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We study the energy and spin transport of the classical spin liquid hosted by the pyrochlore
Heisenberg antiferromagnet in the large S limit. Molecular dynamics calculation suggests that both
the energy and spin diffusion constants approach finite limits as the temperature tends to zero. We
explain our results in terms of an effective disorder model, where the energy/spin-carrying normal
modes propagate in a quasi-static disordered spin background. The finite zero temperature limits
of the diffusion constants are then naturally understood as a result of the finite mean free path of
the normal modes due to the effective disorder.

I. INTRODUCTION

Understanding the transport properties of materials is
a major theme of condensed matter physics. Historically,
the Drude model of electrical conduction heralded the be-
ginning of condensed matter physics at the turn of the
last century [1, 2]. The Drude model foreshadowed the
modern kinetic theory [3], a powerful formalism for an-
alyzing transport phenomena in materials [4, 5]. What
pillars the kinetic theory is the notion of elementary exci-
tations — The elementary excitations are the carriers of
the conserved quantities such as energy, charge, or spin,
and their scattering processes determine the transport
properties of these conserved quantities in materials.

While a highly successful theoretical framework, the
kinetic theory is silent about the transport phenomena
in systems without coherent elementary excitations [6–
17]. In the context of frustrated magnetism, a prominent
example is the classical spin liquid hosted by the spin-
S pyrochlore Heisenberg antiferromagnet in the limit
S → ∞ [18–23]. The classical spin liquid phase appears
in the temperature regime kBT/(JS

2) / 1, where J is
the exchange constant 1. It is characterized by a diverg-
ing spin correlation length ξ ∝

√
JS2/(kBT ) [20–22] in

the low temperature limit and a “Planckian” spin cor-
relation time τ ∝ ~S/(kBT ) [18, 19, 23]. Crucially, the
classical spin liquid does not support magnons or para-
magnons. Its dynamic spin structure factor possesses
no sharp features that would be indicative of coherent
elementary excitations [23]. As a result, the transport
phenomena in this system falls outside of the purview of
the ordinary kinetic theory.

In this work, we explore the transport phenomena in
the pyrochlore Heisenberg antiferromagnet. For concep-
tual simplicity, we omit at the outset the phonon con-
tributions. This system conserves both energy and mag-
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1 To make the classical limit S → ∞ meaningful, we must scale the

energy E with JS2 and time t with ~/JS. Mathematically, we
are taking the limit S → ∞ whilst keeping E/(JS2) and JSt/~
fixed.

netization. We thus focus on the thermal conductivity
κ and the spin conductivity σ. Our molecular dynamics
calculation suggests that the energy and spin current cor-
relation functions decay rapidly on the time scale of order
~/(JS). Furthermore, both κ and σ approach finite lim-
its as the temperature tends to zero, i.e. kBT/(JS

2)→ 0.
Since the heat capacity and the magnetic susceptibility
also approach finite limits, the Einstein relation imme-
diately implies that the energy diffusion constant DE

and the spin diffusion constant DM are both finite as
kBT/(JS

2)→ 0. This is in sharp contrast with the more
familiar magnon transport in a clean, ordered classical
magnet, where κ and DE diverge in this limit owing to
the divergent mean free path [24, 25]. The fast decay
of current correlation functions and the finite zero tem-
perature diffusion constants are hallmarks of incoherent
transport in this classical spin liquid. We note that the
saturation of spin diffusion constant in the low temper-
ature limit was previously observed in a related, two-
dimensional classical spin liquid [26, 27].

We also investigate the magnetic field dependence of
the thermal and spin conductivity. At low tempera-
ture, the system remains a classical spin liquid up to
the saturation field, beyond which point the system is
fully polarized. In the classical spin liquid phase, both
the thermal and spin conductivity approach finite limits
as kBT/(JS

2) → 0. At fixed temperature, we find the
thermal conductivity grows as the field approaches the
saturation field, whereas the spin conductivity decreases.

We interpret our results by using an effective disorder
model. The classical pyrochlore Heisenberg antiferromag-
net possesses a high-dimensional degenerate ground state
manifold, where each point of the manifold represents a
classical ground state. The system’s motion may be de-
composed into slow (with the time scale on the order of
~S/(kBT )) drifting modes in the tangent space of the
ground state manifold, and the fast (with the time scale
on the order of ~/(JS)) normal modes away from the
manifold [18, 19]. We identify the normal modes as the
carrier of the energy and spin, which immediately im-
plies the transport of energy and spin are relatively fast
processes comparing to the change in the ground state
spin configurations. We therefore may approximately
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FIG. 1. Relationship between the diamond lattice and the
pyrochlore lattice. Spins (yellow arrows) reside on the mid-
point of neighboring diamond links, which form the pyrochlore
lattice. The up (blue) and down (pink) tetrahedra of the py-
rochlore lattice correspond to the A (mauve spheres) and B
(green spheres) sites of the diamond lattice. Dark solid arrows
show the four real-space vectors that point from a diamond
A site to the four neighboring B sites: ~r0 = a(1, 1, 1)/4, ~r1 =
a(1,−1,−1)/4, ~r2 = a(−1, 1,−1)/4, ~r3 = a(−1,−1, 1)/4,
where a is the size of the cubic crystallographic unit cell.

describe the energy and spin transport in terms of an
effective disorder model, where the normal modes prop-
agate in a static, disordered spin background. We stress
that the effective disorder model is valid on time scales
shorter than ~S/(kBT ) and that the system’s Hamilto-
nian is manifestly invariant under lattice translations.

Using the effective disorder model, we are able to com-
pute semi-analytically the thermal and spin conductivity
and find excellent agreement with the molecular dynam-
ics calculation. In particular, the mean free path of the
normal modes is finite thanks to the effective disorder,
which naturally explains the finite energy/spin diffusion
constants in the low temperature limit. The effective
disorder model reveals yet another aspect of the multi-
faceted link between geometric frustration and disorder
physics.

The rest of this work is organized as follows. In Sec-
tion II, we describe the model and the molecular dynam-
ics method. In Sec. III, we present the results from molec-
ular dynamics calculations. In Section IV, we discuss the
effective disorder model. In Section V, we discuss a few
outstanding questions.

II. MODEL AND METHOD

It is convenient for our purpose to view the pyrochlore
lattice as the median of the diamond lattice (Fig. 1). The
up and down tetrahedra of the pyrochlore lattice then
naturally map to the A and B sublattices of the diamond

lattice. The classical Hamiltonian reads [18, 19],

H =
J

2

∑
i

(
∑
j∈Ni

Sij)
2 −B ·

∑
〈ij〉

Sij . (1)

Here, i, j label the diamond sites. The spin Sij of length
S resides on the midpoint of the diamond link ij. The
first term in Eq. (1) describes the the Heisenberg ex-
change interaction between the neighboring spins. J > 0
is the exchange constant. The summation inside the
bracket is over the four neighboring sites j of a given
diamond site i. We add to the Hamiltonian Eq. (1) an
external magnetic field B = Bẑ as a handle to tune the
spin fluctuations in the system, where ẑ is the unit vector
in the spin-z direction. The Bohr magneton and Landé
g-factors are subsumed in B.

As the model Eq. (1) possesses independent spin and
spatial rotation symmetries, it is necessary to distinguish
a vector in the spin space and a vector in the real space
to avoid any potential confusion. Throughout this work,
we write spin space vectors in boldface (e.g. Eq. (1)), and
accent real space vectors with an arrow (e.g. the caption
of Fig. 1). When written in components, we label the
spin space directions in Greek alphabet, and real space
directions in Latin alphabet.

The thermodynamic phase diagram of Eq. (1) is well
understood [18–22]. When 0 ≤ B/(JS) < 8, the spins
remain disordered in the limit of kBT/(JS

2) → 0 and
show algebraic long-range correlations characteristic of
the classical spin liquid. At finite temperature, the alge-
braic spin correlation is cut off by a finite spin correlation
length ξ ∝

√
JS2/(kBT ). At kBT/(JS

2) ∼ 1, the sys-
tem crosses over from the low temperature classical spin
liquid phase to the high temperature trivial paramag-
netic phase. By contrast, when B/(JS) ≥ 8, the spins
are fully polarized by the external field.

We endow the spins with Landau-Lifshitz precessional
dynamics. Following Refs. 18 and 19, we define:

Li ≡
∑
j∈Ni

Sij −
B

2J
. (2)

The first term on the right hand side of Eq. (2) is the to-
tal magnetization of the diamond site i (or, equivalently,
the corresponding pyrochlore tetrahedron). The second
term is the average magnetization per diamond site in
thermal equilibrium. Therefore, Li is the magnetization
fluctuation on the diamond site i. Using Li, the classical
Hamiltonian can be recast in the following form:

H =
J

2

∑
i

L2
i , (3)

The ground state manifold is characterized by the con-
dition Li = 0, ∀i. Thus, the set of Li constitute the
normal modes that bring the system out of the ground
state manifold. At low temperature, the equipartition
theorem implies 〈L2

i 〉 ≈ 3kBT/J .
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Using Li, we may succinctly write the equation of mo-
tion for spin Sij as [18, 19]:

Ṡij =
J

~
(Li + Lj)× Sij . (4a)

Eq. (4a) is completed by a “dual” equation of motion for
Li [18, 19]:

L̇i =
1

~
(Li ×

B

2
+ J

∑
j∈Ni

Lj × Sij). (4b)

Recall |Li| ∼
√
kBT/J in the low temperature limit.

Eq. (4a) suggests that the precession of the spin Sij has a
slow component as T → 0. By contrast, Eq. (4b) shows
the precession frequency of Li is of order 1. We shall
return to this point in Sec. IV.

We compute the thermal and spin conductivity by us-
ing the Kubo formula. To this end, we derive the expres-
sion for the energy flux and the spin flux on diamond link
ij. We begin with the energy flux. Eq. (3) suggests the
energy associated with the diamond site i is given by:

Ei =
J

2
L2
i . (5)

Taking its time derivative, and using the equation of mo-
tion for Li (Eq. (4b)), we obtain:

Ėi =
J2

~
∑
j∈Ni

Li · (Lj × Sij). (6)

Comparing the above with the energy continuity equa-
tion Ėi +

∑
j∈Ni

IE,i→j = 0, where IE,i→j denotes the
energy flux from the diamond site i to j, we obtain:

IE,i→j = −J
2

~
Sij · (Li × Lj). (7)

The above expression fulfills the symmetry requirements
for the energy flux, namely it is odd under time reversal
and spatial inversion i↔ j.

The spin flux may be found in the same vein. Since
Eq. (1) conserves the z component of the total magneti-
zation, only the Sz flux is meaningful. The z-component
of the magnetization of the diamond site i is given by:

Mi =
1

2
ẑ ·
∑
j∈Ni

Sij =
1

2
ẑ · Li +

B

4J
, (8)

where ẑ is the spin-space unit vector in the Sz direction.
The extra factor of 1/2 is due to the fact that each spin
is shared by two pyrochlore tetrahedra or diamond sites.
Taking its time derivative yields:

Ṁi =
J

2~
∑
j∈Ni

(Lj × Sij) · ẑ, (9)

Comparing the above with the spin continuity equation
Ṁi +

∑
j∈Ni

IM,i→j = 0, where IM,i→j denotes the spin
flux from the diamond site i to j, we find:

IM,i→j = − J

2~
(ẑ× Sij) · (Li − Lj). (10)

We may check that the above is even under time rever-
sal and odd under spatial inversion, consistent with the
symmetry requirements for the spin flux.

We are now ready to write down the Kubo formula for
the thermal conductivity tensor κab and the spin conduc-
tivity tensor σab [28]:

κab = lim
t→∞

lim
V→∞

1

kBT 2V

∫ t

0

〈JaE(s)JbE(0)〉ds; (11a)

σab = lim
t→∞

lim
V→∞

1

kBTV

∫ t

0

〈JaM (s)JbM (0)〉ds. (11b)

Here, V is the volume of the system. 〈· · · 〉 denotes ther-
mal average. Note the extra power of T in the Kubo
formula for the thermal conductivity. JaE and JaM are re-
spectively the zero-wave-vector component of the spatial
Fourier transform of the energy and spin current density:

JaE =
∑
i∈A

∑
j∈Ni

rai→jIE,i→j ; (12a)

JaM =
∑
i∈A

∑
j∈Ni

rai→jIM,i→j , (12b)

where the first summation is over the A sublattice of the
diamond lattice. rai→j are the real-space vectors pointing
from an A site to neighboring B sites (Fig. 1). As the
Hamiltonian Eq. (1) possesses the cubic lattice symme-
try, the thermal conductivity and the spin conductivity
tensors are all diagonal: κab = κδab, and σab = σδab.

We compute κ and σ by using the spin molecular dy-
namics method [23]. We draw random initial spin con-
figurations from the Boltzmann distribution by using the
Markov chain Monte Carlo. We then evolve each initial
spin configuration according to the equations of motion
Eq. (4a) and Eq. (4b). This produces an ensemble of
evolution trajectories. We estimate the thermal average
in Eq. (11) by averaging over this ensemble.

We use in our calculation a system of L×L×L prim-
itive unit cells with periodic boundary conditions. We
monitor the convergence of the integration in Eq. (11)
by plotting the integral as a function of the termination
time t, which we interpret as the effective thermal con-
ductivity κ(t) and the effective spin conductivity σ(t) on
that time scale. We deem the integration has converged
within the margin of error when the difference between
κ(t) and κ(2t) (σ(t) and σ(2t)) is smaller than the sam-
pling noise.

It is convenient to embed the time integration that
appears in the Kubo formula into the numerical integra-
tion of the equation of motion. This is done by exchang-
ing the order of the time integration and the thermal
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FIG. 2. (a) Energy current correlation function as a function
of time t in zero magnetic field, computed from molecular dy-
namics for various system sizes L (labeled “MD”) and from
the effective disordered model for system size L = 8 (labeled
“Disorder”). The temperature kBT/(JS

2) = 10−3. (b) Sim-
ilar to (a) but in magnetic field B/(JS) = 6. Inset shows
the short time behavior of the correlation function. (c) Ther-
mal conductivity κ as a function of the termination time t in
zero magnetic field. κ0 ≡ kBJS/(~a) is the natural unit for
thermal conductivity, where a is the size of the cubic crystal-
lographic unit cell. (d) Similar to (c) but for magnetic field
B/(JS) = 6.

average in Eq. (11). To this end, we define an observ-

able QaE,M (t) =
∫ t
0
JaE,M (s)ds, which obeys the equa-

tion of motion Q̇aE,M = JaE,M with the initial condition

QaE,M (0) = 0. We solve this equation on the fly along

with the spin equation of motion. We can find κ(t) and
σ(t) straightforwardly by computing the correlation func-
tions between QaE,M (t) and JaE,M (0).

In our Markov chain Monte Carlo, we obtain more than
7×104 samples from 144 independent runs. Each Monte
Carlo step (MCS) consists of 1 lattice sweep of heat bath
update and 10 lattice sweeps of over-relaxation update.
We discard at least 500 MCS between two conseutive
samples to reduce the sample correlation. We integrate
the equations of motion by using the 4th order Runge-
Kutta method. We set the step width to 0.02~/(JS) with
the relative energy drift < 3×10−6 upon the termination
of integration.

III. RESULTS

In this section, we present results obtained from the
molecular dynamics calculation.
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FIG. 3. (a) Spin current correlation function as a function of
time t in zero magnetic field, computed from molecular dy-
namics (labeled “MD”) and from the effective disorder model
(labeled “Disorder”). The temperature kBT/(JS

2) = 10−3.
(b) Similar to (a) but in magnetic field B/(JS) = 6. (c) Spin
conductivity σ as a function of termination time t in zero
magnetic field. σ(0) ≡ ~S/a is the natural unit for spin con-
ductivity. (d) Similar to (c) but in magnetic field B/(JS) = 6.

Fig. 2a shows the energy current correlation function
〈JaE(t)JaE(0)〉 as a function of time t at temperature
kBT/(JS

2) = 10−3 and in zero magnetic field. The cor-
relation function decays to 0 on the time scale of order
~/(JS), indicating the energy transport is a fast process
comparing to the change in the spin configurations. This
fast time scale is consistent with the fact that the Li
modes are the carrier of energy (Eq. (5)). In addition,
the correlation function shows weak dependence on the
system size L. Accordingly, the thermal conductivity κ
(Fig. 2c) quickly converges as t increases and shows lit-
tle system size dependence, which allows us to use the
L = 16 result to estimate the value of κ in the thermo-
dynamic limit.

Fig. 2b and Fig. 2d show respectively the energy cur-
rent correlation function and the thermal conductivity
at temperature kBT/(JS

2) = 10−3 and magnetic field
B/(JS) = 6. The correlation function decays more
slowly comparing to the zero field case, but the decay
is nonetheless fast in comparison to the spin correla-
tion time scale at this temperature, namely ~S/(kBT ) =
103~/(JS). Likewise, it takes longer time for the thermal
conductivity κ to converge. We note κ increases slightly
at late time, i.e. showing a small slope for large t. Nev-
ertheless, for L = 16, we find the difference between the
value of κ at termination time JSt/~ = 200 and 100 is
statistically insignificant. We thus deem the integral has
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FIG. 4. Top panel: thermal conductivity κ (a) and spin con-
ductivity σ (b) as functions of temperature for various values
of magnetic field. The inset of panel (a) shows the thermal
conductivity data for B/(JS) = 8. Error bars are smaller
than the size of the symbol. Bottom panels: energy diffusion
constant DE (c) and spin diffusion constant DM (d) inferred

from the Einstein relation. D(0) ≡ JSa2/~ is the natural unit
of diffusion constant.

converged at JSt/~ = 200 within the statistical error.
We then turn to the spin transport. Fig. 3a shows the

spin current correlation function 〈JaM (t)JaM (0)〉 at tem-
perature kBT/(JS

2) = 10−3 and in zero magnetic field.
Similar to the energy current correlation function at the
same temperature and field (Fig. 2a), the spin current
correlation function decays rapidly on the time scale of
order ~/(JS) and shows little dependence on the system
size L. We also note it is more oscillatory than its en-
ergy current counterpart. Mirroring the behavior of the
spin current correlation function, the spin conductivity
σ (Fig. 3c) converges quickly and shows weak finite size
effects. This indicates that the spin transport is also a
fast process, which is consistent with the fact that the Li
modes are the carriers of spin as well (Eq. (8)). Similar
to the thermal conductivity data, the small increase in
σ at late time t is a finite size effect in that the slope is
suppressed with larger system size.

At higher field B/(JS) = 6, the spin current correla-
tion function (Fig. 3b) and the spin conductivity (Fig. 3d)
show similar behaviors as the zero field case. However,
finite size effects are more pronounced. At system size
L = 16, we find the difference between the value of σ at
termination time JSt/~ = 30 and 15 is smaller than the
statistical error, and we accept its value at JSt/~ = 30
as the estimate for the spin conductivity in the thermo-
dynamic limit.

Having established the methodology for estimating
the transport coefficients, we are ready to present their
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FIG. 5. Top panels: thermal conductivity κ (a) and spin
conductivity σ (b) as functions of magnetic field B/(JS) for
the fixed temperature kBT/(JS

2) = 10−3. Error bars are
smaller than the size of the symbol. Bottom panels: energy
diffusion constant DE (c) and spin diffusion constant DM

(d) as functions of magnetic field, inferred from the Einstein
relation.

systematic dependence on temperature and magnetic
field. Fig. 4a shows the thermal conductivity κ as a
function of temperature T for various value of mag-
netic field. Throughout the classical spin liquid phase
(B/(JS) = 0, 2, 4, 6), κ exhibits clear signature of satu-
ration as T decreases by three orders of magnitude from
kBT/(JS

2) = 1 to 10−3. We deduce the energy diffu-
sion constant from the Einstein relation: DE = κ/CV ,
where CV is the heat capacity per unit volume. Recall the
CV = 12kB/a

3 in the limit of kBT/(JS
2)→ 0 [18, 19]. It

follows that the energy diffusion constant DE saturates
in the low temperature limit (Fig. 4c).

The saturation of DE in the low temperature limit
found in the classical spin liquid is markedly different
from clean, ordered classical magnets. In the latter, the
magnons are the energy carrier, and the kinetic theory
suggests DE ∼ vl where v is the characteristic spin wave
velocity and l is the mean free path. As l → ∞ as T
decreases due to the suppression of scattering events,
DE → ∞ as kBT/(JS

2) → 0. Therefore, the fact that
DE approaches a finite value as kBT/(JS

2)→ 0 is a hall-
mark of incoherent transport of the classical spin liquid.

We may contrast the saturation of both κ and DE in
the classical spin liquid phase with the data in the satu-
ration field B/(JS) = 8 (Fig. 4a&c, inset). As the spins
are now polarized by the external field, the transport is
due to magnons. As a result, both κ and DE show rapid
increase as the temperature decreases.

We observe similar temperature dependence from
the spin conductivity σ in the classical spin liquid
phase (Fig. 4b), namely σ saturates to finite value as
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kBT/(JS
2)→ 0. Similarly, we deduce the spin diffusion

constant DM by using the Einstein relation DM = σ/χ,
where χ is the magnetic susceptibility per unit volume in
the field direction (Fig. 4d). In particular, χ = 2/(Ja3)
in the limit of kBT/(JS

2) → 0, implying DM ap-
proaches a finite limit. By contrast, at the saturation
field B/(JS) = 8, we find σ and DM grows as the tem-
perature decreases, suggesting they diverge in the low
temperature limit.

We thus have demonstrated that the classical spin liq-
uid’s thermal and spin conductivity, and likewise its en-
ergy and spin diffusion constants, approach finite lim-
its as the temperature tends to zero. We now focus on
this low temperature limit and study the magnetic field
dependence. To this end, we fix T to the lowest simu-
lated temperature kBT/(JS

2) = 10−3. Fig. 5a&c show
respectively the thermal conductivity κ and the energy
conductivity DE as a function of field B. We find both
show weak dependence on B for B/(JS) / 4 and then
a rapid increase as B approaches the saturation field
B/(JS) = 8. Note κ and DE for B/(JS) > 6 at this
temperature are not determined due to high computa-
tional cost. We can also infer this rapid growth of κ
and DE with increasing field from Fig. 4a& c, where κ
and DE at B/(JS) = 6 are much larger than that of
B/(JS) = 0, 2, 4.

Interestingly, the spin conductivity σ and the spin dif-
fusion constant DM show the opposite trend as both de-
crease as B approaches the saturation field (Fig. 5b&d).
This decrease in the magnitude of σ and DM is also ob-
served in the data shown in Fig. 4b&d.

IV. EFFECTIVE DISORDER MODEL

In this section, we provide a semi-analytic understand-
ing of the molecular dynamics results by approximately
mapping the energy/spin transport problem in the clas-
sical spin liquid phase of Eq. (1) to a model of wave
propagation in a disordered medium. We dub the latter
model the effective disorder model to stress that the dis-
order is not generated by quenched disorder in the spin
Hamiltonian Eq. (1) but the slow stochastic spin fluctua-
tions idiosyncratic to the classical spin liquid phase. We
find that the effective disorder model reproduces quanti-
tatively the low temperature transport properties uncov-
ered previously by the molecular dynamics calculation.

The starting point of the mapping is the observation
that the equations of motion Eq. (4b) and Eq. (4a) dis-
play a separation of time scales [18, 19]. The Hamiltonian
Eq. (1) carves out a high-dimensional degenerate ground
state manifold from the full many-body phase space. At
low temperature, the system’s motion is in the proxim-
ity of the said ground state manifold. The Li modes
bring the system out of the ground state manifold, and
constitute the fast degrees of freedom. By contrast, the
drifting motion tangential to the manifold is slow. Pe-
vious molecular dynamics calculation has confirmed that

the spin correlation time diverges as ~S/(kBT ) as the
temperature T → 0 [18, 19, 23].

As both the magnetization and the energy are carried
by the Li modes, the spin and energy transport are fast
processes comparing to the change in the ground state
configuration. We therefore may approximate the energy
flux and the spin flux as:

IE,i→j ≈ −
J2

~
S
(0)
ij · (Li × Lj); (13a)

IM,i→j ≈ −
J

2~
(ẑ× S

(0)
ij ) · (Li − Lj). (13b)

The equation of motion of Li is approximated as:

L̇i ≈
1

~
(Li ×

B

2
+ J

∑
j∈Ni

Lj × S
(0)
ij ). (14)

Here, we have replaced Sij by its projection into the

ground state manifold S
(0)
ij . The error is on the order of√

kBT/(JS2). We further take S
(0)
ij to be static, an ap-

proximations valid on time scales shorter than ~S/(kBT ).
We may view the above set of equations as a model

of wave propagation in a disordered medium. Li is anal-

ogous to the wave field, whereas S
(0)
ij , drawn from the

degenerate ground states, play the role of the disordered
medium. However, the analogy should not be taken too
literally; the term “wave propagation” sometimes implies
the presence of a Goldstone mode (e.g. spin wave) or hy-
drodynamic mode (e.g. sound wave in liquid). Here, the
Li modes are neither.

We stress that the mapping to the effective disorder
model crucially relies on the separation of time scales be-
tween the normal modes and the ground state drifting
modes, a condition fulfilled only in the classical spin liq-
uid phase in the limit kBT/(JS

2) → 0. This mapping
is no longer valid when kBT/(JS

2) is not small or when
the field is at or above the saturation field.

We now compute the thermal and spin conductivity.
We recast the equation of motion for Li in matrix form:

L̇iα(t) = −
∑
jβ

Hiα,jβLjβ(t). (15)

Here, the dynamical matrix H is a 3N × 3N real skew-
symmetric matrix, where N is the number of diamond
lattice sites. i, j run over the diamond lattice sites,
whereas α, β run over the three spin components. Impor-
tantly, the matrix elements of H depend on the ground

state configuration S
(0)
ij . The explicit form of H is given

in Appendix A. The equation of motion for Li admits
the formal solution:

Liα(t) =
∑
jβ

Giα,jβ(t)Ljβ(0), (16)

where the “Green’s function” G(t) = exp(−tH) is a
3N × 3N orthogonal matrix. G(t) depends on the spin
configuration through H.
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We express JaE as a quadratic form,

JaE =
1

2

∑
iα,jβ

Xa
iα,jβLiαLjβ , (17a)

where Xa is a 3N × 3N real-symmetric matrix. Note a
runs over spatial components, whereas α, β run over spin
components. By the same token, we write JaM as a linear
function,

JaM =
∑
iα

Ya
iαLiα, (17b)

where Ya is a 3N dimensional real vector. Similar to the
dynamical matrix H, the matrix elements of Xa and Ya

depend on the ground state spin configuration. They are
given explicitly in Appendix A.

The next step is to find the current correlation func-
tions. When performing the thermal average, we average
over the thermal fluctuations in the Li modes, and then
the ground state configurations. We find:

〈JaE(t)JbE(0)〉 =
(kBT )2

2J2
Tr(GT (t)XaG(0)Xb). (18a)

〈JaM (t)JbM (0)〉 =
kBT

J
(Ya)TG(t)Yb. (18b)

In deriving the above, we have used the fact that the
thermal fluctuations of Li(0) are Gaussian and employed
the Wick theorem. The overline denotes the average with
respect to the ground state spin configurations.

Substituting the current correlation functions into the
Kubo formula (Eq. (11)), we obtain the following formal
expression of the thermal and spin conductivity:

κab = lim
t,V→∞

kB
2J2V

∫ t

0

Tr(GT (s)XaG(0)Xb)ds. (19a)

σab = lim
t,V→∞

1

JV

∫ t

0

(Ya)TG(s)Ybds. (19b)

Note the temperature factors that appear in the current
correlation functions cancel with those in the Kubo for-
mula. As X,Y,G(t) are all independent of temperature,
an immediate consequence of Eq. (19) is that the thermal
and spin conductivity of the effective disorder model is
temperature independent.

The final step is to evaluate Eq. (19) numerically. We
use the same lattice geometry and boundary conditions
as the molecular dynamics calculation. We generate in-
dependent realizations of the ground state spin configu-

ration S
(0)
ij by using the minimization method of Walker

and Walstedt [29, 30]. The resulted energy density is less
than 10−10JS2 per spin. With each realization, we con-
struct numerically the matrices X,Y,G(t) and find the
corresponding contribution to κ and σ by using Eq. (19).
We average over 40 independent ground state configura-
tions. As we obtain the Green’s function G by an exact
diagonalization procedure, the system size is limited to
L = 8.

The calculated energy current correlation function in
zero magnetic field and in B/(JS) = 6 are shown in
dark blue in Fig. 2a and Fig. 2b, respectively. We find
almost perfect agreement between the effective disor-
der model and the molecular dynamics calculation at
kBT/(JS

2) = 10−3 on the same system size (L = 8,
cyan). Likewise, the thermal conductivity κ computed
from the effective disorder model and from the molecu-
lar dynamics calculations also agree very well except for
a small difference at late time for B/(JS) = 6. Em-
pirically, we find this difference tends to decrease as the
system size L increases; the difference between the effec-
tive disorder model and the molecular dynamics is in fact
larger for L = 4 (data not shown).

We find similar good agreement between the effective
disorder model and the molecular dynamics for the spin
current correlation function (Fig. 3a&b) and the spin
conductivity (Fig. 3c&d) at system size L = 8. Remark-
ably, the effective disorder model seems to capture all the
oscillatory details of the molecular dynamics data.

We thus conclude that the effective disorder model cap-
tures the essential features of the transport phenomena in
the classical spin liquid phase. Within the effective disor-
der model, the finite zero temperature thermal and spin
conductivity, and likewise the finite energy and spin diffu-
sion constants, are easily understood — the quasi-static,
disordered spin background results in the finite mean free
path of the Li modes, and therefore these transport co-
efficients do not diverge.

The effective disorder model can also explain the field
dependence of the thermal and spin conductivity. On
one hand, as the field increases toward the saturation
field, the spins are more polarized along ẑ, which effec-
tively reduces the disorder. As a result, the mean free
path, and hence the thermal conductivity, increases with
the field. On the other hand, for the spin conductiv-
ity, although polarizing the spins reduces the disorder, it
also suppresses the overall magnitude of the spin current
fluctuations. Mathematically, this can be seen from the
expression of the spin flux (Eq. 10): IM,i→j ∝ |z × Sij |.
As the spins are more aligned with ẑ, the magnitude of
IM,i→j decreases. This explains the opposite field depen-
dence of the spin conductivity.

V. DISCUSSION

In this work, we find that both the thermal and spin
conductivity approach finite limits as kBT/(JS

2)→ 0 in
the classical spin liquid phase of the pyrochlore Heisen-
berg antiferromagnet. We may compare this behavior
with other classical magnetic systems. In clean, ordered
classical magnets, the thermal conductivity diverges in
the zero temperature limit due to the divergent magnon
mean free path [24, 25]. In low dimensional systems
where the Mermin-Wagner theorem forbids magnetic or-
dering, the thermal diffusion constant also diverges as
the temperature tends to zero [24, 31–33]. This occurs
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because the system is proximate to an ordered state, and
consequently the transport is due to paramagnons, whose
mean free path diverges in the zero temperature limit.
We also note a report on the spin diffusion constant of
the classical kagome Heisenberg antiferromagnet [34]. As
temperature decreases, it first shows saturation-like be-
havior in the intermediate classical spin liquid regime and
then grows rapidly in the spin nematic regime.

We find the energy and spin current correlation func-
tions decay rapidly on the time scale of order ~/(JS),
which is much faster than the spin correlation time
~S/(kBT ). Viewing from the hydrodynamic perspective,
this suggests the energy and spin currents do not mix
with any long-lived quantities in this system [16, 35]. The
fact that the energy and spin diffusion processes are not
the slowest dynamical processes of this system also sets
it apart from the ordered magnets.

So far our discussion is limited to the classical limit
S → ∞. At finite but large S, we expect that the
thermal and the spin conductivity shows near satura-
tion in the parametrically large temperature window
JS � kBT � JS2, and, upon further reducing the tem-
perature, start deviating from the classical behavior as
the quantum fluctuations set in. It has been suggested
that the quantum order by disorder effect selects ground
states with complex magnetic orders [36, 37]. We spec-
ulate that the transport would then be due to magnons
in the temperature regime kBT / JS.

The effective disorder model reveals an interesting con-
nection between the frustrated magnets and the disorder
physics. Viewing from the latter angle, one may ask if
the normal modes are extended or localized. Our prelim-
inary analysis of the inverse partition ratio of the eigen-
modes of the dynamical matrix H suggest that almost all
modes are extensive except the modes at the band edge
for all magnetic field B/JS < 8 [38], consistent with the
finite thermal and spin conductivity. It may be inter-
esting to further explore this aspect in future. We note
that a recent work has explored the connection between
the incoherent transport and the effective disorder in an
extended Hubbard model [39].

Appendix A: Mathematical details of the effective
disorder model

In this appendix, we give the explicit form of the var-
ious matrices defined in Sec. IV.

The dynamical matrix H is a 3N × 3N real skew-
symmetric matrix, where N is the number of diamond
lattice sites. i, j run over the diamond lattice sites,
whereas α, β run over the three spin components. It is

given by:

Hiα,jβ =
1

~


(B×)αβ/2 (i = j)

J(S
(0),×
ij )αβ (i, j ∈ n.n.)

0 (otherwise)

. (A1)

Here, we have used a short hand notation for 3×3 matrix:

A× ≡

 0 −Az Ay
Az 0 −Ax
−Ay Ax 0

 , (A2)

where {Ax, Ay, Az} form the three components of the
spin space vector A.

The dynamical matrix H is real, skew-symmetric, and
even-dimensional. It can be brought to the canonical
form by an orthogonal transformation:

H = O

∑
i,⊕

[
0 λi
−λi 0

]OT , (A3)

where λi > 0. O is a real orthogonal matrix. The Green’s
function is then given by:

G(t) = O

∑
i,⊕

[
cos(λit) − sin(λit)
sin(λit) cos(λit)

]OT . (A4)

The matrix Xa is a 3N × 3N matrix:

Xa
iα,jβ =

J2

~

{
rai→j(S

(0),×
ij )αβ (i, j ∈ n.n.)
0 (otherwise)

. (A5)

Ya is a 3N dimensional vector:

Y aiα =
J

2~


∑
j∈Ni

rai→jS
(0)
ij,y (α = x)

−
∑
j∈Ni

rai→jS
(0)
ij,x (α = y)

0 (α = z)

. (A6)

Note a runs over the spatial components, whereas α, β
run over spin components. rai→j is the real space vector
that points from diamond site i to site j.
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