic wave-function on the sphere,
we expect that this is the case.

with the U(1) phases obeying wa = wā, Eq. (84) further
simplifies to the following condition on our F ’s:

(F abcdef )∗ = F āb̄c̄d̄ēf̄ . (86)

If the model is isotropic in the plane, as well as invari-
ant under 2-fold rotations and reflections of the tetrahe-
dron, in the gauge (85) we find that

F abcdef = F ēbf̄
d̄āc̄

√
dedf
dadc

wewf
wawc

= F bad̄c̄ef̄ = F d̄cbāēf . (87)

The first equality follows from the tetrahedral reflection
symmetry (82), the second equality follows from the first
equality and the 3-fold rotational symmetry (76) while
the third equality follows from the second equality and
2-fold rotational symmetry (78). We will see in the next
section that these correspond exactly to the conditions
imposed by Ref. 14 on the original string-net models.

VI. RELATIONSHIP WITH ORIGINAL
STRING-NET CONSTRUCTION

In this section, we discuss the relationship between our
construction and the original string-net construction of
Ref. 14. Our main result is that the string-net models
discussed in Ref. 14 correspond to a subset of the models
constructed in this paper, and we discuss the properties
of this subset.

The first step is to find the dictionary between the
input data {F, Y } that defines a string-net model in this
paper and the input data {F̄ , d̄} that was used in the
original string-net construction of Ref. 14. To derive this
dictionary, we compare the “old” local rules in Ref. 14 to
the “new” local rules in this paper, namely (5,13). From
this comparison, it is easy to see that if a string-net state
obeys the old local rules for some {F̄ , d̄}, then it obeys
the new local rules with {F, Y } given by

F abcdef = F̄ b̄āedc̄f (88a)

F̃ abcdef = F̄ abēcd̄f (88b)

(Y abc )−1 = F̄ āa0
bb̄c (88c)

Y abc = F̄ bc̄acb̄0 d̄b̄ (88d)

[F abcd ]ef = F̄ ācedb̄f (88e)

[F̃ abcd ]ef = F̄ c̄aēbd̄f (88f)

da = |d̄a|. (88g)

The above equations provide the desired dictionary be-
tween the “old” data {F̄ , d̄} and the “new” data {F, Y }.

Next, we recall that Ref. 14 imposed several self-
consistency conditions on the old data {F̄ , d̄}. The first
condition is that

F̄ abecdf = 1 if a or b or c or d = 0. (89)
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Substituting this condition into the dictionary in
Eq. (88), it follows that the new data satisfy (70). Thus
the original string-net models are all isotropic.

In addition to (89), Ref. 14 imposed the conditions

F̄ abcb̄ā0 =
vc
vavb

with va = vā =
√
d̄a (90a)

F̄ b̄āedc̄f = F̄ c̄dēāb̄f = F̄ āb̄ec̄df̄ = F̄ b̄eād̄f c̄

vevf
vavc

(90b)∑
n

F̄mlqkp̄n F̄
jip
mns̄F̄

js̄n
lkr̄ = F̄ jipq̄kr̄F̄

riq̄
mls̄. (90c)

Substituting (90) into (88), we find that the new data
satisfies the usual consistency conditions (16) as well as
the following additional constraints:

Y abc =
vavb
vc

(91a)

F ab̄bac0 =
vc
vavb

(91b)

F abcdef = F ēbf̄
d̄āc̄

vevf
vavc

= F d̄cbāēf = F bad̄c̄ef̄ . (91c)

These equations have simple physical interpretations.
Eq. (91a) is simply a special case of the gauge choice
(85), with wa

√
da = va. Eq. (91b) follows from this

gauge choice, together with the conditions (70) for pla-
nar isotropy. Eq. (91c) is exactly the condition (87) that
the string-net model is invariant under all reflections and
rotations of the tetrahedron, which the original construc-
tion explicitly assumes. Thus the extra conditions we
must impose on the new data amount to requiring that,
in an appropriate gauge, the string-net is isotropic on the
sphere and invariant under tetrahedral reflections.

Finally, Ref. 14 imposed the following condition in or-
der to guarantee that the string-net Hamiltonian was
Hermitian:

F̄ āb̄c̄d̄ēf̄ = (F̄ abcdef )∗. (92)

Substituting Eq. (92) into (88) and using (91), one can
show that the new data satisfies the condition (17a)

(F abcd )−1
fe = (F abcdef )∗. (93)

The reverse is also true. One the one hand, we have
(F abcd )−1

fe = F̃ abcdef = F̄ abē
cd̄f

. On the other hand, we have

(F abcdef )∗ = (F bad̄
c̄ef̄

)∗ = (F̄ āb̄e
c̄df̄

)∗. Thus (92) follows from

(93). Similarly, the other conditions (17b—17d) also fol-
low from (88, 91).

Putting everything together, we conclude that the orig-
inal string-net models of Ref. 14 correspond to a subset
of the models discussed in this paper, namely the sub-
set of models that obey the constraints (71) and (91), in
addition to the usual conditions (16,17).

VII. EXAMPLES

In this section, we work out some illustrative examples.
We begin with the abelian Z2,Z3 and Z4 string-nets.

These are instructive in understanding how our construc-
tion captures models realized by the original string-net
construction[14]. They also contain some models which
cannot be realized by the original string-net framework
because they cannot be made isotropic on the plane (Z3),
or on the sphere (Z4). Note that all of our abelian exam-
ples give topological orders that can also be realized by
the twisted quantum double models of Ref. 15, as well as
the string-net construction of Ref. 19. For this reason we
do not list the quasiparticle types or string operators in
these cases.

We then discuss two non-abelian examples: the Fi-
bonacci and TY3 string-net models. The Fibonacci model
is an example that can be obtained from the original
string-net construction, and is included here to illustrate
how our construction reduces to that of Ref. 14 in this
case. Finally, the TY3 model is an example of a non-
abelian string-net that cannot be realized without our
generalized construction.

A. Z2 string-net models

The Z2 string-net models describe two string types
{0, 1} where 0 is the vacuum string and 1 = 1̄ is self
dual with the branching rules {(0, 0 : 0), (0, 1 : 1), (1, 0 :
1), (1, 1, : 1)}. These branching rules require that the
strings form closed loops so the Hilbert space is the set
of all possible closed loops.

Next, to construct the Hamiltonian and wave func-
tions, we have to solve the consistency conditions (16,17)
for {F, Y }. There are two distinct solutions, parameter-
ized by an integer p = 0, 1:

F 111 = (−1)p, Y 11 = 1. (94)

where here and for our other string-net models with
abelian branching rules, we use the simplified notation

F abc ≡ F abc(a+b+c)(a+b)(b+c), Y ab ≡ Y aba+b . (95)

With the solutions (94) in hand, we can construct the
wave functions and Hamiltonian using (5) and (26). For
the p = 0 solution, the wave function is

Φ(X) = 1 (96)

for any closed string-net configuration X. The corre-
sponding Hamiltonian realizes the the toric code topo-
logical phase[13, 14]. On the other hand, for the p = 1
solution, we need to keep track of the vertical kinks be-
cause γ1 = F 111Y 11 = −1. The wave function is

Φ(X) = (−1)loop(X)(−1)vkink(X)/2 (97)

with loop(X) meaning the total number of closed loops
in the configuration X and vkink(X) meaning the total
number of vertical kinks (upward and downward vertices
with c = 0 in Eq. (2)) in X. The corresponding Hamilto-
nian realizes the same phase as the doubled semion model
of Ref. 14.
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While the solutions (94) are sufficient for constructing
exactly soluble models, it is desirable to have solutions
which lead to simpler models. Specifically, we can make
γ1 = 1 using the gauge transformation g0

11 = (−1)p. Af-
ter this gauge transformation we have

F 111 = (−1)p, Y 11 = (−1)p. (98)

The solutions (98) satisfy (71) and thus the models are
isotropic. In this gauge, the wave function for the p = 0
case is the same as (96) while the wave function for the
p = 1 case becomes

Φ(X) = (−1)loop(X). (99)

B. Z3 string-net model

The Z3 models have three types of strings {0, 1, 2} with
0̄ = 0, 1̄ = 2, 2̄ = 1. The branching rules are {(a, b :
[a+ b]3)} with a, b ∈ {0, 1, 2} and [a+ b]3 = a+ b mod 3
which takes values in {0, 1, 2}.

To construct the Hamiltonians and wave functions for
the Z3 models, we solve the consistency conditions for
{F, Y }. There are three distinct solutions[35] labeled by
p = 0, 1, 2

F abc = ei
2πpa

9 (b+c−[b+c]3), Y ab = 1. (100)

As in the previous example, it is instructive to ask
whether we can use appropriate gauge transformations to
put this data into a form where Eq. (71) is satisfied. How-
ever, when p = 1, 2 no such gauge transformation exists.
To see this, recall that the quantity α111α222 is gauge
invariant under f, g transformation. Since α111α222 6= 1
in p = 1, 2 solutions, we have no hope to make (100) sat-
isfy (71) by any gauge transformation. Thus the p = 1, 2
models will not be isotropic on the plane, in any gauge.

C. Z4 string-net model

The string types for the Z4 model are {0, 1, 2, 3} with
0̄ = 0, 1̄ = 3, 2̄ = 2, 3̄ = 1. The branching rules are {(a, b :
[a+b]4)} with a, b ∈ {0, 1, 2, 3} and [a+b]4 = a+b mod 4
which takes values in {0, 1, 2, 3}.

To construct the Hamiltonians and wave functions for
the Z4 models, we solve the consistency conditions for
{F, Y }. There are four distinct solutions labeled by p =
0, 1, 2, 3 :

F abc = ei
2πpa
16 (b+c−[b+c]4), Y ab = 1. (101)

While it is sufficient to construct the Hamiltonians and
wave functions by using (101), the p = 1, 2, 3 models are
not isotropic because the corresponding solutions (101)
do not satisfy (71). Thus it is desirable to find proper

gauge transformations f, g to have simpler models if pos-
sible. To this end, we first apply the f -gauge transforma-
tion with f32

1 = (−i)p, f33
2 = (−1)p followed by a g-gauge

transformation g
[a+b]4
ab = F abb̄. The result is

F 113 = F 331 = F 232 = F 212 = F 131 = ip,

F 133 = F 311 = F 123 = F 321 = F 313 = (−i)p,
F 122 = F 231 = F 223 = F 312 = F 222 = F 333 = (−1)p,

Y ab = F abb̄.

(102)

The solutions (102) satisfy (71) and the corresponding
models are isotropic on plane. However, p = 1, 3 so-
lutions do not satisfy Eq. (79) and thus the p = 1, 3
models are examples which are isotropic on the plane
but not on the sphere. These models also do not satisfy
the tetrahedral reflection symmetry condition (86). The
corresponding quasi-particle spectra break time-reversal
symmetry[19], and thus these models cannot be realized
by the original construction.

D. Fibonacci string-net model

We now turn to our non-abelian examples. We first
discuss the Fibonacci string-net, which was also discussed
by Ref. 14. We include it here partly to provide a simple
example of the non-abelian construction, and partly to
correct a minor error in the data for the string operators
in Ref. 14.

The string types in the Fibonacci string-net are {0, 1}
where 0 is the vacuum string and 1 = 1̄ is self dual. The
allowed branching rules are {(0, 0 : 0), (0, 1 : 1), (1, 0 :
1), (1, 1 : 0), (1, 1, : 1)}. The solution to (16,17) is given
by

[F 111
1 ]ef =

[
1
d

1√
d

1√
d
− 1
d

]
ef

,

Y 11
0 = d, Y 11

1 =
√
d, other F, Y = 1,

d =
1 +
√

5

2

(103)

where e, f = 0, 1. By using the data (103), we can con-
struct the ground state wave function and the Hamilto-
nian. Notice that (103) satisfies (71,79,84) so the corre-
sponding model is fully isotropic on the sphere, and also
obeys tetrahedral reflection symmetry. This is expected,
as the Fibonacci string-net can be realized by the original
construction [14].

To find the quasiparticle excitations, we need to solve
(48). There are four irreducible solutions to (48) which
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correspond to four distinct quasiparticles:

α = 1 :(nα,0, nα,1) = (1, 0)

Ω1,001
α = 1

α = 2 :(nα,0, nα,1) = (0, 1)

Ω1,110
α = e−i4π/5, Ω1,111

α = ei3π/5

α = 3 :(nα,0, nα,1) = (0, 1)

Ω1,110
α = ei4π/5, Ω1,111

α = e−i3π/5

α = 4 :(nα,0, nα,1) = (1, 1)

Ω1,110
α = 1, Ω1,001

α = −d−2, Ω1,111
α = d−2

Ω1,101
α = (Ω1,011

α )∗ =
√

3d− 4e−i3π/10.

(104)

Here, we omit the value of Ω0,sss
α , since this matrix

element is always fixed at 1. Note that in Ref. 14,
it is claimed that Ω̄ = Ω∗ which is correct only in
the gauge where Ω are chosen to be real numbers. In
Eq. (104), Ω̄1,101

4 = Ω1,101
4 6= (Ω1,101

4 )∗. However, if we

choose Ω1,101
4 = (Ω1,011

4 ) =
√

3d− 4, then in that gauge

Ω̄1,101
4 = (Ω1,101

4 )∗.
From (51), we find all quasiparticles are self-dual α =

ᾱ. Also, we can see that the quantum dimensions of the
quasiparticles are d1 = 1 and d2 = d3 = d and d4 = d2.
The topological spins and the S matrix can be computed
from (63,54). We find

eiθ1 = 1, eiθ2 = e−i4π/5, eiθ3 = ei4π/5, eiθ4 = 1

S =
1

1 + d2

 1 d d d2

d −1 d2 −d
d d2 −1 −d
d2 −d −d 1

 .
(105)

The same result was found in Ref. 14.

E. TY3 string-net model

Our final example is the string-net model associated
with the Tambara-Yamagami category for Z3 (TY3)[36,
37]. This category can be obtained[38] by taking the
Z3 model with F abc ∈ {0, 1} described above, with la-
bels {0, 1, 2}, together with a label σ with non-abelian
branching rules and σ̄ = σ. The full branching rules are

{(0, 0 : 0), (0, 1 : 1), (0, 2 : 2), (0, σ : σ), (1, 1 : 2),

(1, 2 : 0), (2, 2 : 1), (1, σ : σ), (2, σ : σ), (σ, σ : 0),

(σ, σ : 1), (σ, σ : 2), (a, b : c) = (b, a : c).}
(106)

The solution to (16,17) is given by

F aσbσσσ = Fσaσbσσ = e
2πiab

3 , Fσσσσab =
p√
3
e−

2πiab
3 ,

Y σσ0 = Y σσ1 = Y σσ2 = dσ, Y σσσ =
√
dσ, other F, Y = 1

d0 = d1 = d2 = 1, dσ =
√

3

(107)

where a, b take values in {0, 1, 2} and p = 1,−1
parametrizes two different solutions. As written, the
p = −1 solution does not satisfy (71), and hence is not
isotropic in the plane. However, this can be resolved us-
ing an f -gauge transformation with fσσ0 = p. In addition,
neither solution obeys the tetrahedral reflection symme-
try condition (86). Thus these models cannot be realized
by the original construction.

We now find the quasiparticles. For each of the two
models parametrized by p = ±1, we find 15 irreducible
solutions to (48), corresponding to 15 quasiparticles. For
the p = 1 model, we find

α =1, 2 : (nα,0, nα,1, nα,2, nα,σ) = (1, 0, 0, 0)

Ω1,001
α = Ω2,002

α = 1, Ωσ,00σ
α = ±1

α =3, 4 : (nα,0, nα,1, nα,2, nα,σ) = (0, 1, 0, 0)

Ω1,112
α = ei2π/3, Ω2,110

α = e−i2π/3, Ωσ,11σ
α = ±ei2π/3

α =5, 6 : (nα,0, nα,1, nα,2, nα,σ) = (0, 0, 1, 0)

Ω1,220
α = e−i2π/3, Ω2,221

α = ei2π/3, Ωσ,22σ
α = ±ei2π/3

α =7 : (nα,0, nα,1, nα,2, nα,σ) = (1, 1, 0, 0)

Ω1,001
α = ei2π/3, Ω2,002

α = e−i2π/3,

Ωσ,00σ
α = Ωσ,11σ

α = 0, Ω1,112
α = Ω2,110

α = 1

Ωσ,01σ
α = eiφ1 , Ωσ,10σ

α = e−iφ1

α =8 : (nα,0, nα,1, nα,2, nα,σ) = (1, 0, 1, 0)

Ω1,001
α = e−i2π/3, Ω2,002

α = ei2π/3,

Ωσ,00σ
α = Ωσ,22σ

α = 0, Ω1,220
α = Ω2,221

α = 1

Ωσ,02σ
α = eiφ2 , Ωσ,20σ

α = e−iφ2

α =9 : (nα,0, nα,1, nα,2, nα,σ) = (0, 1, 1, 0)

Ω1,112
α = Ω2,221

α = e−i2π/3, Ω1,220
α = Ω2,110

α = ei2π/3,

Ωσ,11σ
α = Ωσ,22σ

α = 0

Ωσ,12σ
α = ei2π/3eiφ3 , Ωσ,21σ

α = e−iφ3

(108)

and

α =10, 11 : (nα,0, nα,1, nα,2, nα,σ) = (0, 0, 0, 1)

Ω1,σσσ
α = Ω2,σσσ

α = e−i2π/3, Ωσ,σσ0
α = ±ei3π/4,

Ωσ,σσ1
α = Ωσ,σσ2

α = ∓ei5π/12

α =12, 13 : (nα,0, nα,1, nα,2, nα,σ) = (0, 0, 0, 1)

Ω1,σσσ
α = 1, Ω2,σσσ

α = ei2π/3,

Ωσ,σσ0
α = Ωσ,σσ2

α = ∓eiπ/12, Ωσ,σσ1
α = ±ei5π/12

α =14, 15 : (nα,0, nα,1, nα,2, nα,σ) = (0, 0, 0, 1)

Ω1,σσσ
α = ei2π/3, Ω2,σσσ

α = 1,

Ωσ,σσ0
α = Ωσ,σσ1

α = ∓eiπ/12, Ωσ,σσ2
α = ±ei5π/12

(109)

where φ1, φ2, φ3 are three U(1) gauge phases. Evidently
there are 6 abelian quasiparticles with dα = 1, for α =
1, . . . , 6, and 9 nonabelian quasiparticles with dα = 2 for
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α = 7, 8, 9 and dα =
√

3 for α = 10, . . . , 15. From (51),
we can identify the particle-antiparticle pairs:

1 = 1̄, 2 = 2̄, 3 = 5̄, 4 = 6̄, 7 = 8̄, 9 = 9̄,

10 = 1̄0, 11 = 1̄1, 12 = 1̄4, 13 = 1̄5.

(110)

The topological spins of each of these quasiparticles
can be computed from (63):

{eiθ1 , . . . , eiθ15} =

{1, 1, e−i 2π3 , e−i 2π3 , e−i 2π3 , e−i 2π3 , 1, 1, ei 2π3 ,

ei
3π
4 , e−i

π
4 , e−i

11π
12 , ei

π
12 , e−i

11π
12 , ei

π
12 }.

(111)

As for the p = −1 model, we do not include explicit
expressions for the Ωα here, for brevity. Instead we skip
directly to the topological spins of the quasiparticles:

{eiθ1 , . . . , eiθ15} =

{1, 1, e−i 2π3 , e−i 2π3 , e−i 2π3 , e−i 2π3 , 1, 1, ei 2π3 ,

ei
π
4 , e−i

3π
4 , e−i

5π
12 , ei

7π
12 , e−i

5π
12 , ei

7π
12 }.

(112)

As can be seen from the topological spins of the quasi-
particles, both models break time reversal symmetry, as
one might expect given that the string-net data does not
have reflection symmetry. Thus the TY3 string-net is an
example of a non-abelian model that cannot be realized
with the original construction of Ref. 14, which implicitly
assumed time reversal symmetry.

VIII. CONCLUSION

In this paper, we have given a detailed description of
how to construct generalized string-net models. Impor-
tantly, our construction works for any unitary fusion cat-
egory; unlike the original models proposed by Levin and
Wen[14], we do not impose additional requirements on
this category that ensure the invariance of the string-net
ground state under planar or spherical isotropy or tetra-
hedral reflections. (Note that the construction in the
main text works only for the case of no fusion multiplic-
ities; the construction in Appendix F must be used for
the case with fusion multiplicities.)

In addition to providing a detailed discussion of string-
net ground states and Hamiltonians, we have also de-
scribed an approach for constructing string operators and
for computing quasiparticle statistics – in particular, the
S and T matrices. Finally, we have analyzed the condi-
tions under which the generalized string-net models are
isotropic on the plane or on the sphere, and we have
discussed the relationship between generalized string-net
models and the original models of Ref. 14.
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Appendix A: Derivation of self-consistency
conditions

In this appendix, we show that the parameters
{F abcdef , F̃

abc
def , [F

ab
cd ]ef , [F̃

ab
cd ]ef} must satisfy the following

equations if the local rules (5,13) are self-consistent:

F̃ abcdef = (F abcd )−1
fe

Y abe Y ecd

Y bcf Y afd
(A1a)

[F abcd ]ef = F̃ cebfad

Y ebd
Y abf

(A1b)

[F̃ abcd ]ef = F cebfad

Y ebd
Y abf

(A1c)

Note that the above conditions are a subset of the iden-
tities in Eq. 14 and the self-consistency conditions listed
in Eq. 16: the remaining self-consistency conditions are
derived in the main text.

The first condition (A1a) can be derived by considering
the sequences in Fig. 5:

Y abe Y ecd =
∑
f

F abcdef F̃
abc
defY

bc
f Y afd . (A2)

Then Eq. (A1a) follows from (A2).
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To derive (A1b), we consider the sequence

Φ

 a
b

c
d

e

 =
∑
f

1

Y abf
Φ

 a b

c d

e

fa

b


=
∑
f

1

Y abf
F̃ cebfadΦ

 a b

c d

e

f

b

d


=
∑
f

1

Y abf
F̃ cebfadY

eb
d Φ

 a

d

f

c

b


≡
∑
f

[F abcd ]efΦ

 a

d

f

c

b

 .

(A3)

We use the local rules (5d,5c,5e) in the first three equal-
ities sequentially. Thus we have (A1b).

Similarly, to derive (A1c), we follow the same logic by
considering the sequence

Φ


a b

c
d

e

 =
∑
f

1

Y abf
Φ


a b

c
d

e

f
a

b


=
∑
f

1

Y abf
F cebfadΦ


a b

c
d

e

f

b

d


=
∑
f

1

Y abf
F cebfadY

eb
d Φ


a

d

f

c

b


≡
∑
f

[F̃ abcd ]efΦ


a

d

f

c

b

 .

(A4)

We use the local rules (5d,5b,5e) in the first three equal-
ities sequentially. Thus we have (A1c).

So far we have not discussed the most important self-
consistency condition of all: the pentagon identity (16a).
The reason for this omission is that this identity is de-
rived in the main text. Here we would like to point out

that there are actually many variants of the pentagon
identity which follow from similar consistency require-
ments. Each of these variants can be derived graphically
by relating the amplitude of two of the five configura-
tions in Fig. 6 by sequences of F and (F )−1 operations.
Likewise, these variants can be derived algebraically by
multiplying both sides of (16a) by appropriate (F )−1 op-
erations. For example, by considering two sequences re-
lating the amplitude of the top configuration and the
bottom left configuration in Fig. 6, we have∑

k

F ahdegk F
bcd
khl (F

abl
e )−1

kf = F fcdegl (F abcg )−1
hf . (A5)

Eq. (A5) can be derived by multiplying both sides of
(16a) by (F able )−1

kf , (F
abc
g )−1

hf .
We can derive useful identities from these variants of

the pentagon identity. For example, by setting e = 0 in
(16a) and using the fact that F abc0ef = wabcδe,c̄δf,āδ

ab
c̄ is a

complex number depending on three string types a, b, c,
we obtain

(F abcg )−1
hf = F bcḡ

āhf̄

wahḡ

wabf̄wfcḡ
= F ḡab

c̄h̄f

wḡfc

wḡahwf̄bc
. (A6)

By setting h = 0 in (A5), we obtain

F bb̄dd0l (F able )−1
df = F fb̄deal (F abb̄a )−1

0f . (A7)

Appendix B: Gauge choices for Y ab
c

In this appendix, we discuss three different gauge
choices for Y abc . The first gauge choice is to take Y abc
of the special form

Y abc =
yayb
yc

(B1)

with

ya =
√
dae

iφa (B2)

where da = dā is the quantum dimension of the string-
a and φa is a U(1) phase. In this parametrization, the
condition (17d) requires

φa + φā = 0 (mod 2π). (B3a)

In the gauge (B1), F̃ abcdef = (F abcd )−1
fe and the amplitude

of a loop-a is real: Y aā0 = da. A special case of (B1),
namely

Y abc =

√
dadb
dc

, (B4)

is used in Refs. 4, 14, 17, 20, and 21.
Another gauge choice that is worth mentioning is

Y abc = 1 (B5)
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FIG. 7. The action of Bt1
p1B

t2
p2 and Bt2

p2B
t1
p1 on the shared

boundary.

which satisfies (17c,17d) trivially. This choice is appeal-
ing since it allows us to drop all the Y factors. How-
ever, this choice is not allowed in our construction as it
does not satisfy (17b), and the corresponding Hamilto-
nian (26) is not Hermitian.

The third gauge choice which we would like to men-
tion is restricted to Abelian string-net models with the
Abelian branching rules {(a, b; a + b)}. To explain this
gauge choice, it is convenient to suppress indices that can
be deduced from the branching rules and define

F abc ≡ F abc(a+b+c)(a+b)(b+c) Y ab ≡ Y aba+b. (B6)

In this notation, the gauge choice corresponds to taking
Y abc to be

Y ab = F abb̄ (B7)

which can not be factorized to the form (B1). One can
check that (B7) satisfies (17). This gauge has the advan-
tage that the the Frobenius-Schur indicator γa = 1 (66),

but the disadvantage that Y aā can be complex, and F̃ abc

is no longer the inverse of F abc.

Appendix C: Showing that Bt1
p1 , B

t2
p2 commute

In this appendix, we show that the operators Bt1p1 and

Bt2p2 commute with one another for p1 6= p2. We only
need to consider the case when p1 and p2 are adjacent
since two operators will commute if p1 and p2 are further
apart.

Let Bt1p1 , B
t2
p2 act on two adjacent plaquettes p1, p2. The

two adjacent plaquettes can be in three possible rela-
tive positions shown in Fig. 7. We want to show the
Bt1p1B

t2
p2 = Bt2p2B

t1
p1 in these three cases. To show this, we

compare the matrix elements of Bt1p1B
t2
p2 and Bt2p2B

t1
p1 and

show they are the same. We find that it is sufficient to
compare the factors associated with the shared bound-
ary which are different. We discuss these three cases in
order.

For case (1), we need to show∑
c1

F a1bt2c3c1b2
(F t̄1abc1 )−1

ca1F
t̄1de
c1d1c

(F d1et2c3 )−1
e2c1

=
∑
c2

F abt2c2cb2
(F t̄1ab2c3 )−1

c2a1F
t̄1de2
c3d1c2

(F det2c2 )−1
e2c

(C1)

To show (C1), it is sufficient to show

F a1bt2c3c1b2
(F t̄1abc1 )−1

ca1 =
∑
c2

F abt2c2cb2
(F t̄1ab2c3 )−1

c2a1F
t̄1ct2
c3c1c2

F t̄1dec1d1c
(F d1et2c3 )−1

e2c1 =
∑
c′2

F t̄1de2c3d1c′2
(F det2c′2

)−1
e2c(F

t̄1ct2
c3 )−1

c′2c1

(C2)

To see this, one can insert (C2) into the left hand side
of (C1) and simplify the expression to obtain the right
hand side of (C1). We can show (C2) by identifying
Eq. (C2) as one of the variants of the pentagon identity
(see Appendix A). This completes the proof of (C1).

For case (2), we need to show∑
c1

(F a1 t̄1cb )−1
c1a(F a1c1t2b2

)−1
c3b
F c3 t̄2ed1c1e2

(F t̄1ced1
)−1
dc1

(F c1t2 t̄2c1 )−1
0c3

=
∑
c2

(F actb2 )−1
c2b

(F a1 t̄1cb2
)−1
c3aF

c2 t̄2e
dce2

(F ct2 t̄2c )−1
0c2

(F t̄1c2e2d1
)−1
dc3

(C3)

To show (C3), it is sufficient to show

(F a1 t̄1cb )−1
c1a(F a1c1t2b2

)−1
c3b

=
∑
c2

(F act2b2
)−1
c2b

(F a1 t̄1c2b2
)−1
c3aF

t̄1ct2
c3c1c2

(C4a)

F c3 t̄2ed1c1e2
(F c1t2 t̄2c1 )−1

0c3
(F t̄1ced1

)−1
dc1

=∑
c′2

F
c′2 t̄2e
dce2

(F ct2 t̄2c )−1
0c′2

(F
t̄1c

′
2e2

d1
)−1
dc3

(F t̄1ct2c3 )−1
c′2c1

(C4b)

To see this, we insert (C4) into the left hand side of (C3)
and simplify the expression to obtain the right hand side
of (C3). What remains is to show (C4). Eq. (C4a) is a
variant of the pentagon identity. To show (C4b) we need
to do more work.

First, to show (C4b), it is sufficient to show

(F c1t2e2d1
)−1
ec3(F t̄1ced1

)−1
dc1

=∑
c′2

(F ct2e2d )−1
ec′2

(F t̄1ct2c3 )−1
c′2c1

(F
t̄1c

′
2e2

d1
)−1
dc3

(C5a)

F c3 t̄2ed1c1c2
(F c1t2 t̄2c1 )−1

0c3
= F t2 t̄2ee0e2

(F c1t2e2d1
)−1
ec3 (C5b)

F c2 t̄2edce2
(F ct2 t̄2c )−1

0c2
= F t2 t̄2ee0e2

(F ct2e2d )−1
ec2 (C5c)

To see this, we multiply both sides of (C5a) by F t2 t̄2ee0e2
and use (C5b,C5c) to simplify the expression to obtain
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(C4b). What remains is to show (C5). The first equation
(C5a) is a variant of the pentagon identity and the last
two equations follow from (A7). This completes the proof
for case (2).

For case (3), we arrive at a similar equation as (C3)
with (F ) replaced by (F )−1. Thus, an dentical proof as
in case (2) goes through by changing (F ) by (F )−1 in
Eq. (C4,C5). This completes the proof for case (3).

Appendix D: Properties of the Hamiltonian (26)

In this appendix, we establish the following properties
of the Hamiltonian (26):

1. (Bsp)
† = Bs̄p

2. Bp is a projection operator, i.e. B2
p = Bp

To show the first property, we first use the pentagon
identity to derive

[F a
′b

sc ]ac′

[F̃ abs̄c′ ]a′c
=

[F̃ 0a
s̄a′ ]sa

[F̃ 0c
s̄c′ ]sc

Y abc
Y a

′b
c′

(D1a)

[F csab′ ]bc′

[F̃ c
′s̄
ab ]b′c

=
[F csc′0]s̄c′

[F bsb′0]s̄b′

Y abc
Y ab

′
c′

(D1b)

[F aba′b′ ]s̄c

[F̃ a
′b′

ab ]sc
=

[F 0b
sb′ ]s̄b

[F̃ a
′s̄

a0 ]sa
(D1c)

Eq. (D1) follows from variants of the pentagon identity.
Specifically, Eq. (D1a–D1c) can be obtained respectively
from ∑

l

F fcdegl F
abl
efk(F bcdk )−1

lh = F abcgfhF
ahd
egk∑

f

(F able )−1
kf (F fcde )−1

lg F
abc
gfh = (F bcdk )−1

lh (F ahde )−1
kg∑

g

(F fcde )−1
lg F

abc
gfhF

ahd
egk = F ablefk(F bcdk )−1

lh

(D2)

by setting f = 0, l = 0, h = 0 in the first, second and
third equation above.

By using (17a) and (D1), it is straightforward to show
that

Bs,i1i2···6p,i′1i
′
2...i

′6(e1e2 . . . e6)

(B
s̄,i′1i

′
2...i

′
6

i1i2...i6
(e1e2 . . . e6))∗

=

|F ī1ss̄
ī1 ī′10
|2|F ī

′
2s̄s

ī′2 ī20
|2|F ī3ss̄

ī3 ī′30
|2

|F i
′
4s̄s

i′4i40|2|F
i5ss̄
i5i′50|2|F

i′6s̄s

i′6i60|2
Y ss̄0

(Y s̄s0 )∗
|Y i6i1e1 Y i3e3i2

Y e5i4i5
|2

|Y i
′
6i

′
1

e1 Y
i′3e3
i′2

Y
e5i′4
i′5
|2

(D3)

Thus, to show the first property is equivalent to show

(D3) = 1. (D4)

This identity follows immediately by substituting (17b-
17d) into the right hand side of (D3) and simplifying the
resulting expression.

In fact, we can also show that (17b-17d) are necessary
conditions for (D4) to hold. To see this, we consider some
simple cases. First, we consider the case when e1 = e2 =
· · · = 0 and i1 = i2 = i3 = ī4 = ī5 = ī6 = i. In this case,
(D4) reduces to

|F īss̄
ī̄i′0
|2Y ss̄0 |Y īi0 |2

|F ī′s̄s
ī′ ī0
|2(Y s̄s0 )∗|Y ī′i′0 |2

= 1. (D5)

When i = s, and ī′ = 0, (D5) becomes

|F s̄ss̄s̄00 |2 =
1

Y ss̄0 Y s̄s0

. (D6)

Second, when e3 = e4 = · · · = e6 = 0 and i1 = i3 =
ī4 = ī5 = ī6 = i, i2 = j, (D4) reduces to

|F īss̄
ī̄i′0
|2

|F j̄′s̄s
j̄′ j̄0
|2

=
(Y s̄s0 )∗|Y j̄′i′e1 |

2

Y ss̄0 |Y
j̄i
e1 |2

. (D7)

By comparing (D7) with i = j̄′ = s, i′ = j = 0 and (D6),
we find

Y aā0 = (Y āa0 )∗. (D8)

By using (D6) and (D8), we find that (D7) with j =
0, j̄′ = s reduces to

|F abb̄ac0 | =
|Y bc̄ā |
|Y bb̄0 |

. (D9)

Plugging (D9) and (D8) to (D7), we have

|Y abc ||Y cdf | = |Y aef ||Y bde |. (D10)

Similarly, by considering (D4) when e1 = e2 = e5 =
e6 = 0 and e1 = e2 = e3 = e6 = 0, we obtain

|F ī3ss̄
ī3 ī′30
| = |Y

i′3 ī3
s̄ |
|Y i3 ī30 |

, |F i
′
4s̄s

i′4i40| =
|Y ī

′
4i4
s̄ |
|Y ī

′
4i

′
4

0 |
. (D11)

From (D9,D11), we find that

|Y abc | = |Y b̄āc̄ | = |Y bc̄ā |
|Y aā0 |
|Y cc̄0 |

. (D12)

Then, from (D10) with e = 0, d = b̄, f = a and using
(D12), we find that

|Y abc | =
√
dadb
dc

δabc . (D13)

Combining (D13), (D8) and (D9), we derive conditions
(17b–17d). This completes our discussion of the first
property of the Hamiltonian, i.e. (Bsp)

† = Bs̄p.

We now move on to the second property, i.e. B2
p = Bp.

To prove this result, we use the identity

Bt1p B
t2
p =

∑
u

M t1t2
u Bup (D14)
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with

M t1t2
u = F t2 t̄2 t̄1t̄10ū (F t2 t̄2 t̄1t̄1

)−1
ū0

Y t1 t̄10 Y t2 t̄20

Y uū0

, (D15)

which we will derive below. From (D15), we can derive
two other useful identities:

∑
u

M t1t2
u aū = at̄1at̄2

∑
s

d2
s (D16)

M t1t2
u = M ūt1

t̄2
(D17)

Here (D16) follows immediately from the expression for
as (29). As for (D17), this follows from two other iden-
tities:

M ūu
0 M t1t2

u = M ūt1
t̄2

M t̄2t2
0 (D18)

M s̄s
0 = 1 (D19)

Here (D18) follows from comparing the coefficient of B0
p

that appears in the two (identical) products Būp (Bt1p B
t2
p )

and (BūpB
t1
p )Bt2p . Eq. (D19) follows from (D15) combined

with (17a-17d).

We are now ready to derive B2
p = Bp. Proving this

relation is equivalent to showing

∑
t1t2

M t1t2
u at1at2 = au (D20)

We will prove this in three steps. First we use (D17) and
(D16) in succession to derive

∑
t1t2

M t1t2
u at1at2 =

∑
t1t2

M ūt1
t̄2

at1at2

=
∑
t1

at1at̄1au ·
∑
s

d2
s (D21)

Next, we note that

∑
t1

at1at̄1 =

(∑
s

d2
s

)−1

(D22)

Combining (D21) and (D22), we derive (D20).

All that remains is to show (D15). To this end, we

consider

〈 ∣∣∣∣∣∣Bt1p Bt2p =

〈
t1

_
t1

t2 t2

_

∣∣∣∣∣∣
=
∑
u

〈
t2 t2

_

u
t2

_
t2

t1

t1

_
t1

_
t1

u
_

∣∣∣∣∣∣ 1

Y t1t2u Y t̄2 t̄1ū

=
∑
u

〈
t2

u
t2

t1

t1

u
_

∣∣∣∣∣∣ [F 0t̄1
t2ū ]t̄2 t̄1 [F̃ 0t̄1

t2ū ]t̄2 t̄1

Y t1t2u Y t̄2 t̄1ū

=
∑
u

〈
t2
u
t2

t1
u
_

t1

u

u

∣∣∣∣∣∣ (F t1t2ū0 )−1
t̄1u

(F̃ t1t2ū0 )−1
t̄1u

[F 0t̄1
t2ū ]t̄2 t̄1 [F̃ 0t̄1

t2ū ]t̄2 t̄1

Y t1t2u Y t̄2 t̄1ū

=
∑
u

〈
u u

_

∣∣∣∣∣∣F t2 t̄2 t̄1t̄10ū (F t2 t̄2 t̄1t̄1
)−1
ū0

Y t1 t̄10 Y t2 t̄20

Y uū0

=
∑
u

〈 ∣∣∣∣∣∣F t2 t̄2 t̄1t̄10ū (F t2 t̄2 t̄1t̄1
)−1
ū0

Y t1 t̄10 Y t2 t̄20

Y uū0

Bup

(D23)

Here, we have used (14,16) to simplify (D23). Thus, we
obtain (D15).

Appendix E: Showing the ground state obeys the
local rules

In this appendix, we show that any state |Φ〉 such that
QI |Φ〉 = Bp|Φ〉 = |Φ〉 obeys a lattice version of the local
rules (5). We also discuss some implications of this result.

The lattice local rules are as follows:

Φ

 a

 = Φ

 a

 (E1a)

Φ

a b

c

d

e

 =
∑
f

F abcdefΦ


fa

b c

d

 (E1b)

Φ

 a b

 =
∑
c

1

Y abc
Φ

 a b

c

a b

 (E1c)

Φ

 c

a b

c

 = Y abc Φ


c

 (E1d)

Our strategy for deriving these rules is to use the fact
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that Bp|Φ〉 = |Φ〉 together with the following relations:〈
a

∣∣∣∣∣∣Bp =

〈
a

∣∣∣∣∣∣Bp (E2a)

〈
a b

c

d

e

∣∣∣∣∣∣Bp =
∑
f

F abcdef

〈
fa

b c

d

∣∣∣∣∣∣Bp (E2b)

〈
a b

∣∣∣∣∣∣Bp =
∑
c

1

Y abc

〈
a b

c

a b

∣∣∣∣∣∣Bp (E2c)

〈 c

a b

c

∣∣∣∣∣∣Bp = Y abc

〈
c

∣∣∣∣∣∣Bp (E2d)

Multiplying these equations by |Φ〉, we can see that the
wave function defined by Φ(X) = 〈X|Φ〉 satisfies the lo-
cal rules (E1).

The relations (E2) can be shown using the expression
for the matrix elements of Bsp in (31) together with the
pentagon identity and (17). For example, to show (E2c),
we expand out the left hand side as〈

a b

c

d

e

∣∣∣∣∣∣Bp
=
∑
sb′c′e′

F abse′eb′F
e′s̄c
dec′ F

bss̄
bb′0(F ess̄e )−1

0e′
d2
s

DY b
′s̄

b

〈
a

b

c'

d

e'

b' c
_
s

∣∣∣∣∣∣
(E3)

and the right hand side as

∑
f

F abcdef

〈
fa

b c

d

∣∣∣∣∣∣Bp =
∑

fsb′f ′a′

F abcdef

· F a
′s̄f

daf ′ (F s̄bcf ′ )−1
fb′(F

ass̄
a )−1

0a′(F
ss̄b
b )−1

b′0

d2
s

DY sb
′

b

〈
f'a'

b

c

d

b'sa

∣∣∣∣∣∣
(E4)

where D =
∑
s d

2
s. Changing the dummy variables

b′ → s̄, f ′ → c′, a′ → e′, s → b′ in the second expression,
and matching coefficients, we see that showing (E2b) is
equivalent to showing

d2
sF

abs
e′eb′(F

ess̄
e )−1

0e′F
e′s̄c
dec′ F

bss̄
bb′0

= d2
b′(F

ab′b̄′

a )−1
0e′(F

b′b̄′b
b )−1

s̄0

∑
f

F abcdefF
e′b̄′f
dac′ (F b̄

′bc
c′ )−1

fs̄
(E5)

Next we use the following three variants of the pentagon
identity:

F abse′eb′(F
ess̄
e )−1

0e′ = (F bss̄b )−1
0b′(F

ab′s̄
e )−1

be′∑
f

F abcdefF
e′b̄′f
dac′ (F b̄

′bc
c′ )−1

fs̄ = F e
′b̄′b
eas̄ F e

′s̄c
dec′ .

F b
′b̄′b
b0s̄ (F ab

′s̄
e )−1

be′ = F e
′b̄′b
eas̄ (F ab

′b̄′

a )−1
0e′

(E6)

With these identities, (E5) reduces to proving

d2
s(F

bss̄
b )−1

0b′F
bss̄
bb′0 = d2

b′F
b′b̄′b
b0s̄ (F b

′b̄′b
b )−1

s̄0 (E7)

To prove the above identity, we first prove the following
auxiliary identities:

(F b
′b̄′b′

b′ )−1
00 F

bss̄
bb′0F

b̄′bs
0s̄b′ = (F ss̄ss )−1

00 (F b
′b̄′b
b )−1

s̄0 (E8)

F b
′b̄′b′

b′00 (F bss̄b )−1
0b′ = F ss̄ss00F

b′b̄′b
b0s̄ F b̄

′bs
0s̄b′ (E9)

Once we prove these two auxiliary identities, we will be
done since multiplying them together gives the desired
identity, (E7).

To prove (E8), we substitute l = 0, d = b, f = e into
Eq. (A7). This gives

F bb̄bb00 = F eb̄bea0(F abb̄a )−1
0e (E10)

We then make the following change of variables: b → s̄,
e→ b, a→ b′. The result is

F s̄ss̄s̄00 = F bss̄bb′0(F b
′s̄s
b′ )−1

0b (E11)

Similarly, we substitute f = 0, b = ā, l = e into Eq. (A7).
This gives

F āadd0e (F aāee )−1
d0 = (F aāaa )−1

00 (E12)

Making the change the variables a → b′, e → b, d → s̄,
we obtain

F b̄
′b′s̄
s̄0b (F b

′b̄′b
b )−1

s̄0 = (F b
′b̄′b′

b′ )−1
00 (E13)

Multiplying (E11) and (E13) gives

F s̄ss̄s̄00F
b̄′b′s̄
s̄0b (F b

′b̄′b
b )−1

s̄0 = F bss̄bb′0(F b
′s̄s
b′ )−1

0b (F b
′b̄′b′

b′ )−1
00 (E14)

To proceed further, we consider the version of the pen-
tagon identity in Fig. 6, which relates the diagram at the
top to the diagram in the bottom right:

(F bcdk )−1
lh F

abl
efk =

∑
g

(F fcde )−1
lg F

abc
gfhF

ahd
egk (E15)

We set f = l = e = 0, b = ā, d = c̄, g = c, k = ā. With
these substitutions the pentagon identity reduces to

(F ācc̄ā )−1
0h = F aācc0hF

ahc̄
0cā (E16)

Next we make the following change of variables: a→ b̄′,
c→ s̄, h→ b. This gives the identity

(F b
′s̄s
b′ )−1

0b = F b̄
′b′s̄
s̄0b F b̄

′bs
0s̄b′ (E17)

Substituting (E17) into (E14), we obtain

F s̄ss̄s̄00 (F b
′b̄′b
b )−1

s̄0 = F bss̄bb′0(F b
′b̄′b′

b′ )−1
00 F

b̄′bs
0s̄b′ (E18)

This is almost the desired identity (E8): all that is left
is to show that

F s̄ss̄s̄00 = (F ss̄ss )−1
00 (E19)
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Conveniently, this follows immediately from (E11), by
setting a = 0, a′ = s.

We now move on to prove the second identity (E9).
The proof is very similar to that of (E8). The first step
is to take (E10), and make the change of variables a→ s,
e→ b′. This gives

F ss̄ss00 = F b
′s̄s
b′b0 (F bss̄b )−1

0b′ (E20)

Next we take (E12) and make the change of variables
a→ b̄′, d→ b, e→ s̄. This gives:

F b
′b̄′b
b0s̄ (F b̄

′b′s̄
s̄ )−1

b0 = (F b̄
′b′b̄′

b̄′ )−1
00 (E21)

Multiplying (E20) and (E21) gives

F ss̄ss00F
b′b̄′b
b0s̄ (F b̄

′b′s̄
s̄ )−1

b0 = F b
′s̄s
b′b0 (F bss̄b )−1

0b′(F
b̄′b′b̄′

b̄′ )−1
00 (E22)

Next we take Eq. (A5) and set f = l = e = 0, b = ā,
d = c̄, g = c, k = ā. The result is

F ahc̄0cā F
ācc̄
āh0 = (F aācc )−1

h0 (E23)

We then make the change of variables, a → b̄′, c → s̄,
h→ b. This gives

F b̄
′bs

0s̄b′F
b′s̄s
b′b0 = (F b̄

′b′s̄
s̄ )−1

b0 (E24)

Substituting (E24) into (E22), we obtain:

F ss̄ss00F
b′b̄′b
b0s̄ F b̄

′bs
0s̄b′ = (F bss̄b )−1

0b′(F
b̄′b′b̄′

b̄′ )−1
00 (E25)

Again, this is almost the desired identity (E9): to get

there, we simply make the substitution (F b̄
′b′b̄′

b̄′
)−1
00 =

F b
′b̄′b′

b′00 which follows from (E19). This completes our
proof of Eq. (E2b). The other local rules, (E2c,E2d) can
be shown in a similar manner, while Eq. (E2a) follows
from (E2b) by setting a = c = 0.

We now move on to discuss some of the implications of
(E1). One implication is that the lattice local rules (E1)
are self-consistent in a disk geometry. Indeed, there is
always at least one state |Φ〉 with QI |Φ〉 = Bp|Φ〉 = |Φ〉
in such a geometry (see Sec. III B), which means there is
always at least one solution to the lattice local rules.

Going a step further, this result suggests that the con-
tinuum local rules (5) are self-consistent, since any incon-
sistency in the continuum rules would presumably also
show up on the lattice for a fine enough discretization.11

In fact, we believe that this line of reasoning can be used
to prove that the conditions (16) are sufficient to ensure
that the continuum local rules (5) are consistent in a disk
geometry: the idea of the argument is to establish three

11 To make this argument solid, we would need to find a set of
lattice moves that are sufficiently general that they can be used to
connect any two string-net configurations that can be deformed
into each other in the continuum. We would then have to show
that Φ is invariant under these moves, as in Eq. (E1a).

claims: (i) the conditions (16) are sufficient for construct-
ing commuting projectors QI , Bp; (ii) there is always at
least one state |Φ〉 with QI |Φ〉 = Bp|Φ〉 = |Φ〉 in a disk
geometry; (iii) any state with QI |Φ〉 = Bp|Φ〉 = |Φ〉
obeys the lattice local rules. In this paper we have
sketched proofs of all three of these claims, but in some
of the steps we have used the Hermiticity conditions (17)
in addition to (16). That said, we believe that the proofs
can be modified so that they do not use the Hermiticity
conditions. Assuming this is correct, the above argument
can be used to prove that the self-consistency conditions
(16) are sufficient.

Appendix F: General string-net models

In this appendix, we discuss how to extend our con-
struction to the most general class of string-net models,
in which the string types have fusion multiplicities.

The main new element in these general models is that
the Hilbert space associated with the vertex (a, b : c) is
not one-dimensional, as we assumed in the main body,
but rather has dimension Nab

c , where Nab
c is a non-

negative integer. To describe this Hilbert space, we add
an index σ at each vertex of the string-net. At a vertex
(a, b; c), σ ranges over the set σ = 1, ...Nab

c .

The non-negative integers Nab
c can be thought of as a

generalization of the branching rules δabc , and like δabc , we
require that Nab

c obeys the associativity condition:∑
e

Nab
e N

ec
d =

∑
f

N bc
f N

af
d (F1)

We also require that the null-string obeys the same kind
of branching rules as in the main text: Na0

a = N0a
a =

Naā
0 = 1.

The local rules for general string-net models are similar
to the local rules (5) in the main body except for extra
indices at each vertex:

Φ

 a

 = Φ

 a

 (F2a)

Φ

 a b c

e
d

σ

τ

 =
∑
fµν

F abc,στdef,µνΦ

 a b c

d
f

μ

ν

 (F2b)

Φ


a b

c

d

e
σ

τ

 =
∑
fµν

F̃ abc,στdef,µνΦ


a

b c

d f
μ

ν

 (F2c)

Φ

 a b

 =
∑
cσ

1

Y abc
Φ

 a

b

c

a

b
σ

σ

 (F2d)

Φ

 a b

c

c

σ

τ

 = δc,dδσ,τY
ab
c Φ

 c

 . (F2e)
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For fixed string types (a, b, c, d, e, f), the F-symbol be-

comes a complex tensor F abc,στdef,µν of dimension Nab
e ×Nec

d ×
N bc
f ×N

af
d .

The self-consistency conditions (16), the Hermiticity
conditions (17), and the Hamiltonian (26) can also be
generalized straightforwardly; we will not write down the
explicit formulas here as they are not particularly illumi-
nating.
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