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Electron-electron interactions are intrinsically long-ranged, but many models of strongly interact-
ing electrons only take short-ranged interactions into account. Here, we present results of atomistic
calculations including both long-ranged and short-ranged electron-electron interactions for the mag-
netic phase diagram of twisted bilayer graphene and demonstrate that qualitatively different results
are obtained when long-ranged interactions are neglected. In particular, we use Hartree theory
augmented with Hubbard interactions and calculate the interacting spin susceptibility at a range of
doping levels and twist angles near the first magic angle to identify the dominant magnetic instabili-
ties. At the magic angle, mostly anti-ferromagnetic order is found, while ferromagnetism dominates
at other twist angles. Moreover, long-ranged interactions significantly increase the twist angle win-
dow in which strong correlation phenomena can be expected. These findings are in good agreement
with available experimental data.

INTRODUCTION

Since the discovery of superconductivity in proximity
to correlated insulator states at half (electron or hole)
filling of the flat bands [1, 2], there has been great in-
terest in the electronic properties of magic-angle twisted
bilayer graphene (tBLG) [3]. Additional experiments [4–
10] discovered correlated insulator phases and supercon-
ductivity at other doping levels of the flat bands and
revealed a wide range of interesting phenomena [11, 12]
including strange metal behaviour [13, 14], ferromagnetic
order [15, 16], superconductivity without correlated in-
sulators [17–19], Chern insulators [20–22], and nematic
order [6, 23–25].

These findings demonstrate the importance of electron-
electron interactions for understanding the electronic
properties of tBLG [11, 12]. The quintessential model for
strongly interacting electrons is the Hubbard model, in
which electrons only interact when they are on the same
“site” (typically assumed to be an atom). In tBLG near
the magic angle, the moiré pattern results in the emer-
gence of eight flat bands (including a factor of two from
spin degeneracy) near the Fermi energy which are sepa-
rated from all other bands by energy gaps [26–34]. Start-
ing from atomistic tight-binding approaches, Hubbard
models for tBLG can be obtained by constructing Wan-
nier functions of the flat bands [35–37] (note that this is
not possible when a continuum model starting point is
used; in that case additional bands must be included in
the Wannierization procedure [38, 39]). The properties of
such models have been studied using mean-field theory,
the functional renormalization group [40, 41] and exact
diagonalization [10] resulting in many important insights

into the origin of superconductivity and correlated insu-
lator states. Instead of using flat-band Wannier functions
which are extended over the whole moiré unit cell as a
basis, it is also possible to construct atomistic Hubbard
models using a basis of carbon pz orbitals [42–44].

Importantly, Hubbard models only capture short-
ranged electron-electron interactions [45]. It is well
known, however, that long-ranged interactions play an
important role in tBLG. Using Hartree theory, several
groups [46–50] demonstrated that long-ranged interac-
tions result in significant changes of the electronic struc-
ture which depend sensitively on doping and twist an-
gle. In particular, Hartree interactions result in a flat-
tening of the doped bands (in addition to the band flat-
tening induced by twisting) [26–29]. This interaction-
induced band flattening explains the Fermi level pinning
that was observed in several recent scanning tunnelling
spectroscopy measurements [10, 23].

Therefore, accurate models of tBLG should capture
both short-ranged and long-ranged electron-electron in-
teractions. To achieve this, several groups used Hartree-
Fock calculations based on a continuum model of the elec-
tronic structure [51–55]. While these calculations have
yielded many useful insights, they do not capture atomic-
scale interactions (such as onsite interactions within car-
bon pz-orbitals) and often only include a few bands near
the Fermi level with the effect of all other bands be-
ing described by an effective dielectric constant. Few
groups have attempted to capture the interplay of long-
ranged and short-ranged interactions using atomistic cal-
culations: González and Stauber [56] studied the prop-
erties of tBLG in different dielectric environments us-
ing atomistic Hartree-Fock theory, and Sboychakov et
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al. [57, 58] developed an atomistic Hubbard model with
electron-electron interactions beyond the atomistic Hub-
bard interactions. These studies investigated the proper-
ties of tBLG at a single twist angle, and therefore, did not
study in detail the doping and twist-angle dependence of
the interplay of long-ranged and short-range interactions.

In this paper, we calculate the magnetic phase dia-
gram of tBLG as function of twist angle and doping
using an atomistic Hartree theory with additional Hub-
bard interactions. Specifically, we calculate the interact-
ing spin susceptibility and determine the critical value
of the Hubbard U parameter that is required to induce
a magnetic instability. Our calculations predict mag-
netic instabilities over a relatively large twist angle win-
dow ranging from 0.96° to 1.16°. Near the magic angle,
the magnetic ordering is mostly anti-ferromagnetic, while
at other twist angles ferromagnetism dominates. When
Hartree interactions are neglected, a qualitatively differ-
ent phase diagram with a much smaller critical twist an-
gle window is found. Finally, we compare our findings
with available experimental data and overall find good
agreement.

METHODS

We study commensurate unit cells of tBLG with
D3 symmetry [28, 29]. The atomic positions are re-
laxed using classical force-fields [30–34, 59]. For this,
we use a combination of the AIREBO-Morse [60] and
Kolmogorov–Crespi [61] potentials as implemented in
LAMMPS [62].

To investigate magnetic ordering tendencies of tBLG
including the effect of long-ranged interactions, we calcu-
late the interacting static spin susceptibility in the nor-
mal state using a Hartree theory plus U (Hartree+U)
approach. In this approach, Hubbard interactions within
the carbon pz-orbitals are captured by adding a Hubbard
contribution U

∑
i ni↑ni↓ (with U denoting the Hub-

bard parameter and ni↑(ni↓) denoting the occupancy of
the up(down)-spin pz-orbital on carbon atom i) to the
Hartree theory total energy. This approach assumes that
the spatial range of the exchange interaction is strongly
reduced as a result of electronic screening induced by the
flat bands [63–65]. Moreover, it has been shown that
models with short-ranged Hubbard-type exchange inter-
actions accurately describe the magnetic phase diagram
of graphene and bilayer graphene bilayer [66–68], which
can be viewed as “parent” systems whose ordering ten-
dencies are inherited by the twisted bilayer graphene [43].

The Hartree Hamiltonian is given by

ĤH =
∑
ij

t(τ i − τ j) ĉ†i ĉj +
∑
i

V (τ i) ĉ
†
i ĉi , (1)

where τ i is the position vector of carbon atom i and
the corresponding annihilation (creation) operators are

denoted by ĉ
(†)
i . The hopping parameters t(r) are deter-

mined using the Slater-Koster rules [28, 29, 69]. For this,
we use the parameterization from Refs. 29 and 70

t(r) = tσe
qσ(1−|r|/d) cos2 ϕ+ tπe

qπ(1−|r|/a) sin2 ϕ, (2)

where tσ = 0.48 eV and tπ = −2.7 eV are, respectively,
the sigma and pi hopping between carbon pz orbitals, and
d = 3.3 Å and a = 1.4 Å denote the interlayer separation
and carbon-carbon bond length, respectively. Also, qσ =
d/(0.184a) and qπ = 1/0.184 are decay parameters and
ϕ is the inclination angle of the orbitals.

The second term in Eq. (1) describes long-ranged
Hartree interactions with V (τ i) denoting the Hartree po-
tential at position τ i. The Hartree potential is given by

V (τ i) =
∑
j

(nj − n)Wij , (3)

where nj denotes the occupancy of the pz orbital on atom
j and n is the average occupancy [48]. Also, Wij denotes
the screened Coulomb interaction between electrons at
τ i and τ j [49]. In principle, V (τ i) must be determined
self-consistently, but it has been shown [46, 47, 49] that
the resulting potential is accurately described by

V (τ i) = (ν − ν0)V0
∑

j=1,2,3

cos(bj · τ i), (4)

where ν is the number of added electrons per moiré unit
cell (relative to charge neutrality) and bj denote the three
shortest reciprocal lattice vectors of the moiré unit cell.
We use V0 = 5 meV and ν0 = 0 [49]. These parameters
include internal screening from tBLG [63, 64]. Additional
screening from the substrate or metallic gates [49, 50, 71]
results in a further reduction of V0. Note that Eq. (4)
assumes that the AA regions reside in the corners of the
rhombus-shaped moiré unit cell.

Within the Hartree+U approach, the frequency-
and wavevector-dependent interacting spin susceptibility
χij(q, q0) (with i and j denoting carbon pz-orbitals and
q and q0 being a wavevector and frequency, respectively)
is given by [43, 72]

χ̂(q, q0) = χ̂(0)(q, q0)
[
1+ Uχ̂(0)(q, q0)

]−1
. (5)

Here, χ̂0 denotes the non-interacting spin-response func-
tion

χ
(0)
ij (q, q0) =

1

Nkβ

∑
k,k0

Gij(k, k0)Gji(k + q, k0 + q0),

(6)

where Ĝ(k, k0) = (ik0 − ĤH(k) + µ)−1 is the Matsubara
Green’s function of the Hartree Hamiltonian for states
with crystal momentum k. Also, µ denotes the chem-
ical potential, Nk is the number of momentum points
used to sample the first Brillouin zone (Nk = 24) and
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FIG. 1. Band structures of tBLG at twist angles of 1.41°, 1.20° and 1.05° for integer fillings ν of the flat bands from tight-binding
(denoted TB, see upper panels) and Hartree theory (denoted Hart., see lower panels). Fermi levels are indicated by horizontal
lines. In contrast to Hartree theory, the tight-binding band structure does not depend on ν. Note that the energy scale on the
y-axis is different in each panel. The zero of energy for each plot is taken to be the Dirac point energy from tight-binding.

β = 1/(kBT ) (with kB and T denoting the Boltzmann
constant and temperature, respectively). The Matsub-
ara (k0) summation is carried out numerically using an
appropriately chosen grid with Nω = 500 frequencies [73]
– this reduces the computational effort compared to the
analytical evaluation [43]. For comparison, we also cal-
culate the interacting spin susceptibility without long-
ranged interactions, i.e., setting V (τ i) = 0.

We focus on low-temperature static instabilities that
maintain the translational symmetry of the moiré lat-
tice and therefore use β = 104 eV−1 and q = q0 = 0.
Magnetic instabilities occur when an eigenvalue of χij di-
verges. The critical interaction strength that is required
to induce the ordering is given by Uc = −1/λ0, where

λ0 denotes the largest eigenvalue of χ
(0)
ij . This is a gen-

eralization of the well-known Stoner criterion of ferro-
magnetism [74]. The corresponding eigenvector vi of χij
characterizes the spatial structure of the resulting mag-
netic order.

RESULTS

Figure 1 shows the band structures from Hartree the-
ory at three twist angles near the magic angle (θ = 1.41°,
1.20° and 1.05°) at various doping levels. For compari-
son, we also show the corresponding tight-binding results.
For the two larger twist angles, both the Hartree and
tight-binding band structures exhibit Dirac cones at the
K and K′ points. While the non-interacting tight-binding
band structure does not depend on the doping level, long-
ranged electron-electron interactions captured by Hartree

theory give rise to a significant doping-dependent distor-
tion of the band structure [46–50]. In particular, Hartree
interactions result in a flattening of the doped bands.
For example, at θ = 1.20° and ν = 3 the two higher-
energy bands are much flatter than the corresponding
tight-binding bands.

The magic angle (defined as the twist angle with the
smallest width of the flat band manifold from tight-
binding) is found to be 1.05°. At this twist angle, the
tight-binding band structure differs qualitatively from
the result at larger (and smaller) twist angles. In par-
ticular, the lower-energy bands are inverted and have
a similar shape to the higher-energy bands. Including
long-ranged interactions again results in drastic changes
to the band structure with Hartree theory predicting an
increase of the overall flat band width when the system is
doped. Also, the overall shape of the flat band manifold is
flipped when comparing hole-doped and electron-doped
systems.

The strong band deformations which are observed in
the doped tBLG can be understood from an analysis of
the electron wavefunctions in real space [46, 48]. At the
centre of the Brillouin zone, near Γ, the wavefunctions
are localized in the AB and BA regions of the moiré unit
cell. In contrast, states near M and K/K’ are localized
in the AA regions of the moiré unit cell. When tBLG
is doped, states near K/K’ are first populated by elec-
trons (or holes) resulting in an inhomogeneous charge
density which gives rise to a strong Hartree potential.
The Hartree potential, in turn, interacts strongly with
states which are localized in the AA regions resulting in
an energy shift of states near M and K/K’, while states
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near Γ are less strongly affected. There are small rel-
ative distortions between the M and K point because
they are localised in a similar manner in the AA regions.
For more detailed discussions of the Hartree-theory band
structures, we refer the interested reader to Refs. 46–50.
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FIG. 2. Critical Hubbard interaction strength Uc required
for the onset of magnetic instabilities as a function of flat
band filling ν and twist angle θ. Left panel: without Hartree
interactions (tight-binding). Right panel: with Hartree inter-
actions.
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FIG. 3. Dominant magnetic orderings in twisted bilayer
graphene near the magic angle. Shown is a linecut of the
magnetic order parameter (spin density) along the diagonal
of the rhombus-shaped moiré unit cell. The linecut is chosen
to include the atoms that are closest to the actual line con-
necting one AA region with the next. Thus, at some point,
there will always be a switch from an A sublattice site to yet
another A sublattice site which produces a slip in the ordering.
Top panel: Ångström scale anti-ferromagnetic with a modu-
lation on the moiré scale (MAFM). Middle panel: Ångström
scale anti-ferromagnetic with nodes in the AB and BA regions
(NAFM). Bottom panel: mostly ferromagnetic (FM) order.

Next, we calculate the interacting spin susceptibility
from Hartree+U theory as function of doping at a wide
range of twist angles near the magic angle (0.96°, 0.99°,
1.02°, 1.05°, 1.08°, 1.12°, 1.16° and 1.20°). Figure 2 com-
pares the critical Hubbard parameter Uc without Hartree
interactions (left panel) and with Hartree interactions
(right panel) as function of twist angle and doping. To
assess if the system undergoes a phase transition, Uc must
be compared with the actual value of U for a carbon pz-

orbital. In graphene, Wehling et al. [75] and Schuler et
al. [76] found that U ≈ 4 eV. We expect that screening
from tBLG does not significantly alter this value, as the
flat bands mainly screen long-ranged interactions [63, 64].
Therefore, we assume a doping and twist angle indepen-
dent value of U ≈ 4 eV in the following analysis.

Without Hartree interactions (left panel of Fig. 2),
magnetic instabilities are found at twist angles ranging
from 0.99° to 1.12°. At the magic angle (θ = 1.05°), in-
stabilities occur at all integer doping levels except ν = 2.
At twist angles smaller or larger than the magic angle,
instabilities are observed for a smaller set of doping lev-
els. In particular, for θ = 0.99° and θ = 1.12°, they
only occur at ν = −1. In general, the critical Hubbard
parameters are smaller for hole doped systems because
the lower-energy flat bands are somewhat flatter than
the higher-energy ones in tight-binding. For twist angles
larger than 1.2°, we find Uc ≈ 5.5 eV, which is similar to
the value predicted for untwisted bilayer graphene [43].

When Hartree interactions are included (right panel of
Fig. 2), a qualitatively different behaviour of Uc is ob-
served near the magic angle. In particular, the lowest
values of Uc are now found for electron-doped systems.
Very close to the magic angle, Uc is lowest for ν = 1. At
twist angles somewhat smaller or larger than the magic
angle, the lowest value of Uc is at ν = 2 and at θ = 0.96°
or 1.16° the minimum is at ν = 3. These findings can be
understood from the Hartree theory band structures, as
seen in Fig. 1, which show that the doping level which
gives rise to the flattest bands depends on the twist angle:
at the magic angle the flattest bands are found at ν = ±1,
while at θ = 1.20° the higher-energy bands are extremely
flat at ν = ±3. Figure 2 also shows that magnetic in-
stabilities occur over a larger twist angle range when
long-ranged Hartree interactions are included. Specifi-
cally, the Hartree+U approach predicts such instabilities
for a twist-angle window from θ = 0.96° to θ = 1.16°.
This larger critical twist angle window is consistent with
experimental findings: recent transport and tunnelling
experiments reported correlated phases in a twist angle
range from 1.0° to 1.2° [6, 11].

Next, we analyze the spatial structure of the mag-
netic phases: the leading magnetic instabilities are ei-
ther Ångström scale anti-ferromagnetic with a modula-
tion on the moiré scale (MAFM), Ångström scale anti-
ferromagnetic with nodes in the AB and BA regions
(NAFM) or mostly ferromagnetic (FM), see Fig. 3. Fig-
ure 4 shows the magnetic phase diagram as function of
twist angle and doping near the magic angle. Without
Hartree interactions, the hole doped system is typically
FM. Ferromagnetism is found to coincide with small val-
ues of Uc. In contrast, the undoped and electron doped
system always exhibits MAFM, with NAFM only occur-
ring at ν = 0 and ν = 1 at the magic angle.

Dramatic qualitative changes in the magnetic phase
diagram are observed when Hartree interactions are in-
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FIG. 4. Magnetic phase diagram of twisted bilayer graphene
as function of flat band filling ν and twist angle θ: blue de-
notes ferromagnetic order, while red and orange indicate mod-
ulated anti-ferromagnetic order and nodal anti-ferromagnetic
order, respectively. Left panel: without Hartree interactions
(tight-binding). Right panel: with Hartree interactions. Note
that magnetic phases with Uc > 4 eV are experimentally not
relevant (hatched regions).

cluded, see right panel of Fig. 3. The region of NAFM
order in ν− θ-space is larger, while MAFM is only found
for the undoped system at θ = 1.02° and θ = 1.08°. Ev-
erywhere else the ordering is FM. Again, occurrence of
FM is correlated with low values of Uc, which occur be-
cause of the interplay between the enhancement of the
density of states from the long-ranged Hartree interac-
tions upon doping and the enhancement of the density of
states from changing the twist angle towards the magic
angle.

DISCUSSION

In this section, we compare our calculated magnetic
phase diagram to experimental findings. Many exper-
imental techniques, including transport and tunnelling
measurements, probe quasiparticle properties of tBLG.
While our approach does not directly yield such proper-
ties, our analysis below reveals a strong correlation be-
tween the calculated value of the critical Hubbard pa-
rameter Uc and the measured quasiparticle gap in the
correlated insulator phases, with small values of Uc corre-
sponding to large gaps associated with pronounced resis-
tive peaks in transport experiments. We stress that this
correlation cannot be viewed as conclusive evidence that
the experimentally observed correlated insulator states
have a magnetic origin, because the large density of states
at the Fermi which gives rise to the small values of Uc

also promotes other instabilities (such as valley-ordered
or nematic states).

At charge neutrality, our calculations predict small val-
ues of Uc near the magic angle with NAFM/MAFM or-
der. Experimentally, the situation is not clear, however,
with some experiments reporting semi-metallic behaviour
near the magic angle [1, 2, 4], while others (for very sim-
ilar twist angles) observe a strong insulating state [5].
These conflicting results could arise from different lev-

els of strain in the samples: Liu et al. [53] demonstrated
that a C3 broken symmetry state that is stabilized by
strain retains its semi-metallic character because of the
topological properties of the flat bands of tBLG.

Next, we consider the effect of doping. While at
ν = −1 insulating states are not often observed in ex-
periments, some signatures of insulating states have been
found at ν = +1 [4, 8, 14, 20]. This is consistent with
our Hartree+U results, which yield lower values of Uc

for ν = +1 than for ν = −1. Note that the opposite
result is obtained when long-ranged Hartree interactions
are neglected.

Experiments typically observe the strongest insulating
states at ν = ±2 [1, 2, 4, 5]. Without Hartree interac-
tions, our calculations predict no broken-symmetry states
at ν = +2. In contrast, Hartree+U theory predicts mag-
netic states for both ν = +2 and ν = −2. In recent
experiments [17, 19], a thin dielectric spacer layer that
separates the tBLG from metallic gates was used to en-
hance the screening of the electron-electron interactions
in tBLG [71]. This results in significant changes to the
electronic phase diagram with correlated insulator states
being “screened out” for most twist angles and doping
levels [71]. Interestingly, these experiments often find the
insulating state at ν = +2 to be most robust. Naively,
one might expect that this system should be described
by the magnetic phase diagram obtained without long-
ranged Hartree interactions. However, changes in exter-
nal screening only result in small changes to the Hartree
theory band structure [47, 49] and therefore we expect
that the Hartree+U result should be more relevant to
experiments with thin dielectric spacer layers.

At ν = +3, a strong insulating state is observed in
experiments, especially when the tBLG is aligned with
the hexagonal boron nitride substrate [15, 16]. In con-
trast, the ν = −3 insulating state is almost never ob-
served [1, 4, 5, 20]. For insulating phases to emerge at
these doping levels both valley and spin symmetries must
be broken, i.e., the insulating state must be FM [15, 16].
This is consistent with the Hartree+U results which pre-
dict FM order at ν = +3 at several twist angles near
the magic angle. Ferromagnetic order at ν = −3 is only
found at θ = 0.96°. Without Hartree interactions, our
calculations do not predict FM order at ν = +3 and in-
stead we find relatively strong FM states at ν = −3.

Hartree+U theory also predicts that magnetic order at
ν = +3 should occur over a relatively large twist angle
range, while those at ν = +1 are only found very close to
the magic angle. This finding also appears to be consis-
tent with experiments. For example, Yankowitz et al. [4]
observed an insulating state at ν = +3 for a twist angle
of 1.14°, but no insulating state was found at ν = +1.
Interestingly, there are also clear signatures of this trend
from recent scanning tunneling microscopy experiments
of Choi et al. [77]. At large twist angles, they observe that
the ν = +3 insulating state occurs before the ν = +1 or
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ν = +2. At slightly smaller twist angles, an additional
insulating state at ν = +2 occurs, with even smaller an-
gles very close to the magic angle exhibiting insulating
states for all integer electron doped systems. This ob-
servation is in very good agreement with our Hartree+U
results. Whereas, without Hartree interactions the op-
posite trend is observed: the leading instabilities occur
closer to ν = −1 for the largest angles away from the
magic angle.

In summary, we observe a strong correlation between
the critical values of the Hubbard interactions obtained
from Hartree+U calculations and the experimentally
measured quasiparticle gaps of the correlated insulator
states. In contrast, no such correlation is observed when
long-ranged Hartree interactions are neglected.

As mentioned above, our current linear-response ap-
proach does not yield quasiparticle band structures of the
broken-symmetry phases. In principle, such band struc-
tures can be obtained from self-consistent Hartree+U cal-
culations, but a qualitative picture can be derived from
a symmetry analysis of the spatial structure of the lead-
ing magnetic instabilities. Importantly, neither the ex-
plicit mean-field calculations nor the symmetry analy-
sis fully capture the effect of strong electron correlations
on the quasiparticle band structure. For example, it is
well known that strongly correlated electron systems can
have energy gaps without any symmetry breaking (such
gaps are induced by the frequency-dependence of the elec-
tron self-energy which is not captured by mean-field tech-
niques). With this caveat in mind, we find that both
MAFM and NAFM break the C2 symmetry of tBLG,
and therefore gap the flat band Dirac cone, which means
NAFM and MAFM yield insulating states at charge neu-
trality [43]. Doping the MAFM and NAFM states with
electrons or holes does not induce additional gaps and
therefore the system is found to be metallic in agreement
with explicit Hartree-Fock calculations [55]. The FM
instability does not break C2 (because the slight AFM
character of the instability has a node between the AB
and BA regions), but the spin degeneracy can be lifted
and the bands can split to create an insulating state at
charge neutrality. If the bands are spin split and doped
away from charge neutrality, the system remains metallic
as the C2 symmetry is not broken. Therefore, this anal-
ysis only leads to insulating states at charge neutrality,
while the doped magnetic states are found to be metal-
lic. These results are in agreement with another atomistic
calculation which found that only retaining Hubbard in-
teractions can only yield insulating states at charge neu-
trality [57, 58], and also continuum model Hartree-Fock
calculations that break C2 [55]. To overcome the limi-
tations of the current approach, future research should
investigate longer-ranged exchange interactions [51–56]
and the influence of ordering tendencies with q 6= 0 which
could give rise to alternative symmetry breaking mecha-
nisms such as valley [9] and rotational [24] symmetry.

Finally, our Hartree+U results for the magnetic phase
diagram also have important implications for supercon-
ductivity in tBLG. First, band flattening induced by
Hartree interactions enhances the density of states at the
Fermi level and therefore increases the transition tem-
perature irrespective of the nature of the superconduct-
ing glue. In addition, this mechanism also increases the
range of twist angles where superconductivity can be ob-
served [65, 78]. Note that superconductivity is typically
observed in the vicinity of correlated insulator states at
non-integer doping levels. Naively, one would expect that
in this doping regime damped spin fluctuations from the
magnetic parent state play an important role. How-
ever, Fischer and coworkers [79] recently demonstrated
the possibility of pairing by AFM spin fluctuations in
the vicinity of a FM phase. Future work will investi-
gate the predictions of Hartree+U theory at non-integer
doping levels to realise if long-ranged electron-electron
interactions can also facilitate pairing by AFM spin fluc-
tuations [80].
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[56] J. González and T. Stauber, Phys. Rev. B 102,

081118(R) (2020).
[57] A. O. Sboychakov, A. V. Rozhkov, A. L. Rakhmanov,

and F. Nori, Phys. Rev. B 100, 045111 (2019).
[58] A. O. Sboychakov, A. V. Rozhkov, A. L. Rakhmanov,

and F. Nori, Phys. Rev. B 102, 155142 (2020).
[59] X. Liang, Z. A. H. Goodwin, V. Vitale, F. Corsetti, A. A.

Mostofi, and J. Lischner, Phys. Rev. B 102, 155146
(2020).

[60] T. C. O’Connor, J. Andzelm, and M. O. Robbins, J.
Chem. Phys. 142, 024903 (2015).

[61] A. N. Kolmogorov and V. H. Crespi, Phys. Rev. B 71,
235415 (2005).

[62] S. Plimpton, J. Comp. Phys. 117, 1 (1995).
[63] Z. A. H. Goodwin, F. Corsetti, A. A. Mostofi, and J. Lis-

chner, Phys. Rev. B 100, 235424 (2019).
[64] J. M. Pizarro, M. Rosner, R. Thomale, R. Valent, and

T. O. Wehling, Phys. Rev. B 100, 161102(R) (2019).
[65] T. Cea and F. Guinea, arXiv:2103.01815 (2021).
[66] M. M. Scherer, S. Uebelacker, and C. Honerkamp, Phys.

Rev. B 85, 235408 (2012).
[67] T. C. Lang, Z. Y. Meng, M. M. Scherer, S. Uebelacker,

F. F. Assaad, A. Muramatsu, C. Honerkamp, and
S. Wessel, Phys. Rev. Lett. 109, 126402 (2012).

[68] C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008).
[69] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[70] P. Moon and M. Koshino, Phys. Rev. B 85, 195458

(2012).
[71] Z. A. H. Goodwin, V. Vitale, F. Corsetti, D. Efetov,

A. A. Mostofi, and J. Lischner, Phys. Rev. B 101, 165110

(2020).
[72] J. Lischner, T. Bazhirov, A. H. MacDonald, M. L. Cohen,

and S. G. Louie, Phys. Rev. B 91, 020502(R) (2015).
[73] The frequency grid is chosen to both be linearly spaced

for n � Nω (n denotes the positive Matsubara fre-
quency index ranging from zero to Nω − 1) and increase
its spacing quadratically for higher frequencies. This is
achieved by ωn ∝ tan[zn π/2 (2n + 1)/(2Nω − 1)] with
zn = 1− εz[n/(Nω − 1)]αz controlling the strength of the
divergence. In our case, we set εz = 10−7 and αz = 5.
The proportionality factor is chosen such that for small n,
the original Matsubara frequencies are reproduced. The
corresponding weights are determined by the derivative
of the above formula with respect to n.

[74] H. Q. Lin and J. E. Hirsch, Phys. Rev. B 35, 3359 (1987).
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