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The discovery of magic angle twisted bilayer graphene (MATBG) has unveiled a 

rich variety of superconducting, magnetic and topologically nontrivial phases. The 
existence of all these phases in one material, and their tunability, has opened new 
pathways for the creation of unusual gate tunable junctions. However, the required 
conditions for their creation – gate induced transitions between phases in zero magnetic 
field – have so far not been achieved. Here, we report on the first experimental 
demonstration of a device that is both a zero-field Chern insulator and a superconductor.  
The Chern insulator occurs near moiré cell filling factor = +1 in a hBN non-aligned 
MATBG device and manifests itself via an anomalous Hall effect. The insulator has 
Chern number C= ±1 and a relatively high Curie temperature of Tc ≈ 4.5 K. Gate tuning 
away from this state exposes strong superconducting phases with critical temperatures of 
up to Tc ≈ 3.5 K. In a perpendicular magnetic field above B > 0.5 T we observe a transition 
of the = +1 Chern insulator from Chern number C = ±1 to C = 3, characterized by a 
quantized Hall plateau with Ryx = h/3e2. These observations show that interaction-induced 
symmetry breaking in MATBG leads to zero-field ground states that include almost 
degenerate and closely competing Chern insulators, and that states with larger Chern 
numbers couple most strongly to the B-field. By providing the first demonstration of a 
system that allows gate-induced transitions between magnetic and superconducting 
phases, our observations mark a major milestone in the creation of a new generation of 
quantum electronics. 
 

Recently discovered quantum phases in the flat-bands of θm~1.1° magic angle twisted 
bilayer graphene (MATBG) include correlated insulators1–5 (CI), superconductors2,6–16 (SC), 
and interaction induced correlated Chern insulators17–19, 35-38 (CCI).  The CCIs can occur with 
different Chern numbers, and have U(4) valley/spin ferromagnetism in the bulk and 
topologically protected states at device edges. The search for the exact nature of these exotic 
phases20–23 and the competition10,24–29 between them requires a complete understanding of the 
role of electronic interactions in the symmetry breaking of the non-interacting 4-fold spin and 
valley degenerate bands. The existence of multiple correlated phases in one materials platform 
opens up new possibilities for the creation of complex gate tunable junctions30,31.  Among these 
the most interesting are junctions between superconducting and topological magnetic phases. 
The clean, gate defined homojunctions of these phases could pave new avenues for the creation 
of topological and spin-triplet superconductivity, as well as non-abelian particles, such as para-
fermions and Majorana fermions32. However, the necessary requirements for such junctions, 



 

namely reversible gate tuning between SC and CCI states in a single device in zero magnetic 
field, has not been previously achieved. 

 
The occurrences of  CCI phases in MATBG at integer carrier filling per moiré unit cell 

 is a result of electronic interactions that break the system’s combined inversion and time-
reversal symmetry C2T. Breaking this symmetry can give rise to gapped valley polarized bands 
and to the formation of quantum Hall isospin ferromagnets33–35 with a well-defined 
correspondence (C, ) between Chern numbers C and electron fillings  25,26. However, while 
theory predicts the existence of a variety of competing CCIs in zero magnetic field24,25, some 
of these states have so far only be observed at elevated perpendicular B-field, and hence above 
the critical field of the SC states.  The  experimental variability of the CCI state manifestation 
can be explained by the sensitivity of the competition between states to experimental 
parameters, such as strain and dielectric environment10, and also possibly by complex networks 
of magnetic domain walls that can obscure the quantization of the CCIs. In hexagonal boron 
nitride (hBN) aligned MATBG devices with explicitly broken C2 symmetry at the single 
particle level, CCIs with a quantized Hall conductance in zero magnetic field have been found 
at = +318.  However, neither SC nor CIs were observed in these devices, demonstrating that 
the single-particle term in the Hamiltonian that favors one sublattice over the other in aligned 
hBN devices, alters the competition between states.  

 
Here we report on the first observation of an interaction induced anomalous Hall effect 

(AHE) in hBN non-aligned MATBG.  The CCI occurs near = +1 filling and marks the 
formation of two (not yet fully quantized) C = ±1 correlated Chern insulators in zero magnetic 
field B = 0 T. This is the first observation of a CCI near = +1 in any MATBG device, hBN 
aligned or non-aligned. The device also displays CIs with trivial gaps at  = ±2 and  = +3, as 
well as fully developed superconducting regions that allow direct gate-induced switching 
between SC and CCI states. Furthermore, in elevated out-of-plane B-field the device shows a 
pronounced sequence of perfectly quantized CCIs which follow the correspondence of (C, ) 
of (±2, 0), (±4, 0), (±3, ±1), (±2, ±2) and (±1, ±3)36–41. We find that these high field topological 
CCI states can both coexist with non-topological CI states and compete with the CCI states 
observed in the absence of magnetic field, in particular the (±1,1) and the (3,1) states.   

 
Fig. 1a shows the optical image of the four-terminal transport device, which consists of 

a graphite/hBN/MATBG/hBN heterostructure with a twist angle of θ = 1.08 ± 0.01° (ns = 
2.71×1012 cm-2).  Crystallographic alignment between MATBG and hBN substrate layers is 
excluded by optical images of the naturally broken crystal edges of the individual layers, as 
well as by the absence of a charge neutrality gap and satellite resistance peaks in transport 
measurements (see SI for details). Here the longitudinal Rxx = Vxx/I and Hall Ryx = -Vxy/I 
resistance values are obtained from lock-in voltage measurements of Vxx and Vxy, and the 
source-drain current I (see Methods). The charge carrier density n is capacitively controlled 
with a local back gate voltage Vg on the graphite layer. We define the filling factor of carriers 
per moiré unit cell as = 4n/ns, where ns is the density of fully filled superlattice flat band and 
the prefactor 4 accounts for spin and valley degeneracy of each low-energy flat band. 

 
Fig. 1b (top) shows the temperature and density dependent phase diagram of the device, 

via a color plot of Rxx vs. n and T in zero magnetic field B, and Fig. 1b (bottom) shows the 
corresponding line-traces of Rxx and Ryx vs. n at base temperature T = 30mK. At integer filling 
factors of  =±2 and  =+3 we observe strong, temperature activated Rxx peaks, while Ryx 
remains negligible, indicating the formation of correlated insulators with topologically trivial 



 

gaps, as reported in all previous studies2,6,9. In addition, the device shows dome-shaped 
superconducting regions in the n-T phase space in which Rxx = 0 Ω (Fig. 1 b and c), and which 
have a critical temperature of up to Tc ≈ 3.5 K (taken as 50% of normal states resistance at = 
-2.16). Differential resistance dVxx/dI measurements vs. bias current Idc and perpendicular 
magnetic field B show characteristic diamond shapes (Fig. 1d), and Fraunhofer features (ED 
Fig. 8), with critical currents and critical magnetic field values of Ic = 692 nA and Bc = 210 mT. 
These results are overall in very good agreement with values found in previous reports on 
superconductivity in MATBG2,6,9. 

 
In stark contrast to all previous studies of MATBG, however, at a filling of = +1, we 

observe a pronounced anomalous Hall effect (AHE) manifested by a non-zero Hall resistance 
which at T = 50 mK reaches a value close to the quantum of conductance Ryx ≈ 0.9h/e2, and 
goes hand-in-hand with a vanishingly small longitudinal resistance that approaches Rxx = 0 Ω 
(Fig. 1e). The sign of Ryx can be flipped by applying a small perpendicular field B < 200mT, 
and shows a strong hysteresis loop between up and down sweeps of the field, which are 
centered around B = 0 T. The anomalous Hall effect occurs in a narrow density range from ≈ 
+0.6 to ≈ +1.  The strength of the hysteresis loop, which is defined as Ryx/2 = (Ryx

B↓-Ryx
B↑)/2 

(B = 0 T), has a maximum at a filling of  ≈ +0.84 (n = 0.57×1012 cm-2). Ryx/2 is quite robust 
at elevated temperatures, with an extracted Curie temperature of Tc ≈ 4.5 K (Fig. 1f), and 
follows a thermally activated dependence with an extracted energy gap ≈ 2.41 meV. Overall 
these findings are notably close to previous reports on magnetism in graphene moiré 
heterostructures17,18,42–44, which have been interpreted as manifestations of  an underdeveloped 
correlated Chern insulator with |C| = 1.  The absence of quantization at the present time may 
be due to quasiparticle delocalization, possibly assisted by transport pathways along domain 
walls. 

While at B = 0 T we only observe two CCI states with indices (±1, 1), we see many 
more CCI states at high B-fields. The high B-field phase diagrams in Fig. 2a and b shows Rxx 
and Ryx measurements as a function of n and B at T = 50 mK, and Fig. 2c displays the schematic 
of the most dominant features of the resulting Landau Fan diagram. It consists of a multitude 
of regions with quantized Hall conductance Ryx ~ h/Ce and Rxx ~ 0 Ω, which form wedge-like 
areas. These states follow a linear slope in the n-B phase space, which is defined by the Streda 
formula45 dn/dB = Ce/h, and originate from different fillings   at B = 0 T. In addition, we also 
see highly resistive CIs at fillings  = ±2 and  = +3, which due to their topologically trivial 
gaps with Chern number C = 0, form vertical regions in the n-B phase space. While overall, we 
see a multitude of Landau level-like gaps, we find a clear hierarchy of gaps where the states 
with the corresponding indices of (C, ) are particularly strongly pronounced - (±2, 0), (±4, 0), 
(±3, ±1), (±2, ±2) and (±1, ±3). These states are quantized at much lower fields and have almost 
an order of magnitude larger extracted gaps than typical LLs in the system, and have been 
recently interpreted as interaction driven CCIs, which are stabilized by a small B-field35. 

We compare the experimental findings with the theoretical phase diagram of 
MATBG22–25,46, which predicts a series of CIs and CCIs (Fig. 3). While the finer details of this 
phase diagram (in particular valley-spin polarizations) are not completely settled, the 
competition between states with different Chern numbers, if not their energetic order, is similar 
in most theoretical scenarios. In order to motivate the theoretical phase diagram, we consider 
two limits: first, the flat-band limit, where the kinetic energy of the bands is artificially tuned 
to zero, and second, the chiral limit, where the AA-region hopping between the MATBG 
bilayers is artificially tuned to zero (the AB-region coupling is still considered). In this “chiral-



 

flat” limit, the system enjoys a large U(4)×U(4) symmetry, which allows for the exact 
determination of the ground-states of the Coulomb interaction Hamiltonian. Due to the single 
particle topology of MATBG, the two flat bands at each valley and spin bands can be labeled 
by a Chern number C = 1 and C = -1, related by C2 symmetry22–24,46–49

 . In the chiral flat limit, 
at each filling , the interaction favors the successive occupation of such Chern bands – 
reminiscent of quantum Hall ferromagnetism, leading to many-body degenerate ground states 
(which can be classified by U(4)×U(4) representations) at filling  with Chern number (4 - |  
|), (2 - |  |), ..., (| | - 2), (| | - 4). We interpret these “chiral-flat” limit states as the low-energy 
states which compete against each other in the realistic system and which we observe in this 
study.  

 
Realistic MATBG is however, not exactly in the chiral-flat limit. Perturbation away 

from the chiral limit (but still not considering the kinetic energy of the bands) provides insight 
into the nature of the correlated states: the lowest Chern number correlated states win, while 
the larger Chern number correlated states acquire a finite energy above the ground-state. Hence 
at filling  = 0, ±2 the theoretical ground states have Chern number 0, while at  = ±1,±3 has 
theoretical ground states have Chern number |C| = 1, all of which are now ferromagnetic in a 
lower U(4) symmetry that still exists in the flat-band limit. A magnetic field lowers the energy 
of the large Chern number states with respect to those of the low Chern number states. At filling  
 = ±1 a first order phase transition between  the low-field |C| = 1 ground-state and the high-
field |C| = 3 ground-state is predicted to occur at B2 = 0.5 T25. At filling  = ±2 a first order 
phase transition between the low-field |C| = 0 ground-state and the high-field |C| = 2 ground-
state is predicted to occur at B1 = 0.2 T, although these numbers should only be indicative of 
order-of magnitude.  

 
Perturbation theory predicts the polarization of the Chern correlated states upon 

introduction of kinetic energy, when the symmetry of the system lowers even further to U(2) 
spin-charge rotation per valley. The Chern number C = 0 and 0 < |C| < 4 − || states at integer 
fillings are fully and partially intervalley coherent respectively, while the states with Chern 
number |C| = 4 − || are valley polarized. These results are perturbative away from the chiral-
flat limit. The theoretical predictions are only as good as the region of validity of the 
perturbation allows.  Numerical results based on exact diagonalization and DMRG23,46,50 
suggest that some of the Chern insulating ground-states, particularly at  = ±3, do not survive 
for realistic MATBG parameters, and that a competition occurs between (nematic) metal, 
momentum M (π) stripe, and K-CDW orders and metallic states with no broken symmetries.  
 

We now analyze the correspondence between the experimental and the theoretical 
phase diagrams. At  = ±2, the experiment and theory are in agreement with a zero field Chern 
number C = 0 state and an in-field |C| = 2 state. In zero field at  = +3, the experimental Chern 
number is C = 0, while for  = -3 we do not find any experimental signatures of neither, the CI 
nor a CCI. These zero field states conflict with the perturbation-derived |C| = 1 states, however 
at high B-field these transition to |C| = 1 states, as predicted by theory. We find that the 
theoretically predicted low field |C| = 1 state is the only possible option arising from a 
translationally invariant interaction driven Chern bands at at  = ±3, although C = 0 insulators 
are allowed if mixing with remote bands plays a role24. Its absence could suggests the presence 
of translational symmetry-broken states at this filling, which is further supported by numerical 
results25. At  = +1, the experimental discovery, presented here of a |C| = 1 is in tune with the 
theoretically predicted ground-state. Most strikingly, the in-field transition from the |C| = 1 to 



 

the higher, |C| = 3 state also corresponds to the theoretically predicted state. Such agreement at 
 = +1 suggests that further samples can reveal similar physics at  = -1. 

 
We examine the observed B-field induced transitions of the phases originating from the 

= +1 filling in detail in Fig. 4b, which shows a color map of Ryx vs. n and B. At low fields B 
< 0.5 T the phase diagram is mainly defined by the AHE hysteresis loop on the hole doped side 
of  < +1. The center of the hysteresis loop shifts in B-field in agreement with the Streda 
formula for a Chern number of C = -1 for positive and C = +1 for negative B-field (Fig. 4a). 
The sign of the Chern numbers is consistent with the sign of Ryx for the AHE, which maintains 
positive values in positive B, while the normal Hall effect at higher n produces a negative Ryx. 
While Ryx is strongest around ≈ +0.84, close to  = +1 it is strongly suppressed and its 
coercive B-field values are increased (Fig. 4d and ED Fig. 4). Sharply at   > +1 we observe a 
sign reversal of Ryx, which however becomes much weaker.  Changes in the sense of the 
hysteresis loop and the magnitude of the hysteresis loop across the gap are expected to be a 
common feature of Chern insulators43,51 (See SI and Fig. 4e).  These low field CCI states 
gradually disappear above B > 0.5 T, and we observe the onset of an CCI which also follows 
the Streda formula with Chern number of C = +3 and shows well quantized Hall plateaus Ryx = 
h/3e2 (Rxx = 0 Ω) shown in Fig. 4c. The absence of a C = -3 state is likely due to competing 
metallic states with no broken symmetries as explained in the supplementary material. These 
findings clearly establish that just like theory predicts, the ground states of MATBG consist of 
closely competing CCIs, for which B-field can act as a tuning knob, which couples strongest 
to the states with higher Chern number. 

 
To summarize - our findings shed new light on the underlying ground states of 

MATBG, and show that even in zero-field these form nearly degenerate and competing 
interaction-induced Chern insulators, which can be further tuned by weak magnetic fields. The 
exact sequence of these phases in zero-field and their evolution in B-field gives detailed 
information about the competition of these phases and allows to understand the exact 
microscopic mechanism that drive their formation, through comparisons to ongoing theoretical 
models. The zero-field coexistence and gate tunability of these magnetically and topological 
nontrivial phases with superconducting phases, presents a remarkable opportunity to 
electronically hybridize these phases through engineering of complex gate induced junctions, 
and will lead to the creation of ever more complex quantum phases based on the MATBG 
platform. 
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Methods and materials. 
Device fabrication. 
Our devices are fabricated using a “cut-and-stack” dry transfer method (ED Fig. 1). We 
assemble our heterostructure from top to bottom using a sacrificial poly-bis-phenol A carbonate 
(PC) layer placed on top of a PDMS stamp (polydimethylsiloxane). All flakes used for the 



 

assembly are prepared by mechanical exfoliation process on Si++/SiO2 chips.  First, we pick up 
a top hBN flake, followed by a subsequent pick up of the first graphene half, which was precut 
in two pieces using an atomic force microscopy tip. During the next step, the transfer stage is 
rotated by ~1.1° introducing an interlayer twist between graphene layers, followed by a second 
graphene pickup process. The partial hBN/MATBG stack is then used to pick up a bottom hBN 
flake (~7nm), followed by a pick-up of a graphite stripe (~3nm thick) that is used as a high-
quality local back gate. At the next steps, the quadruple stack hBN/MATBG/hBN/graphite is 
etched into a multi-terminal Hall bar geometry and coupled to 1D metallic contacts (Cr/Au 
5/40 nm).  
 
Measurements. 
Transport measurement were performed in a cryogen-free dilution refrigerator using lock-in 
amplifiers with low AC excitation current in the range 1-5 nA at the excitation frequency of 
19.111 Hz. The direct current measurements shown in ED Fig. 9 were performed using a 
SR560 DC voltage preamplifier in combination with a Keithley 2700 multimeter. Most of the 
data shown in this study is taken at base temperatures of the dilution refrigerator 30-50mK and 
available magnetic fields up to 8 T. 
 
Twist angle extraction. 
To extract the twist angle we analyze the phase diagram shown on the ED Fig. 3. Using the 
relation ns = 8θ2/√3a2, where θ is the interlayer twist angle, ns is the charge carrier density 
corresponding to the fully filled superlattice unit cell and a=0.246 nm is the interatom distance 
in single layer graphene, we determine the twist angle in our device θ=1.08±0.01°. ns is derived 
from the quantum oscillations emanating outside of the fully filled flat bands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figures. 

 
Figure 1. | Coexistence of magnetism and superconductivity in MATBG. (a) Optical image 
and experimental transport measurements setup of the locally gated MATBG device. (b) Upper 
panel. Colormap Rxx vs. n and T. A multitude of emergent strongly correlated phases including 
SCs, CIs and CCI states coexisting in the same phase space. Dark blue regions indicate SC 
phases with Rxx values below the noise level. Black regions indicate data points with quenched 
drain current. BI denotes band insulators. Lower panel shows Rxx and Ryx vs. n line traces at 20 
mT. The data points, for which drain current quenches, were dropped out. The sample is tuned 
by the back gate between AHE and SC phases. The inset demonstrates a zoom-in image around 
the SC pocket with vanishing longitudinal resistance values. (c) Temperature dependence Rxx 
vs. T of the superconducting domain at optimal doping =-2.16 shows critical temperature Tc 
= 3.5 K (defined by the temperature of 50% of the normal metal state resistance). (d) 
Differential resistance dVxx/dI vs. direct current bias Idc and magnetic field B. A “diamond” - 
like feature corresponds to SC phase with optimal doping at =-2.16. (e) Upper panel. Hall 
resistance Ryx vs. B taken for increasing and decreasing magnetic fields. Hysteresis loops are 
indicative of the incipient Chern insulator |C|=1 at filling =+0.84. Black arrows show the B-
field sweep directions. Lower panel shows Rxx vs. B line trace taken at T=50 mK. (f) AHE 
resistance Ryx/2 vs. B and T taken at =+0.84. Ryx/2 is defined by subtracting Ryx(B) as 
magnetic field decreases from Ryx(B) as B increases Ryx/2=(Ryx

B↓-Ryx
B↑)/2. The hysteresis 

disappears above TC~4.5 K. 
 
 
 
 
 



 

 
Figure 2. | Chern insulators in MATBG at T=50 mK. (a)-(b) Rxx and Ryx vs n and B over the 
full range of charge carrier densities of the low-energy flat bands. The phase space exhibits a 
zero-field Chern number -1 insulator (green solid line) and a set of high-field Chern insulators 
carrying numbers ±1, ±2, and ±3 (solid blue lines). We observe the full set of Chern insulators 
emanating from partial fillings of the superlattice unit cell (, C) = (±1, ±3), (±2, ±2), (±3, ±1). 
(c) Schematic image, illustrating the experimental phase diagram shown in (a)-(b). The solid 
lines correspond to well developed Chern insulators with Hall conductance quantized at integer 
number of e2/h in the broad regions of the phase space in (b). Dashed lines show other quantum 
Hall states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 3. | Phase diagram of MATBG in a magnetic field. Large magnetic field favors the 
largest Chern number possible many-body states given the single-particle MATBG bands. 
These states exhibit the maximum valley polarization allowed by the filling. At low fields, the 
system undergoes phase transitions from the high-field ground-states, and the theoretical 
situation is more complex. While at filling 0 and ±2, the many-body states are correlated 
insulators with zero Chern number and exhibit inter-valley coherence, at filling ±3, there is 
strong competition between a correlated C=±1 Chern insulator and several C=0 translational 
or rotational symmetry broken states. Experimentally, no CCI is obtained at this filling, 
indicating that the CDW or nematic states win. At filling ±2, the ground-state switches from 
|C|=2 in high field to C=0 at low field, in agreement with experiment. Nontrivially, at filling 
±1, the ground-state switches from |C|=3 in high field to |C|=1 in low field, in agreement with 
our new experimental results. Dark blue lines above B1 show valley polarized CCI states. PIVC 
denotes partially inter-valley coherent and IVC – inter-valley coherent states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 4. | Competing zero-field Chern insulators in MATBG at T=50 mK. (a) Ryx vs. B 
trace taken along the green line shown in (b). The slope of Ryx minimizes when the line is 
chosen along dn/dB = ±e/h. (b) Ryx vs. n and B close to =+1. The phase space exhibits zero-
field Chern number 1 CCI (green line) and high-field Chern number 3 CCI (outlined by the 
white dashed line).  (c) Ryx and Rxx vs n taken at B=2.5 T exhibits a single quantum Hall-like 
fully quantized h/3e2 plateau indicative of a CCI with Chern number 3. (d) AHE resistance 
Ryx/2 vs. n and B taken from the pair of contacts adjacent to one in Fig. 1e. Green and blue 
symbols show coercive field values. Note the switch of the magnetization sign upon crossing 
=+1 (dashed line). Colorscale is set to von Klitzing constant h/e2. (e) Ryx vs. B line traces taken 
at charge carrier densities color-coded to arrows shown in (d). (f)-(g) Schematics of the C=-1 
and C=+3 states at filling =+1. Per graphene valley, the two bands of MATBG can be 
transformed into two bands one with Chern number 1, the other with Chern number -1. The 
ground-states of the interacting Hamiltonian (exact in some limit) then correspond to specific 
ways of filling these states. For C=-1, we find that a partially valley coherent state (dashed 
lines, basis formed by wavefunctions from the two valleys) is preferred, while for C=+3 (the 
high-field ground-state), the largest valley polarization state wins. 
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A. Check for alignment to hBN. 

To ensure that there is no alignment of crystallographic edges between graphene and 
either encapsulating hBN, we study a relative twist angle mismatch between the layers under 
optical microscope (Extended Data Fig. 1). White dashed line in the Extended Data Fig. 1a 
shows a naturally broken graphene edge that we ascribe to either zig-zag or armchair type. 
Similarly, orange and blue dashed lines in the Extended Data Fig. 1b and c, respectively, show 
naturally broken edges of the top and bottom hBN layers. White, orange and blue dashed lines 
in Extended Data Fig. 1d correspond to ones shown in the Extended Data Fig. 1a-c, and the 
numbers indicate relative twist angles between the naturally broken graphene edge and those 
found in hBN layers. 

 
Extended Data Fig. 2 demonstrates Arrhenius plots for the superlattice unit cell fillings 

=0,±2, ±4. CNP at =0 shows a very weak dependence upon the decreasing T, which suggests 
no thermally activated gap. This is in a stark contrast with the hBN-aligned devices, which 
usually show large CNP gaps 0≈6-7 meV due to sublattice symmetry breaking. CI states at 
=±2 show strong insulator-like thermal activation behavior with -2=1.49 meV,  +2=1.67 
meV. We also extract band insulator gaps -4=32 meV, +4=45 meV. We note that the band 
structure exhibits strong particle-hole asymmetry with the stronger band insulator on the 
conduction flat band side. 

 
Lastly, Extended Data Fig. 3 demonstrates an extended range phase diagrams Rxx as a 

function of n and T beyond the flat band region. We note, that we do not observe additional 
satellite resistance peaks due to the interplay between the hBN/graphene moiré superlattice and 
the magnetic length that could be possibly assigned to alignment to hBN substrate. We note 
that in case of perfect (0°) alignment between hBN and graphene we expect to observe 
additional resistance peaks around n = 2.4×1012 cm-2, which are completely absent in our 
measurements both inside and outside the flat band region.  

 
 



 

Extended Data Figure 1. | Alignment to hBN. (a) - (c) Optical micrographs of monolayer 
graphene (a), top (b) and bottom hBN (c) used for stacking the heterostructure shown in (d). 
(d) Optical image of the final stack. The numbers show relative misalignment angles between 
the white line (graphene edge) and bottom (blue) and top (orange) hBN edges. (e) Atomic force 
microscopy image of the stack shown in (d). The white dashed line box shows the device area. 
White bars correspond to 5 μm. 

 

Extended Data Figure 2. | Arrhenius plots for integer fillings =0,±2, ±4. Extracted gaps are 
-2=1.49 meV, +2=1.67 meV, -4=32 meV and  +4=45 meV. CNP resistance demonstrates a 
weak dependence on T suggesting no thermally activated gap thus pointing towards no explicit 
sublattice symmetry breaking due to alignment to hBN. 

 
 



 

Extended Data Figure 3. | Rxx vs. n and T outside the flat band region. The data demonstrates 
an absence of the satellite peaks that might be caused by a crystallographic alignment to hBN. 
 
B. Extended data on AHE close to =+1 in MATBG. 

In this section we show additional measurements of the AHE state close to =+1. We 
plot hysteresis loops taken at different charge carrier densities in Extended Data Fig. 4a for the 
same pair of contacts as in Fig. 1e in the main text (D-H in Extended Data Figure 7). In 
Extended Data Fig. 4b we show the evolution of anomalous Hall resistance Ryx/2 as a function 
of n and B extracted from a set of hysteresis loops close to =+1. Maximized AHE resistance 
(Ryx/2) densely localizes close to  ≈+0.84.  

 
Extended Data Fig. 4c demonstrates Ryx/2 in units of h/e2 as a function of n taken along 

the B=0 T line in Extended Data Fig. 4b. Upon increasing the superlattice filling from ≈+0.84 
to =+1 we observe a strong suppression of the AHE resistance, while the coercive field values 
keep increasing for both negative and positive B (blue and green data points in Extended Data 
Fig. 4b, respectively) indicative of a gradually suppressed coupling to the external field. In fact, 
we observe that the coercive field values maximize at  ≈+0.98 very close to the full integer 
filling. Upon closer inspection we find that this feature is likely associated with a weak 
magnetization reversal when the superlattice filling changes from the hole- to electron-doped 
side of  =+1 similar to the previously reported pattern of quantized AHE at  =+3 in hBN-
aligned MATBG and twisted mono-bilayer graphene (see Extended Data Fig. 5).  

 
We find this observation consistent with the divergence of the coercive field while the 

sample doping reaches exactly =+1. For a fixed valley polarization the total magnetization 
can change sign when passing through zero, therefore, being discontinuous when the chemical 
potential crosses the gap; the coupling to the magnetic field vanishes while approaching to 
=+1, thus, diverging the coercive field. In case of small Chern numbers (as in case of 
MATBG) the input of the bulk component of magnetization may be dominant resulting in a 
less robust magnetic states due to the higher influence of disorder. Ideally, in case of a 
minimized bulk magnetization, the edge magnetization would allow for the reversibility of the 
CCI at =+1. However, without alignment to hBN the probability to observe a fully reversible 
CCI is very low due to the absence of the exchange splitting between the Fermi level and the 
remote bands. 



 

 
Extended Data Figure 4. | Anomalous Hall effect at =+1 without alignment to hBN. (a) A 
set of hysteresis loops taken at superlattice density fillings =0.74, 0.78, 0.82, 0.86, 0.90 and 
0.94 (from bottom to top) and shifted by 2h/e2 for clarity. The data are obtained from the same 
pair of contacts as shown in Fig. 1e (D-H in Extended Data Figure 7). T=50 mK. (b) AHE 
resistance Ryx/2  as function of n and B. Green and blue dashed lines with symbols show 
coercive field values for positive and negative B, respectively. Colorscale is set to von Klitzing 
constant h/e2. Arrow colors indicate hysteresis loops shown in (a). (c) Line trace taken along 
B=0 T shows maximized AHE resistance around =+0.84.  
 
 

 
Extended Data Figure 5. | Signatures of weak magnetization reversal at =+1. (a) AHE 
resistance Ryx/2  as function of n and B taken from a pair of contacts C-I (see Extended Data 
Fig. 7), the same dataset reported in Fig. 4d on a different colorscale. (b) Same as (a) shown 
on a significantly enhanced colorscale reveals faint magnetization reversal signatures for 
charge carrier densities =+1+.  Note an abrupt anomalous Hall resistance sign change from 
strongly negative to weakly positive upon crossing over =+1. 
 



 

C. Correlated Chern insulators stabilized by magnetic field. 
By applying higher magnetic field, we reveal a sequence of the quantum Hall-like 

plateaus that we assign to the high-field correlated Chern insulators. The line cuts shown in 
Extended Data Fig. 6 demonstrate the dominant sequence of the plateaus that match 
exceptionally well with the theory of the predicted CCIs at high magnetic fields above B1 (Fig. 
3 in the main text).  

 
Extended Data Figure 6. | Longitudinal and Hall conductance at high magnetic field. Hall 
conductance yx vs. n  at (a) 6T and the valence flat band and (b) 4T and the conductance flat 
band. The sequence reveals a set of strongly quantized yx with (C, ) = (±2, 0), (±4, 0), (±3, 
±1), (±2, ±2) and (±1, ±3). 
 
D. Angle homogeneity in the studied sample. 

We perform two terminal conductance measurements between pairs of adjacent contacts 
to mesoscopically probe twist angle homogeneity. All pairs exhibit a presence of strong 
correlations visible by the emergence of CI conductivity minima at =+1, ±2, +3. This indicates 
a very low twist angle disorder, which can also mediate the observation of AHE state at =+1.  

 
Extended Data Figure 7. | Two-terminal conductance data. Line traces correspond to the two 
terminal conductance G2 vs. n taken for all available pairs of contacts. The legend indicates 
corresponding pairs. 

 



 

We quantify the twist angle disorder by extracting twist angles relative to the pair of 
contacts reported in the main text (C-D in Extended Data Figure 7). First, we find the deviation 
of the charge carrier density corresponding to the = ±2 for all pair of contacts. Second, we 
compare this value to the one extracted from the SdH oscillations for the pair C-D (see 
Methods). Last, we extract a conformed twist angle using the formula ns = 8θ2/√3a2. As a 
result, we find the deviations of the charge carrier density corresponding to the fully filled 
superlattice, which fall in the range ns = (2.71±0.04)×1012 cm-2. Thus, the absolute twist angle 
variation across the sample is θ=1.08±0.01°. 
 
E. Hall density data. 

We extract the Hall density from the low-field Hall resistance data using the relation nH 
= -B/eRxy

antisym, where Rxy
antisym = (Rxy(B) – Rxy(-B))/2 is an antisymmetric component of the 

measured Hall resistance used to eliminate any symmetric-in-B input. The Hall density 
experiences a few clear resets along the charge carrier line indicative of new Fermi surface 
formations at =+1, ±2, ±3. This data is consistent with high magnetic field data shown in Fig. 
2 in the main text, where we observe new sets of well-quantized QH-like plateaus emanating 
from each of these integer fillings. Note the switch of Hall density sign inside the AHE region 
denoted by the black dashed lines.  

Extended Data Figure 8. | Hall density measurements. The light-blue line trace shows nH vs. 
n taken at 0.3 T. The light green and light yellow stripes show the position of CI states, at which 
we also observe clear signatures of Hall density resets. Black dashed lines mark the region, 
where we observe signatures of AHE. Interestingly, the Hall density changes sign inside and 
outside this region. In addition, we plot Hall density nH vs. n close to =+1 for other magnetic 
field values (0.1, 0.2, 0.4, 0.5 T). 

 
 
 
 
 
 
 
 
 
 
 
 



 

F. Additional data on superconductivity and magnetic hysteresis. 
 

 
Extended Data Figure 9. | Full characterization of SC phases. The left- (right-) hand side of 
the figure corresponds to SC pockets with optimal doping =-2.16 (=2.10). (a)-(b) 
Differential resistance dVxx/dI as a function of direct current bias Idc and B. AC excitation 
current used for this measurement is Iac = 2 nA. Fraunhofer-like oscillation patterns are clearly 
visible in (b). The inset in (b) shows Rxx vs. T for SC at optimal doping =2.10. (c)-(d) 
Berezinskii–Kosterlitz–Thouless (BKT) measurements of differential resistance dVxx/dI versus 
Idc taken at different temperatures. BKT transition temperature TBKT is defined by fitting to dVxx/dI∝I2. 
The insets show I-V curves that show critical current of approximately 0.69 μA (=-2.16) and 
0.06 μA (=2.10). (e)-(f) Ginzburg-Landau coherence length measurements. Critical field Hc⊥ 
versus T taken at half of normal state resistance values. The cyan lines are the best linear fit to 
data. We extract ξGL = 38 nm (e) and ξGL = 153 nm (f) from Hc=(0/(2ξGL

2))(1-T/Tc0), where 
0=h/2e is superconducting flux quantum and Tc0 is the mean-field temperature at zero B. 



 

 
Extended Data Figure 10. | Repeatability of hysteresis loops. (a) Ryx(B) line traces for two 
different sweeps taken at =+0.84. The sweeps are taken 48 hours apart at 50 mK. (b) Ryx(B) 
line traces taken before and after thermocycling the sample from 50 mK to 5 K and back to 50 
mK at =+0.84. (c) Ryx(B) line traces taken for AC excitation currents 1 nA and 5 nA at 
=+0.82. The dashed (solid) lines corresponds to ascending (descending) B-field. 
 

 
 
Extended Data Figure 11. | High resolution scan for the low range of B-field. (a) Rxx and (b) 
Ryx as a function of n and B for low range of the magnetic fields taken at 50 mK. Note an abrupt 
switch of sign of Ryx at ≈+1 upon crossing B=0 T line. Dark grey regions in (a) indicate 
quenched drain current due to the high sample resistance thus leading to unreliable voltage 
readings. 
 
 



 

G. Competition of correlated Chern insulator states under magnetic field at =+1. 
At integer fillings of the moiré flat bands, theoretical works have predicted a series of 

trivial and topological insulating states that are very close in energy. The ground state phase 
diagram seen by experiments vary from sample to sample which suggests that the exact 
energetic order of these states is sensitive to experimental parameters. When a magnetic field 
is applied, the total energies of these states as well as their relative order will be altered. Here 
we focus on the correlated insulating states at =+1. 

 
We perform self-consistent Hartree-Fock mean-field calculations to study the ground 

states at integer filling factors. Details of the calculation can be found in SI Ref1 with an 
additional assumption that the remote band degrees of freedom are frozen, an approximation 
justified by the fact that the flat bands are relatively isolated from the remote bands. Here we 
used typical bandstructure parameters θ=1.1° and TAA/TAB=0.6, and, as an example, an 
interaction strength parameter ϵ -1=0.03 which can easily change as the distance to the nearby 
metallic gate is varied (see SI Ref2). 

 
At =+1, we found that the lowest energy states are insulating and spontaneously break 

C2T symmetry and the approximate U(4) flavor symmetry. As a result of flavor symmetry 
breaking, these states are both spin and valley polarized with one fully filled flavor, which is 
chosen spontaneously, and three half-filled flavors. The half-filled flavors have a gap between 
valence and conduction bands due to C2T symmetry breaking and a nonzero Chern number 
which, within the flat band Hilbert space, can be either +1 or -1. States with total Chern number 
C=±1 and ±3 are thus possible with the former being slightly lower in energy as shown by Ref3. 
As discussed in the main text, at zero or low magnetic field one expects that C=±1 states are 
more likely to be the ground state. The quasiparticle bands of the fully-filled flavor remains 
gapless with band touching at Dirac points. An overall energy gap is formed (orange region in 
Extended Data Figure 12) whose size depends on the strength of the Coulomb interaction. 
Several studies have also found ground states to be inter-valley coherent which we will discuss 
in later part of this section. In either case, the physics of the problem remains similar, as the 
charged ±1 excitation dispersions (Hartree-Fock bands) do not depend on the details of the 
polarization of the ground state (Ref.4). 

 
The change in total energy due to applied magnetic field B can be described by the 

magnetic potential energy ΔE=-BꞏM, where M is the total magnetization, which includes both 
spin and orbital contributions. For orbital Chern insulators (see Ref5) considered here, they 
only differ in orbital magnetization so we can ignore the spin magnetization. We calculate the 
orbital magnetization approximately by treating the mean-field quasiparticle states as non-
interacting Bloch electrons.  

 
Extended Data Figure 12 shows the orbital magnetization of the C=-1 state which has 

one fully-filled flavor and three half-filled flavors. For the fully-filled flavor, Chern numbers 
of its conduction and valence bands cancel each other; because the fully-filled density matrix 
cannot have C2T breaking order within the flat-band Hilbert space, its magnetization vanishes. 
For half-filled flavors, the Chern numbers can be either +1 or -1 depending on their 
spontaneous sublattice polarization. Inside the gap, orbital magnetization is linearly 
proportional to the Chern number (e.g. Ref5) and its slope has the same sign as the Chern 
number.  

 
 



 

Extended Data Figure 12. | Magnetization of the (C, ) = (-1, +1) mean-field insulating state 
as a function of chemical potential . The insulating state has one flavor fully filled flavor 
𝐾 ↑, which remain gapless, and three half-filled flavors 𝐾 ↓,𝐾′ ↑, and 𝐾ᇱ ↓, all of which have 
an interaction induced gap. The yellow and light green regions mark the energy span of the 
quasiparticle valence band (VB) and conduction band (CB), respectively. The orange region 
marks the overall energy gap, once kinetic energy has been introduced (the non-flat-band case, 
where the kinetic energy in the BM model is also taken into account, along with the strong 
Coulomb interaction). 
 

The total orbital magnetization M is a sum of the contributions from the four flavors. 
The sign of M inside the gap is in general not definite because the (overall) gap is very likely 
to span a larger energy range which includes the point at which M changes sign. For instance, 
at stronger interaction, the fully-filled flavor is lowered more in energy due to enhanced 
exchange splitting such that the overall gap is increased.  If we consider the slightly doped 
cases on the hole or electron sides of =+1, M has a definite sign. Because M normally changes 
sign across the gap, one expects the hysteresis loop in the Hall resistance also flips sign when 
going from hole doping side (<+1) to electron doping side (. This property also agrees 
with the experimental observations in Figure 4d and 4e. The magnitude of the magnetization 
is not exactly the same on the two sides of the gap. When the non-local tunneling effect is 
included (see discussions in the next section), the magnitude of the magnetization is much 
smaller on the side. The fact that the hysteresis loop changes sign at =+1 suggests that 
C=+1 state is seen on side, but only weakly developed. This agrees with the nonlocal 
tunneling effect that magnetization is small on the side, so it is hard for magnetic field to 
coarsen domain configurations. 
 

At higher enough magnetic field, the magnetization energy eventually wins over the 
zero-field total energy difference and favors state with larger magnitude of magnetization. The 
states with |C|=3 have similar quasiparticle dispersions as the |C|=1 states, however, because 
magnetization of the half-filled flavors have the same sign, they have larger magnitude of 
magnetization. Indeed the C=+3 Chern insulator state is seen here at higher field B>1 T and 



 

>+1+ with a well-quantized Hall conductance as shown in Figure 4c. We also expect 
C=-3 in the hole doped side<+1-, however, it is not seen here possibly because at the filling 
factor range<+1-, the ground state remains flavor symmetry unbroken leading to four-fold 
degenerate Landau levels as is indeed seen in this range. Exactly at which filling factor the 
flavor symmetry breaking order emerges depends primarily on the location of the van Hove 
singularity as discussed in Ref6. 

 
In above mean-field calculations, we have not allowed inter-valley coherence. Several 

theoretical works, including the work (Ref3) by one of the authors, have predicted that states 
with valley pseudo-spin component in the in-plane direction have lower energy than the spin-
valley polarized states. However, because valley coherence mixes bands with the same Chern 
number, and the fact that the predicted valley anisotropy is rather weak, we expect the change 
in quasiparticle characters comparing to the spin-valley polarized states is only qualitative and 
small. This is in agreement with Ref4 where, in the flat-band limit, the same excitation spectrum 
is found above any of the ground state, be they valley coherent or valley polarized.  As a 
numerical test, we performed self-consistent mean-field calculations allowing inter-valley 
channels. The resulting dispersions are showing in Extended Data Figure 13. We find that the 
inter-valley coherent (IVC) state is slightly lower in energy. Comparing the dispersion of the 
IVC state with that of the polarized state, we see that its dispersion only changes slightly with 
a small splitting in the region where bands from the two valleys are degenerate in the spin-
valley polarized state. We thus expect that the physics presented above using the spin-valley 
polarized states holds in IVC state case. 

 

 
Extended Data Figure 13. | Quasiparticle dispersion of (a) the spin-valley polarized state and 
(b) the inter-valley coherent state.  The red (blue) solid lines corresponds to spin up (down) 
bands. The spin up flavor has one more band filled than the spin down flavor. We note that 
along certain high symmetry lines the dispersions overlap. The dashed lines represent non-
interacting bands. 
 

A heuristic way of understanding the stabilization of the C=-1 state at low magnetic 
field (although during hysteresis, both C=+1 and C=-1 are observed and explained by our 
magnetization argument) is through their Landau level spectrum Extended Data Fig. 14a. 
Assume at zero magnetic field there exists two degenerate ground states, one with C=+1 and 
one with C=-1. These two ground-states have identical excitation spectrum. In field, they 
however differ by one zero mode, which, at constant filling , pins the Fermi level to be at 
the top/bottom of the valence/conduction band for Chern number +1/-1. By counting the 
energies of the occupied LL below the Fermi level, the C=-1 is favored in low B. The property 



 

that positive magnetic fields tend to favor C=-1 states for and C=+1 states for can 
be understood by the following heuristic argument.  The total energy vs. filling factor curve 
has a cusp at the densities of the gaps illustrated in Extended Data Fig. 14b.  For positive fields 
the C=+1 cusp occurs at a higher density than the C=-1 gap, leading to the illustrated energetic 
ordering illustrated vs. band filling. 

 
Extended Data Figure 14. | (a) Landau level spectrum of C=+1 and C=-1 Chern insulators with 
identical dispersion. The difference rests in the "zero-mode" Landau Level which has opposite in-field 
behavior for the two cases. (b) Total energy per area for states with C=+1 and C=-1 in the gap under 
finite positive magnetic field B>0. The cusps are where the |C|=1  gaps are located. (c) Same 
plot as in (b) for states with smaller magnetization on the electron doped side due to nonlocal 
tunneling effect discussed in next section. 
 
H.  Effect of particle-hole asymmetry 

The original Bistritzer-MacDonald (BM) continuum model has an approximate 
particle-hole symmetry based on which one would expect a particle-hole symmetric phase 
diagram with respect to . Instead almost all the experiments have shown certain degree of 
particle-hole asymmetry in MATBG phase diagram. One possible origin, which is not due to 
extrinsic factors, is the nonlocal tunneling that is ignored in the BM model (see Ref6 and 
references therein). Here we examine the effect of this nonlocal tunneling on the orbital 
magnetization. 
 

To show the effect of the particle-hole asymmetry, we plot the orbital magnetization of 
non-interacting bands from a nonlocal continuum model. NL characterizes the strength of the 
nonlocal tunneling which in turn determines the degree of particle-hole asymmetry. As NL 
increases, the magnetization increases uniformly inside the gap and the point of zero 
magnetization shifts to the right side of the gap. The Chern bands used here all have C=-1 
inside the gap. For bands with C=+1, the magnetization curve flips sign and decreases 
uniformly within the gap as NL increases. For both cases, the point of zero magnetization shifts 
away from the middle of the gap towards the bottom of the conduction band. As discussed in 
the previous section, this effect causes the magnitude of the magnetization smaller on the high-
filling factor side of the gap – in agreement with our experimental observations. 



 

 
Extended Data Figure 15. | Magnetization of particle-hole asymmetric flat bands. The degree 
of the asymmetry is determined by the strength of the nonlocal tunneling NL. A C2T breaking 
potential is added manually which is necessary to generate finite orbital magnetization. The 
dashed lines on the left roughly marks the top of the valence band while that on the right 
roughly marks the bottom of the conduction band. We have shifted the energy axis, so the 
center of the gap for different NL sit at same energy for the purpose of comparison.  
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