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The pseudofermion functional renormalization group (PFFRG) method has proven to be a powerful numerical
approach to treat frustrated quantum spin systems. In its usual implementation, however, the complex fermionic
representation of spin operators introduces unphysical Hilbert space sectors which render an application at fi-
nite temperatures inaccurate. In this work we formulate a general functional renormalization group approach
based on Majorana fermions to overcome these difficulties. We, particularly, implement spin operators via an
SO(3) symmetric Majorana representation which does not introduce any unphysical states and, hence, remains
applicable to quantum spin models at finite temperatures. We apply this scheme, dubbed pseudo Majorana func-
tional renormalization group (PMFRG) method, to frustrated Heisenberg models on small spin clusters as well
as square and triangular lattices. Computing the finite temperature behavior of spin correlations and thermody-
namic quantities such as free energy and heat capacity, we find good agreement with exact diagonalization and
the high-temperature series expansion down to moderate temperatures. We observe a significantly enhanced
accuracy of the PMFRG compared to the PFFRG at finite temperatures. More generally, we conclude that the
development of functional renormalization group approaches with Majorana fermions considerably extends the
scope of applicability of such methods.

I. INTRODUCTION

Finding numerical solutions of quantum many-body prob-
lems is one of the core disciplines in modern condensed mat-
ter theory. In a wide range of physical settings the prob-
lem amounts to analyze ground-state and finite-temperature
phases of a system of interacting spins on a lattice. Even
though the corresponding microscopic models are often con-
ceptually simple, such as two-body Heisenberg spin Hamilto-
nians, they may harbor a colorful range of physical phenom-
ena including exotic types of long-range orders [1], quantum
phase transitions [2, 3] or quantum spin liquids [4–6]. While
quantum spin phases are traditionally described in terms of
broken or unbroken symmetries, a more modern understand-
ing also includes concepts such as long-range entanglement
or topological order [7] and reaches out to applications in the
context of quantum information processing [8].

Despite the shifts of focus which the field has gone through
in the recent decades, the accurate numerical treatment of in-
teracting quantum spin systems remains a highly challenging
and longstanding problem. In fact, none of the currently avail-
able numerical methods is able to ultimately determine the
eigenstates of a generic spin model. For example, quantum
Monte Carlo methods [9, 10] which enjoy the invaluable ad-
vantage that numerical errors are, in principle, only of sta-
tistical nature, suffer from the infamous sign problem when
applied to frustrated spin systems. Similarly, density matrix
renormalization group, matrix product, and tensor network
approaches [11–15] have made tremendous progress in recent
years and are the undisputed method of choice for a variety
of spin systems (particularly in one dimension). On the other
hand, the scaling of the entanglement entropy poses a serious
challenge for such techniques in higher dimensions.

An alternative approach is based on functional renormal-
ization group (FRG) concepts [16–18] which are, in princi-

ple, oblivious to the system’s dimensionality. In its standard
fermionic formulation this technique has first been applied in
the context of electronic Hubbard-like models [19–21] where
it has become an established tool to describe competing types
of long-range orders. In addition, a more recently developed
variant of the FRG [22] specifically targets quantum spin sys-
tems. The key conceptual step of this latter technique is to
express the spin operators in terms of auxiliary fermions [23],
justifying the name pseudofermion functional renormalization
group (PFFRG). Within the last decade the PFFRG has been
successfully applied to a wide range of spin systems [22, 24–
63] and has constantly been extended and generalized. To-
day, the PFFRG is, hence, remarkably flexible with a scope
of applicability comprising two dimensional [22, 24–35, 37,
38, 40, 41, 44–46, 48, 49, 51, 54, 55, 57, 59–61, 63] and three
dimensional [36, 39, 42, 43, 47, 50, 52, 53, 55, 56, 58, 62]
quantum spin systems on arbitrary lattices, including complex
frustrated and longer-range coupled networks [48, 49] with
general isotropic or anisotropic [54] two-body spin interac-
tions. Further recent developments concern the generalization
to arbitrary spin magnitudes S [41] or higher spin symmetry
groups SU(N) [44, 45, 60] and, on a more technical level, the
implementation of multi-loop schemes [46, 62, 63].

Despite its success in accurately determining ground state
spin correlations, the PFFRG comes along with a well-known
obstacle. The aforementioned pseudofermionic description
introduces an enlargement of the Hilbert space associated with
states that do not correspond to states of the physical spin
system. These unphysical states typically appear at energies
above the ground state energy of the spin system. Thus, on
the level of zero-temperature investigations, this problem has
been argued to be rather mild and can be treated by shifting
unphysical states to higher energies [41]. In a recent inves-
tigation of this problem, on the other hand, the average spin
magnitude within the PFFRG was found to differ from the
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theoretically expected result even for higher loop orders [63].
More importantly, the enlarged Hilbert space has so far pro-
hibited an application to finite temperatures.

This work aims at resolving issues due to unphysical spin
states by modifying the PFFRG on a very fundamental level.
Instead of using a complex fermionic spin representation, we
employ a certain, so-called SO(3) Majorana fermion rewrit-
ing of spin operators [64, 65] which does not generate unphys-
ical states but only introduces redundant Hilbert space sectors.
This property distinguishes it from other Majorana represen-
tations [75] and as such makes it attractive as a first candidate
for a Majorana-based spin FRG. We, accordingly, dub our
approach pseudo Majorana functional renormalization group
(PMFRG) method. This modification opens up various di-
rections of investigation: (i) Most importantly, the PMFRG
becomes applicable to finite temperatures which only requires
small methodological adjustments presented below. (ii) As
a side product, we discuss how to calculate thermodynamic
quantities such as the free energy, energy and heat capacity
which have so far not been studied within the PFFRG. (iii)
To the best of our knowledge, a Majorana-implementation of
the FRG has so far not been published. Our developments be-
low are formulated in a general way such that they are appli-
cable to arbitrary Majorana models also outside the realm of
quantum magnetism. (iv) Certain spin models, most promi-
nently the Kitaev honeycomb model [66], are exactly solvable
when expressed in terms of Majorana fermions. Although Ki-
taev’s spin representation differs from the one employed here,
the exact solution is also obtainable within the SO(3) Majo-
rana representation [75] used here. Even though not the focus
of this work, one may thus expect that the PMFRG performs
better for Kitaev-type spin models and perturbations thereof
as compared to the PFFRG.

Apart from the methodological focus of this work, we also
present various applications of the PMFRG to simple quan-
tum spin models allowing us to assess its accuracy. As a first
benchmark test we treat small clusters of up to six interact-
ing spins where our results can be straightforwardly compared
with exact diagonalization. An overall finding is that the ther-
modynamic behavior of the spin correlations from PMFRG
are surprisingly accurate and reproduce the exact result sig-
nificantly better than PFFRG. It should be emphasized that
despite the finite Hilbert space of our spin clusters, their treat-
ment within PMFRG is still highly non-trivial and poses the
same challenges as for infinite lattice systems. Indeed, due to
the incorporation of various mean-field limits, one can expect
that the FRG unfolds its full strength only in infinite spin sys-
tems of two and higher dimensions. This motivates us to move
on to frustrated Heisenberg models on 2D square and triangu-
lar lattices where we, likewise, find good agreement of ther-
modynamic properties with other approaches. A persistent
technical issue, however, occurs in the low temperature limit
where PMFRG detects spurious divergencies of spin correla-
tions. We interpret this behavior as an artifact of the redundant
Hilbert space sectors in our Majorana representation. While
such subtleties remain to be further studied we expect that our
developments lay the groundwork for various future directions
of research and significantly enlarge the scope of applicability

of FRG approaches.
The remainder of this work is organized as follows: After

briefly reviewing the key concepts of the PFFRG in Sec. II,
we discuss in detail the properties of the SO(3) Majorana
representation in Sec. III. Thereafter, Sec. IV formulates a
general functional renormalization group approach for Ma-
jorana systems. The specific implementation for Heisenberg
spin models in SO(3) Majorana representation is discussed
in Section V with a particular focus on the parametrization of
vertex functions, taking into account the system’s symmetries.
The resulting RG flow equations are presented in Sec. VI and
the computation of various physical observables is detailed in
Sec. VII. The following Secs. VIII and IX discuss applications
to small interacting spin clusters as well as to square and tri-
angular lattice models. The paper ends with a conclusion in
Sec. X.

II. BASIC CONCEPTS OF THE PFFRG

As a preparation for the following sections, we first briefly
review basic concepts and properties of the PFFRG approach
without being exhaustive on all methodological details. For
a more detailed and self-contained description, we refer the
interested reader to Refs. [22, 41, 44, 54].

The PFFRG is capable of treating general two-body spin
Hamiltonians; in this work, however, only Heisenberg models
of the form

H =
∑
(i,j)

Jij
∑
α

Sαi S
α
j (1)

will be considered, where (i, j) refers to all possible pair-
ings of sites and Sαi is the α component of a spin-1/2 op-
erator at site i. We note in passing that recently developed
FRG approaches [67, 68] directly take Eq. (1) as a starting
point. In contrast, the PFFRG treats the interacting fermionic
model that results from representing the spin-1/2 operators via
(pseudo-) fermions fia (with a =↑, ↓) [23]:

Sαi =
1

2

∑
a,b

f†iaσ
α
abfib . (2)

Here and in the following, we set ~ = kB = 1. However, this
representation is a valid rewriting of the spin operators only
in the local subspace with

∑
a f
†
iafia = 1 while states with

zero or double fermionic occupancy are unphysical. Since
these spurious states carry zero spin, they may be consid-
ered as voids in the spin system, associated with an excita-
tion energy on the order of the exchange coupling. As a con-
sequence, ground state properties are believed to be largely
unaffected by unphysical states, such that at T = 0 the PF-
FRG may be faithfully implemented with the simpler condi-
tion

∑
a〈f
†
iafia〉 = 1. Other approaches aiming to enforce

the occupancy constraint more rigorously introduce an energy
penalty for unphysical states [41] or a particular form of an
imaginary chemical potential [69]. In either case, the unphys-
ical states remain an obstacle for an application of the PFFRG,
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especially at finite temperatures. This motivates us to imple-
ment the FRG with the Majorana representation discussed in
Sec. III where no unphysical states occur.

The key benefit of the representation in Eq. (2) is that the
resulting model becomes amenable to fermionic many-body
techniques such as the FRG which is formulated in terms of
irreducible fermionic vertex functions (“essential parts of cor-
relation functions”). The centerpiece of the method is given
by a hierarchy of flow equations reminiscent of one-loop di-
agrammatic perturbation theory which describe the change of
vertex functions when a Matsubara-frequency cutoff param-
eter Λ, introduced in the bare Green function G0,Λ(iω) =
G0(iω)Θ(|ω|−Λ), is varied. The basic idea is that at the start-
ing point Λ =∞, the bare propagator vanishes and all vertex
functions are trivially known. For a numerical solution of the
flow equations down to Λ = 0 (the cutoff-free physical case),
a truncation of the formally exact hierarchy of flow equations,
usually at the level of the four-point vertex, is necessary.

The four-point vertex is directly related to the (momentum
resolved) static spin susceptibility which represents the cen-
tral outcome of the PFFRG approach. The onset of magnetic
ordering is signaled by a divergence of the susceptibility along
the RG flow (which in a finite system typically reduces to a fi-
nite peak or a kink). Accordingly, non-magnetic (and possibly
quantum spin liquid) phases are characterized by an RG flow
that remains smooth down to the lowest accessible Λ scales.

Due to the lack of a small parameter in the purely interact-
ing pseudo-fermion Hamiltonian, the truncation of the flow
equations is an - a priori - uncontrolled procedure. It can be
shown, however, that within the usual truncation on the level
of the four-point vertex, both quantum fluctuations and classi-
cal ordering tendencies are correctly described in leading or-
ders of 1/N and 1/S, respectively [41, 44]. HereN and S de-
scribe the artificial enlargement of the spin’s symmetry group
[SU(2) → SU(N)] and the spin length [1/2 → S], respec-
tively. In two very recent works, certain contributions of the
six-point vertex have been taken into account using a multi-
loop extension [62, 63] equivalent to a solution of the parquet
self-consistency equations [70–72]. The quantitative robust-
ness of the results with respect to increasing loop orders was
interpreted as further evidence for the accuracy of the PFFRG.

III. SO(3) MAJORANA REPRESENTATION

In this section we discuss the SO(3) Majorana representa-
tion [64, 65] for spin-1/2 in detail. For each spin Sαi at site
i, three different flavors α ∈ {x, y, z} of Majorana fermions
ηα†i = ηαi are introduced. They fulfill the anticommutation
relations {ηαi , ηβj } = δijδ

αβ which imply (ηαi )2 = 1/2. The
formal Hilbert space dimension per Majorana is

√
2 as ap-

propriate for half a (complex) fermion. The spin operators
Sαi = − i

2

∑
βγ ε

αβγηβi η
γ
i , more explicitly written as

Sxi = −iηyi ηzi , Syi = −iηzi ηxi , Szi = −iηxi ηyi , (3)

can be easily checked to fulfill the spin-1/2 algebra

Sαi S
β
i =

1

4
δαβ +

i

2

∑
αβγ

εαβγSγi . (4)

As an example, a Heisenberg coupling term from Hamiltonian
(1) is represented as∑

α

Sαi S
α
j = −(ηyi η

z
i η
y
j η
z
j + ηxi η

z
i η
x
j η

z
j + ηxi η

y
i η
x
j η

y
j ). (5)

As usual for auxiliary particle representations, the SO(3)
Majorana representation comes with a gauge freedom. The lo-
cal Z2 gauge transformation ηαi → εiη

α
i with εi = ±1 leaves

spin operators invariant since each spin consists of a product
of exactly two Majoranas with equal lattice index. This gauge
freedom is also relevant to understand the structure of the Ma-
jorana Hilbert space. To see this, define the Majorana operator

τi = −2iηxi η
y
i η
z
i , (6)

which anticommutes with any τj from a different site j 6= i
and fulfills

τiη
α
j =

{
ηαi τi if i = j

−ηαj τi if i 6= j
. (7)

Consequently, τi commutes with all spin operators and thus
with any spin Hamiltonian. To construct a set of mutually
commuting operators one needs to pair τi with another con-
served Majorana operator.

One choice [73] is to define an additional Majorana η0
i per

site, so that the parity pi = 2iτiη
0
i with eigenvalues ±1 is

a constant of motion. These eigenvalues split the local Ma-
jorana Hilbert space of dimension four into two dynamically
decoupled two-dimensional parts each of which are in one-to-
one correspondence to the original local spin Hilbert space.
To invoke η0

i in the Hamiltonian, parity projection schemes
are required that eventually lead to one of two alternative four-
Majorana spin representations [75]. However, as stated above,
we will avoid this additional complication in the remainder of
this work.

An alternative, non-local pairing scheme which does not in-
troduce additional degrees of freedom requires an even num-
ber of sitesN [74]. Given an arbitrary but fixed pairing of sites
(i, j), we can define the N/2 parities p(i,j) = 2iτiτj = ±1.
Similar to above, each eigenstate of a spin Hamiltonian is
2N/2-fold degenerate, each copy labeled by the above parities.
In other words, the total Majorana Hilbert space dimension of
23N/2 is organized into the usual 2N physical spin configu-
rations, each with an artificial degeneracy of 2N/2. Choosing
a different pairing of sites corresponds to a unitary rotation
of the 2N/2 basis vectors for the artificial part of the Hilbert
space. Note that since Eq. (3) fully reproduces the correct
spin algebra without the need for an additional constraint, this
Hilbert-space enlargement introduces no unphysical states,
but only exact copies of the physical spin states [75]. This
degeneracy is closely connected to the aforementioned local
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Z2 gauge symmetry: As the transformation τi → −τi flips
the parity p(i,j), it switches between degenerate states of dif-
ferent parities.

For thermodynamic properties, the above degeneracy leads
to the relation Zpm = 2N/2Z between the exact partition
functions defined in spin and SO(3) pseudo-Majorana (pm)
Hilbert space. Thus, we have for the physical free energy per
site, f = −T log (Z) /N ,

f = fpm +
T

2
log (2) (8)

where the first term fpm ≡ − T
N log (Zpm) will be computed

via PMFRG and the second term accounts for the redundancy
inherent in the SO(3) Majorana representation.

Any expectation values for spin operators (or correlators)
Os are easily computed in the Majorana representation as
well. This follows from the observation that the Majorana ver-
sion of such an operator, Opm, is diagonal in the parity sector
and the same is true for any physical density matrix ρpm, like
for example the Boltzmann factor ρpm ∼ e−βHpm . Then the
degeneracy factor 2N/2 simply cancels [76] and we have

〈Os〉 ≡
trOsρs

tr ρs
=

trOpmρpm
tr ρpm

≡ 〈Opm〉 . (9)

Finally, we discuss the role of rotations in spin space. In
order to employ the global SO(3) symmetry of the Heisen-
berg Hamiltonian in Eq. (1) later on, we demonstrate here that
the three Majoranas transform under SO(3) rotations like the
coordinates of a physical vector. Using τi, the spin operators
can be re-expressed as

Sαi = τiη
α
i . (10)

We may now consider the general SO(3) transformation
ηαi →

∑
β Rαβη

β
i with Rαβ ∈ SO(3) being a three dimen-

sional rotation matrix. As τi is invariant under this transfor-
mation [75], spin operators must transform as

RαβS
β
i = τi

∑
β

Rαβη
β
i . (11)

It follows that physical SO(3) rotations of a spin i are equiv-
alent to rotations of the Majorana vector (ηxi , η

y
i , η

z
i ).

IV. GENERAL MAJORANA FRG FLOW EQUATIONS

As a basis for our FRG treatment of spin systems in pseudo-
Majorana representation, we first introduce flow equations
that are valid for general interacting Majorana Hamiltonians.
To the best of our knowledge, such equations have not been
published in the literature before. We consider

H =
i

2

∑
µ1,2

Aµ1µ2ηµ1ηµ2

+
1

4!

∑
µ1,2,3,4

Vµ1µ2µ3µ3
ηµ1

ηµ2
ηµ3

ηµ4
, (12)

where {µi} is an arbitrary set of single-particle indices. As
above, we use the convention

{
ηµi , ηµj

}
= δµiµj . Majorana

exchange statistics require the antisymmetry ofA and V under
exchange of any two indices, hermiticity mandates that both
couplings must be real.

Assuming thermal equilibrium, we move on to an imagi-
nary time path integral formulation [76, 77] defined in terms
of Grassmann fields ηµ(τ). The action reads

S =

∫ β

0

dτ

(∑
µ

1

2
ηµ(τ)∂τηµ(τ) +H ({ηµ(τ)})

)
, (13)

where ∂τ denotes a derivative with respect to imaginary time
and β = 1/T . We define the Fourier transform ηµ(τ) =
T
∑
n e

iωnτηµ(iωn) where the fermionic Matsubara frequen-
cies are given by iωn = πT (2n + 1), with n ∈ Z. In slight
abuse of notation, in the following, we will denote ωn1

by ω1

and equivalently for other frequencies. The non-interacting
part of the action may then be written as

S0 = −1

2

1

β2

∑
ω1,2

∑
µ1,2

ηµ1(ω1)
[
G−1

0

]
µ1ω1, µ2ω2

ηµ2(ω2).

(14)
with the bare Majorana Green’s function[
G−1

0

]
µ1ω1, µ2ω2

= (iω1δµ1µ2 − iAµ1µ2)βδω1,−ω2 . (15)

This definition is analogous to the complex fermionic bare
Green’s function except for the opposing signs of the two fre-
quencies in the Kronecker delta related to the absence of an
independent Grassmann partner field η̄ with a relative sign in
the Fourier transform.

We are now ready to apply the general FRG scheme from
Ref. [17], derived for an action of a superfield vector Ψ con-
taining an arbitrary number of bosonic or Grassmann fields
labeled by the composite index l = (ωl, µl),

S[Ψ] = S0[Ψ] + Sint[Ψ]

= −1

2

∫
l

∫
l′

Ψl

[
G−1

0

]
l,l′

Ψl′ + Sint[Ψ]. (16)

where
∫
l

= β−1
∑
ωl

∑
µl

. A comparison of Eq. (16)
and Eq. (14) yields the direct correspondence Ψl=(µl,ωl) =
ηµl(ωl). We emphasize the difference to the superfield vec-
tors of complex fermions or bosons, which require an addi-
tional but independent superfield label, i.e. Ψ = (ψ̄, ψ).

The starting point of the FRG scheme is the introduction
of a cutoff scale Λ in the bare Green’s function G0 → GΛ

0

such that GΛ=∞
0 = 0 and GΛ=0

0 = G0. Although the flow
equations describing the evolution of irreducible vertices with
Λ [17] below are general, in the rest of this work, we will
consider a multiplicative Matsubara frequency cutoff ΘΛ(ω1)
to the bare Green’s function[

GΛ
0

]
µ1ω1,µ2ω2

= ΘΛ(|ω1|) [G0]µ1ω1,µ2ω2
. (17)

At zero temperature, this cutoff is often chosen to be a Heav-
iside function ΘΛ(|ω|) = θ(|ω| − Λ), at finite temperatures a
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smooth cutoff must be chosen instead. While a momentum
based cutoff is also used in some works, we will not con-
sider such schemes here, as our main focus lies on pseudo-
Majoranas without kinetic energy.

As a consequence of the cutoff, the self-energy Σ and the
four-point vertex Γ acquire implicit dependence on Λ. These
quantities are defined via the Dyson equation in a superspace
spanned by (ωi, µi)

G =
[
G−1

0 −Σ
]−1

(18)

and the tree-expansion for the connected Green’s functions

G4,c
l1,l2,l3,l4

= −
∫
l1′,2′,3′,4′

Gl1l1′Gl2l2′Gl3l3′Gl4l4′

× Γl1′ l2′ l3′ l4′ (19)

respectively. This Λ-dependence is given by coupled differ-
ential equations, referred to as flow equations. Physical re-
sults can be extracted from the solution at Λ = 0. Since the
action for Majorana systems was rephrased in superfield no-
tation, we can employ the associated general flow equations
[17] for ΣΛ and ΓΛ. As appropriate in thermal equilibrium,
and to simplify notation, we employ a modified version of the
Green’s function and vertices with the frequency conserving

delta-function explicitly spelled out,

Gµ1ω1,µ2ω2
= Gµ1µ2

(ω2)βδω1,−ω2
(20a)

Σµ1ω1,µ2ω2
= Σµ1µ2

(ω1)βδω1,−ω2
(20b)

Γµ1ω1, µ2ω2, µ3ω3, µ4ω4
≡ Γµ1µ2µ3µ4

(ω1, ω2, ω3, ω4)

× βδω1+ω2+ω3+ω4,0. (20c)

With the above definition, the Dyson equation for fixed fre-

quency indices, G−ω,ω =
[[
G−1

0

]
ω,−ω −Σω,−ω

]−1

, can be
written as

G(ω) = [iω − iA− Σ(ω)]
−1 . (21)

The Green’s function and self-energy defined in Eq. (20a) and
(20b) fulfill G(ω) = GT (−ω) and Σ(ω) = ΣT (−ω), respec-
tively.

We also restrict ourselves to the absence of parity symmetry
breaking (expectation values of odd numbers of Majorana op-
erators vanish) and neglect the contribution from the six-point
vertex. The flow equation for the four-point vertex then sep-
arates into three distinct channels, each of which is character-
ized by one of the three bosonic transfer frequencies defined
as

s = ω1 + ω2 = −ω3 − ω4,

t = ω1 + ω3 = −ω2 − ω4,

u = ω1 + ω4 = −ω2 − ω3. (22)

The Majorana flow equations for the interaction correction to
the free energy, self energy and the four-point vertex read [17]

d

dΛ
FΛ

int =
1

2

∫
ν1,2,3,4

T
∑
ω′

SΛ
ν1ν2(ω′)G0,Λ

ν2ν3(−ω′)
[
GΛ
]−1

ν3ν4
(−ω′)ΣΛ

ν4,ν1(ω′) (23a)

d

dΛ
ΣΛ
µ1,µ2

(ω) = −1

2

∫
ν1,2

T
∑
ω′

SΛ
ν1ν2(ω′)ΓΛ

ν1ν2µ1µ2
(−ω′, ω′, ω,−ω) (23b)

d

dΛ
ΓΛ
µ1,µ2,µ3,µ4

(ω1, ω2, ω3, ω4) =

∫
ν1,2,3,4

T
∑
ω

SΛ
ν1ν2(ω)

×
[
ΓΛ
µ1µ2ν4ν1(ω1, ω2, ω − s,−ω)ΓΛ

ν2ν3µ3µ4
(ω,−ω + s, ω3, ω4)GΛ

ν3ν4(ω − s)

+ΓΛ
µ1ν1µ3ν4(ω1,−ω, ω3, ω − t)ΓΛ

ν2µ2ν3µ4
(ω, ω2,−ω + t, ω4)GΛ

ν3ν4(ω − t)

−ΓΛ
µ1ν4ν1µ4

(ω1, ω − u,−ω, ω4)ΓΛ
ν3µ2µ3ν2(−ω + u, ω2, ω3, ω)GΛ

ν3ν4(ω − u)

]
. (23c)

As the free energy does not feed back into the other flow
equations it is usually not considered within FRG schemes.
In this work, we use its solution to derive further thermody-
namic quantities. In these expressions, we have introduced the
single-scale propagator which is defined as a matrix product

of Green’s functions

SΛ = −GΛ

[
d

dΛ

[
GΛ

0

]−1
]
GΛ

SΛ(ω2) = −GΛ(ω2)

[
d

dΛ

[
GΛ

0

]−1
(ω2)

]
GΛ(ω2). (24)
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In order to solve the flow equations, initial conditions for self-
energy and the four-point vertex are required. As the bare
propagator vanishes in this limit, we immediately see that

FΛ→∞
int = 0,

ΣΛ→∞
µ1,µ2

(ω) = 0,

ΓΛ→∞
µ1,µ2,µ3,µ4

(ω1, ω2, ω3, ω4) = Vµ1,µ2,µ3,µ4
. (25)

V. SYMMETRY-BASED VERTEX PARAMETRIZATION

We now specialize the general Majorana FRG of this sec-
tion to treat the interacting system of pseudo-Majoranas en-
suing from the application of the representation (3) to the
Heisenberg spin-1/2 Hamiltonian (1),

H = −
∑
(i,j)

Jij
(
ηyi η

y
j η
z
i η
z
j + ηzi η

z
j η
x
i η

x
j + ηxi η

x
j η

y
i η
y
j

)
.

(26)
As a first step, we proceed with a detailed discussion of the
parametrization of vertices and propagators using the symme-
tries of our model. Following the approach of Ref. [54], we
will first derive symmetry relations for the Green’s functions
defined as

G(1, 2) =

∫ β

0

dτ1dτ2e
iω1τ1eiω2τ2 〈ηµ1

(τ1)ηµ2
(τ2)〉

= Gµ1,µ2
(ω2)βδω1,−ω2

(27)

G4(1, 2, 3, 4) =

∫ β

0

dτ1dτ2dτ3dτ4e
i(ω1τ1+ω2τ2+ω3τ3+ω4τ4)

× 〈ηµ1
(τ1)ηµ2

(τ2)ηµ3
(τ3)ηµ4

(τ4)〉 (28)

= G4
µ1,µ2,µ3,µ4

(s, t, u)βδω1+ω2+ω3+ω4,0.
(29)

where the labels (1, 2, 3, 4) contain all arguments that are not
explicitly specified, i.e 1 = (µ1, ω1) in this case. Matsubara
frequency conservation follows from the fact that thermal ex-
pectation values only depend on imaginary time differences.
The time-ordering operator is suppressed since it is included
in the path integral formalism by default. The properties de-
rived in the following will then carry over to Σ and Γ due to
their relations via Eqs. (18) and (19).

A. Hermiticity

The Hamiltonian is a hermitian operator, satisfying H =
H†. Due to 〈O〉∗ =

〈
O†
〉

and η(τ)† = e−HτηeHτ = η(−τ)
in the Heisenberg picture, one can find the complex conjugate
of the two-point Green’s functions as

G(1, 2)∗ =

∫
dτ1dτ2e

−iω1τ1−iω2τ2 〈ηµ2
(−τ2)ηµ1

(−τ1)〉

= −G(1, 2). (30)

As a consequence, the two-point Green’s function in Matsub-
ara frequency space is purely imaginary and from an analo-
gous argument, the four-point Green’s function must be real

G(1, 2) ∈ iR,
G4(1, 2, 3, 4) ∈ R. (31)

B. Time reversal symmetry

Time reversal T is an anti-unitary operation (〈ψ|ψ′〉∗ =
〈Tψ|Tψ′〉) which in the present case can be defined by per-
forming a complex conjugation while leaving Majorana oper-
ators invariant [78]:

TiT−1 = −i, TηµT
−1 = ηµ. (32)

This flips the sign of the spin operators (3) as required. Time
reversal symmetry is violated by an external magnetic field
or, more generally, any Majorana bilinear in the Hamiltonian.
For a T -symmetric Hamiltonian THT−1 = H , thermal ex-
pectation values obey 〈O〉 =

〈
TOT−1

〉∗
. From this, we have

〈ηµ1
(τ1)ηµ2

(τ2)〉 = 〈ηµ1
(τ1)ηµ2

(τ2)〉∗ and with Eq. (27), it
follows that

Gµ1µ2
(ω1, ω2) = Gµ1µ2

(−ω1,−ω2)∗. (33)

Similarly, the four-point correlator has the property

G4(1, 2, 3, 4) = G4
µ1µ2µ3µ4

(−ω1,−ω2,−ω3,−ω4)∗. (34)

C. Local Z2 gauge redundancy

Since our considerations from here on require the explicit
specification of site indices, we will now separate the previ-
ously used superlabel µ into a site-index and a Majorana fla-
vor µ → (i, α). In the SO(3) Majorana representation spins
are invariant under the gauge transformation ηαi → εiη

α
i for

all α = x, y, z with εi = ±1 for an arbitrary lattice site i.
Since expectation values must be invariant under gauge trans-
formations as well, we may write〈

ηα1
i1

(τ1)ηα2
i2

(τ2)
〉

= εi1εi2
〈
ηα1
i1

(τ1)ηα2
i2

(τ2)
〉

, (35)

where εi1εi2 = −1 may always be chosen for two different
sites. As a consequence, non-zero propagators must contain
an even number of Majorana operators from each site, so that

Gi1i2(1, 2) ≡ δi1i2Gi1(1, 2). (36)

Likewise, the four-point correlator can only depend on up to
two distinct sites only, so we choose

G4
i,i,j,j(1, 2, 3, 4) ≡ G4

ij(1, 2; 3, 4). (37)

Correlators of the form ijij and ijji need to be brought to
the standard form Eq. (37) using fermionic anticommutation
rules, which restricts the number of allowed permutations in
G4
ij(1, 2; 3, 4) to exchanges of the first and last two indices
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Figure 1. Z2-invariant Majorana FRG flow equations for the inter-
action correction to the free energy (a), the self-energy (b), and the
local (c) and nonlocal (d) four-point vertices. The order of labels
1 = (α1, ω1) always corresponds to that on the left hand side of
the vertex flow equations such that the site index is conserved along
solid lines. In these equations, internal lines correspond to fully
dressed Green’s functionsGi(1, 2), while the single scale propagator
Si(1, 2) is represented by a slashed line. Similarly, the crossed line
in a) corresponds to the local propagator

[
SG0G−1

]
i
(1, 2).

only. As a consequence of the (bi-)local nature of propa-
gators (four-point vertices), the site summations in the flow
equations can be simplified. The special case i = j for the
four-point vertex needs to be considered separately. The cor-
responding flow equations can then be expressed diagrammat-
ically as shown in Fig. 1. The bubble-diagram corresponding
to the s-channel of the non-local vertex Γij shown in Fig. 1
d) is of particular interest. As in the PFFRG this diagram in-
cludes the random-phase approximation which is responsible
for the emergence of long-range magnetic order [41].

D. Lattice symmetries

For simplicity, the systems that are considered in the fol-
lowing consist of equivalent sites. Correlators can then always
be computed with one arbitrary reference site fixed. Combin-
ing this with local Z2 gauge redundancy eliminates all site
indices of the two-point correlator. Similarly, four-point cor-
relators depend only on the distance vector between the two
sites. Although this means that the order of site indices in
Γij is irrelevant for systems with equivalent sites, we will not
make use of this property. As a result, the pseudo-Majorana
flow equations presented here are easily generalized towards
non-Bravais lattices by adding an additional sublattice-index.
Most lattice systems further exhibit point-group symmetries,

Angle x y z

π/2 ηy → −ηz ηx → ηz ηx → −ηy

ηz → ηy ηz → −ηx ηy → ηx

π ηy → −ηy ηx → −ηx ηx → −ηx

ηz → −ηz ηz → −ηz ηy → −ηy

Table I. Symmetry transformations corresponding to specific spin ro-
tations along the x, y and z axes.

such as the C4 rotation symmetry and mirror planes of the
square lattice, which can straightforwardly be used to reduce
the numerical effort and are not further discussed in the fol-
lowing due to their lattice-specific nature.

E. Global SO(3) rotation symmetry

The global SO(3) spin-rotation symmetry of the Heisen-
berg model can easily be translated to vertex functions. As
discussed in Sec. III, global spin rotations specified by a 3×3
rotation matrix Rαµ(φ) act on the Majorana fermions as

ηαi →
∑
β

Rαβ(φ)ηβi ∀i. (38)

The Heisenberg Hamiltonian is invariant under spin rotations
due to the isotropic nature of its couplings.

We will now apply this symmetry to restrict the types of
vertices and find relations between vertices with different fla-
vor indices. Of particular interest are the specific rotations
along the x, y and z-axes as displayed in Table I. The combi-
nationRx(π/2)◦Rz(π/2) ≡ P realizes an anti-cyclic permu-
tation of the flavors. We apply these symmetries to correlators,
using the convention γ 6= α 6= β 6= γ to refer to fixed, pair-
wise different flavors. In this way, we find that the two-point
Green’s function does not depend on any flavor labels.〈

ηα1 η
β
2

〉
Rα(π)

= −
〈
ηα1 η

β
2

〉
= 0,

⇒ Gα1,α2(1, 2) = Gα1(1, 2)δα1,α2

P
= G(1, 2)δα1,α2 . (39)

Because the four-point correlator has four flavor indices, at
least two of them must be equal. An argument analogous to
above shows that only vertices with an even number of fla-
vors can be nonzero. Furthermore, rotations by π/2 transform
different flavor combinations into each other, for instance〈

ηα1 η
α
2 η

β
3 η

β
4

〉
Rα(π/2)

= 〈ηα1 ηα2 ηγ3 ηγ4 〉 . (40)

These arguments identify four independent flavor con-
figurations for the four-point correlator, G4

xxxx(1, 2, 3, 4),
G4
xxyy(1, 2, 3, 4), G4

xyxy(1, 2, 3, 4) and G4
xyyx(1, 2, 3, 4), all

other types are either zero or related by Eq. (40).
After these simplifications, we consider a general rotation

to find a relation between those four different correlators.
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Since they are now parametrized in terms of x and y, we only
need to consider rotations along the z-axis. The ηx Majoranas
then transform as ηxi → cos θηxi − sin θηyi so that

G4
xxxx

Rz(θ)
= 〈(cos θηx1 − sin θηy1 ) . . . (cos θηx4 − sin θηy4 )〉 .

(41)
Expanding the product and using the above symmetries, we
obtain a relation independent of θ

G4
xxxx = G4

xxyy +G4
xyxy +G4

xyyx, (42)

where the argument (1, 2, 3, 4) has been suppressed. Since
we considered an arbitrary rotation, our last consideration fur-
ther serves as a proof that no other symmetries than the ones
already shown may be found from SO(3) rotations. Indeed,
one arrives at the same identity regardless of which type of
correlator one transforms (i.e. transforming G4

xyxy yields the
same result). Rotations along the x or y direction also gener-
ate no further information as a result of the permutation sym-
metry P and rotations around an arbitrary axis may always be
decomposed as a product of x, y and z rotations.

VI. PSEUDO-MAJORANA FRG FLOW EQUATIONS

The symmetries of the last section imply the following
parametrization of the pseudo-Majorana propagator,

G(1, 2) = G(−ω1)δi1,i2δα1,α2
δω1,−ω2

β, (43)

where the imaginary and antisymmetric self-energy, abbrevi-
ated as Σ(ω) = −iγ(ω), enters via the Dyson equation (18),

G(ω) =
1

iω + iγ(ω)
≡ −ig(ω). (44)

In analogy to the real functions γ(ω) and g(ω) we also replace
the imaginary single scale propagator via SΛ(ω) = −iġΛ(ω).
Due to the diagonal structure of the propagators, the symme-
tries for the four-point Green’s functions then carry over to
vertex functions [cf. Eq. (19)] whose frequency dependence is
parametrized by the three bosonic frequencies introduced in
Eq. (22). The three independent four-point vertices are

Γa ij(s, t, u) ≡ Γxi, xi, xj, xj(s, t, u),

Γb ij(s, t, u) ≡ Γxi, xi, yj, yj(s, t, u),

Γc ij(s, t, u) ≡ Γxi, yi, xj, yj(s, t, u). (45)

In the special case i = j, there are only two independent ver-
tices since

Γc ii(s, t, u) = −Γb ii(t, s, u). (46)

Vertices with negative bosonic frequencies are symmetry re-
lated to positive frequencies by time-reversal and a symmetry
t ↔ u further allows to reduce the numerical effort. Details
are given in Table II. In the above parametrization, the flow
equations for the interaction correction to the free energy per

Operation Symmetry for Γµ ij(s, t, u) valid µ

1↔ 2 t↔ u and Γµ ↔ −Γµ a, b

T ◦ (1, 3)↔ (2, 4) s↔ −s a, b, c

T ◦ (1, 2)↔ (3, 4) t↔ −t and i↔ j a, b, c

T ◦ (1, 2)↔ (4, 3) u↔ −u and i↔ j a, b, c

Table II. Transformations of the frequency arguments under time re-
versal T and specific permutations of indices inΓij(1, 2; 3, 4). The
latter three rows apply to all three types of vertices and allow for a
parametrization using positive frequencies only. Note that the final
two permutations also exchange the order of i and j which is of im-
portance for non-Bravais lattices. The remaining t ↔ u symmetry
for Γc can be established by the exchange 1↔ 2, which changes the
vertex to the form Γxyyx. Using Eq. (42) to express Γxyyx(s, t, u) =
−Γc(s, u, t) in terms of the other vertices used in the parametriza-
tion, we obtain Γc ij(s, u, t) = (−Γa ij + Γb ij + Γc ij)(s, t, u).

spin and the self-energy may be simplified. Specifying the ex-
ternal flavor and site indices on the left hand side of the flow
equations, we directly perform flavor sums to obtain

d

dΛ
fΛ

int = −3T

2

∑
ω

ġΛ(ω)
g0,Λ(ω)

gΛ(ω)
γΛ(ω), (47)

d

dΛ
γΛ(ω1) =

T

2

∑
ω

∑
j

ġΛ(ω)

{
ΓΛ
a ij(0, ω1 + ω, ω1 − ω)

+2ΓΛ
b ij(0, ω1 + ω, ω1 − ω)

}
.

(48)

Similarly, we may now express the flow equations for four-
point vertices in the same way. For conciseness of notation,
both the initial fermionic frequencies as well as the exchange
frequencies s, t and u will be used on the right hand side
which are defined by Eq. (22), or inversely,

ω1 =
s+ t+ u

2
, ω2 =

s− t− u
2

ω3 =
−s+ t− u

2
, ω4 =

−s− t+ u

2
. (49)
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d

dΛ
ΓΛ
a ij(s, t, u) = XΛ

a ij(s, t, u)− X̃Λ
a ij(t, s, u) + X̃Λ

a ij(u, s, t) (50a)

d

dΛ
ΓΛ
b ij(s, t, u) = XΛ

b ij(s, t, u)− X̃Λ
c ij(t, s, u) + X̃Λ

c ij(u, s, t) (50b)

d

dΛ
ΓΛ
c i,j 6=i(s, t, u) = XΛ

c ij(s, t, u)− X̃Λ
b ij(t, s, u) + X̃Λ

d ij(u, s, t) (50c)

XΛ
a ij(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
∑
k

[
ΓΛ
a ki (s, ω + ω1, ω + ω2) ΓΛ

a kj (s, ω − ω3, ω − ω4) + 2(a→ b)
]

(51a)

XΛ
b ij(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
∑
k

[
ΓΛ
a ki (s, ω + ω1, ω + ω2) ΓΛ

b kj (s, ω − ω3, ω − ω4) + (a→ b) + (a↔ b)
]
(51b)

XΛ
c ij(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
∑
k

[
ΓΛ
c ki (s, ω + ω1, ω + ω2) ΓΛ

c kj (s, ω − ω3, ω − ω4) + (ω1 ↔ ω2, ω3 ↔ ω4)
]

(51c)

X̃Λ
a i,j 6=i(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
{[

ΓΛ
a ij (ω + ω2, s, ω + ω1) ΓΛ

a ij (ω − ω4, s, ω − ω3)

+(ω1 ↔ ω2, ω3 ↔ ω4, i↔ j)
]

+ 2(a→ c)
}

(52a)

X̃Λ
b i,j 6=i(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
{[

ΓΛ
a ij (ω + ω2, s, ω + ω1) ΓΛ

c ij (ω − ω4, s, ω − ω3)

+(ω1 ↔ ω2, ω3 ↔ ω4, i↔ j)
]

+ (a→ c) + (a↔ c)
}

(52b)

X̃Λ
c i,j 6=i(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
{[

ΓΛ
b ij (ω + ω2, ω + ω1, s) ΓΛ

b ij (ω − ω4, ω − ω3, s)

+(ω1 ↔ ω2, ω3 ↔ ω4, i↔ j)
]

+ (b→ c)
}

(52c)

X̃Λ
d i,j 6=i(s, t, u) = T

∑
ω

ġΛ(ω)gΛ(ω + s)
{[

ΓΛ
b ij (ω + ω2, ω + ω1, s) ΓΛ

c ij (ω − ω4, ω − ω3, s)

+(ω1 ↔ ω2, ω3 ↔ ω4, i↔ j)
]

+ (b↔ c)
}

(52d)

To reduce the length of expressions, we have defined
the single-channel contributions XΛ

a,b,c ij and X̃Λ
a,b,c,d ij in

Eqs. (51) and (52) [46]. The flow equations of local vertices
are obtained noting that X̃Λ

a,b,c ii(s, t, u) ≡ XΛ
a,b,c ii(s, t, u).

We further stress that no flow equation for Γc ii is required
in Eq. (50), as this vertex is equivalent to Γb ii by virtue of
Eq. (46).

In the PFFRG, the Katanin truncation scheme [79] was in-
strumental in providing sufficient feedback of the self-energy
flow into the vertex flow equations [22]. It amounts to pro-
moting the single-scale propagator in the flow equations of
four-point vertices to a full derivative of the Green’s function

SΛ(ω)→ d

dΛ
GΛ(ω) ≡ Sconv.(ω) + SKat(ω)

= −G(ω)2 d

dΛ

[
G0Λ(ω)

]−1
+ G(ω)2 d

dΛ
ΣΛ(ω).

(53)

At zero temperature, frequencies become continuous and

T
∑
ω → (2π)−1

∫
dω. Using the sharp frequency cutoff

G0Λ(ω) = G0(ω)θ(|ω| − Λ), we thus obtain in the usual way
using Morris’s Lemma [80]

ġΛ
T=0(ω) = − δ(|ω| − Λ)

ω + γΛ(ω)
+ ġΛ

Kat(ω). (54)

At finite temperatures, a sharp cutoff of frequencies is no
longer possible due to ambiguities that arise if |ω|−Λ lies be-
tween two discrete Matsubara frequencies. Noting that there
is still freedom in the choice of a smooth cutoff [57, 81], here
we choose a Lorentzian cutoff function

ΘΛ(ωn) =
ω2
n

ω2
n + Λ2

. (55)

Using Eqs. (17), (18) and (53) the expressions for the Green’s
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function and the single-scale propagator become

gΛ(iωn) =
ωn

ω2
n + ωnγ(ωn) + Λ2

ġΛ(iωn) = −g2(iωn)

(
2Λ

ωn
+
dγΛ(iωn)

dΛ

)
. (56)

Finally, we need to specify the initial conditions for the newly
defined vertices. After re-expressing the Heisenberg Hamilto-
nian (1) by insertion of Eq. (3) for the spin operators, a com-
parison of coefficients yields

fΛ→∞
int = 0,

ΣΛ→∞ = 0,

ΓΛ→∞
a ij = ΓΛ→∞

b ij = 0,

ΓΛ→∞
c ij = −Jij . (57)

To summarize, in our PMFRG scheme the flow equations for
the free energy (47), self-energy (48) and the vertex func-
tions (50), are solved numerically starting from large but finite
Λ � J down to Λ ' 0, approximating the initial conditions
with the Λ → ∞ values presented above. The flow of the
free energy correction is integrated along the way but does
not feed back into the other flow equations. Further details
on the numerical implementation of the PMFRG are given in
Appendix A. The next section describes how to extract ob-
servables along the flow and, most importantly, at the physical
endpoint Λ = 0.

VII. OBSERVABLES

In this section, we discuss the observables for Heisenberg
spin-1/2 systems that will be studied in the following sec-
tions. These are the free energy, internal energy, heat capacity
and static susceptibility. We explain how these observables
are calculated from the eigenstates and -energies of the spin
Hamiltonian (1), its exact representation with SO(3) Majo-
rana fermions and from the (approximate) solution of the PM-
FRG flow equations.

From the partition function of a N -spin system with
eigenenergies En, Z =

∑
n e
−βEn , the free energy per spin

is given by

F/N = f = − T
N

log (Z) = − T
N

log
∑
n

e−βEn . (58)

The energy per spin is

E/N = −∂ log (Z)

N∂β
=
∂(fβ)

∂β
=

1

NZ
∑
n

Ene
−βEn , (59)

which as a function of T also determines the heat capacity

C/N =
∂

∂T
E/N =

1

NT 2

(
1

Z

∑
n

E2
ne
−βEn − E2

)
.

(60)

Figure 2. Zero temperature PMFRG flow of the static local and non-
local susceptibilities χij for the antiferromagnetic Heisenberg dimer.
The grey dotted line represents the exact physical (Λ = 0) result.

For small systems amenable to exact diagonalization, the
rightmost expressions are most convenient. From the solu-
tion of the PMFRG flow equation (47) for the interaction cor-
rection to the pseudo-Majorana free energy per site, we find
fpm = fpm,0 + fΛ=0

int . The non-interacting free energy for
three pseudo-Majoranas per site is fpm,0 = −3T log(2)/2.
Using the relation between fpm and f , Eq. (8), we finally ob-
tain

f = −T log(2) + fΛ=0
int . (61)

The static spin-spin correlator can be computed from

χij =

∫ β

0

dτ
〈
Szi (τ)Szj (0)

〉
. (62)

Note that χij can also be interpreted as a static (zero-field)
susceptibility as it measures the response of a spin at site i
when a magnetic field is exerted at site j. We represent the
spin operators by Majorana fermions and obtain from the ver-
tices of the PMFRG at cutoff scale Λ,

χΛ
ij = + T 2

∑
ω1ω2

gΛ(ω1)2gΛ(ω2)2ΓΛ
c ij(0, ω1 + ω2, ω1 − ω2)

+ T
∑
ω1

gΛ(ω1)2δij . (63)

Of particular interest for the two-dimensional systems below
is the uniform susceptibility χ =

∑
i,j χij .

VIII. APPLICATION: SMALL SPIN CLUSTERS

A. Spin dimer and the fermion parity issue

Small spin clusters constitute an ideal testbed for probing
the accuracy of our approaches as they already represent non-
trivial problems within the PMFRG (and PFFRG) but are still
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exactly solvable. We first investigate the simple case of two
spins, i = 0, 1 coupled with an antiferromagnetic Heisenberg
interaction J = 1. Due to the small Hilbert space, this dimer
model HN=2 =

∑
α S

α
0 S

α
1 is analytically solvable. While

the free energy Eq. (58) is straightforwardly found, some care
is required for the calculation of the susceptibility from the
Lehmann representation where the term contributing in the
case iν+En−Em = 0 is often neglected in textbook deriva-
tions. We obtain

χ00 =
eβ − 1 + β

2(eβ + 3)
,

χ01 = −e
β − 1− β
2(eβ + 3)

. (64)

Our PMFRG results for the static susceptibility in the case
T = 0 are shown in Fig. 2 as a function of the cutoff. We find
that χΛ

ij flows smoothly without any feature, surpasses the ex-
act results χij = ±0.5 and diverges at Λ = 0. This unphysical
divergence is not restricted to the Heisenberg dimer but ap-
pears in all other models considered here. However, the dimer
allows for the most simple discussion of the origin of this di-
vergence, which equally plagues the flow of the nonlocal ver-
tices of type Γa,01 = Γx0,x0,x1,x1 and Γc,01 = Γx0,y0,x1,y1.

To explain the origin of this divergence, consider the
Heisenberg dimer which can be exactly solved in the SO(3)
Majorana representation,

HN=2 = −1

4
pxpypz (px + py + pz) . (65)

Here, pα ≡ 2iηα0 η
α
1 are the three flavor parities related to the

non-local parity introduced in Sec. III via p(0,1) = 2iτ0τ1 =
−pxpypz . While p(i,j) = ±1 is always conserved for generic
spin systems, pα = ±1 are additional constants of motion
only for the dimer, Eq. (65). As any state, the ground state
is 2N/2 = 2 fold degenerate and identified in this case by
pα = 1 or pα = −1 for all α. Now consider the effect of
a small perturbation, HN=2 → HN=2 + vpx. This does not
correspond to any physical perturbation in terms of spin oper-
ators but lifts the ground state degeneracy. From this point of
view, the ground state expectation value 〈pα〉 = 0 is fragile,
any finite perturbation violating the conservation of τi as de-
fined in Eq. (6) with i = 0, 1 generically causes 〈pα〉 = ±1.
This effect is of course alleviated at finite temperature, where
the relative population difference of the two lowest states split
by ∼ v is controlled by the ratio v/T . Kubo’s formula allows
to formalize the above considerations for the linear response
of 〈pα〉 with respect to vpx,

〈pα〉 = −vGRpαpx(iωk = 0). (66)

In Matsubara frequency space, the retarded Green’s function
above may be obtained in the Lehmann representation noting
that the parities are diagonal in the eigenbasis of the unper-
turbed Hamiltonian 〈n|pα|m〉 = pαnδnm,

Gpαpx(iωk = 0) =
β

Z
∑
n

e−βEnpαnp
x
n. (67)

At low temperatures this yields β = 1
T , similar to the Curie-

like 1/T behaviour of the spin susceptibility of a free spin
1/2 which also features a degenerate ground state in the field-
free case. In complete analogy to the spin susceptibility in
Eq. (63), we can now find the the tree expansion of the parity
susceptibility Gpαpx(iωk = 0) in terms of the non-local ver-
tices of type Γa (for α = x) or Γc (α = y, z). The expressions
are similar to Eq. (63) but crucially probe different frequency
combinations of the vertices (t = 0 instead of s = 0). In
other words, non-local vertex components of order∼ 1/T are
inherently expected in the SO(3) Majorana representation. In
an exact calculation, these components are responsible for the
1/T parity susceptibility of Eq. (67), but do not affect the spin
susceptiblity. However, the PMFRG is not an exact method
and the unphysical behavior of χΛ

ij at T = 0 must be a conse-
quence of truncating the PMFRG flow equations which appar-
ently causes this divergence to spill over to the spin suscepti-
bility. It is an interesting question if an improved two-loop
truncation scheme (correct to order O(J3)) [46] or a recently
developed but numerically demanding multi-loop generaliza-
tions of the (PF)FRG [62, 63], can be a possible cure to this
problem.

Fortunately, as the unphysical divergence in the PMFRG
flow only occurs at Λ = 0 and for T = 0, there are other
options to extract physically meaningful results without going
beyond the flow equations presented above. First, it is still
possible to detect magnetic phases, heralded by divergences
at finite Λ as we have tested for the J1 − J2 square lattice
Heisenberg model (data not shown).

We devote the rest of the discussion to a second option,
which is the restriction to finite temperatures. As explained
above, this can be expected to suppresses the unphysical di-
vergence and we indeed find all vertices and flowing suscepti-
bilities converge towards Λ→ 0, see lower inset of Fig. 3 for
T = 0.1.

B. Dimer and hexamer at finite temperature

Results for the physical finite-T susceptibility of the dimer
at Λ = 0 are shown in Fig. 3. For T & 0.2, we find a very
close agreement between the susceptibility obtained via PM-
FRG and the exact result (solid lines) from Eq. (64). The dif-
ference between the exact result and the PMFRG increases
with decreasing temperature, in agreement with the discus-
sion in the previous subsection. We also show analogous re-
sults of the PFFRG, where the presence of unphysical states
seriously compromises the accuracy of the results at any fi-
nite temperature scale. To support this interpretation, we have
also included the results of an exact diagonalization scheme of
the pseudo-fermionic Hamiltonian without projecting out un-
physical states, further referred to as PFED. The close agree-
ment between PFFRG and PFED demonstrates the problem-
atic impact of unphysical states at finite temperatures which
so far has no known resolution. One approach, the Popov-
Fedotov projection scheme, suppresses unphysical states in
exact calculations of observables upon the introduction of an
imaginary chemical potential. However, producing a quarter-
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0 1

Figure 3. (Free) energy, heat capacity per spin and static suscepti-
bilities of the Heisenberg dimer with J = 1 obtained via PMFRG
(red symbols) at Λ = 0 as a function of temperature. Displayed in
solid (dashed) grey lines are the results obtained by (pseudo-fermion)
exact diagonalization, as well as the finite temperature spin suscepti-
bilities of the PFFRG in black symbols. Each data point corresponds
to a fully converged flow with respect to Λ as demonstrated in the
exemplary plot at T = 0.1 (cf. Fig. 2).

period shift of Matsubara frequencies [57, 69], this option has
so far not been integrated in the PFFRG in a satisfactory man-
ner.

Besides the magnetic susceptibility, our solution of the free
energy flow equation enables us to compute a variety of re-
lated thermodynamic observables, such as the energy per spin
and the heat capacity, also displayed in Fig. 3. We observe
good agreement at large enough temperatures. At intermedi-
ate scales T ' 0.5, the quality of the thermodynamic quanti-
ties from the PMFRG decreases as can be seen most clearly
from the overestimation of the energy per spin or the under-
estimation of the peak in the heat capacity. These inaccu-
racies likely stem from the underestimation of the Majorana
self-energy at small frequencies, a known problem in pseudo-
fermion FRG approaches to spin systems of small dimension-
ality [32].

Analogous results are obtained for larger spin clusters such
as the Heisenberg hexamer, a hexagon of six equivalent spins
with nearest and next-nearest neighbor interactions, J1 = 1
and J2 = 0.5 respectively. As shown in Fig. 4, the PMFRG
results are in good agreement with ED at not too small temper-
atures. The susceptibilities are generally more accurate than

4 3

5 2

0 1

Figure 4. PMFRG results for the Heisenberg hexamer in analogy
to Fig. 3. The corresponding PFFRG and PFED results of the spin
susceptibility are included in the inset.

the thermodynamic properties. The susceptibility obtained via
PFFRG shows large deviations from ED results at all tempera-
tures. We emphasize again that small spin clusters are particu-
larly challenging within the FRG framework since its built-in
mean-field limits are generally not expected to describe such
systems accurately. On the other hand, mean-field approaches
perform better in higher-dimensional systems. The FRG is,
hence, expected to reach its full potential for larger or even in-
finite systems to which we move on in the following section.

IX. APPLICATION: FRUSTRATED SPIN SYSTEMS IN 2D

We now turn to the application of the PMFRG to two-
dimensional, frustrated and translational invariant Heisenberg
spin models described by Hamiltonian (1). We first study the
J1 − J2 Heisenberg model on the square lattice with the pa-
rameter choice J2 = 0.5 (where the system is expected to
be non-magnetic) and then turn to the triangular lattice model
with only nearest neighbor interaction, J2 = 0. We work at
finite temperature T > 0 throughout and directly in the ther-
modynamic limit. Thus, as a technical modification from the
previous section, we are required to limit the range of vertices
to |ri − rj | ≤ L, measured in units of the nearest-neighbor
distance [22]. Beyond this distance, vertices (and thus con-
nected Green functions) are set to zero. We take L ' 10 large
enough such that our results are converged in L. We study
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Figure 5. PMFRG results (dots) for the J1−J2 square lattice Heisen-
berg model at J2/J1 = 0.5. The panels depict the single site contri-
bution to the interaction correction to the free energy, internal energy,
heat capacity and uniform susceptibility (top to bottom). The HTSE
data (dashed line, up to 9th order) is taken from Ref. [82], its 4,5
Padé approximant is shown as a solid line. The iPEPS result for the
ground state energy E0/N = −0.495 from Ref. [83] is indicated as
a dotted line.

the same observables as in the previous section but report the
uniform static susceptibility χ/N instead of χij . In contrast to
the previous section, we plot these observables over β = 1/T .

Our PMFRG results for the square lattice are shown in Fig.
5 (dots). We compare to the high-temperature series expan-
sion (HTSE, dashed line) [82] and its 4,5 Padé approximant
(solid line) with an extended range of stability β . 2 [85], to
which our data is in reasonable agreement. We are not aware
of T > 0 tensor network results for the chosen model, but de-
pict the iPEPS ground state energy E0/N = −0.495 from
Ref. [83] (dotted line). Finally, we remark that when ap-
plied to the unfrustrated nearest-neighbor Heisenberg model
(J2 = 0, data not shown), the PMFRG results agree only to
the first order HTSE but deviate strongly from higher order
and Monte Carlo data already for T = 1. The likely reason is
that for the current level of truncation of flow equations, the
FRG is known to violate the Mermin-Wagner theorem [46],
and does, hence, not accurately capture the onset of magnetic
order at T = 0 in an unfrustrated Heisenberg system.

In Fig. 6, we show the PMFRG results for the triangular
lattice nearest neighbor Heisenberg model (dots). Agreement
to the HTSE data [84] (dashed line, up to 12th order) and its
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Figure 6. PMFRG results (dots) for the nearest-neighbor triangular
lattice Heisenberg model. The observables presented are analogous
to Fig. 5. The HTSE data (dashed line, up to 12th order) is taken
from Ref. [84], its 6,6 Padé approximant is shown as a solid line.

6,6 Padé approximant is similar as in the J1−J2 square lattice
Heisenberg model of Fig. 5. In the temperature range for
which the Padé-HTSE is shown, its accuracy was confirmed
by recent experiments [86] and tensor network results [87].

X. CONCLUSION AND OUTLOOK

In this work, we proposed a FRG approach to spin-1/2
quantum magnets with spin operators rewritten in the SO(3)
Majorana representation. Compared to the established PF-
FRG based on representing spins by complex fermions, our
PMFRG method comes with a number of important concep-
tual differences, both on a technical level as well as regarding
the scope for applications. First, as the Majorana nature of
the spin representation is essential, we derived general FRG
flow equations for generic interacting Majorana Hamiltoni-
ans. These could potentially be useful for other applications
[88]. Second, the SO(3) Majorana representation avoids the
unphysical states inherent in the complex fermion represen-
tation and instead features a redundant description of spin
states reflected in a fixed artificial degeneracy. As a conse-
quence, the truncation of flow equations is the only physical
approximation made in the PMFRG. This explains why the
PMFRG yields reasonably accurate results for finite temper-
atures, being out of reach for the PFFRG. In particular, we
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showed how the PMFRG can be used to compute thermody-
namic quantities which are of great experimental relevance.
On the downside, the PMFRG’s precision at low temperatures
suffers from a divergence of the T = 0 flow, which we showed
to be closely related to the (ground-)state degeneracy inherent
in the SO(3) Majorana representation, but ultimately caused
due to inaccuracies introduced through the truncation of the
hierarchy of flow equations. We thus conclude that, at the cur-
rent stage, the PMFRG should be regarded not as a competi-
tor to the PFFRG, but rather a complement in the practitioners
toolbox tailored for finite and not too small temperatures.

Further work should investigate the potential of the recently
proposed multiloop extension of the (PF)FRG [62, 63, 71] to
mitigate the unphysical divergence mentioned above. More-
over, while the current paper has focused on Heisenberg sys-
tems with global spin rotation symmetry, generalization to-
wards different classes of systems with reduced symmetries,
i.e. Kitaev models and their variants, should be straightfor-

ward. Finally, we emphasize that the SO(3) Majorana repre-
sentation is only one out of several Majorana based spin rep-
resentations [75]. Based on our results, we believe that these
are promising but relatively underexplored venture points for
the application of many-body methods in the study of spin
systems.
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Appendix A: Details on the numerical implementation

The flow equations presented above can be solved using
standard, error controlled Runge-Kutta schemes, such as the
fifth-order Dormand-Prince method. In our case, we found lit-
tle dependence of our results on the choice of the integration
method used upon decreasing the relative and absolute accu-
racy to ∼ 10−2 or lower. In equivalence to implementations
of the PFFRG, the maximum distance treated in four-point
vertices Γij is limited to |ri − rj | ≤ L ' 10 for translation
invariant systems.

At finite temperatures, we treat the frequency dependence
by generating a set of Nω = 32 positive Matsubara indices
such that our results are converged in Nω . The indices were
chosen according to the following scheme such that the small-
est frequencies are included exactly, while larger indices are
more sparse and require for linear interpolation in between
them:

ni = round
[
z sinh

(
i

z

)]
, i = 0, 1, . . . , Nω . (A1)

The parameter z is then fully determined upon specification
of the temperature, the number of frequencies, and the maxi-
mum frequency. Since the according (fermionic) frequencies
are given by ωn = πT (2n + 1), one needs to be careful
when implementing fermionic symmetries such as γ(−nω) =
−γ(nω−1). Furthermore, the Matsubara integers correspond-
ing to sums and differences of fermionic frequencies are

ω1 + ω2 ↔ nω1
+ nω2

+ 1

ω1 − ω2 ↔ nω1
− nω2

. (A2)

As a result, only those sets of Matsubara integers that sum up
to odd integers ns + nt + nu = 2nω1

+ 1 are physical within
energy conservation and will be evaluated in vertices. For the
less robust implementation at T = 0, we choose a logarithmic
frequency mesh consisting of Nω = 96 positive frequencies
to avoid numerical errors from the finite frequency grid. The
frequency integral in the Katanin contribution is then carried
out numerically using a trapezoidal method.
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