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Abstract. Various attempts have been made in recent years to solve the Resolution

Limit (RL) problem in community detection by considering variants of the modularity

metric in the detection algorithms. These metrics purportedly largely mitigate the RL

problem and are preferable to modularity in many realistic scenarios. However, they

are not generally suitable for analyzing weighted networks or for detecting hierarchical

community structure. Resolution limit problems can be complicated, though, and in

particular it can be unclear when it should be considered as problem. In this paper, we

introduce a metric that we call generalized modularity density Qg that eliminates the

RL problem at any desired resolution and is easily extendable to study weighted and

hierarchical networks. We also propose a benchmark test to quantify the resolution

limit problem, examine various modularity-like metrics to show that the new metric

Qg performs best, and show that Qg can identify modular structure in real-world and

artificial networks that is otherwise hidden.
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1. Introduction

Networks are excellent tools for describing complex biological, social, and infrastructural

systems [1–4]. Most real-world examples of complex networks are far from being random

and have a community or modular structure within them [5–7]. Detecting this structure

is crucial in understanding the function and dynamics of a complex network. Although

there is no universally accepted definition of a community structure [8, 9], it is often

characterized by dense connectivity within groups and sparser connectivity between

different groups. Modularity, Q, is a widely used metric to quantify the presence of

this type of structure [5,10–15]. For a partition of the nodes of an unweighted network,

C = {c1, c2, c3, ..}, it is defined as

Q =
1

2m

∑
c∈C

(
2mc −

K2
c

2m

)
(1)

where mc is the number of links in community c, Kc is the sum of degrees of nodes in c,

and m is the total number of links in the network. Q measures the difference between the

fraction of links within communities and the expected fraction if the links were randomly

placed. The partition that maximizes the metric Q identifies the community structure of

the network. Despite its intuitively appealing definition, there is a fundamental problem

with using Q to find community structure. Namely, communities smaller than a certain

size in large network may not be detected. This Resolution Limit (RL) problem [16,17]

reduces the domain of applicability of Q and is often a significant issue when analyzing

empirical networks.

Alternate metrics have been proposed in recent years [18–26] to mitigate the RL

problem. Some of these metrics [22–26], known as modularity density metrics, weights

that are functions of the internal link density of communities are applied to the two

terms in Eq. 1. In this paper we propose a new metric of this form, which we call

generalized modularity density Qg. Qg is an extension of Q, as it reduces to Q in a

limit. The main reasons for introducing this new metric are as follows. First, it has an

adjustable parameter χ that controls the resolution density of the communities that are

detected. Second, Qg can be extended to detect communities in weighted networks in a

way that has a clear interpretation and is independent of the scale of the link weights.

The RL problem can be seen in the simple example of cliques arranged in a ring

connected to one another in series by single links [16]. The expectation in this case

is that the cliques should be detected as separate communities. Unfortunately, with

some metrics, pairs of cliques are merged into the same community. Of course, if all

possible cross-links between two cliques are present, then it is sensible to merge them

into one community as they simply form a clique of larger size. However, when cliques

are connected by an intermediate number of links or when the network is weighted, it

is unclear whether the cliques should be merged or separated [27]. Intuitively, it makes

sense to merge two cliques at sufficiently high density of cross-links. Generally, methods

of community detection that use different metrics have a different critical value for
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this density. The answer may also depend on the specific application being considered.

Thus, it is useful to have some flexibility in allowing the communities to be separated

or merged. Qg achieves this goal by varying a parameter χ. We will show that for a

properly chosen value of χ, the partition that maximizes Qg separates two cliques at any

desired strength of inter-connectivity. This tunability of our metric is extremely useful

for analyzing networks that exhibit hierarchical community structure [5], which is found

in many real-world networks. A common way to investigate these hierarchical structures

is to iteratively perform community detection within detected communities [28]. Using

our approach, one can simply vary χ.

Finally, we compare the performance of our metric against other modularity density

metrics by using them to find the structure in a more complex benchmark network than

a simple ring of cliques. Our analysis indicates that Qg performs better than all other

metrics considered. We then use Qg to find structure in a variety of empirical and

artificial networks to demonstrate its ability to detect hidden community structure.

We find that it eliminates the resolution limit problem that we consider and that it is

applicable to a wider range of problems than other metrics. In addition, the network

partition that maximizes Qg can be efficiently and accurately found using the recently

introduced Reduced Network Extremal Ensemble Learning (RenEEL) scheme [15].

2. Methods

2.1. Generalized Modularity Density

We define the Generalized Modularity Density of a node partition of unweighted network

as

Qg =
1

2m

∑
c

(2mc −
K2
c

2m
)ρχc (2)

where m is the number of total links of the network, mc is the number of links within

a community c, Kc is the sum of degrees of all nodes in community c, ρc is the link

density of community c, the exponent χ is a control parameter. Here we assume that

χ is a non-negative real number. The link density of a community is the ratio of the

number of links that exist in c to the number of possible links that can exist

ρc =
2mc

nc(nc − 1)
, (3)

where nc is the number of nodes in c. Qg is an extension of modularity, i.e. at χ = 0,

Qg = Q.

The metric Qg, like the Modularity metric Q (Eq. 1), can be easily extended to

weighted networks. For Q this is done by simply replacing the number of links with the

sum of link weights in m, mc and Kc [29, 30]. Extending the definition of modularity

density metrics to weighted networks is complicated by the fact that they depend on

link density, and link density can be problematic to use with weighted networks. One

way to deal with these problems is to simply ignore the link weights and calculate
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the link density as if the network was unweighted [22, 23]. Unfortunately, this loses

the information contained in the link weights. The correct way is to use a normalized

definition of link density, where the sum of the weight of all internal links divided by

the maximum value that sum would have if the community were fully connected with

links of weight equal to the maximum weight of any link in the network,

ρc =
2mc

nc(nc − 1)wmax

(4)

where mc is the sum of the weights within community c, nc is the number of nodes

in c, and wmax is the maximum weight of any link in the network. This definition of

ρc is consistent with the definition for unweighted networks, but it can be problematic

because it involves the global variable wmax. The community structure found using some

metrics, such as those proposed in Refs. 22, 25, 26, can be very sensitive to the value

of wmax. This makes their use potentially troublesome, especially in empirical studies

where the value of wmax can be difficult to accurately measure. Additionally, if there is

a wide distribution of link weights and wmax →∞, then ρc → 0 for all communities and

the algorithms for finding the partition that maximizes the modularity density metric

become numerically unstable.

Generalized Modularity Density, unlike other modularity density metrics, does not

have problems with wmax. Both terms in Eq. 2 are weighted by the same function

of wmax, which can factored out and simply modifies the value of Qg for every possible

partition by the same constant factor. It is, thus, irrelevant for determining the partition

that maximizes Qg. So, instead of the absolute link density, Eq. 4, a relative link density,

given by Eq. 3 with mc being the sum of the weight of links in c, can be used in the

metric Qg without affecting results. The community partitions found with Generalized

Modularity Density are also independent of the scale of the link weights. As it is with

Modularity, multiplying all link weights by a common factor does not affect the results

obtained with Qg. This important property is needed for preserving the information in

the link weights.

2.2. Resolution Density

The RL problem can be viewed as a problem with a metric, when using it yields

a partition that merges two “well separated” communities. A resolution-limit-free

metric is expected to resolve these communities. Conversely, a metric should also

avoid splitting two groups of nodes that are “well connected” to each other. The

RL problem is clear at these two extremes. However, more generally, the notion of

well separated/connected communities is not well defined. It is unclear whether two

partially connected communities should be merged or not.

Consider the benchmark network shown in Fig. 1. This network consists of three

parts: two cliques and an external arbitrary component to which the cliques are

weakly connected. As the cliques are fully connected, they have no internal community

structure. Assume clique 1 has n1 nodes, clique 2 has n2 nodes, and both n1 and n2 ≥ 3.
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m1a m2a

m12

n1 n2

ma , na

clique 1
clique 2

arbitrary component

Figure 1: Benchmark network for studying the resolution limit problem. The

network consists of two cliques of sizes n1 and n2 and an arbitrary component with

na nodes and ma links. The two cliques share m1a and m2a links with the arbitrary

component, respectively, and have m12 links between. The links of the network can be

weighted, in which case, ma, m1a, m2a and m12 are the sums of link weights.

Without loss of generality, we assume n2 ≥ n1. Let m12 be the sum of weights of links

between the two cliques, and let m1a and m2a be the sum of the weights of links that

connect each clique with the arbitrary component. na and ma are number of nodes and

the sum of weights of links within the arbitrary component, respectively. Without loss

of generality, assume n1 ≤ n2. Also, assume that m1a � n2
1wmax and m2a � n2

2wmax,

so that the cliques are only weakly connected to the arbitrary component. The RL

question concerning this network is whether or not the two cliques should be merged or

split, and whether or not using a given metric will meet this expectation. This choice of

network gives greater flexibility to explore the RL problem than a simple ring of cliques,

since the external component can have an arbitrary structure and the strength of inter-

connectivity between the two cliques can be varied. Generally, there is a threshold,

or critical, value of m12 below which the cliques are separated and above which they

are merged. We impose an arbitrary expected critical value mexp such that the cliques

should be merged if m12 ≥ mexp and separated if m12 < mexp. Instead of using the

values of m12 and mexp, it is convenient to use normalized inter-clique link density

d =
m12

n1n2wmax

(5)

and normalized expected critical resolution link density

δexp =
mexp

n1n2wmax

. (6)

For unweighted networks wmax = 1.
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Given a metric, we can examine the RL question in the benchmark network. For a

given set of network parameters, the two cliques are either merged or split. Accordingly,

the parameter space can be divided into Merged (M) and Split (S) phases. The value

of the link density at the boundary of the two phases is δ. At the same time, there

is an expected result, corresponding a specific understanding of the problem, given by

δexp. The metric can then be evaluated by comparing the results obtained by using it

with the expected results. Specifically, we define a resolution-limit-free metric as one

for which δ ≥ δexp for all parameters of the benchmark network. Then, the metric is

resolution-limit-free with respect to the expected resolution density.

3. Results

3.1. Benchmark Test

We now analytically study the extent to which the RL exists in benchmark network of

Fig. 1 when Qg is used as the metric. We also compare the results to that obtained

when using other metrics. Whether the use of the metric Qg will split the cliques or not

is determined by the sign of ∆Qg = Qmerge
g − Qsplit

g , where Qmerged
g and Qsplit

g are the

values of Qg if the cliques are merged or split, respectively. Let us define the variables

p =
n1

n2

(7)

and

t =
ma

n1n2wmax

. (8)

p ∈ (0, 1] is the ratio size of the cliques. t ∈ [0,∞) measures the external influence on

them. Then,

∆Qg ∼
(r + 2d

r + 2

)χ(
2d+ r − (r + 2d)2

r + 2d+ 2t

)
−
(
r − r2 − 2 + 2d2 + 2dr

r + 2d+ 2t

)
(9)

where r = p + 1/p. If ∆Qg < 0, splitting is preferred, and if ∆Qg > 0, merging is

preferred. Eq. 9 determines whether the use of the metric Qg, for a given value of χ,

will lead to M or S phase as a function of the variables (p, d, t). The value of d at which

the phase boundary separating the M and S phases occurs is δQg .

In the limit of large external influence parameter t, which is often the situation

encountered in empirical studies where RL problems are considered problematic, the

value of δQg for a given value of χ is

lim
t→∞

δQg =
r

2

[(
1 +

2

r

) χ
χ+1

− 1

]
. (10)

This limit increases from δQg = 0, when χ = 0, to δQg = 1, when χ→∞, for all values

of p. At intermediate values of χ the result is only weakly dependent on p, being just

slightly larger at small p, as can be seen in Fig. 2. The figure shows shows the phase
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Figure 2: Phase diagram of clique splitting with generalized modularity

density at large external influence as χ is varied. The values of clique size

ratio p and link density d where the M phase occurs is shown in orange and where the S

phase occurs is shown in blue. Results are for different values of the control parameter

χ: (a) χ = 0, (b) χ = 1, (c) χ = 3, (d) χ = 10. The external influence parameter is

t = 106

diagram as a function of p and d at various values χ for large t. For χ = 0, when

Qg = Q, the cliques are merged at all values of p and d as shown in Fig. 2(a). For χ > 0

at smaller values of d the cliques separate and are, thus, resolved. As χ increases, δQg
also increases and approaches 1 in the limit of large χ, Figs. 2(b)-(d), meaning that at

large χ the cliques are always resolved.

The effect of varying t at fixed χ on the (p, d) phase diagram are shown in Fig. 3.

As shown in Fig. 3(a), at t = 0 when there is no influence by the external component

on the two cliques, the S phase occupies the entire space and δQg = 1 for all p. In this

case, the cliques are always separated unless they are fully connected to each other. For

t > 0, when there is some influence from an external component, the cliques are merged

and, thus, not resolved for large values of d. As t increases, shown in Figs. 3(b)-(d), the

M phase occupies an increasing area and δQg decreases until reaching the limiting value

given by Eq. 10.
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Figure 3: Phase diagram of clique splitting with generalized modularity

density at fixed χ as the external influence is varied. The values of clique

size ratio p and link density d where the M phase occurs is shown in orange and where

the S phase occurs is shown in blue. Results are for χ = 1 and different choices of the

external influence parameter t: (a) t = 0, (b) t = 1, (c) t = 10, (d) t = 106.

These results show that, as the control exponent χ is varied, a wide range of δQg
results. The range increases with t and varies from 0 to 1, the complete possible range,

in the limit of large t. This freedom gives leeway in applications to choose χ so that δQg
matches the expected critical resolution link density δexp.

In general, as χ increases the number of communities found also increases, but gives

stable results for a range of χ. (See the example discussed in Sec. 3.2.2.) Increasing χ

thus tends to result in smaller communities being detected. The appropriate, or best,

choice of χ depends on the problem. If there is some “ground truth” knowledge about

the community structure in the network, or in similar networks, that knowledge can be

used to select a χ that results in communities that match the ground truth. If there is

no ground truth knowledge, then a default choice of χ = 1 may be appropriate. That

choice results in a critical resolution density of δQg = 1/2 in the limit of large t and r

(Eq. 10). Thus, an advantage of Qg is that even for the extreme values of t and r, the

metric has a positive lower bound of δQg that can be controlled by χ.
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Figure 4: Number of communities found using Qg with different χ. Communities

in each level (from the largest to the smallest) in the hierarchy are revealed as χ is varied.

In contrast to Q [10], Qds [22], Qx [25] and QAFG [19] (see Supplemental

Information S1), Qg has a finite non-zero lower limit of δ, which implies that for d

smaller than this value, the two cliques of the benchmark network are guaranteed to

be split for all possible values of (r, t). Thus, Qg can successfully avoid resolution limit

problem in these extreme cases (See last paragraph in Section 2.2). While the metric Qw

(see Supplemental Information S1) also shows this lower limit (Table 1), the advantage

of Qg is that the lower limit of δQg can be adjusted by tuning the parameter χ for any

desired resolution density. Table 1 summarizes the kind of resolution problems with

Q, Qds, Qx, Qw and QAFG that would be encountered when tested on the benchmark

network (See Supplemental Information Section S3 for details).

In principle, a reasonable δexp is always in [0, 1] but a given metric can still have

a δ that is out of this range. Since δexp is strictly positive (no matter how small),

if it is possible to construct a network for which δ → 0 then that metric presents a

resolution limit problem. Even worse, if δ < 0, it would result in merging of disconnected

communities. On the other hand δ → 1 does not pose a resolution problem as long

as δ ≤ 1 and δ ≥ δexp is satisfied. However, higher δexp imposes a stricter criterion

for merging. But if δ > 1, it will have the unwanted consequence of cliques being

subdivided. Thus, a metric is problematic if it can not avoid δ → 0, δ < 0 or δ > 1.

3.2. Applications

3.2.1. American college football network We use the Qg metric to detect communities

in the network of American college football games between Division IA colleges during
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Metric Resolution limit problem

Q δ → 0 when t→∞
Qds δ < 0 when p is small

Qx δ < 0 when p and ρ are small

Qw δmin = 0.236 when t→∞ and p = 1

QAFG δ < 0 when s < 0 and p is small

δ > 1 when s > 0 and p is small

Table 1: Resolution limit problems of different metrics. Q,Qds, Qx, Qw and

QAFG have different resolution limits problems. ρ, which appears in Qx, is the global

link density. s is used in the metric QAFG as a weight to every node (equivalent to

adding a self-loop to every node) and thereby modifying the strength of a community.

QAFG reduces to modularity at s = 0, and by controlling s substructures (s > 0) or

superstructures (s < 0) can be explored.
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Figure 5: Communities found in American college football network. Blue blobs

show the communities detected by modularity and gray blobs show the communities

found by generalized modularity density.
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regular season of Fall 2000 [10, 31]. A link between two colleges is present if they

played a game against each other. Colleges play games within the same conference

more frequently, thus, a community detection algorithm should be able to recover these

conferences from the network data. First, we show the result of using modularity (Q)

that are indicated by light blue blobs in Fig 5. It matches the conference memberships

(distinguished by node color) well except Independents, which are absorbed by three

communities and that it groups Big West and Mountain West in the same community.

Using Qg(χ = 3) in this network we find communities that are shown by gray blobs.

There are some key differences between the Q and Qg partitions. First, the Qg partition

does not merge the Independents with other conferences. Instead, it divides them

into three disjoint communities. Second, it successfully identifies the Big West and

Mountain West as two different groups. But more interestingly, unlike modularity, it

divides each of the Mid-American, Southeastern, and Big Twelve conferences into two

communities. This apparent deviation from ground truth actually turns out to be a

major advantage of using Qg. Each of these three conferences have subdivisions within

them that are in perfect agreement (considering their membership as of year 2000)

with the partition found by Qg. Mid-American conference has East Division and West

Division, Southeastern also has Eastern Division and Western Division, whereas Big-

Twelve conference has Northern Division and Southern Division. These subdivisions

are indicated by different node shapes (circles and squares) in Fig. 5.

3.2.2. Artificial network with hierarchical community structure To demonstrate the

ability of Qg for detecting the community structure at different resolution densities,

we construct a hierarchical network. Similar constructions have been used as a model

for hierarchical network structure [19]. We consider a structure shown in Fig. 6 that

includes four levels of hierarchy, although it can be extended to include any number of

levels. The elementary level (level 1) is a clique formed by fully connecting five nodes

with links weighted α1. To construct a level 2 network, we use the clique network from

level 1 as a generalized node to form a clique of size 5 with links weighted α2. Link

between two generalized nodes is achieved by connecting all the internal nodes from

one generalized node to those in another generalized node. Similarly, level k network is

constructed by using level k − 1 network as a generalized node to form a clique of size

5 with links weighted αk. Here we keep α1 > α2 > ... > αk so that the hierarchy of

structure is preserved.

We use the metric Qg on a level 4 network with αk = 5−k and show that it successfully

detects the planted hierarchical communities at every level. The level 4 network consists

of 125 level 1 cliques, and 625 nodes in total. The results obtained by maximizing Qg is

shown in Fig. 4. We observe that the 5 level 3 cliques are detected when χ < 2.8, the 25

level 2 cliques are detected when 2.9 < χ < 6.4, the 125 level 1 cliques are detected when

χ > 6.5. There are 3 stages, corresponding to 3 levels of construction. There should

not be a single “best” choice of χ by the nature of the problem. The choice of χ or

desired resolution density should be based on specific requirement and the background
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level 1

level 2

level 3

level 4

Figure 6: Example hierarchical network. Level 1: A clique of five nodes. Level 2:

A clique of five level 1 cliques. Level 3: A clique of five level 2 cliques. Level 4: A clique

of five level 3 cliques.

information of the particular problem.

4. Conclusion

Community detection in networks is commonly performed by finding the partition of the

network nodes that maximizes an objective function. Such a partition can sometimes

yield unexpected community structure. Resolution limit, for example, is an unwanted

but inevitable consequence of modularity maximization. Other such metrics, namely

modularity density measures, which attempt to fix this problem also differ in the

community structure that they obtain and can also violate our general expectation.

While at what number of cross links between two strongly connected groups of nodes

should be called a single community remains mostly subjective and vague, our metric

Qg provides a quantifiable notion and solves the resolution limit problem. In particular,

with a free parameter χ, one can control this threshold of merging two cliques. It is

quite appealing to have a metric that can be adjusted to meet the specific requirement



Resolution limit revisited. 13

set by the user because the idea of a community may vary from one application to

another and may be specific to the network under consideration. At the same time,

due to its ability to detect communities at many resolution densities it also useful in

uncovering the hierarchical community structure, an inherent characteristic observed in

many complex networks. The existing benchmarks, e.g. the ring of cliques, are too

restrictive to evaluate and compare the performance of different metrics with respect to

solving the specific resolution limit problem. In this paper we consider a more general

yet simple network structure, which can be used to quantitatively examine the limits

of metrics such as modularity. Using this general framework we demonstrated that

our metric Qg eliminates resolution limit problem at a desired resolution density, shows

better performance, and is straightforward to extend for studying weighted and directed

networks. Among other important problems, finding communities at high resolution is

particularly useful in analyzing gene regulatory networks where the goal of functional

annotation of genes is to find very specific gene functions [32].
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Supplemental Information

S1. Other metrics

Besides the metric Qg, we test the performance of the following metrics. Each variable

has the same meaning as Eq. 2 (in the main text) unless otherwise noted.

Modularity [10]:

Q =
1

2m

∑
c

(
2mc −

K2
c

2m

)
(S1)

Weighted Modularity [26]:

Qw =
1

2m

∑
c

(
2mc −

K2
c

2m

)
(ρc + 1) (S2)

Excess Modularity Density [25]:

Qx =
1

2m

∑
c

[
2mc(ρc − ρ)− K2

c (ρc − ρ)2

2m

]
(S3)

Here ρ = 2m/[n(n− 1)] is the global link density.

Modularity Density introduced in Ref. [22] has a term that corresponds to Split Penalty.

But as discussed in Ref. [25], this term may be problematic. Therefore, here we analyze

a modified version of modularity density without the Split Penalty term:

Qds =
1

2m

∑
c

(
2mcρc −

K2
c ρ

2
c

2m

)
(S4)

AFG method of modularity QAFG in Ref. [19] can have different resolution densities by

assigning self-loop weighted s to each node and tuning the value of s. It still finds the

partition by maximizing modularity after assigning the self-loops.

QAFG =
1

2m+ 2Ns

∑
c

[
(2mc + 2ncs)−

(Kc + 2ncs)
2

2m+ 2Ns

]
(S5)

where N is total number of nodes, nc is the number of nodes of community c.

S2. Derivation of equation of phase for modularity

We assess the performance of modularity Q using the benchmark test described in the

main text. In the form shown in Eq. S1, modularity is the sum of the quantity within
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parenthesis over each community. Thus, two partitions of splitting or merging the two

cliques yield the following values of modularity Q

Qsplit = Q1 +Q2 +Qex (S6)

Qmerge = Q(1+2) +Qex (S7)

where Q1, Q2 are the two terms corresponding to clique 1 and 2 as separate communities,

Q(1+2) is the corresponding term when the two cliques are merged. Qex is the sum over

the remaining communities in the external component, which do not change in the two

partitions. The difference between the two modularity values is given by

∆Q = Qmerge −Qsplit = Q(1+2) −Q1 −Q2. (S8)

Using Eq. S1, we have:

∆Q =
1

2m

[
(2m(1+2) −

K2
(1+2)

2m
)− (2m1 −

K2
1

2m
+ 2m2 −

K2
2

2m
)

]
(S9)

According to the construction of the example network, we can rewrite Eq. S9 with

(n1, n2,m12,ma, na,m1a,m2a). To simplify the expression and capture the principle

features, we take n1, n2 >> 1. Recall the construction of separation of the two cliques

from the external component, we also have n2
1 >> m1a, n

2
2 >> m2a. Plugging all in ∆Q,

we obtain:

∆Q =
1

2m

(
2m12 −

2(n2
1n

2
2 + (n2

1 + n2
2)m12 +m2

12)

n2
1 + n2

2 + 2ma + 2m12

)
(S10)

Eq. S10 can be rewritten more concisely by omitting the normalization factors and

using variables (d, r, t) defined in Section 3.1

∆Q ∼ 2d− 2(1 + rd+ d2)

r + 2d+ 2t
(S11)

The space is reduced to three principal dimensions (d, r, t), where 0 ≤ d ≤ 1, r ≥ 2

and t ≥ 0. Eq. S11 is the equation of phase that is used to plot the phase diagram of

Fig. S1. We obtain δQ, which determines the phase boundary as the value of d for which

∆Q = 0,

δQ =
√
t2 + 1− t (S12)

S3. Benchmark test

By carrying out similar mathematical analyses as in the last section, we can obtain an

equation of phase for each metric and we can identify possible RL problems of each

metric. Some advantages of using this benchmark test includes that it covers a wider

range of cases, it can be used by working on the formula without any guess or speculation

of specific network, and it provides a clear view of metric performance including all RL

problems previously reported. The difference between values of a metric between merge
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and split cases, for other metrics can be written as follows.

For weighted modularity Qw

∆Qw =
2r + 2d+ 2

r + 2
(2d+ r − (r + 2d)2

r + 2d+ 2t
)− 2(r − r2 − 2 + 2d2 + 2dr

r + 2d+ 2t
). (S13)

For excess modularity density Qx

∆Qx = (2d+ r)(
2d+ r

r + 2
− ρ)− (r + 2d)2

r + 2d+ 2t
(
r + 2d

r + 2
− ρ)2

−
(
r(1− ρ)− r2 − 2 + 2d2 + 2dr

r + 2d+ 2t
(1− ρ)2

)
.

(S14)

For modified (without the split penalty term) modularity density Qds

∆Qds =
(2d+ r)2

r + 2
− (2d+ r)4

(r + 2d+ 2t)(r + 2)2
− (r − r2 − 2 + 2d2 + 2dr

r + 2d+ 2t
) (S15)

For Qx (Eq. S3), in addition to (d, r, t), the phase space consists of an extra principal

variable ρ, which is the global link density and its maximum value ρmax is obtained

when na is smallest as other variables (n1, n2,m12,ma) are fixed.

The phase diagrams of Q, Qds, Qw, Qx(ρ = ρmax), QAFG(na =
√

2ma) and

Qg(χ = 1) are shown respectively in Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig S5 and

Fig. 3 (in the main text). As shown in the figures, the behavior varies a lot across

different metrics and the particular choice of other variables. In the following, we will

observe some general characteristics of all phase diagrams. Then, we will examine each

one in more detail and demonstrate that Qg performs better than other metric.

First, there are two phases (M (red) and S (blue) phase) in the phase diagram and

as expected and M phase is above S phase implying that nearly all metrics tend to

merge the two cliques when d is close to 1 and to split when d is close to 0. This meets

the common expectation in extreme cases. But different metrics disagree when d is in

intermediate range. Other variables such as (t, ρ) also dictate the performance in this

range. Fig. S1 shows the RL problem of modularity with a much clear view. We know

that δ =
√
t2 + 1− t, as t→∞, we have δ → 0. This trend is also shown in the Fig. S1.

Therefore, given any value d > 0, we can construct a network with large enough t so

that d > δ, which means the two cliques, as long as they are connected, they will be

merged into one community if the external component has enough links. This is the RL

problem of modularity. However, if d = 0, there is no RL because for any t ≥ 0, δ > 0

is always true and modularity maximization would not merge two disconnected cliques.

More generally it can be shown that if two subgroups of the network are disconnected,

they are guaranteed to be split.

As shown in Fig. S2, Qds depends strongly on p. A different type of RL problem can

be seen in the figures. If p is small enough, δ = 0 can always be true whatever d is. It

means that if the sizes of two cliques are different enough, they will be merged even if
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Figure S1: Phase diagram of clique splitting with modularity Q as the external

influence is varied. The values of clique size ratio p and link density d where the M

phase occurs is shown in orange and where the S phase occurs is shown in blue. Results

are for different choices of the external influence parameter t: (a) t=0 (b) t=1 (c) t=5

(d) t=15.

d = 0 [25]. It clearly violates our expectation. This problem gets alleviated as t→∞.

But it always exists for arbitrary t.

For phase diagram of Qw shown in Fig. S3, the phase boundary moves down as t→∞.

But it has a lower bound which means, when d is small enough, the two cliques of exam-

ple network will always be split whatever other variables are. Thus, it has no extreme

cases of RL as Q and Qds. Note that M phase is reduced to a straight line d = 1 here

in Fig. S3(a) which means the extreme case of expectation is satisfied

As for Qx, because there is one more variable ρ, the analysis is more complicated. As

we can see from Equ. S3 and Equ. S4, Qx(ρ → 0) → Qds which means Qx will behave

the same as Qds when global link density ρ = 0. Because of the arbitrary external

component, it can be easily achieved. Also we should be aware of the fact that most

real-world networks are sparse thus ρ→ 0 is a common case where Qx will fail to solve

RL as Qds. In Fig. S4, we show the phase diagram when ρ equals to its maximum. The

phase boundary, starting from d = 1, goes down first and then rises up again. So, when
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Figure S2: Phase diagram of clique splitting with modularity density Qds as

the external influence is varied. The values of clique size ratio p and link density

d where the M phase occurs is shown in orange and where the S phase occurs is shown

in blue. Results are for different choices of the external influence parameter t: (a) t=0

(b) t=1 (c) t=5 (d) t=15.

t→∞, the two cliques will always be split as long as d < 1. But this requires both ρ, t

are very large which is uncommon for most real-world networks.

We use the AFG method [19] on the benchmark network, which attempts to solve

the RL problem by assigning a self loop of weight s to each node. This method allows

one to explores communities at different resolution densities by controlling s. Using

Qg, this is achieved by controlling χ so the two methods are similar in spirit. However,

irrespective of the choice of s, the metric QAFG will behave like modularity Q and fail

to resolve clusters if na in the benchmark network is sufficiently large. To avoid that, we

show the phase diagram (Fig. S5) for na =
√

2ma, which is the smallest possible na for a

fixed ma (in the large ma limit) and perhaps the best case scenario for QAFG. Moreover,

if a specific resolution density is desired then s must be selected according to the network

size, unlike Qg, which has the lower bound that is independent of the network size. Even

if s is chosen according to the network size, the phase diagram in Fig. S5 (a), (c), (d)
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Figure S3: Phase diagram of clique splitting with weighted modularity Qw as

the external influence is varied. The values of clique size ratio p and link density

d where the M phase occurs is shown in orange and where the S phase occurs is shown

in blue. Results are for different choices of the external influence parameter t: (a) t=0

(b) t=1 (c) t=5 (d) t=15.

shows that the metric QAFG will fail when the two cliques are somewhat different in

size (small p). When p is small and s 6= 0, it either merges two disconnected cliques

(Fig. S5 (a)), or splits a larger clique formed by clique 1 and clique 2 (Fig. S5 (c) and

(d)). When s = 0 (Fig. S5 (b)), the metric QAFG is the same as modularity Q and

it will have the same problems as outlined before. The phase diagram also shows that

for a non-zero value of s, the resolution density varies a lot as a function of p. This

implies that merging or splitting the two cliques is heavily influenced by their relative

sizes. Thus, in a network with a wide range of community sizes, this method will be

biased either towards merging well separated communities or splitting well connected

communities, an observation also made in [27].
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Figure S4: Phase diagram of clique splitting with excess modularity density

Qx as the external influence is varied. The values of clique size ratio p and link

density d where the M phase occurs is shown in orange and where the S phase occurs is

shown in blue. Results are for ρ = ρmax and different choices of the external influence

parameter t: (a) t=0 (b) t=1 (c) t=5 (d) t=15.
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Figure S5: Phase diagram of clique splitting with QAFG at fixed external

influence t as the parameter s is varied. The values of clique size ratio p and

link density d where the M phase occurs is shown in orange and where the S phase

occurs is shown in blue. Results are for na =
√

2ma, t = 10 and different choices of s:

(a) s = − m
2N

(b) s = 0 (c) s = m
2N

(d) s = m
N
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